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Abstract—Modern networks are of huge sizes as well as high
dynamics, which challenges the efficiency of community detection
algorithms. In this paper, we study the problem of overlapping
community detection on distributed and dynamic graphs. Given
a distributed, undirected and unweighted graph, the goal is
to detect overlapping communities incrementally as the graph
is dynamically changing. We propose an efficient algorithm,
called randomized Speaker-Listener Label Propagation Algorithm
(rSLPA), based on the Speaker-Listener Label Propagation Algo-
rithm (SLPA) by relaxing the probability distribution of label
propagation. Besides detecting high-quality communities, rSLPA
can incrementally update the detected communities after a batch
of edge insertion and deletion operations. To the best of our
knowledge, rSLPA is the first algorithm that can incrementally
capture the same communities as those obtained by applying
the detection algorithm from the scratch on the updated graph.
Extensive experiments are conducted on both synthetic and real-
world datasets, and the results show that our algorithm can
achieve high accuracy and efficiency at the same time.

I. INTRODUCTION

In many real-world applications, we often model the un-
derlying data as graphs. For example, we can consider the
World Wide Web as a graph by treating each single page as
a vertex and hyper-links between pages as edges. Similarly,
a social network can also be represented by a graph where
users are vertices and friend relationships between users are
edges. It has been shown that many real-world networks
have a significant property of community structure [1]], which
means that the vertices in the network can be partitioned
into communities, such that vertices within a community are
densely connected and vertices from different communities are
sparsely connected. For example, communities exist in World
Wide Web [2], where pages belonging to the same community
(topic) are closely connected. Similarly, in social networks [3l],
people sharing similar relationships (e.g., friends) are closely
connected. Moreover, communities (especially those in social
networks) are usually overlapping with each other [4], i.e.,
different communities can share some vertices, and one vertex
can belong to several communities simultaneously. For exam-
ple, in real social networks, a person can belong to several
communities like friends, families, colleagues, neighbors, and
SO on.

Although the existence of community structure is widely
recognized, there is no universally accepted definition of what
a community is. Various algorithms have been proposed in

recent years, trying to detect communities from different
perspectives. Some prior works [4]], [|5] treat a community as
a set of cliques (complete subgraphs). Zhang et al. [6] map
vertices into a Euclidean space and then use fuzzy C-Means
to cluster the vertices. Ren et al. [7]] use a probabilistic model
and Expectation-Maximization (EM) method to calculate the
probability that each vertex belongs to each community.
Lancichinetti et al. [8] optimize a fitness function locally to
add/remove vertices into/from a community gradually. Zhang
et al. [9] compute a topology graph and the propinquity (or
similarity) between vertices iteratively, then extract commu-
nities from a relatively stable topology graph. Xie et al. [10]]
propose an algorithm to propagate labels between vertices and
let communities emerge as popular labels.

Most of the previous works mentioned above share a
common property that is they all aim at detecting communities
on a static graph or on a single machine. Some works like
[19] propose solutions for distributed static graphs. Some other
works like [11], [12] detect communities on dynamic graphs
on a single machine. However, many real-life networks are
both of large scale and dynamic. For example, most popular
social networks (e.g., Facebook, Whatsapp and Wechat) have
reached hundreds of millions or even billions of users in June,
2017 [13]. Moreover, there are over 4 billion pages on the
Internet in June, 2017 [14)]. Identifying communities in such
big networks requires huge storage and computation resources
which are expensive to be obtained from a single machine.
Instead, distributed storage and computing clusters can provide
sufficient resources in a relatively easy and cheap way.

Other than the large scale, social networks and the Internet
change rapidly. Vertices and edges are added and deleted from
time to time. Note that, it is not efficient to treat the updated
graph as a new graph, and re-run the community detection
algorithm from scratch. Thus, it is important to incrementally
monitor the evolution of the communities, upon graph updates.

Existing community detection algorithms over dynamic
graphs have the following shortcomings. The iLCD algorithm
[11] cannot handle edge/vertex deletions and LabelRankT
[12]], cannot guarantee the result given by incremental updating
is of equal quality compared to the result calculated from
scratch. To the best of our knowledge, no prior works can
detect overlapping communities over distributed and dynamic
graphs accurately.



In this paper, we focus on incremental community detec-
tion over distributed and dynamic binary graphs (a binary
graph refers to a graph with no weights or directions on its
edges). Any network can be transformed to a binary graph by
removing the directions of edges and applying thresholding
on weighted edges. We first look into an efficient and highly
parallelizable algorithm called SLPA [10] for static graphs. By
smoothing the voting result with uniform-picking, we propose
the randomized Speaker-Listener Algorithm (rfSLPA) that is
able to incrementally detect communities with high efficiency.
Then we discuss the time complexity of the proposed incre-
mental algorithm, as well as the best and the worst cases.
Experimental results show that rfSLPA can handle dynamic
graphs efficiently and effectively.

Specifically, we make the following contributions.

o We design an efficient algorithm rSLPA that can incre-
mentally detect communities over distributed and dy-
namic graphs.

o We derive the expected complexity of incremental updat-
ing of rSLPA, as well as the upper and lower bounds.

o We verify the effectiveness and efficiency of rSLPA by
conducting extensive algorithms over both synthetic and
real-world datasets.

The rest of this paper is organized as follows. In Section [I]
we introduce the community detection problem, as well as the
details of SLPA. Then in Section [IlI| we describe our approach
in both label propagation stage and post-processing stage. In
Section we analyze the possible situations brought by
graph changes, and then propose an algorithm to incrementally
update the result. Analysis to the complexity and extreme
cases are given as well. Extensive experiments are conducted
in Section [V] to show the effectiveness and efficiency of our
algorithm. Finally, we discuss the related works in Section
and conclude this paper in Section

II. PRELIMINARIES

A. The Community Detection Problem

Given a binary graph G(V, E), the community detection
problem is to output a set of communities, each containing
a set of vertices. Vertices within one community should be
densely connected, and that from different communities should
be sparsely connected.

Since there is no globally accepted definition of a com-
munity, most of the existing algorithms are either based on
heuristics or maximizing an objective [7], [8], [9]. In this
paper, we consider one of the heuristics, label propagation.
In this approach, labels are propagated among vertices, and
vertices that receive similar information after enough iterations
are assigned to the same community. We choose this heuristic
due to the following two facts: (1) some prior works [10],
[15] show that this approach can achieve high accuracy as
well as high efficiency, and (2) the most widely used objective
Modularity has some limitations [16]. In the following, we
further describe the label propagation process in the SLPA
algorithm.

B. The SLPA Algorithm

The Speaker-Listener Label Propagation Algorithm (SLPA)
[1Q] is a natural algorithm simulating label propagation among
vertices. Compared to other community detection algorithms,
SLPA has a relatively low complexity and competitive per-
formance on real datasets [17]. Benefiting from the label
propagation model, SLPA can be easily parallelized [15] and
applied on distributed graphs.

Given a graph G(V, E), each vertex v; € V is associated
with a sequence of labels L, = (19,1},...,1F). At the
beginning each L; is empty, and the labels are assigned as
the algorithm runs. SLPA can be summarized by three main
stages below:

1) Initialization;

2) Label Propagation; and

3) Thresholding.

In the Initialization stage, each vertex is assigned with a
unique label (usually the ID of this vertex), which means L; =
(19) = (i). Later, the label sequence of each vertex will be
enlarged in the label propagation stage.

The Label Propagation stage contains two super-steps: label
sending and label selection. In the label sending step, each
vertex sends a label to each of its neighbors. Typically, for
each vertex v; and each of its neighbor v;, v; will uniformly
pick a label from L; for sending to v;. After this step, every
vertex will receive a set of labels from its neighbors. Let V; be
the neighbor set of v;, and M; be the set of labels received by
v;, where |N;| = |M;|. In the label selection step, each vertex
v; will pick the most frequent label in M;, and add it to L;.
If there are several most frequent labels (i.e., with the same
frequency), a random label will be picked uniformly. Figure
shows a typical example where both labels 1 and 2 are the
most frequent. In this example label 2 is finally picked and
appended to the label sequence.

received labels L

updated L;

{2} — 2
most frequent labels picked label

Fig. 1. A label selection example. Two labels have the same (largest)
frequency, so one of them is uniformly picked.

{1,1,2,2,3} {1,2}

The two super-steps will be performed iteratively for T’
times (In the original paper [10], T is set to 100.), to let each
label sufficiently be propagated on the graph. After 7' times,
each vertex has a label sequence of size (1" + 1).

Finally, in the Thresholding stage, labels in each L; that
are below a frequency threshold 7 will be filtered out, and
the remaining labels in each label sequence indicate the
communities that this vertex belongs to.

ITII. SMOOTHING VOTING IN SLPA
In this section, we first discuss the details of the voting pro-

cess in SLPA. Taking the graph dynamics into consideration,
where the neighbors of each vertex may change, we analyze



the diverse results of this voting process when the neighbors
change a bit. Then we introduce a pure random process to
replace the voting process in SLPA, which can be treated as a
smoothing to the original one. We show that by applying this
new process, the complexity of the algorithm is reduced, and
more importantly, the results become trackable so that we are
able to design an incremental updating algorithm over dynamic
graphs in Section [[V] Then we propose a post-processing
approach to extract communities from the label propagation
results. Later in Section experiments show that our new
strategy can give efficient and competitive results compared
to the original algorithm over static and dynamic graphs.

A. Smoothing the Voting Process

The basic idea behind the voting process of SLPA is to make
densely-connected vertices “agree” on a common label within
a limited number of iterations. Intuitively, within a community,
popular labels will appear more frequently than other labels
in the voting process, and thus have higher chances to win the
voting and become more popular. This property, which we call
concentration, allows communities to arise as popular labels.
Meanwhile, popular labels in one community are not likely
to be propagated to other communities. This is because the
vertices on the “boundary” of two communities are sparsely
connected, which makes popular labels on one side become
unpopular on the other side. This property, which we call
trapping, will prevent communities from mixing together.

Although the voting process achieves good effectiveness
in the experiments of the original work, it also makes the
results very sensitive to the popularity of each label and
almost unpredictable, as shown in Example [l When the
graph structure changes, this issue makes it very hard to
incrementally update the voting results, instead of running the
algorithm from scratch.
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(c) 3 voters: (2,2), (1,1), and (1,1) (d) 2 voters: (2,2), (1,1)
Fig. 2. Probability distribution of labels to win the plurality voting, each
with different voters.

Example 1: In Figure [2] there are four results of plurality
voting under different settings. In Figure 23] three voters are
with label sequences (1,2), (1,2) and (1,1), respectively.
Under this setting, label 1 will win the vote with the highest

probability, and label 2 has a much lower probability to win.
Other figures can be interpreted in the same way.

Compared to Figure 2a] in Figure [2b] we only change the la-
bel sequence of the third voter from (1, 1) to (1, 3). Intuitively,
the winning probability of label 1 should decrease and that
of label 3 should increase, because of the population change.
The figure does confirm our prediction, but surprisingly the
winning probability of labels 2 drops though we did nothing
to it. This case implies that any changes to one single label
may have influence on any other labels.

Also compared to Figure 2a in Figure we exchange
two labels between the first two voters, so that label 2 only
exists in one sequence. Although the population of each label
is not changed, the winning probability distribution changes
dramatically, which shows the discreteness of the voting
process.

In Figure 2d] we remove the third voter in Figure As we
can see, the winning probability of label 2 suddenly increases
from O to 0.5. This extreme case shows that the result can be
very sensitive to the change of the absolute number of voters.

To overcome this issue, we consider another uniform-
picking process, which is, given M;, label | will be uniformly
picked from M; as the result. Using this process, the probabil-
ity that [ equals [, will be proportional to the frequency of I
in M;. Thus, popular labels will have higher probability to be
picked, and the concentration property can be achieved. On the
other hand, labels will have a small chance to be propagated
through a sparse connected area for the same reason, thus the
property of trapping can also be achieved.

The major difference between this new process and the old
one is that, using the new process, the probability distribution
of the result is more “smooth”. With the old voting process,
the most popular label(s) will share the same probability to be
picked, and other labels all have probability O to be picked, in
other words, the probability distribution only has two levels.
However, with the new process, each label will be picked with
probability proportional to its population in M;, which means
there can be more than two levels. In Figure 3] we show a
typical example comparing the result distribution of these two
processes, where we can see the probability distribution of
uniform-picking has a smoother shape.

Another thing that should be noted in Figure [3] is that, the
probability distribution of uniform-picking is more “flat” than
the voting one. Actually given any M;, the highest probability
of picking a label by voting is always greater than or equal to
the highest probability of picking a label by uniform-picking,
which we prove in Theorem [I] Because of this, the label set
of each vertex we get is so different from the one we get
in SLPA that the original post-processing cannot be applied to
select communities. Another procedure is carefully designed to
extract communities and we will discuss the details in Section
e

Theorem 1: Let P,(I) be the probability that label [ is
picked by voting, and P, (l) be the probability that label [
is picked by uniform-picking. Given any M;, the following



inequality holds:
max Py, (1) < maxP,(1).
Proof: Suppose |M;| = n and k labels in M; have the
largest population m. Apparently, we have:

1
max Py, (1) = % and maxP,(l) = T

Since the total number of those k labels cannot be larger than
n, we have:

and
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Fig. 3. Probability distribution of labels to win, where M; =
(1,2,2,2,3,3,3,4,4,5).

Taking one step further, since M; is generated by uniformly
picking one label from each neighbor’s label sequence, the
selected label can also be treated as uniformly picked from
U; = ULj,j € N;, which is the union of all neighbors’
label sequences, and the probability of picking I, will be
proportional to the frequency of [, in U;. We show the proof
in Theorem 2] Utilizing this property, we can change the Label
Propagation stage to the following equivalent process:

In iteration k:

1) Each vertex v; picks a neighbor src; € N; and a position
pos; < k, both uniformly;

2) Each vertex v; add the pos;th label in Lg,., in L;.

Each label picked through this process also satisfies the
probability distribution we talked before, as shown in Theorem
Bl but the complexity is noticeably reduced. Since each vertex
only fetches one label from one neighbor instead of requiring
the whole M;, the total number of labels passing through
the graph is reduced from two per edge to one per vertex.
Thus, the communication cost in each iteration is reduced
from O(|E]) to O(]V]). We then summarize the new label
propagation algorithm in Algorithm [I] where the fetching of
a label consists of sending request pos and receiver to src,
and waiting src to send back the label.

Theorem 2: Suppose {L1, La,...,L,} is a set of n label
sequences, where each sequence has size m, and M is
generated by uniformly picking one label from each of those
sequences. The number of a specific label [ in L; is denoted

by f(l,4). If we uniformly pick r from M, then for any label
l we have:

]P)(T _ l) — Z?:l f(lﬂl)

nm

)

where >_"" | f(I,1) is exactly the frequency of [ in UL;.

Proof: We use M (k) to denote the label in M which is
picked from L. Since M (k) is uniformly picked from Ly, it
holds that:

Then we have:

P(r=1)=> P(r=M(k)) -P(M(k)=1)
k=1

_y~1 gk
N —=mn m
_ Z?:l f(l? 'L)
N nm '
|
Theorem 3: Suppose {Li, La,...,L,} is a set of n label
sequences, where each sequence has size m. We use f(I,7) to
denote the population of label [ in L;, and [¥ to denote the
kth label in L;. If we uniformly pick src from {1,2,...,n},
and pos from {1,2,...,m}, then for any label I, we have:

P(lpos —_ l) _ Z?:l f(l,l)

src nm

Proof: Picking the src and pos of a label are two inde-
pendent random process, thus the probabilities can be simply
multiplied together. Then the probability can be obtained by
averaging over all possible src:

P(Iros =1) = > P(src=1i) - P(LY” =)
i=1

n 1 f(l7'
=2 L)

2 iy f(4)

nm

|
B. Post-processing

As we discuss in Section [[IIZA] for any given M;, the
uniform-picking process will always give a more “flat” result
than the original one. This will bring two issues on the final
result (i.e., L; of each vertex). First, instead of agreeing
on a single frequent label, one community may agree on
a similar distribution of labels. Since the uniform-picking
process allows each label to be picked with some probability,
one community is not likely to have one common frequent
label, if two or more labels have close probability to be picked.
Actually, several labels are going to be kept as a similar
distribution among one community. For example, within a
community, some vertices may have labels (1,1,2,2,3,4,5),
and other vertices may have labels (1,1,2,2,3,3,3). In such a



Algorithm 1: Randomized Label Propagation

Imput : G(\V,E), T

Output: A set L where each L; € L is the label
sequence of v;.

1 Initialize L; < (i);

2 for t< 1toT do

3 Mapper for v;:

4 src < RandomPick (N;);

5 pos < RandomPick ({0,1,...,t—1})

6 Emit (src, pos, i);

7 Mapper for v;:

8 foreach received (pos,j) do

9 | Emit (5,17°°);

10 end

11 Reducer for v;:

12 ‘ Append (L;, received 1) ;
13 end

situation, if we set 7 = 2, we will get two identical communi-
ties (for labels 1 and 2) and one broken community (for label
3). If we set 7 = 3, we will only get part of this community.
Second, in a macro community, the common distribution may
change gradually from one sub-area to another. For example,
the frequent labels may change from {1,2,3} to {2,3,4} and
finally to {3,4,5}. Since the difference between two close
vertices is small, it is better to assign all the vertices to a
single community.

Because of the the first effect that labels within the same
community agree on a similar distribution, we cannot directly
filter popular labels and extract communities. The similarity
between two distributions needs to be carefully calculated and
used to identify vertices that belong to the same community.
Meanwhile, the gradual changing of common distributions
should be captured to find macro communities. Combining
those two thoughts, we propose a new post-processing al-
gorithm to extract communities from the label sequences
produced by Algorithm

First, for each edge e;; in the graph, we assign a weight w;;
to be the similarity between L; and L;. Considering that each
label sequence is a sample of labels the vertex can get from
its neighbors, we use P(l; = [;), the probability of getting the
same label from L; and L, as the similarity metric. Another
advantage of this metric is its simplicity of calculating as it
can be obtained by just counting the common labels of two
sequences.

After this, we use two thresholds to extract communities.
As we discuss above, adjacent vertices that strongly belong
to the same community should be very similar to each other,
so we use the first threshold 74, to filter out edges of low
weight, then each connected component (with at least two
vertices) on the filtered graph is considered to be a community.
In addition, there will be some isolated vertices, which have
slightly lower similarity to its neighbors, which means they

only belong to some communities weakly. In order to identify
those belongingness, we apply the second smaller threshold 7
between the isolated vertices and their neighbors. If an isolated
vertex v; is connected to a non-isolated one v;, and the edge
weight w;; > 7o, and then v; is considered to belong to the
community that contains v;. Two communities will overlap
when some vertices belong to both of them weakly.

The values of 7 and 75 will heavily influence the commu-
nity numbers and sizes, as larger thresholds will split the graph
into smaller and more sub-graphs. In this paper we use two
principles to help decide these two parameters respectively.

The first principle is, maximizing the information. We hope
that the extracted communities reveal the connectivity of dif-
ferent areas of the graph, thus, we do not want to get too many
micro communities, or only a few macro communities. This is
because both situations provide very limited information about
the graph. When we use only 7; to extract strongly connected
communities, large 7 leads to many micro communities,
and small 7; results in a few macro communities. We use
the information entropy w.r.t. the relative size of extracted
communities to measure the information we get, which is
defined as

entropy = Z ||V| |V||

where C} is the ith extracted community, and | is its relative
size w.r.t. the whole graph. Then we pick the 7; tLat maximizes
the information entropy, which is

C; C;
= argmax—z ||V|| - log ||V||

(D

The second principle is, no isolated vertex. We believe that
in real-world networks, especially in social networks, each
node (user) should be included in some communities as long
as they are connected to some neighbors, and pure isolated
vertices do not exist. According to this, 7o should satisfy:

7o < min max w;;.
i
To prevent assigning two vertices with very low similarity to
the same community, we set

To = min max w;;. 2)
i

During the post-processing, we calculate w;; for each edge,
and thresholding is also applied to every edge. These two
processes each takes one round and O(|E|) communication
cost. Finding connected component can be done in O(log d)
rounds with O(|V| + |E|) communication cost per round,
where d is the diameter of the graph [[18]. 75 can be calculated
in one round with O(|V|) communication cost. And 71 can
be found by enumerating possible values within |75, max w;;]
with small intervals (usually 0.001 is enough), which takes
constant times of thresholding and finding connected compo-
nents. Thus, the whole post-processing takes O(log d) rounds,

each with O(|E| + |V|) communication cost.



IV. INCREMENTAL UPDATING

In this section we discuss how to incrementally update the
current results when the graph is changed, instead of running
the whole algorithm again. Latter on an incremental algorithm
is proposed and the efficiency is analyzed.

Before we start the discussion, some premises should be
clarified. First of all, Algorithm I]contains a post-processing to
the label propagation result, which drops much of the label in-
formation, but in order to update the result accurately, we need
the complete result. Therefore, our strategy is to incrementally
update the label sequences after label propagation, and then
use the post-processing to extract communities. Second, for
the changes on the graph, we will focus on edge insertion
and deletion. Vertex insertion can be handled in the same
way as pretending the new vertex was an old vertex with all
old neighbors removed. Vertex deletion can also be handled
by ignoring the deleted vertex. Furthermore, we assume the
inserted and deleted edges are both picked uniformly, so
each existing edge will have equal probability to be deleted,
and each non-existing edge will have equal probability to be
inserted.

A. Handling Adjacent Edge Changes

After T' times of label propagation, there are 7"+ 1 labels
in the label sequence of each vertex. We use (¥ to denote the
kth label in L;, where l? = ¢ is the initial label of v;, and
It,t > 0 is the label that v; picked at iteration ¢. We also use
L! to denote the label sequence of v; after ¢ iterations, i.e.,
Li=(0,1,....1).

When an edge is inserted or deleted, labels of its adjacent
vertices might be influenced. According to Algorithm [I] the
source vertex of each label should be picked uniformly from
the neighbor set of each vertex. When the graph changes,
some of the sources cannot be treated as uniformly picked
from the neighbor sets any more. This is because the neighbor
sets of some vertices are changed and need to be carefully
handled. On the other hand, as long as the previous results
can still be treated as uniformly picked from neighbor set
on the new graph, we can keep those results unchanged to
save computation resources. One way to understand this is to
pretend that we use the same series of random numbers to
perform label propagation on the new graph.

Based on how the neighbor set of a vertex changes, we
classify the vertices into 3 categories. For each of those
categories, we carefully analyze whether a source can be
kept or not, and how to deal with it so that we can keep
as many results as possible. This will be the fundamental of
the incremental algorithm.

Category 1: Vertices with no neighbor changed. For such
a vertex v;, since the source src! was uniformly picked from
the same neighbor set on the old graph, we can keep src! and
post unchanged.

Category 2: Vertices that only lose neighbor(s). For such
a vertex v;, we need to check if the source src§ of the current
label is among the removed neighbor(s), or in other words, if
the label is picked through a deleted edge. If so, it means the

chosen edge no longer exists, so we have to pick a new label.
If not, we can keep the label unchanged, because the source
can still be treated as uniformly picked from the remaining
neighbors. Figure [4| shows examples for those two situations.
We show that the result of the second situation can be treated
as uniformly picked through all current edges in Theorem []
Theorem 4: In Category 2, a label comes from a remaining
neighbor can still be treated as uniformly picked from all
remaining neighbors.
Proof: Let N = {vy,va,...,v,} be the neighbor set of
a vertex, of which one is picked uniformly as s, i.e.,

P(s =v) = E,Vv € N.
n

Then n — k uniformly picked neighbors are removed from N.
The rest neighbors are denoted as N’ = {v],v5,..., v}, so

k
P(v e N')= — Vv € N.

n

We also know that s is in N/, which can be written as
P(se N')=1.
Then the probability that a neighbor in N’ is equal to s is
P(s=vAveN)
P(v € N')

P(s=vAseN')

T PeN)
_ P(s=vw) 1

P(s=wvlve N') =

T PweN) k

3
@
@

(b) A label 3 is picked
through a deleted edge.

D=0
o

(a) A label 3 is picked
through a preserved edge.

This label can be kept A new label should
unchanged. be picked from current
neighbors.

Fig. 4. Two situations in Category 2. Edges with crosses “X” are deleted
edges. Edges with arrows and labels above mean that one label is picked
through this edge.

Category 3: Vertices with new neighbor(s). For such a
vertex v;, there are new edges that we are not aware of when
we were performing label propagation on the old graph, in
addition, there might be edges that no longer exist. According
to Theorem E], if the source of I! remains to be one of
the neighbors, it can be treated as uniformly picked from
unchanged neighbors on the new graph. To extend this to
all current neighbors, we can add another random process.
Suppose the number of unchanged neighbors is n, and the
number of new neighbors is n,. Then, with probability n,ﬂfnu ,
we keep the label unchanged, otherwise we uniformly pick a
label from the new neighbors. After this random process, the
current label /! is uniformly picked from all current neighbors.
The proof is shown in Theorem If the source of l;? is deleted,




we have to pick a label from all current neighbors. Figure [3]
shows examples for this category.

Theorem 5: For a label coming from an unchanged neigh-
bor, after the random process in Category 3, the result label
is uniformly picked from all current neighbors.

Proof: Suppose the original, unchanged and added neigh-
bor set are N, N, and N,, each of size n, k and m,
respectively. The current neighbor set N, can be represented
as N, U Ng, which is of size k + m. s is picked uniformly
from N, and s is in N,,.

After the random process, if the source of the result » equals
to s with probability ,Him, then integrating the result from
Theorem [ we have

1
IP)(T:'U|'U€NU) = mP(S:U|’U€Nu) = m
If r is picked from N, with probability -, then
m 1 1
P(r = N)=— — = —
(r=vlv € No) k+m m k4+m
Combining those two, we have
1
P(r = €N,)=—.
(r=olp e N) = ——

®
=20 O—DLE

® ®

(a) A label 3 is picked (b) A label 3 is picked

through a  preserved through a deleted edge.
edge. With probability A new label should
1/3, a new label should be picked from current
be picked from vertex 4. neighbors.

Fig. 5. Two situations in Category 3. Edges with a cross are deleted edges.
Dashed edges are inserted edges. Edges with an arrow and a label above mean
that one label is picked through this edge.

B. Handling Subsequent Updates

Besides the label updates that are caused by graph changes
directly, there is another kind of label updates that we should
take care of. Since each label [! is picked from another
label l;?, if lf is updated, then /! also needs to be updated
correspondingly, if I} keeps v; as its source. Moreover, [} can
be picked in later iterations and thus may cause the updates
of other labels. Actually, a specific label can be propagated
through several edges in different iterations, which form a
propagation path or even propagation tree. Once an edge of
the tree is changed, all subsequent labels need to be updated
accordingly. Example [2] shows a situation where the deletion
of one edge causes updates on three more labels.

5 5 5
O-@DHD-B
@

Fig. 6. A possible propagation tree of label 5, with one edge deleted.

Example 2: In Figure[f] there is a possible propagation tree
of a label, where the edge between vertices 4 and 5 is the first
edge. If this edge is deleted as the figure shows, then vertex
4 has to pick a new label to replace the label 5 picked from
vertex 5. Thereafter, the label 5 of vertices 3, 2 and 1 all need
to be updated to the newly-picked label, if no other changes
are made.

To handle this kind of updates, we need to record src§ and
post for each picked label I!, so that the change of source
label can be detected by comparing the two labels. Then we
can update [} if necessary.

Now we can come up with a simple version of the updating
process: We enumerate the iteration number ¢ from 1 to 7,
then check and update the existing result of iteration ¢, and
finally obtain the result that satisfies the required probability
distribution on the new graph. However, this version requires
O(T) rounds, each with communication cost O(|V]), which
is no better than re-running the whole algorithm on the new
graph. The reason is that, no matter what the situation is, we
need to retrieve a label from one neighbor to update or check
the current label. This operation is equivalent to picking a
random label from a random neighbor, as we did in the original
algorithm.

We believe that most of the labels will remain unchanged.
When srct and pos! are both unchanged, there is a high
chance that the current label remains the same. Thus, instead of
checking the correctness of each label aggressively, we wait
until the neighbor informs the change of labels. Following
this idea, we design an internal data structure to enable the
forwarding of label change information. The data structure,
as a reverse record of src! and pos!, records the receivers of
each label in the label sequence. Let R; denote the records
of v;, that is R; = {RY,R},...,RT}, where R! is the
set of pairs (tar,k) denoting that neighbor tar picked !
in iteration k. The whole set of records is then denoted by
R = {Ry,Ry,...,R,}. R; can be simply recorded during
the label propagation process with no additional operations
required.

With R; computed, once a label lf is changed, v; needs
to send the change information to the neighbors in R; those
neighbors can update their labels with src =7 and p = ¢, and
then send the change information if necessary. As each label
I! can only be picked by other vertices in the later iterations,
any change information can only trigger consequent change
information with bigger iteration number. Thus, all the label
change can be handled within 7 iterations.

When the graph changes, R; itself may change and need
the maintenance. When v; decides to switch from src! and
post to src’ f and p’ E, and there are no other labels with the
same srct and pos!, one additional information should be sent
to the original source srcﬁ, so that it can remove v; from the
corresponding receiver list(s). When v; fetches the new label
from src E, it will be added to the receiver lists of the new

source. By amortized analysis, these additional operations will
not increase the complexity of the algorithm.



C. Correction Propagation Algorithm

Combining the two kinds of updates we discussed above,
we can now write the complete algorithm to incrementally
update the label sequence of each vertex. The main steps are
summarized in Algorithm Q} First, we check all vertices for
adjacent edge changes. A function named “NeedRepick” is
used to check which of the three categories a vertex belong to,
and another function named “Repick” is used to pick a new src
and pos according to different situations as discussed before.
From line 1 to line 12, we handle the adjacent edge changes
and send label requests to neighbors. The sendbu f fer is used
to store the information to send to neighbors temporarily. In
lines 14 and 15, we send the labels to receivers, and in lines
16 to 23, we update the label sequences and then compute
the correction information that needs to be sent to neighbors.
When all vertices have no information to send to neighbors,
it means all updates are done, and we stop.

Algorithm 2: Correction Propagation
Input : L produced by Algorithm (I} additional records
R and the changed graph G'(V', E").
Output: Maintained L and R to fit the new graph.

/* Handle adjacent edge changes. */
1 Mapper for v;:
for t < 1toT do
if NeedRepick (label!) then
sre, pos < Repick (1)
Emit (src, pos,i,t);

end
end
Reducer for v;:
foreach received (pos,j,t) do
Update R;;
Add (5,17°° ) t) to buf fer;

%
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—

end
/* Receive updated labels and perform correction propagation. */

13 while Any buf fer; is not empty do
14 Mapper for v;:

-
[S]

15 | Emit each (j,1,t) in buf fer;;

16 Reducer for v;:

17 buf fer; < 0;

18 foreach received (1,t) do

19 It 1

20 foreach (tar,k) € R! do

2 | Add (tar,lt, k) to buf fer;;
22 end

23 end

24 end

The benefit is that we only visit vertices that are close to the
changed edges. Labels that need no updates will not appear
in the emitted information and thus are naturally filtered out.

D. Complexity of Correction Propagation Algorithm

The Correction Propagation algorithm only updates labels
with necessity, so the running time of the algorithm is decided
by the number of labels that need updates. Since this number
is a random variable due to the randomness of the algorithm,
we will give the estimation of this number as well as the best
and worst cases rather than a fixed value.

1) The Expected Complexity: For simplicity, we use 7 to
denote the number of labels that need updates. One way to
calculate 7 is to first estimate how many labels are needed to
update because of one single edge insertion or deletion, and
then multiply this number by the total number of the changed
edges. However, multiple edges can lie on the same path,
making it very difficult to generalize the situation of a single
edge to multiple edges. Instead, to estimate the probability that
a single label needs to be updated is a more promising way.
Let P denote this probability, and then n = P -T - |V/|, where
T - |V] is the total number of labels picked after T iterations.

Directly estimating P is still a hard job, since labels
picked in different iterations have correlations. For example,
suppose label I! is picked from l?. Then once l;‘-’ needs to be
updated, [! also needs to be updated accordingly. To make
those correlations clearer, we will estimate P(t), which is the
expected probability that a label picked in iteration ¢ needs to
be updated. Moreover, we found that Q(t) = 1 — P(t), which
is the probability of the complementary event, has a much
simpler form, so we will focus on estimating Q(t), where
P(t) is given by 1 — Q(t).

We start from a special case. When ¢t = 0, Q(0) is the
probability that initial label of each vertex will not change,
which always holds based on our algorithm. Thus, Q(0) = 1.

When ¢t = 1, all labels are picked from the initial label of
each vertex, which will never change. Thus the label will need
update if (1) the chosen edge is deleted, or (2) the chosen edge
is not deleted but switched to a new edge. Assuming that edges
are deleted and inserted randomly with no prior distribution,
then probability of Condition (1) is %, where my is the
number of deleted edges. The probability of Condition (2) is a
bit more complex. According to the discussion of Category 3
in Section[[V-A] the probability of Condition (2) can be written
as (1 — T’E‘)(nﬁfna) Similarly, with no priori knowledge
about the distribution of vertex degrees, n, is estimated by
|E“_/‘md, and n, is estimated by %, where m, is the number
of inserted edges. Now the probability of Condition (2) is
written as (1 — %“)( W‘i‘ﬂ%) Integrating Conditions (1)
and (2), the probability that a chosen edge is changed is:

mq mq ‘E| — mg
c = T 1-— — ), 3
T

and using p. we can write P(1) and Q(1) as:
P(1) = pe- Q(0) + 1 - Q(0) = pe, )
Q(l) =1-pe.. (5)

When ¢ > 1, each label can be chosen from any labels
picked in the previous iterations (¢ choices in total), which
causes the correlation between labels. Fortunately, we can



utilize this relationship to simplify the derivation. For each
of the ¢ choices, the kth label is picked (1 < k < t) with
probability %, and it needs no update as long as the following
two conditions hold: (1) with probability Q(k), the label itself
does not change, and (2) with probability (1), the chosen
edge is not deleted nor switched to another one. Combining
these two conditions, we now have a recursion formula:

Q) = %(1 —pe)Q(k)
k=0
- % (t—1)+ %(1 —pe)Q(t—1)
= (1-2)Q(t - 1). ©

t

With the first term Q(1) from Equation |5| and the recursion

formula from Equation [§] we are now able to write the general
term of Q(t):

t
ZHl—* (7)

Note that the first term (1) can also be represented by this
general form.
Finally, we can write the estimation of 7 as:

T
=T-[VI-|V]- > Q)
t=1
T t
=T-[vI-v]- > ]I« 1—f (8)
t=1 k=1

The expected running time of the centralized incremental
algorithm is O(7)). For distributed version, the overall com-
munication cost is O(7).

Besides this expectation, we would like to investigate the
upper and lower bounds of the running time to better describe
how the actual running time varies among different instances.
Later we will discuss these two bounds under the assumption
that no prior distribution is given about the degrees of vertices
and the choices of editing edges.

2) The Best Case: Recall that Q(t) is derived from Equa-
tion [6] From this equation we can further derive the upper
bound of Q(t):

Qt)=(1-29)Q(t-1) <Q(t-1),

t

and by conductivity,

Q) <Q(1) =1-pc. ©)

Then the number of labels that need the update has a lower
bound as

) =TIV pe. (10)

3>
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This lower bound refers to the situation where every label
is picked from the initial labels of the chosen neighbor.
Consequently all paths of the picked labels have length 1,
which is the minimum possible length, so the number of labels
influenced by each edit edge is minimized, which gives the
best running time.

3) The Worst Case: Similarly, the lower bound of Q(t) can
also be derived from Equation [6}

Q) = (1-F)Q( — 1)
> (1 7PC)Q(t - 1)
= (1-p.)". (11)

Then the 1 has an upper bound as

T

=T V|- |V]-> Q)

t=1

T
ST'|V|—|V|'Z(1—pc)t

t=1

1—p.—(1—p)TH
—T.|V|—|V]. —£ ; Pe) (12)

This refers to the situation where every label in iteration ¢ is
picked from labels of iteration ¢ — 1. Thus paths of the labels
picked at iteration ¢ have length ¢, which is the maximum
possible length. So the number of labels influenced by each
edit edge is maximized, and this gives the worst running time.

V. EXPERIMENTS

To evaluate the effectiveness and efficiency of rSLPA, we
conduct extensive experiments on both synthetic and real-
world graphs. We use generated networks that contain known
communities to test the quality of communities given by
rSLPA. Then we use large-scale real-world networks to test its
efficiency in both static and dynamic scenarios. We compare
our rSLPA with SLPA on both effectiveness and efficiency.

A. Synthetic Dataset

1) Data Generation: We use the LFR benchmark [19] to
generate graphs with known communities. This benchmark
overcomes the drawbacks of the GN benchmark [1] and is
widely used in evaluating community detection algorithms.
The most important parameters to generate a graph are listed
in Table [l We choose N = 10,000, k£ = 30, maxk = 100,
om = 2, on = 0.1N and p = 0.1 as the default setting and
keep the value of each parameter unchanged unless specified.
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Fig. 7.
TABLE I

PARAMETERS OF THE LFR BENCHMARK (SELECTED)

Parameter Description
N the number of vertices
mazk the max degree
k the average degree
o the mixing parameter
on the number of overlapping vertices
om the number of memberships of overlapping vertices

2) Evaluation Metrics: In community detection, with
known communities as the ground truth, the Normalized
Mutual Information (NMI) is one of the most widely used
measures to evaluate the quality of detected communities.
Basically it reveals the similarity between two membership
assignments based on the information theory. The score is in
range [0, 1], and higher value indicates higher similarity (better
quality).

When a graph is generated, the LFR benchmark will also
give the known communities, and we will calculate the NMI
scores for each algorithm. Since both algorithms have some
randomness as well as the thresholding parameters which can
influence the final results, we average the NMI score over 10
runs for each single experiment.

For SLPA, [10] suggests that the iteration 7' = 100 and
7 & 1/om. In our experiments, we set 7' = 100 and 7 = 0.2.
For rSLPA, we set 7; and 75 according to Equations [T] and
and we have conducted some pivot experiments for choosing
the iteration number of rSLPA.

3) Convergence Speed: For rSLPA, we vary T' from 100
to 1,000 to test after how many iterations, the result will
converge. Considering that the graph size N may also affect
the convergence speed, we vary the graph size in [10K, 20K,
50K].

Figure [7a| shows the convergence speed of rSLPA. We can
see that for different [V, it gives a relatively stable result when

(e) NMI score when varying om.

(f) NMI score when varying on.

Experiment results on synthetic dataset.

T > 200. According to this result, we will use 7' = 200 for
rSLPA in the rest experiments.

4) Community Quality: In this part we compare the de-
tected community quality of SLPA and rSLPA under different
parameter settings. We vary the value of each single parameter
N, k, u, om, on, and compare the NMI scores.

In Figure we vary the graph size N from 10,000 to
50, 000. Both algorithms have very high and stable scores, and
the difference between two algorithms is small. This shows
that, our relaxing to the voting process keeps the ability of
finding good-quality communities. In Figure [/c| we vary the
average degree k from 10 to 70, which covers sparse and dense
graphs. As k increases, the score of each algorithm grows
gradually, and remains unchanged when k is large enough (>
50). Both algorithms have higher scores over denser graphs,
but they can also detect high-quality communities for sparse
graphs. From the results, we conclude that both algorithms are
suitable for graphs of different sizes and densities.

In Figure we increase the mixing parameter y from 0.1
to 0.3. The score of SLPA is nearly unchanged as p increases.
On the other hand, the score of rSLPA also remains at a
high level, but it drops slowly as p increases, which means
rSLPA has less ability to detect better-mixed communities.
In Figure om increases from 2 to 5, which means each
overlapping vertex belongs to more and more communities
simultaneously. The scores of both algorithms decrease slowly
as om increases. The reason is that it becomes harder to
correctly assign a vertex when it belongs to more communities.
Compared to SLPA, rSLPA has better performance when
om > 3. This means for a single vertex, rSLPA keeps
more information about its belongingness, so that rSLPA can
correctly detect more memberships of a vertex. This confirms
the discussion in Section from another perspective. In
Figure [/1] the number of overlapping vertices is increased from



TABLE I
STATISTICS oF DATASET EU-2015-TPD.

Statistics Value
# nodes 6,650,532
# edges 170,145,510
avg. degree 25.584
max in-degree 74,129
max out-degree 398,599

0.1N to 0.3N. With the increase of overlapping vertices, the
performance of both algorithms becomes worse. The reason is
that the boundary between communities becomes fuzzier and
harder to detect.

Overall, SLPA and rSLPA keep high scores on different
situations. When om is large, rSLPA can benefit from more
detailed information it keeps, and have better performance.

B. Real-World Dataset

In the sequel, we use real-world dataset to test the effi-
ciency of SLPA and rSLPA on Spark [20], a modern cluster-
computing framework based on MapReduce, to investigate its
performance in a distributed dynamic scenario.

We use 7 Linux servers, each with 125 GBytes of main
memory and 2 CPU of Intel Xeon Processor E5-2630 v3. Both
algorithms are implemented in Scala.

1) Preparing the data set: We use a public dataset eu-2015-
tpd, which can be downloaded from the Laboratory for Web
Algorithmics (law.di.unimi.it). This dataset consists Web pages
from private domains in Europe countries crawled in 2015. The
vertices are pages and edges are hyper-links between edges.
Statistics of this dataset are given in Table

The original dataset is compressed with LLP [21] and
WebGraph [22]], which cannot be directly read by Spark. To
make the data proper for our experiments, we extract it into
plain texts, then remove the direction of edges, as well as
multiple edges and self-loops.

To test the incremental algorithm, we generate the graph edit
batch by randomly selecting edges for insertion and deletion.
Typically, the batch size is set from 100 to 100, 000, and then
for each size we randomly pick half edges to insert and half to
delete. We run rSLPA on the original graph for 200 iterations,
then apply edge insertion and deletion to the graph, and finally
run the incremental updating algorithm to get the running time.

2) Implementation: [15] proposes a parallelized SLPA
based on MPI, which uses a message buffer to passing labels
between different vertices and data partitions. In this paper, we
adopted the parallelized SLPA to the MapReduce model by
replacing parallelized for-loops with Map and Join operations.
The internal RDD produced by Map operation plays the role
of the message buffer.

For rSLPA, we implement it as described in Algorithms
[1] and 2} In post-processing, we slightly change the existing
algorithm of finding connected components by adding filtering
on edge weights, so that we do not need to explicitly generated
the new graph filtered by the two thresholds.

3) Evaluation Metrics: We use the actual running time
(wall clock time) to measure the efficiency of the algorithms.
For both algorithms, the post-processing part can be done

separately from the label propagation part. For example, if
we run rSLPA on a social network, we may not want to
calculate the communities in every minute, instead, we can
let the algorithm handling changes continuously, and calculate
the communities once per hour. Thus, in this part, we compare
the running time of label propagation and post-processing of
each algorithm separately.

4) Results: Figure [8| compares the running time of SLPA
and rSLPA on real static graphs. In the label propagation stage,
rSLPA is more than two times as fast as SLPA. Considering
that rSLPA runs for 200 iterations while SLPA runs for 100
iterations, SLPA is over five times more than rSLPA in terms
of running time per iteration. This result is consistent with our
analysis in Section that rfSLPA propagates less labels
than SLPA does in each single iteration. However, in the post-
processing stage, SLPA takes much less time than rSLPA does.
This is because in SLPA the memberships of each vertex is
calculated by simple thresholding, while in rSLPA, complex
operations like finding connected components are needed to
find communities. Overall, rSLPA is a bit faster than SLPA in
terms of the total running time.

Figure 0] compares the running time of incremental updating
and running from scratch of rSLPA on different batch sizes.
The results show that rSLPA can perform efficient incremental
updating. The increase of running time is sublinear to the
increase of batch size. This is because multiple edges can have
the same influence on a single label, and this overlapping is
more frequent with more edges changed. This also implies that

rSLPA is suitable for edit batches of large size.
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Fig. 8. Running time of SLPA and rSLPA on real static graphs.
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Fig. 9. Running time of rSLPA (incremental updating and calculating from
scratch) on different batch sizes.
C. Summary of Experimental Results

We evaluate the effectiveness and efficiency of rSLPA on
synthetic and real-world datasets, respectively. Experiments on
synthetic datasets generated by the LFR benchmark show that,
rSLPA can detect communities of good quality. The NMI score



is over 0.8 in most of the situations. Experiments on real-world
web graphs show that rSLPA is efficient either running from
scratch or updating incrementally. When updating incremen-
tally, the running time is sublinear to the changed edge number,
which makes rSLPA suitable for large edit batches.

VI. RELATED WORK

The concept of community in networks was first introduced
in [1]] in 2002. It hasn’t been long until people realized that
in real world networks, communities are overlapped with each
other [4]]. Since then, a variaty of of algorithms were proposed
in different areas to identify overlapping communities.

Clique Based Algorithms. The Clique Percolation Method
(CPM) [4] assumes that communities are formed by adjacent
cliques. It detects communities by identifying cliques and
then group adjacent cliques together. CPM naturally finds
overlapping communites since one vertex can belong to several
cliques at the same time, but its running time highly depends
on the clique size k.

Label Propagation Algorithms. The Label Propagation
Algorithm (LPA) [23] simulates the communication between
vertices by sending and updating labels. Then vertices with
the same label are assigned to a community. This algorithm
has the complexity linear to the number of edges in the graph,
but can only detect disjoint communities. Later the Speaker-
Listener Label Propagation Algorithm (SLPA) [10] improves
LPA by allowing each vertex to hold multiple labels, thus can
detect overlapping communities.

Link Partitioning Algorithms. Unlike previous discussed
algorithms which group vertices together, link partitioning
algorithms group edges/links together. Ahn et al. [24] use
Jaccard index as the similarity between edges and then use
Single-linkage clustering to group edges together. Some works
like [25]] and [26] map the original graph into a line graph, then
perform community detection algorithms on the line graph.

Local Expansion Algorithms. Lancichinetti et al. [§]] give
an algorithm that expand communities from random seeds to
maximize a fitness function locally. Users can control the size
and quality of communities by setting the resolution parameter
«. Another algorithm iLCD [11] gradually adds edges to an
empty graph, and performs community creation, merging and
vertex assignment during this procedure. This algorithm can
detect overlapping communities by assigning one vertex to
multiple communities.

Fuzzy Detection. Fuzzy Detection algorithms calculate a
membership vector for each vertex such that some objective
functions are minimized or maximized. Zhang et al. [6] map
the graph into Euclidean space using spectral clustering, then
uses Fuzzy C-Means (FCM) to assign the soft membership of
each vertex. In work [7]], Expectation-Maximization (EM) is
used to compute the soft membership. Most of the algorithms
in this category require the number of communities to be
decided in advance, making them less flexible in practice.

Similarity Based Algorithms. Zhang et al. [9] propose an
algorithm based on similarity estimation. Firstly a similarity
matrix is estimated by comparing the common neighbors of

each pair of vertices from the original graph. Then, a topology
graph can be constructed according to the similarity matrix,
which will be used to calculate a new similarity matrix in
the next iteration. By iteratively updating the similarity matrix
and topology graph until convergency, the communities can be
discovered as connected components in final topology graph.

VII. CONCLUSION

In this paper, we study the problem of overlapping com-
munity detection on distributed and dynamic graphs. After
analyzing the limitations of the highly parallelizable algorithm
SLPA, we propose a new algorithm rSLPA by relaxing the
probability distribution in the label propagation stage. With
this technique, our algorithm can incrementally update the
result as the graph dynamically changes. To our best knowl-
edge, rSLPA is the first algorithm that can incrementally detect
overlapping communities over distributed and dynamic graphs
accurately. We conduct extensive experiments to confirm the
good performance of our approaches on synthetic/real data.
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