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Abstract—With the emergence of machine learning
(ML) techniques in database research, ML has already
proved a tremendous potential to dramatically impact
the foundations, algorithms, and models of several data
management tasks, such as error detection, data cleaning,
data integration, and query inference. Part of the data
preparation, standardization, and cleaning processes, such
as data matching and deduplication for instance, could be
automated by making a ML model “learn” and predict
the matches routinely. Data integration can also benefit
from ML as the data to be integrated can be sampled and
used to design the data integration algorithms. After the
initial manual work to setup the labels, ML models can
start learning from the new incoming data that are being
submitted for standardization, integration, and cleaning.
The more data supplied to the model, the better the
ML algorithm can perform and deliver accurate results.
Therefore, ML is more scalable compared to traditional
and time-consuming approaches. Nevertheless, many ML
algorithms require an out-of-the-box tuning and their
parameters and scope are often not adapted to the problem
at hand. To make an example, in cleaning and integration
processes, the window sizes of values used for the ML
models cannot be arbitrarily chosen and require an adap-
tation of the learning parameters. This tutorial will survey
the recent trend of applying machine learning solutions
to improve data management tasks and establish new
paradigms to sharpen data error detection, cleaning, and
integration at the data instance level, as well as at schema,
system, and user levels.

I. DETAILED OUTLINE OF THE TUTORIAL

The tutorial is organized into an introductory SWOT
analysis (Section I-A), four main parts (described in
detail from Section I-B to Section I-E), and final con-
clusions (Section I-F) as follows.

A. ML for Data Management: SWOT Analysis

The tutorial start with an introduction to the relevant
concepts in Machine Learning from the data manage-
ment perspective. We explore the use of ML techniques
as a tool to express and quantify data patterns and knowl-
edge transfer for representing and analyzing data, using
examples from literature in database cleaning/repair, data
integration, and query inference. We first provide an
overview of the opportunities and limitations, alongside
with the computational challenges associated with ML
techniques applied to data management. We articulate the
tutorial into four main parts related to the presented lev-
els of data management: (1) instance-based; (2) schema-
based; (3) system-based, and (4) user interaction-based
data management.

B. ML in Instance-Based Data Transformation Tasks

In this part, we illustrate the role played by ML
techniques in data processing at the data instance level,
through ML applications to data cleaning, database re-
pairing, and data fusion. This list of topics is by no
means exhaustive albeit representative of the diversity
of problems where ML tools have proved useful. We
will review recent DB/ML research leveraging:

• Clustering applied to anomaly detection and data
cleaning [16], [41], [49], detection of patterns of
glitches [7], [8], replacement of erroneous or miss-
ing values, and deduplication [12];

• Classification applied to database repairing [44],
[47], regression classification used in record link-
age [27], and kNN for data fusion;

• Semi- and supervised learning models for similarity
and blocking functions used in deduplication and
record linkage [10], [11], and active learning in
entity resolution [46];



• Bayesian analysis applied to data cleaning [17],
probabilistic inference in data repairing [39], disam-
biguation (conflict resolution), and data fusion [20],
[21], [35]; and

• Model optimization and statistical model training
with guarantees [31] used in learning from samples
for progressive data cleaning.

Finally, we will discuss the pros and cons of ML
applications to instance-based data management tasks
and we will also review some work in ML to address
noisy data labels and model robustness and discuss its
applicability to data quality and integration.

C. ML in Schema-Based Data Transformation Tasks

In this part, we focus on the application of ML tech-
niques to schema-driven tasks in data management, such
as schema and constraint inference, schema mapping and
query specification. Again, our list is not meant to be
exhaustive but aims at fostering the discussion on the
usage of learning in all its facets in the above tasks. The
presentation will include the following topics:

• Schema and schema mapping discovery tech-
niques [2], [9], [29], [33] to fight database decay
and facilitate data integration;

• Usage of input data examples to help the user spec-
ify complex data transformation tasks [15], [28];

• Usage of machine learning in data source reconcil-
iation [18];

• Learning in rule discovery and information extrac-
tion [23], [26], [32], [40]; and

• Query specification paradigms leveraging grammar
induction techniques [3], [13], [14].

We will review recent approaches for data transforma-
tion, schema, and constraint discovery that can benefit
from learning based on input data examples. We will dis-
cuss the advantages and limitations of these techniques
and pinpoint a few extensions.

D. ML in System-Oriented Data Management Tasks

In this part, we will discuss about a recent trend
in our community to use ML techniques for obtaining
“trained database systems”, i.e., databases that can learn
from past query workloads (or past query executions and
optimized plans) the behavior to be adopted in upcoming
querying and tuning tasks. We will put under lenses the
many ML approaches for database query optimization
and bulk data processing systems by highlighting their
advantages and their possible impact on full-fledged
database systems. We will (not exhaustively) discuss
about the following trends in the DB community:

• Predicting query answering based on the past his-
tory of queries [34];

• Predicting the decisions of a query optimizer [38]
and performing database tuning [43] by leveraging
ML techniques;

• Feature engineering and labeling are bottlenecks
in ML techniques that hinder their adoption in
database-oriented tasks; we will review works to
facilitate those tasks [1], [5], [36];

• Finally, we will focus on the connections between
ML and Databases and the unsolved challenges in
this area [24], [37].

E. ML in User-Guided Data Management Tasks

In this part, we will discuss the limitations of pure
ML approaches and how users can help to complement
the efforts. As illustrative examples, we will examine
common data management tasks such as entity resolution
and data cleaning [4], [6], [19], [25], [45], [48], [50]. We
will consider the interplay between ML-based algorithms
and crowd-sourcing, and highlight where users’ input is
essential. Specifically, we will discuss three dimensions
of the problem:

• How users can help in improving the data itself, e.g.,
by detecting errors [42], gathering missing data and
choosing among possible data repairs [4], [48];

• How they can assist in gathering meta-data that
facilitates improved data processing [6], [45];

• How can we find and identify the most relevant
crowd to complement the ML efforts in a given data
management task [19], [50].

F. Lessons Learned and Perspectives

We foresee two major outcomes from this tutorial. In
the short term, we expect that this tutorial will lead to a
more effective use of ML techniques in data management
applications. In the long term, we hope that understand-
ing the benefits and limits of the application of ML to
the modeling, representation, and analysis of data will
lead to a better interaction between data management
and ML when designing the next-generation database
management systems.
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