
Onion Curve: A Space Filling Curve with
Near-Optimal Clustering
Pan Xu #1, Cuong Nguyen ∗2, Srikanta Tirthapura ∗3

University of Maryland, College Park, MD, USA
1 panxu@cs.umd.edu

∗ Iowa State University, Ames, IA, USA
2 bnguyen@iastate.edu 3 snt@iastate.edu

Abstract—Space filling curves (SFCs) are widely used in the
design of indexes for spatial and temporal data. Clustering is
a key metric for an SFC, that measures how well the curve
preserves locality in moving from higher dimensions to a single
dimension. We present the onion curve, an SFC whose clustering
performance is provably close to optimal for cube and near-
cube shaped query sets, irrespective of the side length of the
query. We show that in contrast, the clustering performance of
the widely used Hilbert curve can be far from optimal, even for
cube-shaped queries. Since the clustering performance of an SFC
is critical to the efficiency of multi-dimensional indexes based on
the SFC, the onion curve can deliver improved performance for
data structures involving multi-dimensional data.

I. INTRODUCTION

A space filling curve (SFC) is a mapping from a multi-
dimensional universe to a single dimensional universe, and
is a widely used tool in the design of data structures for
multi-dimensional data. As described in [1], [2], such a
mapping allows one to apply indexing techniques developed
for single dimensional data to index multi-dimensional data,
such as in a spatial database. SFCs have been applied to
several scenarios in managing spatial and temporal data, such
as in distributed partitioning of large spatial data [3], [4],
multi-dimensional similarity searching [5], load balancing
in parallel simulations [6], cryptographic transformations on
spatial data [7], to name a few. A search for applications of
space filling curves yields more than a thousand citations on
Google Scholar, from areas such as databases and parallel
computing.

In an application of an SFC to an indexing data structure, it
is usually important to have good clustering performance and
locality preservation. A query point set, such as a rectangle in
the multi-dimensional universe, should be mapped to a point
set that forms a small number of contiguous regions in a
single dimension, to the extent possible. Many SFCs have been
considered in the literature. Orenstein and Merrett [1] suggested
the use of the Z curve, which is based on interleaving bits from
different coordinates, to support range queries. Faloutsos [8],
[9] suggested the use of the Gray-code curve for partial match
and range queries. The SFC that seems to have attracted the
most attention is the Hilbert curve [10]. Jagadish [2] considered
different space filling curves, including the column-major and
row-major curves, the Z curve, the Gray-code curve, and

the Hilbert curve. His experiments showed that among those
considered, an ordering based on the Hilbert curve performed
the best in preserving locality. The locality preserving property
of an SFC is captured by the clustering number, as defined
further.

Model: Let U be a discrete d-dimensional universe of n
cells, of dimensions d

√
n × d
√
n . . . × d

√
n. In this paper, we

focus our analysis on the cases d = 2, 3∗. A space filling curve
(SFC) π on U is a bijective mapping π : U → {0, 1, . . . , n−1}.
A query q is any subset of U ; we use |q| to denote the number
of cells in it. In this work, we are concerned with rectangular
queries, which are formed by the intersection of halfspaces. A
set of cells C ⊆ U is said to be a cluster of SFC π if the cells
in C are numbered consecutively by π.

The clustering number of an SFC π for query q, denoted
c(q, π), is defined as the minimum number of clusters of π that
q can be partitioned into. See Figure 1 for an example. The
importance of the clustering number is as follows. Suppose that
multi-dimensional data was indexed on the disk according to
the ordering induced by the SFC. If the query is to retrieve all
points in a multi-dimensional region, then the clustering number
measures the number of disk “seeks” that need to be performed
in the retrieval. Since a disk seek is an expensive operation,
a smaller clustering number means better performance. If the
query is to compute some other function on a multi-dimensional
region, then the clustering number measures the number of
sub-queries on one-dimensional ranges, each of which can be
handled efficiently using methods for indexing one-dimensional
data. Hence the general goal is to design an SFC whose
clustering number for a “typical” query is as small as possible.
We consider the average clustering performance of an SFC
for a class of queries, as in the following definition [11], [8],
[2]. The clustering number of an SFC π for a query set Q is
defined as:

c(Q, π) =

∑
q∈Q c(q, π)

|Q|
The query sets Q are constructed as follows. Consider a

query shape q, which is a hyper-rectangle of length `i along
dimension i. We say that q is a cube if `i = `j for all i 6= j. We
say that q is a near-cube if (1) There exists µ, 0 ≤ µ ≤ 1 such

∗Extensions to higher dimensions are possible.

ar
X

iv
:1

80
1.

07
39

9v
2

 [
cs

.C
G

]
 3

 J
un

 2
01

8

Fig. 1: For the same query region shown, the Hilbert curve has a clustering number of 2, and the Z curve has a clustering
number of 4. Each cluster from the space filling curve is shown within a dotted region.

that for all 1 ≤ i ≤ d, `i = φi(d
√
n)µ + ψi for some constants

φi > 0 and ψi; (2) |`j − `i| = o(d
√
n) for each i 6= j. The

definition of “near-cube” captures the fact that the dependence
of the side lengths of q on the grid size is the same, and also
the gap between the largest and smallest sides is a lower order
of the grid size. The second condition above is also necessary;
we show a lower bound in Section V-B, such that if the second
condition does not hold (but the first condition does), then
there are query sets for which there cannot exist an SFC with
a constant approximation ratio.

We primarily consider cases when q is a near-cube, or a
cube. We consider query sets Q that are formed by all possible
translations of such a rectangular query shape q. If q is a cube
shaped query, we call Q as “cube query set” and if q is a
near-cube shaped query, then we call Q as a “near-cube query
set”.

For query set Q, let OPT(Q) be the smallest possible
clustering number that could achieved by any SFC. For
SFC π, let η(Q, π) = c(Q, π)/OPT(Q) be defined as the
approximation ratio of π for Q. We focus on η(Q, π) as our
metric for evaluating the performance of π for Q. The lower
the approximation ratio, the better is the clustering performance
of π on Q.

A. Our Results

A. We present a new SFC, the onion curve, with the
following properties.
• For cube query sets of any length in two dimensions,

the approximation ratio of the onion curve is at most
2.32. For cube query sets in three dimensions, its
approximation ratio is at most 3.4. Thus we call the
onion curve near-optimal for cube queries.

To our knowledge, this is the first SFC that has been
proved to have a constant approximation ratio for cube
query sets, which are the most basic query shapes.
Significantly, a single curve (the onion curve) achieves
near-optimal clustering for cube-shaped query sets of
arbitrary sizes.

• For near-cube query sets in two dimensions, the
approximation ratio of the onion curve is a constant.

B: Sub-Optimality of the Hilbert curve: In contrast, we
show that the Hilbert curve can have an approximation
ratio of Ω (

√
n) for cube queries in two dimensions, and

an approximation ratio of Ω
(
n

2
3

)
for cube queries in three

dimensions. Thus the approximation ratio of the Hilbert curve
can be unbounded, even for the case of cube queries in two
dimensions. See Figure 2 for an illustration. Detailed results
are in Section IV.

C: General Rectangular Queries: We have shown an SFC
(the onion curve) that has near-optimal clustering (i.e. constant
approximation ratio) for sets of cube queries of any length,
and also sets of near-cube queries. It is natural to ask if it is
possible to have a single SFC that has near-optimal clustering
for different rectangular query sets.

We show that this is impossible to achieve. There exist
query sets consisting of rectangular queries such that if an SFC
performs near-optimally on one query set, it will necessarily
perform poorly on a different one. In other words, for the
class of general rectangular queries, it is not possible to have
a single SFC with a near-optimal approximation ratio. Details
are in Lemmas 10 and 11 in Section V-B.

D: We present results of experiments that empirically evaluate
and compare the clustering performance of the onion and
Hilbert curves. These results confirm our theoretical predictions
and show that on cube, near-cube, and general rectangular
queries, the clustering performance of the onion curve was often
much better than the Hilbert curve, and always at least as good.

onion curve Hilbert curve
Two dimensions 2.32 Ω(

√
n)

Three dimensions 3.4 Ω(n
2
3)

TABLE I: Clustering Approximation Ratio η(Q, π) for different
SFCs, for cube queries

(a) The Hilbert curve has a clustering number of 5 for the query (b) The onion curve has a clustering number of 1 for the query

Fig. 2: The average clustering number of the Hilbert curve for all 7× 7 squares is much higher than that of the onion curve for
the above 7× 7 square query shape.

The significance of this result stems from the fact that the
Hilbert curve has long been considered the “gold standard” of
SFCs for purposes of clustering. So far, we did not know of an
alternative that has a demonstrably better performance. Many
past analyses have almost solely focused on understanding the
performance of the Hilbert curve, for example, see [11], [12].
Our results show that the onion curve consistently outperforms
the Hilbert curve in terms of clustering performance. The
results for cube queries are summarized in Table I.

B. Related Work

Building on earlier work [12] that analyzed the clustering
performance of the Hilbert curve on 2× 2 queries, Moon et
al. [11] considered an upper bound on the clustering of the
Hilbert curve in d dimensions.They showed that if the size
of the query remains constant, the clustering number of the
Hilbert curve is asymptotically equal to the surface area of the
query shape divided by twice the number of dimensions. In
prior work [13], we generalized this result by showing that
when the size of the query remains constant, the clustering
number of any SFC that has the property of being “continuous”
is asymptotically equal to that of the Hilbert curve. Further
[13] showed that for rectangular queries of constant size, the
performance of the Hilbert curve is optimal. A significant
difference between the analysis in prior works [13], [11], [12]
and this work is that prior works assume that the query size is
constant when compared with the size of the universe, where
as we do not make this assumption.

While the clustering number is an important and well-
analyzed metric for the performance of an SFC, we note that
there are other metrics that shed light on other properties
of an SFC. In particular, prior work [14] has considered
the “stretch” of an SFC, defined as the ratio between the
distance between two points in the d-dimensional grid and
the one-dimensional numbering – such a metric is relevant to
applications such as near-neighbor search. Asano et al. [15]
considered the clustering performance in a model where: for a

query q consisting of |q| cells, the query processor is allowed
to return a set of C|q| cells which is a superset of q, and
can be divided into a small number of clusters, where C is
a constant greater than 1. A similar approach is considered
by Haverkort [16]. In contrast, we require the query processor
to return the set of exactly the cells present in the query q,
and consider the number of clusters thus created. Alber and
Niedermeier [17] present a characterization of Hilbert curve
in dimensions d ≥ 3.

Roadmap: The rest of this paper is organized as follows. In
Section II, we present some general techniques for computing
the clustering number, which are used throughout this paper.
In Section III, we define the onion curve in two dimensions
and present its analysis. In Section IV, we present an analysis
of the clustering number of the Hilbert curve. In Section V, we
present a lower bound on the performance of any SFC in two
dimensions, allowing us to derive the approximation ratio of the
onion curve. In Section VI we present the three dimensional
onion curve, its performance and related lower bounds. In
Section VII, we present results from our experimental study
and conclude with a discussion in Section VIII.

II. GENERAL TECHNIQUES

In this section, we present some general techniques which
will help in computing the clustering number of an SFC and
in deriving a lower bound on the clustering number for any
SFC.

Recall that U is a discrete d-dimensional universe of n cells,
of dimensions d

√
n × d

√
n . . . × d

√
n. An SFC π, which is a

bijection from U to {0, 1, . . . , n− 1}, can be viewed as a set
of (n− 1) directed edges, E(π) = {(π−1(i), π−1(i+ 1))|0 ≤
i ≤ n − 2}. Let πs = π−1(0) denote the first cell in π, and
πe = π−1(n − 1) denote the final cell in π. For a directed
edge e = (α, β) and query q, we say “e enters q” if α /∈ q
and β ∈ q. We say “e leaves q” if α ∈ q and β /∈ q. We
say “e crosses q” if either e enters q or if e leaves q. For a
directed edge e and query q, let γ+(q, e) = 1 iff e enters q

and 0 otherwise; similarly let γ−(q, e) = 1 iff e leaves q and
0 otherwise. Let γ(q, e) = γ+(q, e) + γ−(q, e).

For a set of directed edges E and query set Q, we
define γ+(Q,E) =

∑
e∈E

∑
q∈Q γ

+(q, e). Similarly we define
γ−(Q,E) and γ(Q,E). For an SFC π and query set Q, we
define γ(Q, π) = γ(Q,E(π)). When the context is clear, we
use e to denote the set of a single edge {e}, and q to denote
the set of a single query {q}.

For a cell α ∈ U , query q and a query set Q,

I(q, α) =

{
1 if α ∈ q
0 otherwise .

Let I(Q,α) =
∑
q∈Q I(q, α) Let c(Q, π) denote the average

clustering number of the SFC π over Q.
Lemma 1:

c(Q, π) =
1

2|Q|

(
γ(Q, π) + I(Q, πs) + I(Q, πe)

)
Proof: For a query q with πs /∈ q, πe /∈ q, we observe

that each cluster in q with respect to π corresponds uniquely
to a pair of directed edges in π, one entering q and the other
leaving q. Thus we have c(q, π) = 1

2γ(q, π), if πs /∈ q, πe /∈ q.
To handle the case when q includes πs or πe, we have the

expression: c(q, π) = 1
2 (γ(q, π) + I(q, πs) + I(q, πe)). Thus,

c(Q, π) =
1

|Q|
∑
q∈Q

c(q, π)

=
1

2|Q|
∑
q∈Q

(γ(q, π) + I(q, πs) + I(q, πe))

III. ONION CURVE IN TWO DIMENSIONS

A. Onion Curve Definition

We first define the onion curve in two dimensions. For
integral j ≥ 1, let Uj denote the two dimensional j×j universe,
whose coordinates along each dimension range from 0 to (j−1).
Let Oj denote the onion curve for Uj . Oj is defined using
induction on j, j = 2, 4, 6, . . . ,

√
n.

• For j = 2, O2 is defined as: O2(0, 0) = 0,O2(1, 0) =
1,O2(1, 1) = 2,O2(0, 1) = 3. See Figure 3.

• For j > 2, Oj(x1, x2) is defined as:
1) x1, if x2 = 0
2) j − 1 + x2, if x1 = j − 1
3) 3j − 3− x1, if x2 = j − 1
4) 4j − 4− x2, if x1 = 0, x2 ≥ 1
5) 4j−4+Oj−2(x1−1, x2−1), if 1 ≤ x1, x2 ≤ j−2

Another view of the onion curve is as follows. For cell
α = (x, y), let ∇(α) = min(x+ 1,

√
n− x, y + 1,

√
n− y)

denote the distance of the cell to the boundary of U√n. For
integer t, 1 ≤ t ≤ m, let S(t) = {α|∇(α) = t} denote the
set of cells whose distance to the boundary is t. S(t) is also
called the “tth layer” of the grid. The onion curve orders all
cells in S(1) first, followed by cells in S(2), and so on till
S(m). The orders induced by the onion curve for U2 and U4

are shown in Figure 3.

B. Clustering Number of Onion Curve in Two Dimensions for
Rectangular Queries

In this section we present an analysis of the clustering
number of the two-dimensional onion curve for rectangular
queries. Consider the two-dimensional universe U with side
length

√
n.

Let the query set Q = Q(`1, `2), equal the set formed by all
possible translations of a two dimensional rectangle of lengths
`1 and `2 respectively along dimensions 1 and 2. We assume√
n is even so that m =

√
n
2 is an integer. Assume without

loss of generality that `1 ≤ `2.† The main result of this section
is Theorem 1. Let Li =

√
n− `i + 1, i = 1, 2.

Theorem 1: Let Q = Q(`1, `2) with `1 ≤ `2. Let O denote
the onion curve on the

√
n×
√
n universe.

1) If `2 ≤ m, then

c(Q,O) =
1

2
(`1 + `2) +

1

L1L2

[2

3
`32 −

7

2
`1`

2
2 +

5

2
`21`2

−m(`2 − `1)(`2 − 3`1)
]

+ ε1, |ε1| ≤ 5

2) If m < `1,

c(Q,O) = L1 − L2 +
2

3

L2
2

L1
+ ε2, |ε2| ≤ 2

Remark: The results in the above two cases are sufficient
for the analysis of the Onion curve for all near-cube query sets.
From our definition, a near-cube query set Q with `1 < m < `2
must have the form of `1 = m+ ψ1 and `2 = m+ ψ2, where
ψ1 < 0 < ψ2 and both are constants. For this case, Q can be
approximated by Q′ with `1 = `2 = m since for each given
position of a two-dimensional query q, expanding or reducing
the query length along each dimension by a constant will bring a
difference of at most a constant in the clustering number for the
onion curve. From the above Theorem, since Q′ is a cube, we
see c(Q′,O) ∼ 2m

3 , which yields that c(Q,O) = 2m
3 +O(1).

Before proving Theorem 1, we will derive some useful
results that help in analyzing other two-dimensional SFCs, and
in proving lower bounds for them.

1) Computing γ(Q, π) in Two Dimensions for an SFC π:
From Lemma 1, we see that for query set Q, computation
of γ(Q, π) is crucial to bounding the clustering number for
an SFC π. In the following, we derive a general formula
for γ(Q, e) for the case e = (α, β) where α and β are two
neighboring cells on the universe, i.e., the coordinates of α
and β differ only 1 in a single dimension and all others are
the same.

Since Q consists of all possible translations of q in U , we can
equivalently view γ(Q, e) as the number of different positions
we can translate q in U such that e crosses q. Consider such
a case when e = (α, β), and α and β are two neighboring
cells whose coordinates differ along the first dimension, but
are equal along the second dimension. Observe that e crosses
q iff (1) either the left side or the right side of q lies between

†Notice that the onion curve is almost symmetric to the two dimensions,
i.e., it can be viewed nearly identical if we interchange the first and second
dimension. Thus c(Q(`1, `2),O) is almost the same as c(Q(`2, `1),O)

Fig. 3: The Two-dimensional onion Curve for the 2× 2 and 4× 4 universes. The number within each cell indicates the position
of the cell in the onion curve.

α and β; (2) the segment between the upper and lower side
of q covers e vertically. Notice that to achieve the first goal,
we have at most 2 options to place q along the first dimension
while for the second one, we have at most `2 options along
the second dimension where `2 is the vertical side length of
q. Formally, let δ1(Q, e) and δ2(Q, e), respectively equal the
number of options we can place q along the first and second
dimension respectively such that q is crossed by e. We present
a relation between γ(Q, e), δ1(Q, e) and δ2(Q, e) as follows.

For a directed edge e = (α, β) where α = (x1, y1) and β =
(x2, y2), define ∇1(e) = min(x1+1,

√
n−x1, x2+1,

√
n−x2)

as the distance of e to the boundary along the first dimension.
Similarly, we define∇2(e) = min(y1+1,

√
n−y1, y2+1,

√
n−

y2) as the distance of e to the boundary along the second
dimension.

Lemma 2: Let e = (α, β) where α and β are two neighbor-
ing cells along the first dimension.

γ(Q, e) = δ1(Q, e) · δ2(Q, e)

where

• if `1 ≤ m, δ1(Q, e) =

{
1 if ∇1(e) ≤ `1 − 1
2 if ∇1(e) ≥ `1

}
• if `1 > m, δ1(Q, e) ={

1 if ∇1(e) ≤
√
n− `1

0 if ∇1(e) >
√
n− `1

}
• δ2(Q, e) = min (`2,

√
n+ 1− `2,∇2(e)).

Proof: Since e = (α, β) is horizontal, we have at most
two choices: either the left side of q or the right side of q
separates α and β. When `1 ≤ m, both of the above two
choices are feasible when ∇1(e) ≥ `1 and exactly one choice
is feasible when ∇1(e) ≤ `1 − 1. Similarly we can analyze
the case for `1 < m. As for the feasible positions along the
second dimension, all possible placements of q are feasible
as long as e falls between the upper and lower side of q.
Give that e has the distance of ∇2 to the boundary along the
second dimension and q has vertical size `2, we can verify
that δ2(Q, e) = min (`2,

√
n+ 1− `2,∇2(e)).

We can get a similar result for the case when e consists of
two neighboring cells along the second dimension.

2) Clustering Number of the Onion Curve: According to
Lemma 1, we focus on the following sum, in order to compute
c(Q,O):

γ(Q,O) =
∑

e∈E(O)

γ(Q, e) (1)

Recall that S(t) = {α|∇(α) = t} denotes the set of cells
whose distance to the boundary is t. We partition the edges in
E(O) into three classes,
• N 1

t : the set of edges that lie completely within a layer
S(t), for some 1 ≤ t ≤ m while differ only along the
first dimension.

• N̂ 2
t : the set of edges that lie completely within a layer S(t),

for some 1 ≤ t ≤ m while differ only along the second
dimension. We observe from Figure 3 that N̂ 2

t is not
symmetric in the way that there is one edge missing, say
e2t , in the bottom of left side of S(t). Mathematically we
have e2t = (α, β), where α = (t− 1, t), β = (t− 1, t− 1).
For computational convenience later, we write N̂ 2

t =

N 2
t − {e2t}, where N 2

t = N̂ 2
t ∪ {e2t}, 1 ≤ t ≤ m.

• Edges that have one cell within a layer S(t) and another
cell within a different layer S(t+ 1). For each t, 1 ≤ t ≤
m− 1, there is exactly one such edge in E(O), say e1t .

Summarizing our analysis above, we have the following.

E(O) =

(
m⋃
t=1

N 1
t

)⋃(
m⋃
t=1

N 2
t

)
⋃{

e1t |1 ≤ t ≤ m− 1
}
−
{
e2t |1 ≤ t ≤ m

} (2)

Observe that the first three terms on the right hand side of
Equation (2) are three disjoint sets. Combining Equations (1)
and (2), we get:

γ(Q,O) = S1 + S2 + S3 (3)

where

S1 =

m∑
t=1

∑
e∈N 1

t

γ(Q, e), S2 =

m∑
t=1

∑
e∈N 2

t

γ(Q, e)

S3 =

m−1∑
t=1

γ
(
Q, e1t

)
−

m∑
t=1

γ(Q, e2t)

By applying Lemma 1 and Equation (3), we have:

c(Q,O) =
1

2|Q|

(
S1 + S2 + S3 + I(Q, πs) + I(Q, πe)

)
(4)

The following lemma shows that the contribution of S3 is
negligible.

Lemma 3: If `2 ≤ m, then |S3|
2|Q| ≤ 1, and if m < `1, then

|S3|
2|Q| ≤

1
2 .

Proof: We show the proof of the case `2 ≤ m. The proof
of the case m < `1 is similar. According to Lemma 2, we
have:

m−1∑
t=1

γ(Q, e1t) ≤ 2(m− 1)`2,

m∑
t=1

γ(Q, e2t) ≤ 2m`1

Thus we get:

|S3| = |
m−1∑
t=1

γ(Q, e1t)−
m∑
t=1

γ(Q, e2t)| ≤ 2m`2

Note that |Q| = (
√
n − `1 + 1)(

√
n − `2 + 1) ≥ (m + 1)2.

Merging this fact with the inequality above yields our result.

The next lemma offers an approximate expression for (S1 +
S2).

Lemma 4:

• If `2 ≤ m, then we have

S1 + S2
2|Q|

=
1

2
(`1 + `2) +

1

|Q|

[2

3
`32 −

7

2
`1`

2
2 +

5

2
`21`2

−
√
n

2
(`2 − `1)(`2 − 3`1)

]
+ ε1, |ε1| ≤ 3.5

• If m < `1, then we have
S1+S2
2|Q| = L1 − L2 + 2

3
L2

2

L1
+ ε2, |ε2| ≤ 2

3 .

Proof: Consider the case `2 ≤ m first. By applying
Lemma 2, we get

1

2|Q|
(S1 + S2) =

1

2
(`1 + `2) + Λ + ε1

where Λ = 1
|Q|

[
2`32
3 −

7`1`
2
2

2 +
5`21`2

2 −m(`2 − `1)(`2 − 3`1)
]
,

and ε1 = 1
|Q| (

1
2 −

5`21
2 −

`2
6 + `1

2 −
`22
2 + 7

2`2`1). We can verify
that |ε1| ≤ 3.5 when `2 ≤ m. For the case when m < `1, we
have

1

2|Q|
(S1+S2) =

1

3
(L1+L2)+

2

3L1
(L1−L2−1)(L1−L2+1)

After expanding all the terms we get our claim for m < `1.
Now we start to prove Theorem 1.

Proof: Consider the case `2 ≤ m first. We have I(Q, πs)+
I(Q, πe) = 1+`1`2 for π = O. Combining this with Lemma 3,
we have

1

2|Q|
(I(Q, πs) + I(Q, πe) + S3(Q, πs)) ≤ 1.5

Plugging the results above and that in Lemma 4 into Equation
4, we reach our conclusion. Similarly we can show the result
in the case m < `1.

IV. CLUSTERING NUMBER OF THE HILBERT CURVE

We show that there is a sharp gap between the clustering
numbers of the Hilbert curve and the onion curve, for cube
queries. Figure 2 offers a concrete example illustrating this.
Though only a single query is shown, the result is similar when
we consider a query set formed by all possible translations of
this query shape. Let H d

√
n be a d-dimensional Hilbert curve

filling the universe U of side d
√
n. Consider the query set Q

formed by all possible translations of a d-dimensional cube
query q of side `, where ` = d

√
n−O(1). Let L = d

√
n+1− `,

which is a constant that does not increase with n. The below
lemma shows that the clustering number of H d

√
n will be at

least Ω
(
n
d−1
d

)
for d = 2, 3.

Lemma 5: The average clustering number of H d
√
n with

respect to Q is c(Q,H d
√
n) = Ω

(
n
d−1
d

)
for d = 2, 3.

Proof: Focus on the case d = 2. Recall that γ(q,H) is
total number of crossing edges of q with respect to H. Let√
n = 2k and U be the universe of side 2k and Q be the set

of all translations of cube-query q with side `. Now check the
case when

√
n = 2k+1 and let U ′ and Q′ be the corresponding

universe and query set then. Notice that L =
√
n+ 1− ` is a

constant, we have |Q| = |Q′| = L2, which remains unchanged.
Consider two queries q ∈ Q and q′ ∈ Q′ such that the relative
position of q to U is the same as q′ to U ′. In other words, the
gap between q and each side of U is the same as that of q′

and U ′. As described in [17], H2k+1 can be viewed as piecing
together four H2k following a particular set of permutations
and reflections. We can verify that γ(H2k+1 , q′) ≥ 2γ(H2k , q)
for each pair (q, q′) such that q has a same relative position in
U as q′ in U ′. Thus from Lemma 1, we claim that c(Q,H√n)
will increase at least in the same speed as

√
n, which leads to

our claim. The case for d = 3 can be proved similarly.
In contrast, for the above query set, it can be seen from

Theorem 1 that the average clustering number of the onion
curve is at most 2L/3 + 2, i.e. Θ(1).

V. LOWER BOUND IN TWO DIMENSIONS

This section is organized as follows. In Section V-A, we
present a lower bound for the clustering number of a special
class of SFCs that we call continuous SFCs. We then present
a lower bound for the clustering number of any general SFC
in Section V-B. In Section V-D we discuss the approximation
ratios of the onion and Hilbert curves.

A. Lower Bound for Continuous SFCs

For two cells α, β ∈ U , we say α and β are neighbors iff
the coordinates of α and β differ by 1 along one dimension,
and are equal along the other dimension.

Definition 1: An SFC π is said to be a continuous SFC if
for any 0 ≤ i ≤ n− 2, π−1(i) and π−1(i+ 1) are neighboring
cells in the universe.

For example, in two dimensions, the Hilbert curve and the
onion curve are continuous, while the Z curve is not.

Theorem 2: Let π be any continuous SFC on U√n, where√
n is even with m =

√
n/2. Let Q = Q(`1, `2) where `1 ≤ `2.

We have c(Q, π) ≥ LB(`1, `2) where

LB(`1, `2) =

 1
L1L2

(
n`1 +O(

√
n`1`2)

)
if `2 ≤ m

L2 − 1
3
L2

2

L1
− ε, 0 ≤ ε ≤ 1 if `1 > m

where Li =
√
n− `i+1, i = 1, 2, and O(

√
n`1`2) is a term

upper bounded by a constant factor of
√
n`1`2 when n is large

enough, which is detailed as follows:
If `1 ≤ `2/2, O(

√
n`1`2) = −

√
n(`1`2 + 5

4`
2
1) + `21`2 +

1
6`

3
1 + o(n`1).
If `1 > `2/2, O(

√
n`1`2) = −

√
n
4 (9`21+`22)+ 1

6`
3
1+3`21`2−

2`1`
2
2 + 1

2`
3
2 + o(n`1).

Definition 2: For each cell α ∈ U and query set Q, the
minimum neighboring crossing number of α with respect to
Q is defined as: λ(Q,α) = minβ∈N(α) γ(Q, (α, β)), where
N(α) be the set of neighbors of α on the grid.

Note that λ(Q,α) is determined exclusively by Q and α,
regardless of the SFC involved.

Lemma 6: Consider a given continuous SFC π and a cell
α 6= πe. Let eπ(α) be the directed edge on π starting in cell
α. We have

γ(Q, eπ(α)) ≥ λ(Q,α).

Proof: Since π is continuous, we can write eπ(α)
as eπ(α) = (α, α′) where α′ ∈ N(α). Thus we have
γ(Q, eπ(α)) ≥ λ(Q,α) according to Definition 2.

From Lemmas 1 and 6, we know that the lower
bound for c(Q, π) relies primarily on the lower bound for∑
α∈U,α 6=πe λ(Q,α). In the following, we mainly discuss how

to compute T =
∑√n−1
i=0

∑√n−1
j=0 λ(i, j).

Recall that for 0 ≤ i, j ≤
√
n − 1, λ(i, j) is short for

λ(Q,α) with α = (i, j). We can verify that λ is symmetric in
the following manner.

λ(i, j) = λ(j, i) = λ(i,
√
n− 1− j)

= λ(
√
n− 1− i, j) = λ(

√
n− 1− i,

√
n− 1− j)

Based on symmetry, we only need to specify the elements
of λ(i, j), 0 ≤ i ≤ j ≤ m − 1. For a cell α = (i, j), let
αL = (i − 1, j) if i ≥ 1, αD = (i, j − 1) if j ≥ 1, αR =
(i+ 1, j), αU = (i, j + 1). For each 0 ≤ i ≤ 2m− 1, let
τ(i) = min(i+ 1, 2m− i, `, 2m+ 1− `). From Lemma 2,
we know λ(i, j) must be achieved at either γ(Q, (α, αL)) or
γ(Q, (α, αD)) when 1 ≤ i, j ≤ m − 1. Directly applying
Lemma 2 to γ(Q, (α, αL)) and γ(Q, (α, αD)), we can get a
concise formula for λ(i, j) as follows. Let τ(k, `) = min(k +
1, `, 2m+ 1− `). Define

h1(t, `) =

{
1 t ≤ `− 1
2 t ≥ ` h2(t, `) =

{
1 t ≤

√
n− `

0 t ≥
√
n− `+ 1

Lemma 7: Let 0 ≤ i, j ≤ m− 1.
• If `2 ≤ m, λ(i, j) = min

(
h1(i, `1) · τ(j, `2), h1(j, `2) ·

τ(i, `1)
)

.

• If `1 > m, λ(i, j) = min
(
h2(i, `1) · τ(j, `2), h2(j, `2) ·

τ(i, `1)
)

.

Recall that T =
∑√n−1
i=0

∑√n−1
j=0 λ(i, j). The below lemma

gives an exact expression of T .
Lemma 8:
• If `1 ≤ `2/2, `2 ≤ m,

T =4
(`1

6
− `21

2
+
`31
12
− `1`2

2
+
`21`2

2

+
3`1m

2
− 5`21m

4
− `1`2m+ 2`1m

2
)

• If `1 > `2/2, `2 ≤ m,

T = 4
(`1

6
− `21

2
+
`31
12

+
`1`2

2
+

3`21`2
2
− `22

2
− `1`22 +

`32
4

+
`1m

2
− 9`21m

4
+
`2m

2
− `22m

4
+ 2`1m

2
)

• If `1 > m, T = 2
3 (1 + 3L1 − L2)L2(1 + L2).

Now we are ready to prove Theorem 2.
Proof: For 0 ≤ i, j ≤

√
n−1, we use λ(i, j) to be short for

λ(Q,α) with α = (i, j). Let max0≤i,j≤m−1 λ(i, j) = λmax.
From Lemma 1, we have

c(Q, π) =
1

2|Q|

 ∑
α∈U,α 6=πe

γ(Q, eπ(α)) + I(Q, πs) + I(Q, πe)


≥ 1

2|Q|

√n−1∑
i=0

√
n−1∑
j=0

λ(i, j)− λmax

 =
T

2|Q|
− ε

where ε = λmax
2|Q| . Notice that λmax ≤ 2 min(L2, L1) and

|Q| = L1L2, from which we see ε ≤ 1. Set LB(`1, `2) = T
2|Q|

then we get our claim, where T =
∑√n−1
i=0

∑√n−1
j=0 λ(i, j).

B. Lower Bound for General SFCs

When π can be an arbitrary two-dimensional SFC, we present
a lower bound which is approximately half of that in the
continuous case.

Theorem 3: Let π be an arbitrary two-dimensional SFC
filling the universe U√n. Then we have

c(Q, π) ≥ 1

2
LB(`1, `2)

where LB(`1, `2) is the exact expression as shown in Theo-
rem 2.

Definition 3: For each cell α ∈ U and query set Q, the
minimum crossing number of α with respect to Q is defined
as:

ω(Q,α) = min
β∈U

γ(Q, (α, β))

Lemma 9: For each α ∈ U , we have: ω(Q,α) ≥ 1
2λ(Q,α).

Proof: Let β be an arbitrary cell such that β ∈ U, β /∈
N(α). Since β is not in N(α), we get that either (1) β differs
from α at least by 2 in one dimension or (2) β differs from α

by 1 in both of the two dimensions. Here we focus on the first
case and w.l.o.g assume x(β) ≥ x(α) + 2, where x(β) and
x(α) is the x coordinate of β and α respectively. The second
case can be analyzed in the same way. Let αR ∈ N(α) be
the right neighbor of α. We try to show that γ(Q, (α, β)) ≥
1
2γ(Q, (α, αR)).

For two cells a and b, let P(a, b) ⊆ Q be the set of queries q
such that a ∈ q, b /∈ q. According the definition of γ(Q, (α, β)),
we have: γ(Q, (α, β)) = |P(α, β)|+ |P(β, α)|. Consider the
following two cases respectively.
• P(α, αR) = ∅. In this case, we have γ(Q, (α, αR)) =
|P(αR, α)|. For each q ∈ P(αR, α), we have either β ∈ q,
which implies that q ∈ P(β, α) or q′ ∈ (PQ(α)−PQ(β))
where q′ is one unit left translation of q. Thus we have

γ(Q, (α, αR)) = |P(αR, α)| ≤ |P(α, β)|+ |P(β, α)|
= γ(Q, (α, β))

• P(α, αR) 6= ∅. Notice that γ(Q, (α, αR)) ≤
2|PQ(α, αR)|. One useful observation is P(α, αR) ⊆
P(α, β). Thus we have:

γ(Q, (α, β)) ≥ |P(α, β)| ≥ |P(α, αR)| ≥ 1
2γ(Q, (α, αR))

Summarizing the above cases, we have γ(Q, (α, β)) ≥
1
2γ(Q, (α, αR)). Since β is an arbitrary cell such that β /∈
N(α), we prove our claim.

The proof of Theorem 3 follows in a very similar manner
to the proof of Theorem 2, the main difference being that we
use Lemma 9 instead of Lemma 6.

C. General Rectangular Query Sets

Finally we use the techniques here to prove a result for
the case of general rectangular queries. Consider the two
dimensional query sets QR and QC each consisting of

√
n

queries, where QR consists of all possible rows in the universe
and QC consists of all possible columns. We see that the row-
major curve and column-major curve have an optimal clustering
number of 1 over QR and QC respectively. However, the row-
major curve performs poorly over QC with a clustering number
of
√
n, far from optimality; the same result for the column-

major curve over QR. We now prove that no SFC can have a
constant clustering number over both of QR and QC , showing
that there cannot exist a single SFC that is near-optimal for
general rectangular queries.

Lemma 10: No SFC can have a constant clustering number
over both of QR and QC , where QR and QC consist of all
possible rows and columns in a two-dimensional universe
respectively.

Proof: Let Q = QR ∪QC with |Q| = 2
√
n. Observe that

for each α ∈ U , ω(α,Q) ≥ 2 from Definition 3. By applying
Lemma 1, we have

c(Q, π) =
1

2|Q|

 ∑
α∈U,α 6=πe

γ(eπ(α)) + I(πs, Q`) + I(πe, Q`)


≥ 1

2
√
n

(
2(n− 1) + 2

)
=
√
n

This implies that for any SFC, the clustering number should
be at least

√
n over either QR or QC .

Now we give an example showing the necessity of the
second condition `2 − `1 = o(n1/d) in our definition of the
near-cube query. Consider a two-dimensional query q with size
`1 =

√
n/2 and `2 =

√
n and let q′ be its rotation which has

`1 =
√
n and `2 =

√
n/2. Let Q and Q′ be the query sets

consisting of all possible translations of q and q′ respectively.
Similar to Lemma 10, we have

Lemma 11: No SFC can have a constant clustering number
over both of Q and Q′.

Observe that (1) both Q and Q′ are near-cube query sets
if we remove the second condition (`2 − `1 = o(

√
n)) in the

definition of a near-cube query, and (2) for either Q or Q′,
there are SFCs (the column-major curve and the row-major
curve respectively) that achieve an optimal clustering number
of 1. Thus, no curve can be near-optimal on Q and Q′.

D. Approximation Ratios of the Onion Curve and the Hilbert
Curve for Near Cube Queries

Consider the case when Q is a two-dimensional near-cube
query set. Thus Q = Q(`1, `2) where there is some constant
0 ≤ µ ≤ 1 such that `i = φi(

√
n)µ + ψi for constants φi > 0

and ψi for i = 1, 2 and |`1 − `2| = o(
√
n). Let η′(Q, π) =

c(Q,O)/LB where LB is the lower bound for the continuous
case as shown in Theorem 2. The approximation ratio of an
SFC π for query set Q is η(Q, π) = c(Q,O)/OPT(Q). From
Theorem 3, we see that η(Q, π) ≤ 2η′(Q, π). Assume without
loss of generality that `1 ≤ `2.

I. µ = 0, i.e., `1, `2 are constants that do not increase
with n. We have η′(Q, π) = `1+`2

2`1
. Note that the onion

curve is continuous and almost symmetric along the
two dimensions. Thus the results of [18] apply when
`1, `2 are constants. We conclude that the onion curve is
optimal among all SFCs, i.e., η(Q,O) = 1.

II. 0 < µ < 1. `1, `2 increase at a rate slower than
√
n. We

see that

η(Q,O) ≤ 2η′(Q,O) =
(

1 +
φ2
φ1

)
In the particular case φ1 = φ2, we find η(Q,O) = 2.

III. µ = 1. Since `2 − `1 = o(
√
n), we have that φ1 = φ2.

Consider φ1 = φ2 = φ ≤ 1/2, where `1, `2 increase at
the same rate of φ

√
n, but are no more than

√
n/2. In

this case, we have

η(Q,O) ≤ 2η′(Q,O) = 2

(
1 +

φ(1
2 − φ)

1− 5
2φ

2 + 5
3φ

2

)
We can verify that the rightmost expression achieves its
maximum value 2.32 when φ = 0.355. Thus we claim
η(Q,O) ≤ 2.32. Similar results can be obtained in a
slightly more general case when φ1 ≤ φ2 ≤ 1/2, where
we can verify that η(Q,O) can be expressed as a function
of φ1 and φ2, even though it has two different expressions
over the two cases φ1 ≤ φ2/2 and φ1 > φ2/2.

IV. µ = 1 and φ1 = φ2 = φ with 1/2 < φ < 1. We have
that

η(Q,O) ≤ 2η′(Q,O) ≤ 2

For a slightly more general case when 1/2 < φ1 ≤ φ2 <
1, we have that η(Q,O) ≤ 2η′(Q,O) ≤ 2+3

(
φ2−φ1

1−φ2

)2
.

V. µ = 1 and φ1 = φ2 = 1. `1 and `2 differ from
√
n by

the constants ψ1 ≤ ψ2 ≤ 0 respectively. Notice that in
this case both of c(Q,O) and LB(`1, `2) are constants
depending only ψ1 and ψ2, regardless of grid size

√
n.

In contrast, the Hilbert curve has a clustering number of
Ω(
√
n), which is far from optimal. For simplifying the

computation, we ignore the negligible constant terms in
c(Q,O) and LB(`1, `2).

η(Q,O) ≤ 2η′(Q,O) ≤ 2 + 3
(ψ2 − ψ1

1− ψ2

)2
Observe that in the special case ψ1 = ψ2, i.e., `1 = `2,
we have η(Q,O) ≤ 2.

Summarizing the five cases above, we conclude that the
onion curve achieves a constant approximation ratio for all
possible near-cube query sets. In particular, its approximation
ratio is at most 2.32 for all cube query sets. The values of
η(Q,O) and (Q,H) are summarized in Table II, for different
near-cube query sets Q.

VI. THREE-DIMENSIONAL ONION CURVE

Consider the three-dimensional universe U with side length
3
√
n = 2m, for integer m. Throughout this section, we focus

on the case when Q = Q(`) which is a query set of three-
dimensional cubes with side length `. The definition of onion
curve for d = 3 is similar to that of d = 2: it numbers the
cells in each layer of the universe sequentially.

A. Definition of the Onion Curve in Three Dimensions

For a cell α = (x, y, z), define ∇(α) = min(x + 1, 2m −
x, y + 1, 2m − y, z + 1, 2m − z) as the distance of the cell
to the boundary of U . For integer t, 1 ≤ t ≤ m, let S(t) =
{α|∇(α) = t} which represents the set of cells whose distance
to the boundary is t. S(t) is called the “tth layer” of the grid.
Similar to the two-dimensional case, the onion curve numbers
cells in the order S(1) first, then S(2), and so on till S(m).
For each layer S(t), 1 ≤ t ≤ m, we give a disjoint partition as
S(t) =

⋃10
g=1 Sg(t) which are defined respectively as follows.

Note that for 1 ≤ g ≤ 10, Sg(t) is either a line or a two

‡It can be expressed as a function of φ1 and φ2, omitted here.
§We assume ` ≤ 3

√
n − 20. We did not optimize the constant η(Q,O)

when ` > 3
√
n− 20.

dimensional square, whose sides are of even length.

S1(t) = {i = t− 1}
S2(t) = {i = 2m− t}
S3(t) = {t ≤ i < 2m− t, j = t− 1, k = t− 1}
S4(t) = {t ≤ i < 2m− t, j = t− 1, t ≤ k < 2m− t}
S5(t) = {t ≤ i < 2m− t, j = t− 1, k = 2m− t}
S6(t) = {t ≤ i < 2m− t, j = 2m− t, k = t− 1}
S7(t) = {t ≤ i < 2m− t, j = 2m− t, t ≤ k < 2m− t}
S8(t) = {t ≤ i < 2m− t, j = 2m− t, k = 2m− t}
S9(t) = {t ≤ i < 2m− t, t ≤ j < 2m− t, k = t− 1}
S10(t) = {t ≤ i < 2m− t, t ≤ j < 2m− t, k = 2m− t}

Within each layer S(t), 1 ≤ t ≤ m, the onion curve will
index cells in the order S1(t)→ S2(t)→ · · · → S10(t). Within
each Sg(t), 1 ≤ g ≤ 10, the onion curve then will index each
cell by the natural order induced by the line if Sg(t) is a line
or the order given by the two dimensional onion curve if Sg(t)
is a two-dimensional plane.

In our definition, the essential rule that the onion curve
must follow is to organize different layers S(t), 1 ≤ t ≤ m
sequentially rather than intercross them. That is the key factor
that makes the onion curve have a near-optimal clustering
number, as we show later. In contrast, the order in which the
onion curve organizes the different Sg(t), 1 ≤ g ≤ 10 for each
1 ≤ t ≤ m is not so important. We can actually adopt any
permutation on that. See Figure 4a and 4b for more details.

We now present a function, which given cell c ∈ U , returns
the key of the cell, i.e. O(c), for the three dimensional onion
curve. For a cell α, let t′ = ∇(α). Let g′ = g′(α) be such that
α ∈ Sg′(t′). Let r′ = r′(α) be the position of α in Sg′(t

′).
From the index scheme described above, we know each cell
α can be indexed by a unique triple key (t′, g′, r′). In the
following, we present how to get the overall index based on its
triple key. Let K1(t′) be the total number of cell in

⋃t′−1
t=1 S(t).

K1(t′) =

t′−1∑
t=1

[
2(2m− 2t+ 2)2 + 4(2m− 2t)2 + 4(2m− 2t)

]
= 24m2(t′ − 1)− 24m(t′ − 1)2 + 8(t′ − 1)3

Let Vt′ be the vector such that the gth element of Vt′ is
Vt′(g) = |Sg(t′)|, 1 ≤ g ≤ 10. We can easily verify that:

Vt′(1) = Vt′(2) = (2m− 2t′ + 2)2;

Vt′(3) = Vt′(5) = Vt′(6) = Vt′(8) = 2m− 2t′;

Vt′(4) = Vt′(7) = Vt′(9) = Vt′(10) = (2m− 2t′)2.

Let K2(t′, g′) be the total number of cells in
⋃g′−1
g=1 Sg(t

′).

i,e, K2(t′, g′) =
∑g′−1
g=1 Vt′(g). Finally we have that the index

for cell α assigned by the onion curve should be:

O(α) = K1(t′) +K2(t′, g′) + r′

η(Q,O), d = 2 η(Q,O), d = 3 η(Q,H), d ∈ {2, 3}
`1 ≤ `2 `1 = `2 `1 = `2 = `3 `i = `, i ∈ [d]

µ = 0 1 1 1 1

0 < µ < 1 (1 + φ2
φ1

) 2 2 unknown
µ = 1, 0 < φ1 ≤ φ2 ≤ 1/2 O(1)‡ ≤ 2.32 ≤ 3.4 unknown

µ = 1, 1/2 < φ1 ≤ φ2 < 1 ≤ 2 + 3
(
φ2−φ1
1−φ2

)2
2 2 unknown

µ = 1, φ1 = φ2 = 1 ≤ 2 + 3
(
ψ2−ψ1
1−ψ2

)2
2 ≤ 3§ Ω(n

d−1
d)

TABLE II: η(Q,O) and η(Q,H) for different near-cube query sets Q. O is the onion curve and H is the Hilbert curve.

(a) The three-dimensional onion curve orders cells as
S(1), S(2), . . . , S(t).

(b) The ordering among cells within S(t), 1 ≤ t ≤ m−1. i, j, k
are respectively the coordinates along the first, second, and third
dimensions.

Fig. 4: Three-dimensional onion curve.

B. Upper and Lower Bounds

In this discussion, we still use O to denote the three-
dimensional onion curve. The following theorem gives an
upper bound for c(Q,O). All proofs are similar to the two-
dimensional case and we omit the details here.

Theorem 4: Let Q = Q(`) and L = 3
√
n− `+ 1.

• If ` ≤ 3
√
n/2, c(Q,O) = `2 − 2

5
`5

L3 + o(`2)
• If ` > 3

√
n/2, c(Q,O) ≤ 3

5L
2 + 13

4 L−
13
6 .

The following theorem gives a lower bound on the perfor-
mance of an arbitrary continuous SFC. Let L = 3

√
n−`+1 ≥ 3

and m = 3
√
n/2.

Theorem 5: Let π be an arbitrary continuous SFC filling the
universe U and Q = Q(`). We have c(Q, π) ≥ LB(`), where:
• If 2 ≤ ` ≤ 3

√
n/2,

LB(`) = `2 + 1
L3

[
29
40`

5 + 15
8 m`

4 − 3m2`2
]

+ o(`2),
• If ` > 3

√
n/2, LB(`) = 3

5L
2 − 3

2L+ ε with 0 ≤ ε ≤ 1.
Theorem 6: Let π be an arbitrary SFC filling the universe U

and Q = Q(`). We have c(Q, π) ≥ 1
2LB(`) + ε, where |ε| ≤ 2

and LB(`) is as shown in Theorem 5.

C. Discussion on the Three-dimensional Onion Curve

In this section, we discuss the values η(Q,O) when Q
takes each possible cube-shaped query sets. Similar to the two-
dimensional case, we define η′(Q,O) = c(Q,O)/LB(`) where
LB(`) is the lower bound for all continuous SFCs as shown in
Theorem 5. From Theorem 6, we see η(Q,O) ≤ 2η′(Q,O).

Let ` = φ(3
√
n)µ + ψ with some constants 0 ≤ µ ≤ 1 and

0 ≤ φ and ψ.
I. µ = 0: ` is a constant. We have η′(Q,O) = `2

`2 = 1.
Note that the three-dimensional onion curve is almost
continuous and symmetric over the three dimensions.
From the results in [18], we can further conclude that
the three-dimensional onion curve is optimal among all
SFCs, i.e., η(Q,O) = 1.

II. 0 < µ < 1: ` increases at a lower rate with the universe
side of 3

√
n. We have η(Q,O) ≤ 2.

III. µ = 1 and 0 ≤ φ ≤ 1/2: ` increases at the same rate of
3
√
n, but is no more than 3

√
n/2.

η(Q,O) ≤ 2η′(Q,O) = 2 +
3
4φ(

1
2−φ)(4+3φ)

(1−φ)3+ φ
40

(
29φ2+ 75

2 φ−30
)

We can verify that the rightmost expression has the
maximum value of 3.4 when φ = 0.3967. Thus we
claim that η(Q,O) ≤ 3.4.

IV. µ = 1 and 1/2 < φ < 1. In this case ` increases at
the same rate of

√
n but large than 3

√
n/2. We have

η(Q,O) ≤ 2.
V. µ = 1 and φ = 1: ` differs from 3

√
n by the constant

ψ ≤ 0. In this case L = 1 − ψ is a constant and as
a result, both of c(Q,O) and LB(`1, `2) are constants,
regardless of grid size 3

√
n. In constrast, the Hilbert curve

has a clustering number of at least Ω(n
2
3), which is far

from optimal. For analysis convenience, we ignore the
negligible constant terms included in c(Q,O) and LB(`).

η(Q,O) ≤ 2η′(Q,O) ≤ 2 ∗
3
5L

2+ 13
4 L

3
5L

2− 3
2L

= 2 + 95
6

1
(−ψ− 3

2)

We can verify that η(Q,O) ≤ 3 when ψ ≤ −20, i.e.,
` ≤ 3
√
n− 20.

Summarizing the discussion over the above five cases, we
conclude that the three-dimensional onion curve achieves an
approximation ratio of at most 3.4 for nearly all cube-shaped
query sets.

VII. EXPERIMENTAL STUDY

We present the results of experiments that compare the
performance of the onion curve and Hilbert curve over a set
of cube and rectangular queries in two and three dimensions.

A. Clustering Performance on Cube Queries

In this experiment, we consider cube queries of different
lengths.

For d = 2, we set the length of the universe to be
√
n = 210.

For each given ` = 210 − 50 · k, where k ∈ {1, 3, 5, . . . , 19},
we generate a set Q(`) of 1000 random squares of length `.
To generate a random square of a given side length, we choose
the lower left endpoint of the square uniformly among all
feasible positions for this point. For different values of `, the
distribution of clustering numbers for the two curves over Q(`)
is shown in Figure 5a.

Our setup for three dimensional cubes is similar. For
d = 3, we set 3

√
n = 29 = 512. For each given ` =

{472, 432, 192, 152, 112, 72, 32}, we generate a set Q(`) of
500 random three-dimensional cubes in the same way as the
case of d = 2. The distribution of clustering numbers of the
two curves over each Q(`) is shown in Figure 5b.

From Figure 5b, we observe the following.
• The onion curve performs much better than the Hilbert

curve when the side length of the cube is large, greater
than half the length of the axis. For instance, when d = 3
and the side length was more than 450, the clustering
performance of the onion curve was more than 200 times
better than that of the Hilbert curve.

• For each side length considered, whether large or small,
the onion curve performed at least as well as the Hilbert
curve, and was never worse than the Hilbert curve.

B. Rectangular Queries, Fixed Ratio of Side Lengths

In this experiment, we generated a set of random rectangles
where we controlled the ratio of side lengths of the rectangle.
The idea is to evaluate the clustering performance of different
curves on near cubes as the shape of the query moves further
away from a cube. Consider the case d = 2 first. Set

√
n = 210.

For each given point (x, y) with x ≤
√
n− `1, y ≤

√
n− `2,

let L(x, y, `1, `2) be the rectangle with lower-left corner point
as (x, y) and side length as `1 and `2 respectively along the
first and second dimension. For each given
ρ ∈ { 1

1024 ,
1

512 ,
1
4 ,

1
2 ,

3
4 , 1,

4
3 , 2, 4, 512, 1024}, we generate a

set Qρ of random rectangles with side ratio ρ. The algorithm
for choosing the rectangle is shown in Algorithm 1. We perform
a similar experiment for the case d = 3.

The box plot of distributions of clustering numbers from the
onion and Hilbert curves over Qρ is shown in Figure 6a for
d = 2 and Figure 6b for d = 3 respectively. From these results,
we observe that the median performance of the onion curve is
better than the Hilbert curve in all cases that were considered.
The difference in performance was the greatest when the ratio
of side lengths approaches 1 (i.e. the shape gets closer to a
square).

Algorithm 1: Generate a set Qρ of random rectangles with
a fixed side length ratio ρ with d = 2

1 Initialize
√
n = `2 =

√
n, Qρ = ∅.

2 while `2 ≥ 0 do
3 Set `1 = b`2/ρc.
4 if `1 ≤

√
n then

5 for i = 1, 2, · · · , 20 do
6 Sample x and y independnetly from

U(
√
n− `1) and U(

√
n− `2).

7 Qρ ← Qρ ∪ {L(x, y, `1, `2)}, `2 ← `2 − 50.

C. Rectangular Queries, Random End Points

In this experiment we generate a set of rectangles with
random corner points. For an integer N , let U(N) denote the
uniform distribution over {0, 1, 2, . . . , N}. For the case d = 2,
we generate a set Q of rectangles by choosing the two corners
of the rectangle uniformly at random, and then considering
the smallest rectangle that contains both the chosen points. We
generated rectangles chosen in a similar random manner, for
the case d = 3. The box plot of distributions of clustering
numbers from the onion and Hilbert curves over Q is shown
in Figure 7a for d = 2 and Figure 7b for d = 3 respectively.

VIII. CONCLUSIONS

We presented a new SFC, the onion curve, in two and three
dimensions. This is the first SFC we know of, whose clustering
performance is within a constant factor of the optimal for
all cube and near-cube query sets. In contrast, the clustering
performance of the Hilbert curve can be far from optimal.
Further, the clustering performance of the onion curve is no
worse that the Hilbert curve in all cases considered. The
definition of the onion curve is simple, making it easy to
use.

However, we note that our analysis does not mean that the
onion curve is unambiguously better than other curves, say,
the Hilbert curve, in terms of organizing data for say range
queries. There are other aspects of clustering that we have
not analyzed here, for example, the distance between different
clusters of the same query region, which tends to be important
in fetching data from the disk. Such an analysis is interesting
and the subject of future work.

(a) Two-dimensional Squares

(b) Three-dimensional Cubes

Fig. 5: The distribution of clustering numbers of the onion curve and Hilbert curve over a set of random squares and cubes with
different side lengths. The box plot shows the 25 percentile and 75 percentile within the box, as well as the median, minimum,
and maximum.

(a) Two dimensions (b) Three dimensions

Fig. 6: The distribution of clustering numbers of onion curve and Hilbert curve over a set of random rectangles with different
ratios of side lengths in two and three dimensions.

(a) Two dimensions (b) Three dimensions

Fig. 7: The distribution of clustering numbers of the onion curve and Hilbert curve over a set of random rectangles in two and
three dimensions.

The onion curve can be extended naturally to higher
dimensions, using the idea of ordering points according to
increasing distance from the edge of the universe. The analysis
of such a higher dimensional onion curve is the subject of
future work. It is also interesting to consider the performance
of Hilbert curve for general near-cube query sets as we do for
the onion curve. Another future work is to complete Table II
by filling the missing results for the Hilbert curve for general
near-cube query sets.

IX. ACKNOWLEDGMENTS

The research of the first author is supported in part by NSF
Awards CNS 1010789 and CCF 1422569.

REFERENCES

[1] J. A. Orenstein and T. H. Merrett, “A class of data structures for
associative searching,” in Proceedings of the 3rd ACM SIGACT-SIGMOD
symposium on Principles of database systems, ser. PODS ’84, 1984, pp.
181–190.

[2] H. V. Jagadish, “Linear clustering of objects with multiple attributes,”
in Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’90, 1990, pp. 332–342.

[3] K. Aydin, M. Bateni, and V. Mirrokni, “Distributed balanced partitioning
via linear embedding,” in Proc. of the Ninth ACM International
Conference on Web Search and Data Mining (WSDM), 2016, pp. 387–
396.

[4] M. Warren and J. Salmon, “A parallel hashed-octtree N-body algorithm,”
in Proceedings of Supercomputing ’93, Portland, OR, Nov. 1993.

[5] T. Li, Y. Lin, and H. Shen, “A locality-aware similar information searching
scheme,” Int. J. on Digital Libraries, vol. 17, no. 2, pp. 79–93, 2016.

[6] H. Liu, K. Wang, B. Yang, M. Yang, R. He, L. Shen, H. Zhong, and
Z. Chen, “Load balancing using hilbert space-filling curves for parallel
reservoir simulations,” CoRR, vol. abs/1708.01365, 2017. [Online].
Available: http://arxiv.org/abs/1708.01365

[7] H. Kim, S. Hong, and J. Chang, “Hilbert curve-based cryptographic
transformation scheme for spatial query processing on outsourced private
data,” Data Knowl. Eng., vol. 104, pp. 32–44, 2016.

[8] C. Faloutsos, “Multiattribute hashing using gray codes,” SIGMOD Record,
vol. 15, pp. 227–238, June 1986.

[9] ——, “Gray codes for partial match and range queries,” IEEE Trans.
Software Engg., vol. 14, pp. 1381–1393, 1988.

[10] D. Hilbert, “Über die stetige Abbildung einer Linie auf ein Flächenstück,”
Math. Ann., vol. 38, pp. 459–460, 1891.

[11] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of
the clustering properties of the Hilbert space-filling curve,” IEEE Trans.
Knowledge and Data Engineering, vol. 13, no. 1, pp. 124–141, 2001.

[12] H. V. Jagadish, “Analysis of the Hilbert curve for representing two-
dimensional space,” Information Processing Letters, vol. 62, pp. 17–22,
1997.

[13] P. Xu and S. Tirthapura, “Optimality of clustering properties of space-
filling curves,” ACM Transactions on Database Systems (TODS), vol. 39,
no. 2, p. 10, 2014.

[14] C. Gotsman and M. Lindenbaum, “On the metric properties of discrete
space-filling curves,” IEEE Trans. Image Processing, vol. 5, no. 5, pp.
794–797, 1996.

[15] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer, “Space-filling
curves and their use in the design of geometric data structures,” Theor.
Comput. Sci., vol. 181, no. 1, pp. 3–15, 1997.

[16] H. J. Haverkort, “Recursive tilings and space-filling curves with little
fragmentation,” Journal of Computational Geometry, vol. 2, no. 1, pp.
92–127, 2011.

[17] J. Alber and R. Niedermeier, “On Multidimensional Curves with Hilbert
Property,” Theory Comput. Syst., vol. 33, no. 4, pp. 295–312, 2000.

[18] P. Xu and S. Tirthapura, “On the optimality of clustering properties of
space filling curves,” in Proceedings of the 31st ACM Symposium on
Principles of Database Systems, PODS, 2012, pp. 215–224.

http://arxiv.org/abs/1708.01365

	I Introduction
	I-A Our Results
	I-B Related Work

	II General Techniques
	III Onion Curve in Two Dimensions
	III-A Onion Curve Definition
	III-B Clustering Number of Onion Curve in Two Dimensions for Rectangular Queries
	III-B1 Computing (Q,) in Two Dimensions for an SFC
	III-B2 Clustering Number of the Onion Curve

	IV Clustering Number of the Hilbert Curve
	V Lower Bound in Two Dimensions
	V-A Lower Bound for Continuous SFCs
	V-B Lower Bound for General SFCs
	V-C General Rectangular Query Sets
	V-D Approximation Ratios of the Onion Curve and the Hilbert Curve for Near Cube Queries

	VI Three-dimensional Onion Curve
	VI-A Definition of the Onion Curve in Three Dimensions
	VI-B Upper and Lower Bounds
	VI-C Discussion on the Three-dimensional Onion Curve

	VII Experimental Study
	VII-A Clustering Performance on Cube Queries
	VII-B Rectangular Queries, Fixed Ratio of Side Lengths
	VII-C Rectangular Queries, Random End Points

	VIII Conclusions
	IX Acknowledgments
	References

