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Abstract

Streaming systems evaluate massive workloads of event sequence aggregation queries. State-
of-the-art approaches suffer from long delays caused by not sharing intermediate results of sim-
ilar queries and by constructing event sequences prior to their aggregation. To overcome these
limitations, our Shared Online Event Sequence Aggregation (SHARON) approach shares interme-
diate aggregates among multiple queries while avoiding the expensive construction of event se-
quences. Our SHARON optimizer faces two challenges. One, a sharing decision is not always ben-
eficial. Two, a sharing decision may exclude other sharing opportunities. To guide our SHARON

optimizer, we compactly encode sharing candidates, their benefits, and conflicts among candi-
dates into the SHARON graph. Based on the graph, we map our problem of finding an optimal
sharing plan to the Maximum Weight Independent Set (MWIS) problem. We then use the guaran-
teed weight of a greedy algorithm for the MWIS problem to prune the search of our sharing plan
finder without sacrificing its optimality. The SHARON optimizer is shown to produce sharing
plans that achieve up to an 18-fold speed-up compared to state-of-the-art approaches.

1 Introduction

Complex Event Processing (CEP) is a prominent technology for supporting time-critical streaming
applications ranging from public transport to e-commerce. CEP systems continuously evaluate
massive query workloads against high-rate event streams to detect event sequences of interest, such
as vehicle trajectories and purchase patterns. Aggregation functions are applied to these sequences
to provide summarized insights, such as the number of trips on a certain route to predict traffic
jams or the number of items purchased after buying another item for targeted advertisement. CEP
applications must react to critical changes of these aggregates in real time to compute best routes
or increase profit [4, 28, 29].

Motivating Examples. We now describe two time-critical multi-query event sequence aggrega-
tion scenarios.

• Urban transportation services. With the growing popularity of ridesharing services such
as Uber and Lyft, their systems face multiple challenges including real-time analysis of vehicle
trajectories, geospatial prediction, and alerting. These systems evaluate query workloads against
high-rate streams of drivers’ position reports and riders’ requests to infer the current supply and
demand situation on each route. They incorporate traffic conditions to compute the best route for
each trip. They instantaneously react to critical changes to prevent waste of time, reduce costs and
pollution, and increase riders’ satisfaction and drivers’ profit. With thousands of drivers and over
150 requests per minute in New York City [3, 2], real-time traffic analytics and ride management is
a challenging task.

Queries q1–q7 in Figure 1 compute the count of trips on a route as a measure of route popularity.
They consume a stream of vehicle-position reports. Each report carries a time stamp in seconds, a
car identifier and its position. Here, event type corresponds to a vehicle position. For example, a
vehicle on Main Street sends a position report of type MainSt. Each trip corresponds to a sequence
of position reports from the same vehicle (as required by the predicate [vehicle]) during a 10-minutes
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Figure 1: Traffic monitoring workload Q

Pattern p Queries Qp ⊆ Q
p1 = (OakSt ,MainSt) q1, q2, q3, q4
p2 = (ParkAve,OakSt) q3, q4
p3 = (ParkAve,OakSt ,MainSt) q3, q4
p4 = (MainSt ,WestSt) q2, q4
p5 = (OakSt ,MainSt ,WestSt) q2, q4
p6 = (MainSt ,StateSt) q1, q5
p7 = (ElmSt ,ParkAve) q6, q7

Table 1: Sharing candidates of the form (p,Qp) in the workload Q

long time window that slides every minute. The predicates and window parameters of q2–q7 are
identical to q1 and thus are not shown for compactness. Table 1 summarizes the common patterns
in this workload. For example, pattern p1 = (OakSt , MainSt) appears in queries q1–q4. Sharing
the aggregation of common patterns among multiple similar queries is vital to speed up system
responsiveness.

• E-commerce systems monitor customer click patterns to identify the purchase of which item
increases the chance of buying another item. Such purchase dependencies between items serve as
a foundation for prediction, planning, and targeted ads on an online shopping website.

Queries q8–q11 consume a stream of item purchases. Each event carries a time stamp in seconds,
customer identifier, type of item, e.g., Laptop. The choice of a laptop often determines the laptop
cases, adapters, keyboard protectors, etc. that may be purchased next (q8–q10). A laptop may even
determine a customer’s phone preferences, e.g., Mac users are likely to choose an iPhone over other
phones. The model of an iPhone, in turn, determines screen protectors for it (q11). Thus, queries q8–
q11 compute the count of item sequences during a 20-minute time window that slides every minute.
The pattern (Laptop, Case) appears in all four queries in this workload. The aggregation of such
patterns could be shared among these queries to achieve prompt updates of the recommendation
model according to dynamically changing user preferences.

State-of-the-Art Approaches can be divided into three groups (Figure 3):

•Non-shared two-step approaches, including Flink [1], SASE [29], Cayuga [10], and ZStream [22],
evaluate each query independently from other queries in the workload. Furthermore, these ap-
proaches do not offer optimization strategies specific to event sequence aggregation queries. With-
out special optimization techniques, these approaches first construct event sequences and then ag-
gregate them. Since the number of event sequences is polynomial in the number of events [29, 24],
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Figure 2: Purchase monitoring workload

Figure 3: Event sequence aggregation approaches

event sequence construction is an expensive step. Our experiments in Section 8 confirm that such a
non-shared two-step approach implemented by the popular open-source streaming system Flink [1]
does not terminate, even for low-rate streams of a few hundred events per second.

• Shared two-step approaches such as SPASS [25] and ECube [21] focus on shared event sequence
construction, not on event sequence aggregation. If these approaches are applied to aggregate event
sequences, they would construct all sequences prior to their aggregation. This event sequence
construction step degrades system performance. Our experiments in Section 8 confirm that such
a shared two-step approach implemented by SPASS [29] requires 41 minutes per window, even for
low-rate streams of a few hundred events per second. Such long delays are not acceptable for
time-critical applications that require a response within a few seconds [6].

• Non-shared online approaches such as A-Seq [24] and GRETA [23] compute event sequence
aggregation online, i.e., without constructing the sequences. A-Seq incrementally maintains a set of
aggregates for each pattern and instantaneously discards each event once it updates the aggregates.
GRETA extends A-Seq to a broader class of queries and thus has higher computation costs. Neither
of these approaches tackles the sharing optimization problem to determine which queries should
share the aggregation of which patterns such that the latency of a workload is minimized – which
is the focus of this paper. These approaches lack optimizers that can identify shared computations
among multiple queries.

Challenges. We tackle the following open problems:

• Online yet shared event sequence aggregation. These two optimization techniques cannot
be simply combined because they impose contradictory constraints on the underlying execution
strategy. For example, if query q4 shares the aggregation results of patterns p2 and p4 with other
queries (Table 1), the aggregates for p2 and p4 must be combined to form the final results for q4.
To ensure correctness, this result combination must be aware of the temporal order between se-
quences matched by p2 and p4 and their expiration. To analyze these temporal relationships, event
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Figure 4: SHARON graph for the traffic use case (Figure 1)

sequences must be constructed. This requirement contradicts the key idea of the online approaches
that avoid event sequence construction.

• Benefit of sharing. Sharing the aggregation computation for a pattern p by a set of queries Qp

containing p is not always beneficial, since this sharing may introduce considerable CPU overhead
for combining shared intermediate aggregates to form the final results for each query in Qp. Thus,
an accurate sharing benefit model is required to assess the quality of a sharing plan.

• Intractable sharing plan search space. The search space for a high-quality sharing plan is
exponential in the number of sharing candidates (Table 1). Since the event rate may fluctuate, the
benefit of sharing a pattern may change over time. To achieve a high sharing benefit, the sharing
plan may have to be dynamically adjusted. Hence, an effective yet efficient optimization algorithm
for sharing plan selection is required.

Our SHARON Approach. We propose the Shared Online Event Sequence Aggregation (SHARON)
optimization techniques to tackle these challenges. Since sharing a pattern p by a set of queriesQp is
not always beneficial, we develop a sharing benefit model to assess the quality of a sharing candidate
(p,Qp). The model compares the gain of sharing p among queries Qp to the overhead of combining
shared aggregates of p to form the final results for each query in Qp. Non-beneficial candidates are
pruned. Since a decision to share a pattern may prevent the sharing of another pattern by the same
query, we define the notion of sharing conflicts among sharing candidates. We compactly encode
sharing candidates as vertices and conflicts among these candidates as edges of the SHARON graph
(Figure 4). Each vertex is assigned a weight that corresponds to the benefit of sharing the respective
candidate. Based on the graph, we map our Multi-query Event Sequence Aggregation problem to
the Maximum Weight Independent Set (MWIS) problem. We then utilize the guaranteed minimal
weight of the approximate algorithm GWMIN [26] for MWIS to prune conflict-ridden candidates.
Since conflict-free candidates always belong to an optimal sharing plan, they can also be excluded
from the search early on. Based on the reduced graph, our sharing plan finder further prunes shar-
ing plans with conflicts and returns an optimal plan (i.e., plan with minimal estimated latency) to
guide our executor at runtime. In summary, SHARON seamlessly combines two optimization strate-
gies into one integrated solution. Namely, it shares sequence aggregation among multiple queries,
while computing sequence aggregation online.

Contributions. Our key innovations are the following.
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1) We design the sharing benefit model to assess the quality of a sharing candidate. Non-beneficial
candidates are pruned.

2) We identify sharing conflicts among candidates and encode candidates, their benefits, and
conflicts among them into the SHARON graph.

3) We map our Multi-query Event Sequence Aggregation problem to the Maximum Weight
Independent Set (MWIS) problem and utilize the guaranteed weight of the approximate algorithm
for MWIS to prune conflict-ridden candidates.

4) Based on the reduced SHARON graph, we introduce the sharing plan finder that prunes sharing
plans with conflicts and returns an optimal sharing plan.

5) Our experiments using real data sets [3, 6] demonstrate that sharing plans produced by the
SHARON optimizer achieve an 18-fold speed-up and use two orders of magnitude less memory
compared to Flink [1], A-Seq [24], and SPASS [25].

Outline. Section 2 provides an overview of our approach. We define the sharing benefit model
and sharing conflicts in Sections 3–4. We reduce the search space and design the sharing plan
finder in Sections 5–6. We discuss extensions of our core approach in Section 7. Experiments are
described in Section 8. Section 9 covers related work, while Section 10 concludes the paper and
describes future work.

2 Sharon Approach Overview

2.1 Sharon Data and Query Model

Time is represented by a linearly ordered set of time points (T,≤), where T ⊆ Z≥ (non-negative
integers). An event is a message indicating that something of interest to the application happened
in the real world. An event e has a time stamp e.time ∈ T assigned by the event source. An event
e belongs to a particular event type E, denoted e.type = E and described by a schema that specifies
the set of event attributes and the domains of their values. Events are sent by event producers (e.g.,
vehicles) on an input event stream I. An event consumer (e.g., carpool system) monitors the stream
with a workload of queries that detect and aggregate event sequences. We borrow the query syntax
and semantics from SASE [4].

Definition 1. (Event Sequence Pattern) Given event types E1, . . . El, an event sequence pattern has
the form P = (E1 . . . El) where l ∈ N, l ≥ 1, is the length of P .

Given a stream I , an event sequence s = (e1 . . . el) is a match of a pattern P if ∀i, j ∈ N, 1 ≤ i < j ≤ l,
the following conditions hold: ei, ej ∈ I , ei.type = Ei, ej .type = Ej , and ei.time < ej .time . Event e1 is
called a START event, el is an END event, and {e2, . . . , el−1} are MID events of s.

Definition 2. (Event Sequence Aggregation Query) An event sequence aggregation query q consists
of five clauses:
• Aggregation result specification (RETURN clause),
• Event sequence pattern P (PATTERN clause),
• Predicates θ (optional WHERE clause),
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• Grouping G (optional GROUP-BY clause), and

•Window w (WITHIN and SLIDE clause).

A query q requires that all events in an event sequence s are matched by the pattern P (Definition 1),
satisfy the predicates θ, have the same values of the grouping attributes G, and are within one window w.
Event sequences matched by q are grouped by the values ofG. The aggregation function of q is applied to each
group and a result is returned per group and per window. We focus on distributive (such as COUNT, MIN,
MAX, SUM) and algebraic aggregation functions (such as AVG), since they can be computed incrementally [13].

Let e be an event of type E and attr be an attribute of e. COUNT(∗) returns the number of all sequences
per group, while COUNT(E) computes the number of all events e in all sequences per group. MIN(E.attr)

(MAX(E.attr)) returns the minimal (maximal) value of attr for all events e in all sequences per group.
SUM(E.attr) calculates the summation of the value of attr of all events e in all sequences per group. Lastly,
AVG(E.attr) is computed as SUM(E.attr) divided by COUNT(E) per group.

Assumptions. To initially focus the discussion, we assume that: (1) A pattern p is shared among
all queries containing p. (2) All queries have the same predicates, grouping, and windows. (3) An
event type appears at most once in a pattern. (4) The workload is static. We sketch extensions of
our approach to relax these assumptions in Section 7.

2.2 Sharon Framework

We target time-critical applications that require aggregation results within a few seconds (Section 1).
Given a workloadQ and a stream I , the Multi-query Event Sequence Aggregation (MESA) Problem
is to determine which queries share the aggregation of which patterns (i.e., a sharing plan P) such
that the latency of evaluating the workload Q according to the plan P against the stream I is minimal.

To solve this problem, our SHARON framework deploys the following components (Figure 5).
Given a workload Q, our Static Optimizer finds an optimal sharing plan at compile time. To this
end, it identifies sharing candidates of the form (p,Qp) where p is a pattern that could potentially be
shared by a set of queriesQp ⊆ Q. It then estimates the benefit of each candidate (p,Qp) (Section 3),
determines sharing conflicts among these candidates, and compactly encodes all candidates, their
benefits and conflicts into a SHARON graph (Section 4). Based on the graph, the optimizer prunes
large portions of the search space (Section 5) and returns an optimal sharing plan (Section 6). Based
on this plan, our Runtime Executor computes the aggregation results for each shared pattern and
then combines these shared aggregations to obtain the final results for each query in the workload
Q (Section 3).

3 Sharing Benefit Model

Our optimizer first identifies sharing candidates in a workload (Section 3.1). It then decides whether
to apply the Non-Shared or the Shared method to each query (Sections 3.2–3.3). Both methods are bor-
rowed from A-Seq [24]. Lastly, it estimates the benefit of sharing each candidate (Section 3.4).
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Figure 5: SHARON framework

3.1 Sharing Candidate

First, our optimizer identifies those patterns that could potentially be shared by queries in a given
workload.

Definition 3. (Sharable Pattern, Sharing Candidate) LetQ be a workload and p be a pattern that appears
in queries Qp ⊆ Q. The pattern p is sharable in Q if p.length > 1 and |Qp| > 1. A sharable pattern p and
queries Qp constitute a sharing candidate, denoted as (p,Qp).

Existing pattern mining approaches can detect sharable patterns. Due to space constraints, they
are described in Appendix A.

The pattern P i of a query qi ∈ Qp consists of three sub-patterns, namely, prefix i, p, and suffix i

defined below.

Definition 4. (Prefix and Suffix of a Sharable Pattern in a Query) Let P i = (Ei
1 . . . E

i
n) be the pattern

of a query qi and p = (Ei
m . . . Ei

m+l) be a sharable pattern that appears in qi where m, l, n ∈ N, 1 ≤ m,
and m+ l ≤ n. Then prefix i = (Ei

1 . . . E
i
m−1) is called the prefix and suffix i = (Ei

m+l+1 . . . E
i
n) is called

the suffix of p in qi.

3.2 Non-Shared Method

While A-Seq [24] considers grouping, predicates, negation, and various aggregation functions, we
now sketch only its key ideas, namely, online event sequence aggregation and event sequence ex-
piration. We use event sequence count as an example, i.e., COUNT(*) (Definition 2).

Online Event Sequence Aggregation A-Seq computes the count of event sequences online, i.e.,
without constructing and storing these event sequences. To this end, it maintains a count for each
prefix of a pattern. The count of a prefix of length j is incrementally computed based on its previous
value and the new value of the count of the prefix of length j − 1.

Example 1. Let an event be described by its type and time stamp, e.g., a1 is an event of type A with time
stamp 1. In Figure 6(a), we count event sequences matched by the pattern (A,B), denoted count(A,B).
A count is maintained for each prefix of the pattern, i.e., for (A) and (A,B). The value of count(A,B) is
updated every time a b arrives by summing count(A) and count(A,B). For example, when b4 arrives, it
is appended to each previously matched a to form new sequences (a1, b4) and (a2, b4). The number of new
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(a) Online sequence aggregation (b) Event sequence expiration

Figure 6: Non-Shared method

sequences is count(A) = 2. In addition, the previously formed sequence (a1, b2) is kept. The number of
previous sequences is count(A,B) = 1. Thus, count(A,B) is updated to 3.

Event Sequence Expiration. Due to the sliding window semantics of our queries (Definition 2),
event sequences expire over time. To avoid the re-computation of all affected aggregates, we ob-
serve that a START event of a sequence (Definition 1) expires sooner than any other event in it. Thus,
we maintain the aggregates per each matched START event. When a new event arrives, only the
counts of not-expired START events are updated. When an END event e arrives, it updates the final
counts for all windows that e falls into.

Example 2. In Figure 6(b), assume a window of length four slides by one. A count is now maintained per
each matched a. When b5 arrives, a1 is expired, count(a1, B) is ignored, count(a2, B) and count(A,B) are
updated for window w2.

Data Structures. Our SHARON Executor maintains a hash table that maps a pattern to its count.
Thus, we can access and update a count in constant time.

Time Complexity. The query qi processes each event that it matches. The rate of matched
events is computed as the sum of rates of all event types in the pattern P i of qi (Definition 4):

Rate(P i) =

n∑
j=1

Rate(Ei
j) (1)

Since counts are maintained per START event and an event type appears at most once in a pattern,
each matched event updates one count per each not-expired START event. There are Rate(Ei

1) START

events. In summary, the time complexity of processing the query qi by the Non-Shared method is:

NonShared(p, qi) = Rate(Ei
1)× Rate(P i) (2)

For the set of queries Qp, the time complexity corresponds to the summation of the time com-
plexity for each query qi.

NonShared(p,Qp) =
∑

qi∈Qp

NonShared(p, qi) (3)
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Figure 7: Shared method

3.3 Shared Method

Let (p,Qp) be a sharing candidate (Definition 3). Let preffix i and suffix i be the prefix and the suffix
of p in a query qi ∈ Qp (Definition 4). The aggregates for preffix i, p, and suffix i are combined to
obtain the aggregate for qi. Due to event sequence semantics, the sequences matched by preffix i

must appear before the sequences matched by p which in turn must appear before the sequences
matched by suffix i in the stream. To this end, the executor performs two steps:

(1) Count computation. Counts are maintained per each START event of prefix i, p, and suffix i

(Section 3.2).

(2) Count combination. The count of prefix i is multiplied with the count for each START event
of p. The resulting counts are summed to obtain count(preffix i, p). This count is further combined
with the count of suffix i analogously.

Example 3. In Figure 7, we compute the count of (A,B, C,D) based on the counts of (A,B) and (C,D).
Assuming that a1–d8 belong to the same window, count(A,B) is computed as shown in Figure 6(a). In
addition, a count for each c (i.e., c3 and c7) is maintained. When c3 arrives, count(A,B) = 1. We multiply it
with count(c3, D) = 2 to obtain count(A,B, c3, D) = 2. Analogously, when c7 arrives, count(A,B) = 5.
It is multiplied with count(c7, D) = 1 to get count(A,B, c7, D) = 5. Lastly, we sum these counts to obtain
count(A,B,C,D) = 7.

Time Complexity. 1) Count computation. Since the shared pattern p is processed once for all
queries in Qp, the time complexity of processing each query qi by the Shared method corresponds
to the sum of the time complexity of processing prefix i and suffix i of qi.

Comp(p, qi) = Rate(Ei
1)× Rate(prefix i)+

Rate(Ei
m+l+1)× Rate(suffix i)

(4)

2) Count combination. The time complexity of count multiplication is the product of the number
of counts.

Comb(p, qi) = Rate(Ei
1)× Rate(Em)×

Rate(Ei
m+l+1)

(5)

The time complexity of processing qi by the Shared method is the sum of the time complexity
of these two steps.

Shared(p, qi) = Comp(p, qi) + Comb(p, qi) (6)
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For the set of queriesQp, the time complexity corresponds to the summation of time complexity
for each query qi. In contrast to the Non-Shared method (Equation 3), the pattern p is computed
once by the Shared method.

Shared(p,Qp) = Rate(Em)× Rate(p)+∑
qi∈Qp

Shared(p, qi)
(7)

3.4 Benefit of a Sharing Candidate

Definition 5. (Benefit of a Sharing Candidate) The benefit of sharing a pattern p by the set of queries
Qp is computed as the difference between the time complexity of the Non-Shared and Shared methods (Equa-
tions 3 and 7):

BValue(p,Qp) = NonShared(p,Qp)− Shared(p,Qp) (8)

A sharing candidate (p,Qp) is called beneficial if BValue(p, Qp) > 0. It is called non-beneficial otherwise.

Non-Beneficial Candidate Pruning. All non-beneficial candidates can be excluded from further
analysis.

Based on this cost model, we conclude that the number of queries, the length of their patterns, and
the stream rate determine the benefit of sharing. We experimentally study the effects of these factors
in Section 8.

4 Sharing Conflict Modeling

A decision to share a pattern p by a query q ∈ Qp may prevent sharing another pattern p′ by q if
p and p′ overlap in q. Such sharing candidates are said to be in a sharing conflict. We now encode
sharing candidates, their benefit, and conflicts into the SHARON graph. Based on the graph, we
then reduce the search space of our sharing plan finder (Sections 5–6).

Example 4. In Table 1, queries q3 and q4 contain the overlapping patterns p2 = (ParkAve,OakSt) and
p1 = (OakSt ,MainSt). Since the executor computes and stores the aggregates for a pattern as a whole (Sec-
tion 3), q3 and q4 can either share p1 or p2, but not both. Thus, the sharing candidates (p1, {q1, q2, q3, q4})
and (p2, {q3, q4}) give “contradictory instructions” for q3 and q4. These candidates are said to be in a shar-
ing conflict. However, if p1 were to be shared only by q1 and q2, the sharing conflict between these candidates
would be resolved. We sketch the techniques for sharing conflict resolution in Section 7.

Definition 6. (Sharing Conflict) Let pA = (A0 . . . An) and pB = (B0 . . . Bm) be patterns and QA and
QB be query sets. The sharing candidates (pA, QA) and (pB , QB) are in sharing conflict if pA overlaps with
pB in a query q ∈ QA ∩QB , i.e., ∃k ∈ N, 0 ≤ k ≤ n,m An−k . . . An = B0 . . . Bk in q. The query q causes
the conflict between (pA, QA) and (pB , QB).

Definition 7. (Valid Sharing Plan) A sharing planP is a set of sharing candidates. P is valid if it contains
no candidates that are in conflict with each other. P is invalid otherwise.
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Algorithm 1 SHARON graph construction algorithm
Input: A hash table H mapping each sharable pattern p to a list of queries Qp that contain p
Output: SHARON graph G = (V,E)

1: V ← ∅; E ← ∅; G← (V,E)
2: for each p in H do Qp ← H.get(p)
3: if BValue(p,Qp) > 0 and Qp.size > 1 then
4: v ← (p,Qp); v.weight ← BValue(p,Qp))
5: V ← V ∪ v
6: for each u in V do
7: if v and u are in sharing conflict then
8: E ← E ∪ (v, u)

9: return G

Definition 8. (Score of a Sharing Plan) The score of a sharing plan P = {(p1, Qp1), . . . , (ps, Qps)} is:

Score(P) =

s∑
j=1

BValue(pj , Qpj) (9)

Definition 9. (Optimal Sharing Plan) Let Pval be the set of all valid sharing plans. Popt ∈ Pval is an
optimal sharing plan if @P ∈ Pval with Score(P) > Score(Popt).

Example 5. Given the workload in Figure 1, the plan P = {(p2, {q3, q4}); (p4, {q2, q4})} is valid. Its shar-
ing candidates are not in conflict since the patterns p2 = (ParkAve,OakSt) and p4 = (MainSt ,WestSt)

do not overlap. However, P is not an optimal plan because Score(P) = 24 is not maximal among all valid
plans. Indeed, another valid plan {(p1, {q1, q2, q3, q4})} has higher score 25.

Definition 10. (SHARON Graph) Let S be the set of sharable patterns in a workload Q. The SHARON

graph G = (V,E) has a set of weighted vertices V and a set of undirected edges E. Each vertex v ∈ V

represents a sharing candidate (p,Qp) where p ∈ S is a pattern and Qp ⊆ Q is the set of all queries
containing p. Each vertex is assigned a weight BValue(p,Qp) > 0 that corresponds to the benefit value of
(p,Qp) (Equation 8). Each edge (v, u) ∈ E represents a sharing conflict between the candidates v, u ∈ V .

Example 6. Figure 4 shows the SHARON graph for the traffic monitoring workload in Figure 1 and Table 1.

SHARON Graph Construction Algorithm consumes a hash table H that maps each sharable
pattern p to the list of queriesQ that contain p. If a pattern p is beneficial to be shared by at least two
queries, the vertex v = (p,Qp) with weight BValue(p,Qp) is inserted into the graph (Lines 3–5 in
Algorithm 1). Non-beneficial candidates are omitted. The edges representing the sharing conflicts
between v and other vertices in the graph are inserted (Lines 6–8). The graph is returned at the end
(Line 9).

Data Structures. We implement the SHARON graph as an adjacency list to efficiently retrieve the
neighbors of a vertex v, i.e., identify the sharing conflicts of v. Each vertex stores a sharable pattern
p, a list of queries Qp that contain p, and the benefit value of the sharing candidate (p,Qp). The
position of a query q in the listQp corresponds to the identifier of q. Thus, we can conclude whether
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two candidates are in conflict in linear time in the maximal number of queries |Qp| containing a
sharable pattern p, i.e., O(|Qp|).

Complexity Analysis. The time complexity is determined by the number of sharable patterns
|H|, the number of sharing candidates |V |, and the maximal number of queries |Qp| containing a
pattern. In total, O(|H||V ||Qp|). The space complexity corresponds to the size of the graph, i.e.,
Θ(|V ||Qp|+ |E|).

5 Sharing Candidate Pruning

Since the search space for an optimal plan is exponential in the number of candidates (Section 6), we
prune two classes of candidates from a SHARON graph. One, conflict-ridden candidates are guaran-
teed not to be in the optimal plan because their benefit values are too low to counterbalance the loss
of benefit from the sharing opportunities they exclude. Two, conflict-free candidates are guaranteed
to be in the optimal plan since they do not prevent any other sharing opportunities.

Conflict-Ridden Candidates. We now map our MESA problem to the problem of finding a
Maximum Weight Independent Set (MWIS) in a graph, which is known to be NP-hard [16]. The
greedy algorithm GWMIN [26] for MWIS does not always return a high-quality plan as confirmed
by our experiments in Section 8.3. However, its guaranteed minimal weight can be used to prune
conflict-ridden candidates.

Definition 11. (Maximum Weight Independent Set) Let G = (V,E) be a graph with a set of weighted
vertices V and a set of edges E. For a set of vertices V ′ ⊆ V , we denote the sum of the weights of the vertices
in V ′ as Weight(V ′). IS ⊆ V is an independent set of G if for any vertices vi, vj ∈ IS , (vi, vj) /∈ E holds.
Let SIS be the set of all independent sets of G. IS ∈ SIS is a maximum weight independent set of G if
@IS ′ ∈ SIS with Weight(IS ′) > Weight(IS ).

Lemma 1. Let Q be a query workload, G be the SHARON graph for Q, and Popt be an optimal sharing plan
for Q. Then, Popt is an MWIS of G.

Proof. By Definitions 7 and 9, Popt is valid, i.e., contains no conflicting sharing candidates. By
Definition 10, no vertices in Popt are connected by an edge in G. By Definition 11, Popt is an
independent set of G. By Definition 9, Popt has the maximum score among all valid plans. By
Definition 10, Popt has the maximum weight among all independent sets of G. By Definition 11,
Popt is an MWIS of G.

GWMIN returns an independent set IS with weight:

Weight(IS ) ≥
∑
u∈V

weight(u)

degree(u) + 1
(10)

To safely prune a conflict-ridden candidate v, we define the maximal score of a plan containing
v, denoted Scoremax (v). In best case, a plan containing v includes all other candidates that are not
in conflict with v. Thus, Scoremax (v) corresponds to the summation of benefit values of all sharing
candidates that are not in conflict with v.
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Definition 12. (Maximal Score of a Plan Containing a Sharing Candidate) Let v ∈ V be a sharing
candidate in a SHARON graph G = (V,E) and N (v) ⊆ V be the set of candidates that are in conflict with
v. The maximal score of a sharing plan containing v is defined as follows:

Scoremax (v) =
∑

u∈V \N (v)

BValue(u) (11)

Lemma 2. For a valid sharing plan P and a sharing candidate v ∈ P , Score(P) ≤ Scoremax (v) holds.

Proof. Let G = (V,E) be the SHARON graph such that P ⊆ V is an independent set of G and v ∈ P .
By Definition 7, P contains no conflicting candidates. By Definition 10, all vertices in N (v) are in
conflict with v and thus are not in P . Since P may need to remove additional vertices to avoid
other conflicts, P ⊆ V \N (v). By Definition 12, Scoremax (v) is the sum of BValues of all candidates
in V \ N (v). Since all BValues of vertices in V are positive (Section 3.4), P ⊆ V \ N (v) implies
Score(P) ≤ Scoremax (v).

Definition 13. (Conflict-Ridden Sharing Candidate) Let G = (V,E) be a SHARON graph. A sharing
candidate v ∈ V is conflict-ridden if the maximal score of a sharing plan containing v is lower than the
guaranteed weight of GWMIN.

Scoremax (v) <
∑
u∈V

BValue(u)

degree(u) + 1
(12)

Conflict-Ridden Candidate Pruning. All conflict-ridden candidates are pruned from the SHARON

graph without sacrificing the optimality of the resulting sharing plan.

Example 7. The guaranteed weight on the graph in Figure 4 is 25
6 + 9

4 + 12
5 + 15

4 + 20
5 + 8

2 + 18
1 ≈ 38.57.

Since Scoremax (p3, {q3, q4}) = BValue(p3, {q3, q4}) + BValue(p6, {q1, q5}) + BValue(p7, {q6, q7}) =

38 < 38.57, an optimal sharing plan cannot contain (p3, {q3, q4}). Thus, this candidate and its conflicts can
be pruned.

Conflict-Free Candidates do not exclude any other sharing opportunities and increment the
score of a plan by their benefit values. Such candidates can be directly added to an optimal plan
and removed from further analysis.

Definition 14. (Conflict-Free Sharing Candidate) A sharing candidate v ∈ V in a SHARON graph
G = (V,E) is conflict-free if 6 ∃u ∈ V with (v, u) ∈ E.

Example 8. The conflict-free candidate (p7, {q6, q7}) in Figure 4 increments the score of a plan by its benefit
18.

SHARON Graph Reduction Algorithm (Algorithm 2) consumes a SHARON graph G and the
guaranteed weight of GWMIN. It removes all conflict-ridden or conflict-free candidates from the
graph G. The algorithm returns the reduced graph and the set of conflict-free candidates.
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Figure 8: Search space of the sharing plan finder algorithm

Algorithm 2 SHARON graph reduction algorithm
Input: SHARON graph G, guaranteed weight min of GWMIN
Output: Reduced graph G, conflict-free candidates F

1: F ← ∅
2: while G can be reduced do
3: for each v in V do
4: if degree(v) = 0 then
5: F ← F ∪ v; G.remove(v)
6: else if Scoremax (v) < min then
7: G.remove(v)
8: return G,F

Complexity Analysis. The time complexity is determined by the nested loops that iterateO(|V |)
and Θ(|V |) times respectively. The time complexity of removing a candidate v from the graph in
Line 7 is O(|E|) since all conflicts of v are also deleted. Thus, the time complexity is quadratic
O(|V |2|E|). The space complexity is determined by the size of the graph G and the set F . Since
|F | ≤ |V |, the space costs are linear, i.e., O(|V |+ |E|).

Example 9. Figure 8 depicts the search space for an optimal plan for our running example. Since the conflict-
ridden candidate (p3, {q3, q4}) is pruned (Example 7), while the conflict-free candidate (p7, {q6, q7}) is added
to the optimal plan (Example 8), the search space is reduced by 27 − 25 = 96 plans. This reduced space is
indicated by a solid frame in Figure 8. It corresponds to 75.59% of the search space.

6 Sharing Plan Finder

Based on the reduced SHARON graph, we now propose the optimal sharing plan finder. In addition
to the non-beneficial and conflict-ridden candidate pruning principles, we define invalid branch
pruning. It cuts off those branches of the search space that contain only invalid plans early on.

Search Space for an Optimal Sharing Plan. The parent-child relationships between sharing
plans are defined next.

Definition 15. (Parent-Child Relationship between Sharing Plans) Let P and P ′ be sharing plans. If
P ⊂ P ′, then P is an ancestor of P ′ (P ′ is a descendant of P). If |P| = |P ′| − 1, then P is a parent of P ′

(P ′ is a child of P).

The search space has a lattice shape (Figure 8). The plans in Level 1 correspond to the vertices
in Figure 4. Level s contains sharing plans of size s. The size of the search space is exponential in the
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number of candidates, denoted |V |. It is computed as the sum of the number of plans at each level:

|V |∑
s=0

(
|V |
s

)
= 2|V | (13)

Lemma 3. Score(P ′) > Score(P) if P is a parent of P ′.

Proof. By Definition 15, P ⊂ P ′ and |P| = |P ′| − 1. Let P ′ \ P = (p,Qp). By Definition 10, only a
candidate (p,Qp) with BValue(p,Qp) > 0 is included into a SHARON graph. Thus, (p,Qp) increases
the score of P ′ compared to P .

A naive plan finder considers all combinations of candidates and keeps track of a valid plan
with the maximal score seen so far. However, this solution constructs many invalid plans that are
subsequently discarded. To avoid such exhaustive search, we prove the following properties of the
search space.

Lemma 4. All descendants of an invalid plan are invalid.

Proof. Let P be an invalid sharing plan and Pd be its descendant. By Definition 15, P ⊂ Pd. Thus,
Pd “inherits” all sharing conflicts from P which makes Pd invalid.

Invalid Branch Pruning. Invalid plans of size two correspond to edges of a SHARON graph
(Figures 4 and 8). Thus, all descendants of invalid plans of size two can be safely pruned. Our plan
finder cuts off invalid branches at their roots.

Example 10. In Figure 8, only 7.87% of the search space is valid. It consists of 10 plans. This valid space is
traversed to find the optimal plan {(p2, {q3, q4}); (p4, {q2, q4}); (p6, {q1, q5}); (p7, {q6, q7})} highlighted
by a darker background.

In Figure 8, 16.54% of the search space is invalid. The invalid space consists of 21 plans = 25 not reduced
plans – 10 valid plans – 1 empty plan. The invalid space is indicated by the dashed frame. It is pruned by
our plan finder.

Valid Search Space Traversal. A plan of size one is valid by Definition 7. A plan of size two
{v1, v2} is valid if there is no edge (v1, v2) in the SHARON graph. Validity of a larger plan is deter-
mined as described next.

Lemma 5. A sharing plan P , |P| > 2, is valid if and only if all its parents are valid.

Proof. “⇒” The proof follows directly from Lemma 4.

“⇐” LetP contain a sharing conflict, say, between candidates v and u. Then there exists a parent
Pp of P that contains v and u. Hence, Pp is invalid.

By Definition 15, a plan of size s has s parents. Instead of accessing all parent plans to generate
one new valid plan, we prove that only two parents and one ancestor of size two must be valid to
guarantee validity of a sharing plan (similarly to Apriori candidate generation [5]).



17

Algorithm 3 Level generation algorithm
Input: SHARON graph G = (V,E), set of sharing plans of size s Parents = {P0, . . . , Ps−1}
Output: Set of sharing plans of size s+ 1 Children

1: getNextLevel(G,Parents) {
2: Children ← ∅
3: for each (i = 0; i < s; i++) do
4: for each (j = i+ 1; j < s; j++) do
5: if s = 1 and (Pi.v1, Pj .v1) not in E then
6: Children .add(Pi ∪ Pj)
7: if Pi.v1 = Pj .v1, . . . , Pi.vs−1 = Pj .vs−1 and (Pi.vs, Pj .vs) not in E then
8: Children .add(Pi ∪ Pj)
9: return Children }

Figure 9:
SHARON graph

Figure 10: Generation of a new valid sharing plan

Lemma 6. Let G = (V,E) be a SHARON graph, P1 and P2 be valid parents of P, |P| > 2. For two
candidates v1 = P1 \ P2 and v2 = P2 \ P1, if (v1, v2) 6∈ E, then P is valid.

Proof. Assume all the above conditions hold but P is invalid. Then P contains at least one pair of
conflicting candidates. By Definition 15, P = P1∪P2 and P has one additional candidate compared
to P1 (or P2). Since P1 and P2 are valid, there can be only one pair of conflicting candidates v1
and v2 in P such that v1 = P1 \ P2 and v2 = P2 \ P1. By Definition 10, (v1, v2) ∈ E which is a
contradiction.

Level Generation Algorithm consumes a SHARON graph G and a set of sharing plans of size
s, called Parents . It returns level s + 1 of the search space, i.e., the set of all sharing plans of size
s+ 1, called Children . Algorithm 3 iterates through all pairs of parent plans of size s (Lines 3–4). In
the base case, the Parents are the vertices of G and the Children are non-adjacent pairs of vertices
(Lines 5–6). In the inductive case, to generate a valid plan of size s+ 1, the algorithm identifies two
plans of size s, Pi and Pj , that begin with the same s − 1 decisions. If the plan containing the last
decisions of Pi and Pj (denoted Pi.vs and Pj .vs) is valid, the plan Pi ∪ Pj is also valid (Lines 7–8).

Complexity Analysis. The time complexity of Algorithm 3 is determined by the number of
plans at one level, namely, the binomial coefficient

(|V |
s

)
in Equation 13. Due to two nested loops,

the time complexity is O(
(|V |

s

)2
). The space complexity is also determined by the number of plans

at one level, i.e., O
(|V |

s

)
.

Example 11. Figure 10 shows a portion of a search space with valid plans P1–P6 of size four. P7 is the only
valid plan of size five. It is generated as follows. (1) We identify two plans of size four that start with the
same three candidates, e.g., P1 and P2 start with {v1, v2, v3}. (2) We compute their symmetric difference
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Algorithm 4 Sharing plan finder algorithm
Input: SHARON graph G = (V,E), set of conflict-free candidates F
Output: Optimal sharing plan opt ∪ F

1: opt ← ∅; max ← 0
2: for each v in V do
3: if BValue(v) > max then
4: opt ← {v}; max ← BValue(v)

5: Level ← getNextLevel(G,V )
6: while Level 6= ∅ do
7: for each P in Level do
8: if Score(P ) > max then
9: opt ← P ; max ← Score(P )

10: Level ← getNextLevel(G,Level)

11: return opt ∪ F

P1∆P2 = {v4, v5}. (3) Since there is no edge (v4, v5) in Figure 9, P7 is valid. There is no need to check the
other three parents of P7. In contrast, P8 is invalid since v5 and v6 are in conflict.

Sharing Plan Finder Algorithm traverses valid search space using Breadth-First-Search. Algo-
rithm 4 effectively prunes invalid branches at their roots. It constructs only valid plans and returns
an optimal plan among them.

Correctness. We prove that Algorithm 4 considers all valid sharing plans, i.e., it returns the
optimal sharing plan.

Lemma 7. If a sharing plan is valid, then it is considered by the sharing plan finder algorithm.

Proof. We prove Lemma 7 by induction. The base cases are s = 1 and s = 2. First, V is the set
of all valid sharing plans of size 1. It is considered by Algorithm 4. Second, Algorithm 4 (Line 5)
generates all plans of size 2 by considering all non-adjacent vertex pairs in Algorithm 3 (Lines 5–6).

Now, we assume that all valid plans of up to and including size s, such that s ≥ 2, are consid-
ered. We will prove that all valid plans of size s+ 1 are also considered. Let P = {v1, . . . , vs, vs+1}
be a valid plan of size s + 1. Then P1 = {v1, . . . , vs−1, vs}, P2 = {v1, . . . , vs−1, vs+1}, and P3 =

{vs, vs+1} are ancestors of P . By Lemma 5, P1,P2, and P3 are valid. By the induction assumption,
they were considered by Algorithm 4. Algorithm 3 generates the plan P from P1,P2, and P3. Thus,
Algorithm 4 considers P .

Data Structures. For each plan P , we store the list of sharing candidates and the score of P .
These candidates are sorted alphabetically by their patterns within a plan because sequential access
of candidates in plans enables efficient generation of new valid plans (Lemma 6, Example 11). Our
plan finder stores the best plan found so far and only one level of the search space at a time. It
discards a level immediately after generating the next level.

Complexity Analysis. Since the entire valid search space is traversed, the algorithm has expo-
nential time and space complexity in the worst case (Equation 13). However, the SHARON opti-
mizer is efficient on average thanks to its effective pruning principles (Section 8.3).
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Effectiveness of Sharing Plan Finder. Our experiments in Section 8.3 demonstrate that our
SHARON optimizer finds an optimal plan in reasonable time due to three effective pruning princi-
ples (i.e., non-beneficial, conflict-ridden, and invalid candidates in Sections 3.4, 5, and 6). Only in
the following two extreme cases our solution may be ineffective:

1) Since the algorithm traverses the entire valid space, its time complexity is exponential (Equa-
tion 13). If the search space is too large, we can constrain the optimization time by l seconds. If
our SHARON optimizer does not return an optimal plan within l seconds, we instead would run
GWMIN [26] with polynomial time complexity to find a sharing plan and start our SHARON execu-
tor using this plan. Later, when the optimal plan is produced by our SHARON optimizer, we can
replace the greedily found plan by the optimal plan.

2) The valid search space becomes small if many sharing conflicts exist (Figure 8). In this case,
only a few patterns can be shared and a fairly low score of a sharing plan would be achieved. In the
worst case, no pattern can be shared, i.e., SHARON defaults to the Non-Shared Method (Section 3.2).
Our optimizer finds such a trivial plan very quickly.

Optimal versus Greedily Chosen Plan. While the greedy algorithm GWMIN is useful to reduce
the search space (Section 5), the score of a greedily chosen plan might be considerably lower than
the score of an optimal plan.

Example 12. Even in our small example in Figure 4, the greedily chosen plan Pgre = {(p1, {q1, q2, q3, q4});
(p7, {q6, q7})} has score 43, while the optimal plan Popt = {(p2, {q3, q4}); (p4, {q2, q4}; (p6, {q1, q5});
(p7, {q6, q7})} increases Score(Pgre) by more than 16% to 50.

7 Extensions of the Sharon Approach

In this section, we briefly describe the extensions of our approach to relax the simplifying assump-
tions in Section 2.1.

7.1 Sharing Conflict Resolution

Our analysis in Section 4 reveals that promising sharing opportunities might be excluded by shar-
ing conflicts. Generally, the more queries share a pattern the higher the probability of sharing
conflicts becomes (Definition 6). We now open up additional sharing opportunities by resolving
sharing conflicts as follows.

Given a SHARON graph G = (V,E), we expand each candidate v = (p,Qp) ∈ V with conflicts
Ev ⊆ E to a set of options Op. Each option v′ = (p,Q′p) ∈ Op resolves a different subset of conflicts
E′v ⊆ Ev of the original candidate v with other candidates u ∈ V \ Op. In contrast to the original
candidate v, an option v′ considers sharing the pattern p by a subset of queries containing p, i.e.,
Q′p ⊆ Qp, |Q′p| > 1.

Example 13. In Figure 4, the sharing candidate (p1, {q1, q2, q3, q4}) can be expanded to a set of options. The
option (p1, {q1, q3}) is not in sharing conflict with the candidates (p4, {q2, q4}) and (p5, {q2, q4}). Thus,
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Algorithm 5 Sharing candidate expansion algorithm
Input: SHARON graph G = (V,E), v = (p,Qp) ∈ V
Output: Set Op of sharing candidate options for p

1: getSet(G, v) {
2: Lc, Ln ← empty stacks; Lc.push(v); Op ← {v}
3: while !Lc.isEmpty() do
4: v ← Lc.pop()
5: for each conflict (v, u) in E do
6: Qc ← queries in Qp that cause (v, u)
7: for each combination C of Qc that can resolve (v, u) do
8: Q′p ← Qp \ C
9: if |Q′p| > 1 and Q′p is new then

10: v′ ← (p,Q′p); Ln.push(v′);
11: Op ← Op ∪ {v′}
12: if Lc.isEmpty() then
13: Lc ← Ln; Ln ← empty stack
14: return Op }

they could belong to the same sharing plan which may have a higher score than a plan containing the original
candidate (p1, {q1, q2, q3, q4}).

Definition 16. (Resolved Sharing Conflict.) Let the candidates v1 = (p1, Q1) and v2 = (p2, Q2) ∈ V be
in conflict (v1, v2) ∈ E caused by the queries Q = Q1 ∩Q2 such that Q = Q′1 ∪· Q′2.* The conflict (v1, v2)

is resolved by omitting Q′1 and Q′2 from Q1 and Q2 respectively.

By Definition 6, the sharing candidates v′1 = (p1, Q1\Q′1) and v′2 = (p2, Q2\Q′2) are not in conflict
since (Q1 \ Q′1) ∩ (Q2 \ Q′2) = ∅. The conflict (v1, v2) is resolved if any query sets Q′1 and Q′2 that
compose Q are omitted from Q1 and Q2 respectively. In the worst case, all combinations of queries
Q are included into the sets of options for v1 and v2.

Sharing Candidate Expansion Algorithm. For a SHARON graphG and a candidate v = (p,Qp) ∈
V , Algorithm 5 builds a tree of options Op using Breadth First Search. The root of this tree is the
original candidate v. To generate a child of v, the algorithm skips the queries from Qp that cause a
conflict of v with another sharing candidate u ∈ V \Op. We label an edge between v and its child by
the sharing candidate u. The algorithm terminates when no new option with at least two queries
can be generated.

Complexity Analysis. The time and space complexity of Algorithm 5 are determined by the
maximal size of a set |Omax

p |. Let d be the maximal degree of a candidate v ∈ V and k be the
maximal number of queries that cause a conflict. For each conflict (v, u) ∈ E, all combinations of
queries causing this conflict are considered (nested for-loops in Lines 5–10 and 7–10). Thus,

|Omax
p | =

d∑
i=0

(
d

i

) k−1∑
j=0

(
k

j

)
(14)

*∪· denotes disjoint set union, meaning that Q = Q′
1 ∪Q′

2 but Q′
1 ∩Q′

2 = ∅.
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Figure 11: Sharing candidate options for pattern p1

Algorithm 6 Sharing conflict resolution algorithm
Input: SHARON graph G = (V,E)
Output: Expanded SHARON graph G

1: V ′ ← ∅; E′ ← ∅
2: for each v = (p,Qp) in V do
3: Op ← getSet(G, v); V ′ ← V ′ ∪Op

4: for each v′ in Op do
5: for each u in V ′ do
6: if v′ and u are in sharing conflict then
7: E′.add(v′, u)

8: return G← (V ′, E′)

where i denotes the number of resolved conflicts, while j corresponds to the number of skipped
queries to resolve one conflict.

Example 14. Figure 11 illustrates the sharing candidate options for the candidate v = (p1, {q1, q2, q3, q4})
in Figure 4. To resolve the conflict with u1 = (p2, {q3, q4}) and u2 = (p3, {q3, q4}), queries q3 and q4 are
dropped from the set of queries of v. The edge between v and its child (p1, {q1, q2}) is labeled by u1, u2. Other
conflicts of v are resolved analogously.

Sharing Conflict Resolution Algorithm. For a SHARON graph G and each candidate v =

(p,Qp) ∈ V , (Algorithm 6) expands v to a set of options Op to open up additional sharing op-
portunities. The algorithm updates the conflicts of these options and returns the expended graph.

Complexity Analysis. The time complexity is determined by three nested for-loops that are
called Θ(|V |), |Omax

p | and Θ(|V ′|) times respectively where |Omax
p | denotes the maximal size of a

set (Equation 14). Since |V | ≤ |V ′| and |Omax
p | ≤ |V ′|, the time complexity is cubic in the number of

candidates in the expanded SHARON graph in the worst case, i.e., O(|V ′|3). The space complexity
is determined by the size of the expanded graph, i.e., Θ(|V ′|+ |E′|).

Example 15. The SHARON graph in Figure 4 is expanded in Figure 12. The sharing candidate for pattern
p1 is expanded into a set of options and highlighted by a rectangle frame. The sets for other candidates contain
only the original candidate. Conflicts within sets are omitted for readability.

The expanded graph is then reduced (Section 5) and serves as input to our sharing plan finder
(Section 6).

7.2 Different Predicates, Grouping, and Windows

Leveraging existing techniques, our SHARON approach can share event sequence aggregation among
queries with different grouping, windows, and predicates. Grouping partitions the stream into
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Figure 12: Expanded SHARON graph

sub-streams by the values of grouping attributes [24, 14]. Windows and predicates further parti-
tion these sub-streams into disjoint segments and share the intermediate aggregates per segment
to compute the final results for each query [14, 17, 7, 20]. These refinement strategies might not
always be effective, because of a large number of small segments and the overhead of their com-
putation. However, these are orthogonal problems. Our SHARON approach can be applied within
each segment to tackle different query patterns.

7.3 Multiple Occurrences of an Event Type in a Pattern

If an event type E occurs k times in a pattern, an event of type E updates the counts of k prefix
patterns that end atE (Section 3). Then, the time complexity of both the Non-Shared and the Shared
methods increases by the multiplicative factor k (Equations 2, 4, and 7). Our SHARON optimizer is
not affected by this extension.

7.4 Dynamic Workloads

In dynamic environments, new queries may be added or existing queries may be removed. Even
if the queries remain the same, the workload may still vary due to event rate fluctuations. Thus,
a chosen plan may become sub-optimal. In this case, our SHARON approach leverages runtime
statistics techniques [18] to detect such fluctuations and to trigger the SHARON optimizer to pro-
duce a new optimal plan based on the new workload. Dynamic plan migration techniques [17, 33]
can be employed to migrate from the old to the new sharing plan and ensure that no results are lost
or corrupted for stateful operators such as aggregation.

8 Performance Evaluation

8.1 Experimental Setup

Infrastructure. We have implemented our SHARON approach in Java with JRE 1.7.0 25 running
on Ubuntu 14.04 with 16-core 3.4GHz CPU and 128GB of RAM. We execute each experiment three
times and report the average here.
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Data Sets. We evaluate the performance of our SHARON approach using the following data
sets.
• TX: New York City Taxi and Uber Real Data Set. We use the real data set [3] (330GB) contain-

ing 1.3 billion taxi and Uber trips in New York City in 2014–2015. Each event carries pick-up and
drop-off locations and time stamps in seconds, number of passengers, price, and payment method.
• LR: Linear Road Benchmark Data Set. We use the traffic simulator of the Linear Road bench-

mark [6] for streaming systems to generate a stream of position reports from cars for 3 hours. Each
position report carries a time stamp in seconds, a car identifier, its location and speed. Event rate
gradually increases from few dozens to 4k events per second.
• EC: E-Commerce Synthetic Data Set. Our stream generator creates sequences of items bought

together for 3 hours. Each event carries a time stamp in seconds, item and customer identifiers.
We consider 50 items and 20 users. The values of item and customer identifiers of an event are
randomly generated. The stream rate is 3k events per second.

We ran each experiment on the above three data sets. Due to space limitations, similar charts
are not shown here.

Event Queries. We evaluate a workload similar to q1–q7 in Section 1 against the taxi and Linear
Road data sets and a workload similar to q8–q11 against the e-commerce data set. Based on our cost
model (Section 3), we vary the major cost factors, namely, number of queries, the length of their
patterns, and the number of events per window. Unless stated otherwise, we evaluate 20 queries.
The default length of their patterns is 10. The default number of events per window is 200k.

Methodology. We run two sets of experiments.
1) Sharon Executor vs. State-of-the-Art Approaches (Section 8.2). We demonstrate the effec-

tiveness of our SHARON executor (Section 3) by comparing it to the state-of-the-art techniques
A-Seq [24], SPASS [25], and Flink [1] covering the spectrum of approaches to event sequence ag-
gregation (Figure 3). While Section 9 is devoted to a detailed discussion of these approaches, we
briefly sketch their main ideas below.
• A-Seq [24] avoids sequence construction by incrementally maintaining a count for each prefix

of a pattern. However, it has no optimizer to determine which queries should share the aggregation
of which patterns. By default, it computes each query independently from other queries and thus
suffers from repeated computations (Section 3.2).
• SPASS [25] defines shared event sequence construction. Their aggregation is computed after-

wards and is not shared. Thus, SPASS is a two-step and only partially shared approach.
• Flink [1] is a popular open-source streaming system that supports event pattern matching and

aggregation. We express our queries using Flink operators. Flink constructs all event sequences
prior their aggregation. It does not share computations among different queries.

To achieve a fair comparison, we have implemented A-Seq and SPASS on top of our platform.
We execute Flink on the same hardware as our platform.

2) Sharon Optimizer (Section 8.3). We study the efficiency of our SHARON optimizer (Sections 4–
7) by comparing it to the greedy algorithm GWMIN [26] and to exhaustive search. We also compare
the quality of a greedily chosen plan returned by GWMIN to an optimal plan returned by our
SHARON optimizer and the exhaustive search.
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(a) Latency (b) Throughput

Figure 13: Two-step versus online approaches (Linear Road data set)

Metrics. We measure the following metrics common for streaming systems. Latency is mea-
sured in milliseconds as the average time difference between the time point of aggregate output
and the arrival time of the latest event that contributed to this result. Throughput corresponds to
the average number of events processed by all queries per second. Peak memory is measured in
bytes. For event sequence aggregation algorithms, it is the maximal memory for storing aggre-
gates, events, and event sequences. For the optimizer algorithms, the peak memory is the maximal
memory for storing the SHARON graph and the sharing plans during space traversal.

8.2 Sharon Executor versus State-of-the-Art Approaches

Two-step Approaches. In Figure 13, we vary the number of events per window and measure la-
tency and throughput of the event sequence aggregation approaches using the Linear Road bench-
mark data set. Latency of the two-step approaches (SPASS and Flink) increases exponentially, while
throughput decreases exponentially in the number of events.

SPASS achieves 6–fold speed-up compared to Flink for 6k events per window because SPASS
shares event sequence construction. Due to event sequence construction overhead, SPASS does not
terminate when the number of events exceeds 7k. These measurements are not shown in Figure 13.

Flink not only constructs all event sequences but also computes each query independently from
other queries in the workload. Flink fails for more than 6k events per window.

The event sequence construction step has polynomial time complexity in the number of events [29,
24] and may jeopardize real-time responsiveness for high-rate event streams (Figure 13). Thus,
these two-step approaches cannot be effective for time-critical processing of high-rate streams.

Online Approaches. The online approaches (A-Seq and SHARON) perform similarly for such
low-rate streams. They achieve five orders of magnitude speed-up compared to SPASS for 7k
events per window because they aggregate event sequences without first constructing these se-
quences.

Figure 14 evaluates the online approaches against high-rate streams. We vary the number of
events per window, the number of queries, and the length of their patterns and measure latency,
throughput and memory of the online approaches.

The Sharon Executor shares event sequences aggregation among all queries in the workload
according to an optimal sharing plan that is computed based on an expanded SHARON graph (Sec-
tion 7). The latency of SHARON and A-Seq grows linearly in the number of queries. SHARON
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(a) Latency (TX) (b) Latency (LR) (c) Latency (EC) (d) Memory (LR)

(e) Throughput (TX) (f) Throughput (LR) (g) Throughput (EC) (h) Memory (EC)

Figure 14: Online approaches (Taxi (TX), Linear Road (LR), and e-commerce (EC) data sets)

achieves from 5–fold to 18–fold speed-up compared to A-Seq when the number of queries increases
from 20 to 120. Indeed, the more queries share their aggregation results, the fewer aggregates are
maintained and the more events can be processed by the system (Figures 14(b) and 14(f)). SHARON

requires up to two orders of magnitude less memory than A-Seq for 120 queries (Figure 14(d)). For
low parameter values, SHARON defaults to A-Seq due to limited sharing opportunities.

While SHARON processes each event by each shared pattern exactly once, each event can pro-
voke repeated computations in A-Seq. Thus, the gain of SHARON grows linearly in the number
of events per window. SHARON wins from 5–fold to 7–fold with respect to latency and through-
put when the number of events increases from 200k to 1200k (Figures 14(a) and 14(e)). Similarly,
the speed-up of SHARON grows linearly from 4–fold to 6–fold with the increasing length of pat-
terns (Figure 14(c)). SHARON requires 20-fold less memory than A-Seq if the pattern length is 30
(Figure 14(h)).

Based on the experimental results in Figures 13 and 14, we conclude that the latency, throughput
and memory utilization of event sequence aggregation can be considerably reduced by the seamless
integration of shared and online optimization techniques as proposed by our SHARON approach to
enable real-time in-memory event sequence aggregation.

8.3 Sharon Optimizer

In Figure 15 we compare three optimizer solutions, while varying the number of queries. Each bar
is segmented into phases as described below.

The Greedy Optimizer consists of the following two phases: SHARON graph construction (Sec-
tion 4) and the GWMIN plan finder. In the worst case, both phases have polynomial latency and
linear memory. However, our experiments show that on average more time and space is required
to construct the SHARON graph than to run GWMIN. For 70 queries, 90% of the time is spent con-
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(a) Latency (b) Memory

Figure 15: SHARON optimizer (SO) versus greedy optimizer (GO) and ex-
haustive optimizer (EO) (E-commerce query workload) Figure 16: Sharing plan

quality (Taxi data set)

structing the graph.
The Exhaustive Optimizer consists of three phases, namely, SHARON graph construction, graph

expansion (Section 7), and an exhaustive search that traverses the entire search space to find an
optimal plan. Thus, its latency and memory costs grow exponentially in the number of queries.
The exhaustive optimizer fails to terminate for more than 20 queries. For 20 queries, its latency is 4
orders of magnitude higher than the latency of the greedy optimizer.

The Sharon Optimizer consists of four phases, namely, SHARON graph construction, graph ex-
pansion, graph reduction, and the sharing plan finder that returns an optimal plan (Sections 4–7).
While its time and space complexity is exponential in the worst case (Equation 13), its latency and
memory usage are reduced by our pruning principles compared to the exhaustive optimizer. On
average, 36% of the sharing candidates are pruned from the expanded SHARON graph, which is
99% of the plan finder search space. For 20 queries, SHARON outperforms the exhaustive optimizer
by three orders of magnitude with respect to latency and by two orders of magnitude regarding
memory usage.

Our SHARON plan finder traverses the entire valid space to find an optimal plan. In contrast,
GWMIN greedily selects one candidate with the highest benefit and eliminates its adjacent can-
didates from further consideration. For example, for 70 queries, the latency of SHARON is three
orders of magnitude higher, while its memory usage is two orders of magnitude larger compared
to the greedy optimizer.

Sharing Plan Quality. The greedy optimizer tends to return a sub-optimal sharing plan for two
reasons. One, it greedily selects a candidate v with the maximal benefit in each step. By deciding
to share v it excludes all candidates adjacent to v even though they may be more beneficial to share
than v alone. Two, the greedy optimizer does not resolve sharing conflicts (Section 7). However,
the sharing opportunities in the original SHARON graph may be rather limited (Figure 4).

In Figure 16, we vary the number of queries and compare the latency and memory consumption
of our SHARON executor when guided by a greedily chosen plan versus an optimal plan. We run
these experiments on the Taxi real data set. The latency of the SHARON executor is reduced 2–
fold and its memory consumption decreases 3–fold when 180 queries are processed according to
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an optimal plan compared to a greedily chosen plan. Thus, an optimal plan ensures real-time,
light-weight event sequence aggregation.

9 Related Work

Complex Event Processing (CEP) approaches such as SASE [4, 29], Cayuga [10], and ZStream [22]
support both event aggregation and event sequence detection over streams. SASE and Cayuga
employ a Finite State Automaton (FSA)-based query execution paradigm, meaning that each event
query is translated into an FSA. Each run of an FSA corresponds to a query match. In contrast,
ZStream translates an event query into an operator tree that is optimized based on rewrite rules.
However, these approaches evaluate each query independently from other queries in the workload –
causing both repeated computations and replicated storage in multi-query settings. Furthermore,
they do not optimize event sequence aggregation queries – which is the focus of our work. Thus,
they require event sequence construction prior to their aggregation. Since the number of event
sequences is polynomial in the number of events per window [29, 24], this two-step approach intro-
duces long delays for high-rate streams (Section 8).

In contrast, A-Seq [24] defines online event sequence aggregation that eliminates event sequence
construction. It incrementally maintains an aggregate for each pattern and discards an event once
it updated the aggregates. We leverage this idea in our executor (Section 3). However, A-Seq has no
optimizer to decide which patterns should be shared by which queries. Thus, A-Seq does not share
event sequence aggregation. GRETA [23] extends A-Seq by nested Kleene patterns and expressive
predicates at the cost of storing of all matched events. Similarly to A-Seq, GRETA optimizes single
queries.

CEP Multi-Query Optimization (MQO) approaches such as SPASS [25], E-Cube [21], and RU-
MOR [15] propose event sequence sharing techniques. SPASS exploits event correlation in an event
sequence to determine the benefit of shared event sequence construction. E-Cube defines a concept
and a pattern hierarchy of event sequence queries and develops both top-down and bottom-up
processing of patterns based on the results of other patterns in the hierarchy. RUMOR proposes a
rule-based MQO framework for traditional RDBMS and stream processing systems. It defines a set
of rules to merge NFAs representing different event queries. However, no optimization techniques
for online aggregation of event sequences are proposed by the approaches above. They too con-
struct all event sequences prior to their aggregation. Event sequence construction degrades system
performance.

Data Streaming. Streaming approaches typically support incremental aggregation [14, 17, 7, 20,
11, 19, 27, 31, 32]. Some of them are shared. However, they solve an orthogonal problem. Namely,
they enable shared aggregation given different windows, predicates, and group-by clauses [14, 17,
7, 20]. Thus, they could be plugged into our approach as described in Section 7. However, in con-
trast to SHARON, many of them aggregate only raw input events for single-stream queries [14, 20, 19].
Others evaluate simple Select-Project-Join queries with window semantics over data streams [17].
They do not support CEP-specific operators such as event sequence that treat the order of events as
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a first-class citizen. Typically, they require the construction of join results prior to their aggregation.
Multi-Query Optimization techniques include materialized views [9] and common sub-expression

sharing [8, 12] in relational databases. However, these approaches do not have the temporal aspect
prevalent for CEP queries. Thus, they neither focus on event sequence computation nor their ag-
gregation. Furthermore, they assume that the data is statically stored on disk prior to processing.
They neither target in-memory execution nor real-time responsiveness.

10 Conclusions and Future Work

Our SHARON approach is the first to enable shared online event sequence aggregation. The SHARON

optimizer encodes sharing candidates, their benefits and conflicts among them into the SHARON

graph. Based on the graph, we define effective candidate pruning principles to reduce the search
space of sharing plans. Our sharing plan finder returns an optimal plan to guide the executor at
runtime. SHARON achieves an 18–fold speed-up compared to state-of-the-art approaches.

In the future, we plan to further investigate event sequence aggregation sharing for dynamic
workloads to produce a new optimal sharing plan on the fly and migrate from the old to the new
sharing plan with minimal overhead. Another interesting direction for future work is to leverage
modern distributed multi-core clusters of machines to further improve the scalability of shared
online event sequence aggregation.
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Appendix

A Sharable Pattern Detection

To detect sharable patterns (Definition 3), we deploy a version of the CCSpan algorithm [30]. In this
section, we first describe the original CCSpan algorithm. We then justify our changes and provide
the modified algorithm.

Original CCSpan Algorithm. CCSpan stands for Closed Contiguous Sequential Pattern min-
ing. A pattern is considered to be frequent if it appears in more input sequences than the given
support. A pattern is contiguous if it is not interrupted by other patterns in the input sequences.
Lastly, a pattern is called closed if it cannot be further extended.
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Algorithm 7 Modified CCSpan algorithm
Input: A query workload Q
Output: A hash table S mapping a sharable pattern p to a set of queries in Qp that contain p

1: H,S ← empty hash tables
2: for each q in Q do
3: l← q.pattern.length
4: for each end = 0; end ≤ l; end + + do
5: for each start = 0; start ≤ end ; start + + do
6: p = q.pattern.substring(start , end)
7: if p.length > 1 then
8: Qp ← H.get(p);Qp.add(q);H.put(p,Qp)

9: for each p in H do
10: Qp ← H.get(p)
11: if Qp.size > 1 then S.put(p,Qp)

12: return S

CCSpan adopts a pattern growth algorithm that records the pattern’s occurrence in the input
sequences. That is, starting from length 1, the algorithm recursively extends the patterns to their
maximal length. CCSpan has linear time complexity in the number of input sequences assuming
that the maximal length of input sequences is a small constant.

Modified CCSpan Algorithm. Since shorter sequences can be shared between more queries
than longer sequences, we detect not only frequent closed (or longest) sequences but also their sub-
sequences. However, sharing a sequence of length one is not beneficial. Thus, we alter the original
CCSpan algorithm to detect all frequent contiguous sequential patterns of length l > 1. A pattern is
considered to be frequent if it appears in more than one query.

The modified CCSpan algorithm (Algorithm 7) consumes the query workload Q and returns a
hash table S that maps each sharable pattern p to the set of queries Qp ⊆ Q that contain p. Two
empty hash tables H and S are initialized in Line 1. S contains all sharable patterns, while H
maintains all patterns, i.e., S ⊆ H . For each query q ∈ Q, the algorithm considers each sub-pattern
p of the pattern of q (Lines 3–6). If the length of p is greater than one, the query q is added to the set
of queries Qp that p appears within (Line 7–8). Lastly, we access each pattern p in the hash table H
and if p appears more than one query, the pattern p and its respective queries Qp are added to the
result S (Lines 9–11). The hash table S is returned in Line 12.

Complexity Analysis. Let n be the number of queries in Q and l be the maximal length of a
pattern. Then, the three for-loops in Lines 2–8 are called O(nl2) times. In addition, the for-loop
in Lines 9–11 iterates O(nl) times. All operations on the hash tables H and S happen in constant
time. In summary, the time complexity is linear in n, i.e., O(nl2) + O(nl) = O(n) since l is a small
constant in practice. The space complexity is determined by the size of the hash tables H and S.
The number of stored patterns is O(nl). Each pattern is mapped to O(n) queries. In summary, the
space complexity is quadratic in n, i.e., O(n2l) = O(n2).
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Algorithm 8 GWMIN algorithm
Input: A weighted graph G = (V,E)
Output: An independent set IS

1: IS ← ∅; i← 0; Gi ← G
2: while V (Gi) 6= ∅ do
3: max ← 0
4: for each v in V (Gi) do
5: new max ← weight(v)

degreeGi
(v)+1

6: if new max > max then
7: max ← new max ; vi ← v

8: IS ← IS ∪ {vi}; Gi+1 ← Gi[V (Gi) \ N+
Gi

(vi)]; i+ +

9: return IS

B GWMIN Algorithm

The GWMIN algorithm finds the MWIS in a graph [26]. GWMIN stands for Greedy Minimum
degree algorithm for Weighted graphs. Algorithm 8 consumes a weighted graph G = (V,E) and
returns its independent set IS . At the beginning, the set IS is empty, the iteration counter i = 0,
and the graph in ith iteration Gi = G (Line 1). In each iteration, the algorithm selects the vertex v
with the maximal ratio

weight(v)

degreeGi
(v) + 1

where weight(v) is the weight and degreeGi
(v) is the degree of v in ith iteration (Lines 3–7). This

vertex v is added to the independent set IS , v and its neighbors are removed from the graph G

(Line 8). Once the graph G is empty, the algorithm returns the independent set IS (Lines 2, 9).
Complexity Analysis. The for-loop in Lines 4–7 is called O(|V |) times. The time complexity of

removing a vertex v and its neighbors from the graph is O(|E|). Thus, the time complexity of one
iteration of the while-loop in Lines 2–9 is O(|V | + |E|). This while-loop is called O(|V |) times. In
summary, the time complexity is O(|V |(|V |+ |E|). The space complexity is linear in the size of the
graph G and its independent set IS , i.e., O(|V |+ |E|).


	1 Introduction
	2 Sharon Approach Overview
	2.1 Sharon Data and Query Model
	2.2 Sharon Framework

	3 Sharing Benefit Model
	3.1 Sharing Candidate
	3.2 Non-Shared Method
	3.3 Shared Method
	3.4 Benefit of a Sharing Candidate

	4 Sharing Conflict Modeling
	5 Sharing Candidate Pruning
	6 Sharing Plan Finder
	7 Extensions of the Sharon Approach
	7.1 Sharing Conflict Resolution
	7.2 Different Predicates, Grouping, and Windows
	7.3 Multiple Occurrences of an Event Type in a Pattern
	7.4 Dynamic Workloads

	8 Performance Evaluation
	8.1 Experimental Setup
	8.2 Sharon Executor versus State-of-the-Art Approaches
	8.3 Sharon Optimizer

	9 Related Work
	10 Conclusions and Future Work
	A Sharable Pattern Detection
	B GWMIN Algorithm

