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Reducing Uncertainty of Probabilistic Top-k
Ranking via Pairwise Crowdsourcing

Xin Lin, Jianliang Xu, Haibo Hu and Zhe Fan

Abstract—Probabilistic top-k ranking is an important and well-studied query operator in uncertain databases. However, the quality
of top-k results might be heavily affected by the ambiguity and uncertainty of the underlying data. Uncertainty reduction techniques
have been proposed to improve the quality of top-k results by cleaning the original data. Unfortunately, most data cleaning models
aim to probe the exact values of the objects individually and therefore do not work well for subjective data types, such as user ratings,
which are inherently probabilistic. In this paper, we propose a novel pairwise crowdsourcing model to reduce the uncertainty of top-k
ranking using a crowd of domain experts. Given a crowdsourcing task of limited budget, we propose efficient algorithms to select the
best object pairs for crowdsourcing that will bring in the highest quality improvement. Extensive experiments show that our proposed
solutions outperform a random selection method by up to 30 times in terms of quality improvement of probabilistic top-k ranking queries.
In terms of efficiency, our proposed solutions can reduce the elapsed time of a brute-force algorithm from several days to one minute.
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1 INTRODUCTION

Top-k ranking is an important query operator in many
real-life applications such as decision support [40], data
cleaning [11], and recommendation systems [41]. How-
ever, the data obtained from these applications are of-
ten uncertain due to various factors such as subjective
nature of data, unreliable data sources, and limited
equipment/machine precision. For example, the user
ratings of a point-of-interest (e.g., restaurant or hotel) are
diversified in nature; the features of a multimedia object
extracted by some (fast and inexpensive) automated
algorithm may not be 100% accurate. As such, process-
ing top-k ranking queries on uncertain data, termed as
probabilistic top-k queries, has drawn intensive research
attention in recent years [15], [29], [42]. A probabilistic
top-k query returns the set of highest-ranking objects
with a probability associated with each query answer.

Possible World Probability Top-2 Objects
W1 = {i11, i21, i31} 0.024 {o1, o2}
W2 = {i11, i21, i32} 0.016 {o1, o2}
W3 = {i11, i22, i31} 0.096 {o1, o3}
W4 = {i11, i22, i32} 0.064 {o1, o2}
W5 = {i12, i21, i31} 0.096 {o2, o3}
W6 = {i12, i21, i32} 0.064 {o2, o1}
W7 = {i12, i22, i31} 0.384 {o3, o1}
W8 = {i12, i22, i32} 0.256 {o1, o2}

TABLE 1
Possible Worlds of Fig. 1

• Xin Lin is with the Shanghai Key Laboratory of Multidimensional In-
formation Processing, East China Normal University, Shanghai 200241,
China, and with the Department of Computer Science, Hong Kong Baptist
University, Kowloon Tong, Hong Kong. E-mail: xlin@cs.ecnu.edu.cn.

• Jianliang Xu and Zhe Fan are with the Department of Computer Sci-
ence, Hong Kong Baptist University, Kowloon Tong, Hong Kong. E-
mail: xujl@comp.hkbu.edu.hk and zhe.fan@foxmail.com. Zhe Fan is the
corresponding author.

• Haibo Hu are with the Department of Electronic and Information Engi-
neering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong. E-mail: haibo.hu@polyu.edu.hk.

! ! ! ! ! ! ! !"#$!"# # # # # # # # # # # # # # # # # # # # # # # # # # # # !%#$!$$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ !&#$!%$
!
"#! $%&'(! )*+,!
!""# -.! ./0!
!"$# -1! ./2!
!

"#! $%&'(! )*+,!
!%"# -0! ./3!
!%$# --! ./4!

"#! $%&'(! )*+,!
!$"# -5! ./0!
!$$# -4! ./2!

Fig. 1. Example of Uncertain Objects

Example: Fig. 1 shows a toy example of probabilistic
database, where three photos of Steve Jobs, regarded as prob-
abilistic objects, are labeled by o1, o2, and o3. Steve’s ages
might be estimated by using machine learning techniques
(e.g., How-Old.net). Since such techniques cannot achieve
100% accuracy, the estimated ages might be provided as a
list of probabilistic instances (see the tables in the lower part
of Fig. 1). The instances of the same uncertain object are
mutually exclusive and the sum of their probabilities is 1.
Such a probabilistic database can be viewed as a set of possible
worlds whose probabilities are the products of the probability
of each instance. For example, the probability of the possible
world W1 = {i11, i21, i31} is 0.2⇥ 0.2⇥ 0.6 = 0.024. Table 1
lists all possible worlds and their corresponding probabilities.
To find the top-2 photos with the youngest ages, we combine
all possible worlds with the same top-2 objects. For example,
since {o1, o3} is the top-2 photos for possible worlds W3 and
W7 only, the probability that {o1, o3} is a set of top-2 objects
is P (W3) + P (W7) = 0.48.

Although possible worlds resolve the issue of quanti-
fying uncertainties over probabilistic data, the ambiguity
brought by the uncertain data degrades the confidence
and quality of top-k query results. In the above example,
the highest probability of a top-2 object set, i.e., {o1, o3},
is no more than 50%. This means that it has a higher
chance of not being the genuine top-2 result than that
of being so. It has been proved in the previous work

This is the Pre-Published Version.
The following publication X. Lin, J. Xu, H. Hu and F. Zhe, "Reducing Uncertainty of Probabilistic Top-k Ranking via Pairwise Crowdsourcing," 2018 
IEEE 34th International Conference on Data Engineering (ICDE), 2018, pp. 1757-1758 is available at https://doi.org/10.1109/ICDE.2018.00236

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



2

Correctness
of Photo
Comparison

Correctness of Age Guessing (Deviation  x)
= 0  1  2  3  4  5

94% 6% 17% 28% 38% 47% 55%

TABLE 2
Pairwise Photo Comparison V.S. Age Guessing

[5] that partially reducing the uncertainty of the original
data could improve the quality of final query results.
In [22], data cleaning techniques are used to reduce the
uncertainty of top-k query results. It adopts a singleton
cleaning model, which probes the exact values of the ob-
jects individually. More sophisticated cleaning solutions
harness additional resources, such as using redundant
sensor devices [22]. However, these techniques cannot
be applied to applications where exact values of indi-
vidual objects are difficult to obtain, particularly in those
domains where such values are usually subjective (e.g.,
personal opinions). With the increasing popularity of
crowdsourcing, an attractive alternative solution is to ask
for help from the crowd or experts. By incorporating
their feedbacks, the confidence level of top-k ranking
would be improved with fewer possible worlds and
reduced uncertainty.

Humans make more reliable decisions on comparing
object pairs than rating individual objects [25]. Take
Fig. 1 for example. Users might feel easier to verify the
claim that “o3 is younger than o1” than to precisely guess
their ages. As a showcase, we collected 600 photos in
the AgeGuessing website [1] together with their ground-
truth ages. We randomly crowdsourced 50 pairs of pho-
tos for age comparison. The accuracy of the crowd is
94%. Meanwhile, we crowdsourced the photos for direct
age guessing. As shown in Table 2, only 6% answers
exactly match the ground truth. Even if we allow a
deviation of 5 years, only 55% answers match the ground
truth. As a result, the accuracy of age comparison based
on such data is only 78%. This suggests that the single-
ton cleaning model suffers from more noise and hence
cannot work well in such applications. As such, we
propose a novel pairwise crowdsourcing model to reduce
the uncertainty of top-k query results by crowdsourcing
pairs of objects to domain experts for comparison.1 Let
us revisit the example in Fig. 1 and Table 1. Suppose we
post o1 and o3 to the crowdsourcing platform and get
“o3 < o1”, then only the possible worlds W5 and W7 will
still hold. Consequently, the probability of {o1, o3} being
the top-2 result is increased to 0.8, which significantly
improves the quality of the query result.

We argue that the pairwise crowdsourcing model can
be used for many uncertain top-k applications. Some of
them are listed below:

• Point-of-Interest (POI) Ranking: In POI databases,
POIs (e.g., hotels, museums, and restaurants) are
rated by users. As such, the scores assigned to each
POI are probabilistic instances of this POI (e.g., 65%
rate 5 and 35% rate 4). To improve the quality of top-
k ranking results, we can crowdsource some pairs of

1. In this paper, the term “crowdsourcing” is mainly referred to
as “expert sourcing” (i.e., making use of a small crowd of domain
experts).

POIs to experts for a comparison of their goodness.
• Product Ranking: In Web product reviews, product

scores are computed from user comments by au-
tomated text mining methods. A product may be
assigned with several scores, each with a different
confidence level. Similar to POI ranking, the quality
of the top-k ranking can be improved by asking the
crowd whether one product is better than another.

• Complex Decision Making: In business manage-
ment and social science, mathematical synthesis is
adopted to model a judgement (e.g., choosing a
leader from several candidates based on their expe-
rience, education, and charisma) as a complex sys-
tem. Some state-of-the-art techniques (e.g., analytic
hierarchy process [27]) use domain knowledge and
heuristics to initialize the weights in the system, and
then use pairwise comparisons to evaluate and fine-
tune them.

In this paper, we adopt the notion of entropy [22]
[5] [43] to quantify the quality of query results. Since
crowdsourcing tasks are costly in terms of money and
time, there is a budget limit for the number of object
pairs to be crowdsourced. As such, the objective of this
paper is to carefully select object pairs for crowdsourc-
ing in order to maximize the quality improvement of
query results under limited budgets. There are two main
challenges in this problem. First, the candidate object
pairs are quadratic to the number of objects. Therefore,
an issue is how to efficiently select the best object pairs
from all the candidate pairs. Second, it is very costly
to compute the exact quality improvement gained by
pairwise crowdsourcing, because the number of possible
top-k object sets is huge when k is large. To address these
challenges, we devise an index called Probabilistic B-tree
(PB-tree for short) to accelerate the sorting of candidate
object pairs. Moreover, we propose an efficient algorithm
to obtain the lower and upper bound of the quality
improvement gained by crowdsourcing and hence sig-
nificantly accelerate the selection procedure.

Our contributions made in this paper are summarized
as follows:

• We present a pairwise crowdsourcing model to im-
prove the quality of probabilistic top-k ranking on
uncertain objects. To the best of our knowledge, this
is the first study of top-k ranking across possible
worlds under a pairwise crowdsourcing model.

• For the single object-pair selection problem, we
propose a PB-tree-based solution and an bound-
based method to efficiently find the best object pair
for crowdsourcing. Moreover, a branch-and-bound
optimization is devised to prune the candidate node
pairs. This solution works for both order-insensitive
and order-sensitive settings.

• To minimize the latency of crowdsourcing, we ex-
tend the above solution to select object pairs in
batch so that they can be simultaneously posted in
the crowdsourcing system. To avoid enumerating all
possible combinations of object pairs, we propose
two heuristics techniques for efficient selection.

• We conduct extensive experiments to evaluate the
performance of the proposed solutions. The results
show that our proposed methods outperform ran-
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dom selection by 30X in terms of result quality
improvement. Meanwhile, in terms of efficiency,
our proposed methods can finish the selection of
object pairs within one minute, while the brute-force
algorithm takes several days.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the background and related work. In
Section 3, we define the problem and give a brief analysis
of its complexity. In Section 4, we focus on selecting
the best object pair which maximizes the quality im-
provement and then extend the solution to the multiple
object-pair selection problem in Section 5. Experimental
results are presented in Section 6. Finally, we conclude
this paper in Section 7.

2 RELATED WORK
2.1 Crowdsourcing
Crowdsourcing has been a hot topic in the database
community in recent years. Crowd-powered database
platforms (e.g., [13] [25]) have been built to combine
human intelligence with machine computing for chal-
lenging problems. Quality control is a fundamental is-
sue in crowdsourcing systems. [36] and [44] separately
addressed the diversity and noise issues of the results
from the crowd. [16] and [3] studied how to evaluate
the performance of workers in crowdsourcing platforms.
A number of studies have focused on resolving specific
queries on these platforms. As one of the most important
query operators in database systems, crowdsourced join
queries have been studied in [9] [37] [25]. Other query
operators, including sorting [25], enumeration [31], and
max [14] [35], have also been investigated on crowd-
sourcing platforms.

As subjective tasks are best suited for crowdsourcing,
it has been intensively studied how to resolve entity
resolutions via crowdsourcing [37] [9] [33] [39] [38] [34].
[23] considers counting operations in crowdsourcing
environments, while [26] uses crowdsourcing to facil-
itate rating and filtering. [20] adopts a crowdsourcing
platform to help make traveling plans. [46] aids people
to select the best path between a source and a desti-
nation. [24] leverages crowdsourcing in active learning.
[32] proposes a human-powered top-k query processing
solution, in which the system asks the crowd to rank the
objects directly and aggregates them to get the final top-
k results. We argue that it is more difficult for the crowd
to rank a list of objects than to compare a pair of them.
Moreover, it cannot handle uncertain top-k queries with
prior rating knowledge. In [6], the authors proposed a
human-powered uncertain top-k query cleaning solu-
tion. However, it used probabilistic distribution function
(PDF) as the model of the uncertain data, whereas we
adopt a more well-studied possible world model. In [10],
an object comparison model has been suggested to select
top-k objects. However, it only works for deterministic
data and cannot be directly applied to probabilistic data.

While most of the above studies exploit machine-
based techniques to reduce the cost of crowdsourcing,
[43] uses crowdsourcing to reduce the uncertainty of
semantic matching, which is the closest to our work. In
particular, it aims to find out the crowdsourced entity

pairs with the highest quality improvement, measured
by entropy as in our work. [30] also adopts crowd-
sourcing techniques to clean multi-version data on the
Web, while [8] uses crowdsourcing and knowledge base
to clean relational data. However, to the best of our
knowledge, there is no work leveraging crowdsourcing
to reduce the uncertainty of top-k ranking, which is the
focus of this paper.

2.2 Probabilistic Top-k Queries and Uncertainty Re-
duction
Probabilistic top-k queries have been extensively studied
under various semantics, including U-Topk [29], u-
kRanks [29], PT-k [15], global-topk [42], and expected
rank queries [7]. Efficient query processing algorithms
have been developed to evaluate the probabilistic top-
k queries. However, the existing studies only return the
most probable top-k results, although such results may
contain high uncertainty.

On the other hand, data cleaning is a well-studied
technique that aims to reduce the uncertainty of query
results. [18] makes use of users’ feedback to promote
the quality of query results from diverse databases.
[19] analyzes the sensitivity and explanation of query
results in probabilistic query results. [5] defines the
quality of max and range query results on uncertain
data, based on which a mechanism is devised to promote
the result quality with a limited cleaning budget. [45]
aims at diagnosing faults in a system represented by a
Bayesian network. [12] focuses on reducing uncertainty
of pipeline. [17] selects the most informative subset of
variables to reduce uncertainty in a graphical model. [21]
aims to clean the edges in uncertain graphs.

The closest work to our problem is [22], which aims
to reduce the uncertainty of probabilistic top-k queries.
However, there are two major differences from our work.
First, [22] assumes that the exact values of uncertain
objects can be determined after the cleaning process, by
which the uncertainty of top-k results will be reduced
accordingly. Thus, it adopts a singleton model to clean
the data. In contrast, we adopt a novel pairwise crowd-
sourcing model to filter out violated possible worlds
for subjective rating tasks. Second, [22] defines top-k
results at the instance level, which identifies top-k in-
stances with the highest ratings. However, in many top-
k applications, the top-k objects are preferred as query
results. In the example of age guessing, the objective
is to find the top-k photos, instead of top-k guessed
ages. Hence, we focus on top-k queries at the object
level. Unfortunately, the problem of processing object-
level probabilistic top-k queries is more sophisticated
than the instance-level problem. As such, we resort to
crowdsourcing to reduce the uncertainty of object-level
top-k ranking in this paper.

3 PROBLEM DEFINITION
3.1 Probabilistic Database
We adopt the possible world semantics to model uncer-
tain objects [22]. For better readability, we summarize
the frequently used notations in Table 3. Let a proba-
bilistic database D contain m uncertain objects o1, o2,
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Notation Meanings
P (W ) The probability of the possible world W
i
m

(W ) The top-m instance of the possible world
W

o
m

(W ) The top-m object of the possible world W
P (k, S) The probability that S is the top-k result
H(S

k

) The quality of the probabilistic top-k rank-
ing

EH(S
k

|(o
x

, o
y

)) Excepted quality after crowdsourcing ob-
ject pair (o

x

, o
y

)
EI(S

k

|(o
x

, o
y

)) Excepted quality improvement after
crowdsourcing object pair (o

x

, o
y

)

TABLE 3
Frequently Used Notations

. . ., o
m

. Each uncertain object is composed of several
uncertain instances.2 An uncertain instance i is in the
form of <oid, iid, v, p>, where i.oid is the identifier of
the uncertain object containing i, i.iid is the instance
id of i, i.v is the attribute value of i, and i.p is the
existential probability of i. In this paper, we use i.v and
i interchangeably for value comparison. For simplicity,
we assume no pair of instances shares the same attribute
value. The instances of the same uncertain object are
mutually exclusive and the sum of their probabilities
is 1. In addition, we assume the instances of an object
are independent of other objects. Under the possible
world semantics, the uncertain relations of objects are
regarded as a set of possible worlds, each of which
contains exactly one instance from each uncertain object.
The probability of a possible world W is the product of
those of the instances in it, i.e.,

P (W ) =

Y

i2W

i.p.

Given two uncertain objects o
x

and o
y

, “o
x

> o
y

(o
x

<
o
y

)” means that the instance of o
x

is larger (smaller)
than the instance of o

y

. The probability of o
x

> o
y

can
be computed by summing up the probabilities of the
possible worlds where “o

x

> o
y

” holds. Formally, it can
be computed by the following equation:

P (o
x

> o
y

) =

P
i

x

2o

x

i
x

.p · (P
i

y

2o

y

,i

x

>i

y

i
y

.p)
=

P
i

y

2o

y

i
y

.p · (P
i

x

2o

x

,i

x

>i

y

i
x

.p).
(1)

According to Eq. (1), we have

P (o
x

< o
y

) = P (o
y

> o
x

) = 1� P (o
x

> o
y

).

Take Fig. 1 and Table 1 for example, the probability of
“o2 > o1” can be computed by summing up the proba-
bilities of W1�W4, W7, and W8, i.e., P (o2 > o1) = 0.84,
and P (o1 > o2) = 1 � P (o2 > o1) = 0.16. In the sequel,
we use object and uncertain object interchangeably.

3.2 Quality of Probabilistic Top-k Ranking
Without loss of generality, for a top-k query, we say that
the instance with a smaller value ranks higher than the
one with a larger value. We then define the top-k result

2. The concepts “object” and “instance” are equivalent to “x-tuple”
and “tuple” in the x-tuple model [22].

Object Pairs 
Selection AlgorithmUncertain

Database

Crowdsourcing
Platform

Original Uncertain 
Objects

Object Pairs to be 
Cleanned

Cleanned
Results

Fig. 2. Framework of Crowdsourcing Cleanning

below, based on which we further define the quality of
top-k query results.

Definition 1: Object-Level Top-k Result of Possible
Worlds. Given a possible world W , let i

m

(W ) denote
the top-mth instance of W and o

m

(W ) be the uncertain
object in i

m

(W ). The top-k result of W returns a set of
uncertain objects R(k,W ) such that

R(k,W ) = {o
m

(W ) | m  k}. (2)

Let us revisit the example in Fig. 1 and Table 1, where
we want to search the top-k smallest objects. In the
possible world W1, R(2,W1) = {o1, o2}. The rightmost
column of Table 1 lists the top-2 objects of each possible
world, i.e., R(2,W

i

) for each W
i

.
Definition 2: Probability of Object-Level Top-k Re-

sult. Given a set of k objects, S, the probability that S is
the top-k result is defined as follows:

P (k, S) =
X

R(k,W )=S

P (W ). (3)

Here the set equation in “R(k,W ) = s” can be either
order-insensitive or order-sensitive. In Table 1, if S =

{o1, o3} and it is order-sensitive, only R(2,W3) = S; if
S is order-insensitive, R(2,W3) = R(2,W7) = S. In this
paper, we firstly focus on the order-insensitive problem,
followed by the extension to the order-sensitive problem.

Due to the diversity of possible worlds, there can
be many top-k results. We use notation S

k

to denote
the sets covering all possible top-k results. To quantify
the quality of all results, we use entropy to measure
the uncertainty of the ranking, based on the probability
distribution of all results. Higher entropy means the
returned top-k result is more uncertain and thus of lower
quality. As in [5] [22] [28], we formally define the quality
of probabilistic top-k ranking as follows:

H(S
k

) =

X

S2S
k

h(P (k, S)), (4)

where the function h(x) = �x log x and log is the natural
logarithm. As lim

x!0 x log x = 0, we define h(P (k, S))
= 0 if P (k, S) = 0.

Consider our running example. If the top-k results are
order-insensitive, S

k

= {{o1, o2}, {o1, o3}, {o2, o3}}. As
such, P (2, {o1, o2}) = P (W1)+P (W2)+P (W4)+P (W6)+

P (W8) = 0.424, P (2, {o1, o3}) = P (W3) + P (W7) = 0.48,
and P (2, {o2, o3}) = P (W5) = 0.096. Hence, H(S

k

) =

�0.424 log 0.424 �0.48 log 0.48 - 0.096 log 0.096 = 0.941.
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3.3 Pairwise Comparison via Crowdsourcing
To improve the quality of probabilistic top-k ranking,
we leverage crowdsourcing to reduce the uncertainty in
possible worlds. As shown in Fig. 2, the server selects
a limited number of object pairs by our proposed al-
gorithm and crowdsources them to the domain experts
for comparison. We assume that some conflict resolution
mechanism (e.g., majority voting rule) is in place and the
comparison result returned from the crowd is determin-
istic. Such results help the server to set the probabilities
of those possible worlds that contradict with them to
zero, and the probabilities of the remaining possible
worlds to be proportionally enlarged so that they still
sum up to 1. Assuming the server crowdsources a pair of
objects o

x

, o
y

and the crowd returns that o
x

> o
y

, the new
probability of a remaining possible world W is updated
as follows:

P (W |o
x

> o
y

) =

(
P (W )

P (o
x

>o

y

) , o
x

> o
y

in W ;
0, o

x

< o
y

in W .
(5)

Since P (W ) is updated to P (W |o
x

> o
y

), P (k, S) for
each possible top-k result set S is changed accordingly:

P (k, S|o
x

> o
y

) =

X

R(k,W )=S

P (W |o
x

> o
y

).

As such, the quality of the top-k ranking is also
updated as follows:

H(S
k

|o
x

> o
y

) =

X

S2S
k

h(P (k, S|o
x

> o
y

)).

Thus, the posterior quality improvement of o
x

> o
y

is H(S
k

) � H(S
k

|o
x

> o
y

). Given a limited budget of
crowdsourcing, our objective is to find the best pair(s)
of objects which would bring in the largest quality
improvement. However, the challenge lies in that we
cannot tell apriori the comparison result before crowd-
sourcing an object pair. In the above running example,
either o

x

> o
y

or o
y

> o
x

could be returned. Therefore,
we need to consider both cases and use the notion
expected quality (denoted by EH(S

k

|(o
x

, o
y

))) and expected
quality improvement (denoted by EI(S

k

|(o
x

, o
y

))) for pair
selection. They are formally defined in the following
equations:

EH(S
k

|(o
x

, o
y

)) = H(S
k

|o
x

> o
y

)P (o
x

> o
y

)

+H(S
k

|o
x

< o
y

)P (o
x

< o
y

),
(6)

EI(S
k

|(o
x

, o
y

)) = H(S
k

)� EH(S
k

|(o
x

, o
y

)). (7)

For the example in Fig. 1 and Table 1, if we crowd-
source object pair (o1, o2) and the crowd returns o2 < o1,
then the possible worlds W1-W4, W7, and W8 will be
removed from the possible world space. According to
Eq. (5), the probabilities of the remaining possible worlds
W5 and W6 are enlarged to 0.6 and 0.4, respectively.
Hence, the quality is updated to H(S

k

|o2 < o1) =

�0.6 log 0.6 � 0.4 log 0.4 = 0.67. Otherwise, the crowd
returns o1 < o2 and the quality is updated to 0.683. Ac-
cording to Eq. (7), the expected quality improvement is
EI(S

k

|(o1, o2)) = 0.941�(0.683⇥0.84+0.67⇥0.16) = 0.26.

The above definitions can be directly generalized to
multiple pairs of crowdsourced objects. Assuming the
quota of crowdsourced object pairs is n, we can select
n object pairs to improve the quality of top-k ranking.
These pairs are denoted by P

n

= ((o1
x

, o1
y

), (o2
x

, o2
y

), . . .,
(on

x

, on
y

)). There are 2

n possible results of the comparison
between oi

x

and oi
y

(1  i  n). Let A(P
n

) denote
the global set of such combinations. The expected quality
(denoted by EH(S

k

|P
n

)) and expected quality improvement
(denoted by EI(S

k

|P
n

)) are defined as follows:

EH(S
k

|P
n

) =

X

e2A(P
n

)

H(S
k

|e)P (e), (8)

EI(S
k

|P
n

) = H(S
k

)� EH(S
k

|P
n

), (9)

where e is a combination of the comparison relation-
ships between oi

x

and oi
y

. For example, n = 2, P2 =

((o1, o2), (o1, o3)), A(P
n

) is a set with four possible cases,
i.e., {“o1 > o2 and o1 > o3” , “o2 > o1 and o1 > o3”,
“o1 > o2 and o3 > o1”, “o2 > o1 and o3 > o1”}.

Definition 3: Pairwise Crowdsourcing Problem.
Given an uncertain object set O and the quota of
cleaned object pairs n, the pairwise crowdsourcing
problem is to find n object pair combinations P

n

which
maximize EI(S

k

|P
n

).

3.4 Problem Analysis
In fact, if we consider S

k

and A(P
n

) as two differ-
ent random variables, EH(S

k

|P
n

) can be regarded as
the conditional entropy of S

k

on A(P
n

). Let H(A(P
n

))

denote the entropy on random variable A(P
n

), i.e.,
H(A(P

n

)) =

P
e2A(P

n

) h(P (e)). According to the prop-
erty of conditional entropy, we obtain:

EH(S
k

|P
n

) = H(S
k

, A(P
n

))�H(A(P
n

)), (10)

EI(S
k

|P
n

) = H(A(P
n

))� (H(S
k

, A(P
n

))�H(S
k

))

= H(A(P
n

))��(A(P
n

)),
(11)

where H(S
k

, A(P
n

)) is the joint entropy of S
k

and A(P
n

),
and �(A(P

n

)) denotes H(S
k

, A(P
n

))�H(S
k

). It is easy
to prove that both �(A(P

n

)) and EI(S
k

|P
n

) are no less
than zero.

Thus, we derive EI(S
k

|P
n

) by treating the two factors
H(A(P

n

)) and �(A(P
n

)) separately at first and then
combining them. The key problems are to efficiently de-
rive H(A(P

n

)) and �(A(P
n

)), and to rank the differences
of them. As such, the following two sections will discuss
how to achieve such computation and ranking for single-
quota and multi-quota settings, respectively.

4 SINGLE-QUOTA SELECTION ALGORITHM
We first focus on the object selection problem with a sin-
gle quota, i.e, only one pair of objects is crowdsourced to
improve the quality of top-k ranking. For simplicity, we
use P1 and P

n

interchangeably in this section. The basic
algorithm to solve this problem is to examine all object
pairs and compare their expected quality improvement.
However, the cost might be prohibitively high given a
large number of objects. In this section, we propose an
index-based technique to prune the search space as well
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Algorithm 1 Basic Solution to Find Object Pairs with
Maximum Quality Improvement
INPUT: L: Uncertain Object List
OUTPUT: Ph

1 : Object Pair with Maximum Quality Im-
provement

1: initialization(L)
2: EI

max

 0
3: while ((oh1 , oh2 ) = getNextPair()) 6= null do
4: P1 = (< oh1 , o

h

2 >)

5: if H(A(P1)) - �(A(P1)) > EI
max

then
6: EI

max

 H(A(P1)) -�(A(P1))

7: Pr

1  P1

8: if H(A(P1)) < EI
max

then
9: return Pr

1

as an approximate algorithm to efficiently compute the
expected quality improvement.

Since H(S
k

) is a constant value, as indicated by Eq.
(10), lower H(S

k

, A(P1)) and larger H(A(P1)) are pre-
ferred in the object pair selection. The derivation of
H(S

k

, A(P1)) is more complex than that of H(A(P1))

since the former needs to enumerate all possible results
in S

k

, which is prohibitively inefficient. On the other
hand, since A(P1) only contains two possible cases
“o

x

> o
y

” and “o
x

< o
y

”, H(A(P1)) can be derived by
the following equation:

H(A(P1)) = h(P (o
x

> o
y

)) + h(P (o
x

< o
y

))

= h(P (o
x

> o
y

)) + h(1� P (o
x

> o
y

)).
(12)

Algorithm 1 shows the basic algorithm to select the
object pair with the maximum expected quality improve-
ment. It accesses object pairs in descending order of
H(A(P1)). For each accessed object pair, it computes
�(A(P1)) for this pair and get the expected quality
improvement by Eq. (11). The algorithm stops when an
object pair has an H(A(P1)) smaller than EI

max

, the
maximum expected quality improvement of the accessed
pairs so far. In this situation, the remaining object pairs
cannot achieve a higher quality improvement since it is
bounded by H(A(P1)). Initialization and getNextPair are
two functions to initialize data structures and to get the
next object pair in descending order of H(A(P1)), which
will be elaborated in Algorithms 2 and 3.

The above algorithm leaves us two key problems
to solve: 1) how to access object pairs in descending
order of H(A(P1)); and 2) how to efficiently compute
�(A(P1)) for each object pair. We will present the solu-
tions in the following two sections.

4.1 Accessing Object Pairs in Descending Order of
H(A(P1))

A brute-force solution is to compute the H(A(P1)) values
of all pairs and then sort them. However, the compu-
tational complexity is O(n2

), where n is the number
of the objects. A key observation is that the H(A(P1))

values of many object pairs are too small and should be
pruned at early time. Thus, we propose an index, named
Probabilistic B-tree (or PB-tree in short), for this pruning.
In this section, we first present how to access object pairs

n
1

n
2

n
3

o
1

o
2

o
3

o
4

ROOT

n
4

n
5

n
6

o
5

o
6

o
7

o
8

n
1

.lbo n
1

.ubo n
1

n
4

.lbo n
4

.ubo n
4

n
2

.lbo n
2

.ubo n
2

n
3

.lbo n
3

.ubo n
3

n
5

.lbo n
5

.ubo n
5

n
6

.lbo n
6

.ubo n
6

Fig. 3. PB-tree

in sequence by a PB-tree, followed by the construction
of PB-tree.

Fig. 3 shows the basic architecture of PB-tree. It is a
variant of B-tree, which summarizes both attributes and
probabilities of the objects. A node n is in the form of
(ptrs, lbo, ubo), where ptrs is a list of pointers pointing to
the children nodes, lbo and ubo are two pseudo-objects
that satisfy lbo E o E ubo for each object o under this
node. We call these pseudo-objects as bound objects of
the node. Here the notation E means a “dominance”
relationship, which is defined as follows:

Definition 4: Dominance. Given two objects o1 and o2,
we say o1 dominates o2 (denoted by o1 E o2) iff for any
arbitrary positive value d, it holds that

X

i12o1,i1.v<d

i1.p �
X

i22o2,i2.v<d

i2.p,

and X

i22o2,i2.v>d

i2.p �
X

i12o1,i1.v>d

i1.p.

The basic idea of the concept is to ensure that P (o1 <
o2) = 1 holds if o1 E o2. For example, there are two
objects o1 and o2, where o1 is composed of two instances
i11 <10, 0.6> and i12 <30, 0.4>, and o2 is composed of
two instances i21 <20, 0.5> and i2 <40, 0.5>. We have
o1 E o2 since for any value d, it holds that the cumulative
probability of the instances with a value less than d in
o1 is larger than that in o2.

According to the definition, dominance is a transitive
relationship. We regard n.lbo and n.ubo as two bounds
of the objects under n. The following theorem shows an
important property of these two bounds.

Theorem 1: Given two PB-tree nodes n1 and n2, assum-
ing o1 and o2 are two arbitrary objects under n1 and n2,
respectively, we have:

P (n1.ubo > n2.lbo) � P (o1 > o2) � P (n1.lbo > n2.ubo).

Proof. Omitted due to space limitations. See Appendix
A for detailed proof.

Since all objects of a child node n
c

must also be
under the parent node of n

c

, the relationship between
the bound objects of the parent node and those of a child
node is shown in the following lemma:

Lemma 1: If node n
c

is a child node of node n
p

, we
have n

c

.ubo E n
p

.ubo and n
p

.lbo E n
c

.lbo.
By Theorem 1, we can derive the bounds of P (o1 > o2)

by only accessing the nodes containing them. Let ˇP (o1 >
o2) and ˆP (o1 > o2) denote the lower bound and upper
bound of P (o1 > o2), respectively, that is,

ˇP (o1 > o2) = P (n1.lbo > n2.ubo), (13)
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Algorithm 2 Function: initialization
INPUT: L: Uncertain Object List

1: T  the PB-tree of L
2: NP  ; // max heap storing PB-tree node pairs

(n1, n2)’s in the descending order of ˆH(n1, n2)

3: OP  ; // max heap storing object pairs in the
descending order of H(A)

4: insert (T .root,T .root) into NP

Algorithm 3 Function: getNextPair
OUTPUT: (P1): the Next Object Pair in the Descending
Ordered of H(A)

1: if NP is not empty then
2: (n1, n2) Dequeue(NP)
3: if OP is not empty then
4: Ph

1  Dequeue(OP)
5: if H(A(Ph

1 )) > ˆH(n1, n2) then
6: return Ph

1
7: else
8: Enqueue(Ph

1 , OP)
9: if n1 and n2 are leaf nodes then

10: for each child object o01 of n1 do
11: for each child object o02 of n2 do
12: insert (o01, o02) into OP
13: else // n1 and n2 are index nodes
14: for each child node c1 of n1 do
15: for each child node c2 of n2 do
16: insert (c1, c2) into NP
17: else // NP is empty
18: if OP is empty then
19: return null
20: else
21: return Dequeue(OP)

ˆP (o1 > o2) = P (n1.ubo > n2.lbo). (14)

Let us revisit the function H(x) = h(x) + h(1 � x),
which is the basic form of Eq. (12). It has three properties:
1) it is monotonously increasing if x 2 [0, 0.5]; 2) it is
monotonously decreasing if x 2 [0.5, 1]; and 3) it satisfies
that H(x) = H(1 � x). Thus, given an object pair P1 =

(o1, o2), where o1 and o2 are respectively under PB-tree
nodes n1 and n2, the lower bound and upper bound of
H(A(P1)), denoted by ˇH(n1, n2) and ˆH(n1, n2), can be
derived as follows:

ˇH(n1, n2) = H(0.5�max(abs( ˇP (o1 > o2)� 0.5),
abs( ˆP (o1 > o2)� 0.5))),

(15)
ˆH(n1, n2) = H(0.5�min(abs( ˇP (o1 > o2)� 0.5),

abs( ˆP (o1 > o2)� 0.5))),
(16)

where abs() is the absolute-value function.
Based on the above discussions, we obtain an efficient

algorithm to access the object pairs in descending order
of H(A(P1)). The psuedo-code is shown in Algorithms 2
and 3. In the initialization function (Algorithm 2), the
PB-tree is first constructed. We also maintain two max
heaps NP and OP storing the node pairs and object
pairs, where NP is in desending order of ˆH(n1, n2) of

Algorithm 4 Derivation of the Lower Bound
INPUT: O: A set covering all objects under a node n
OUTPUT: lbo: The lower bound of n

1: I  min heap storing all instances in O in the
ascending order

2: lbo  an object with no instance
3: tp  0
4: for each object o

x

in O do
5: o

x

.rp  0
6: while I is not empty do
7: i  Dequeue(I)
8: o  the object containing i
9: if o.rp � i.p then

10: o.rp  o.rp� i.p
11: continue
12: else
13: p

m

 i.p� o.rp
14: i

l

 new instance with i
l

.v = i.v and i
l

.p = p
m

15: insert i
l

to the instance list of lbo
16: tp  tp+ p

m

17: o.rp  0
18: if tp = 1 then
19: return lbo
20: for each object o

x

in O which o
x

6= o do
21: o

x

.rp  o
x

.rp+ p
m

o3

o1

o2

i32 (5,0.8)

i21 (2,0.7) i22 (4,0.3)

i11 (3,0.6) i12 (6,0.4)

iu3 (6,0.4)iu1 (3,0.2)

ubo

lbo
il1 (1,0.2) il2 (2,0.5) il3 (4,0.3)

iu2 (5,0.4)

i31 (1,0.2)

Objects

Lower & 
Upper

Bounds

Fig. 4. An Example of Bound Objects Construction

node pairs and OP is in descending order of H(o1, o2) of
object pairs. As the final initialization step, a node pair
(T .root,T .root) is inserted into NP .

In the getNextPair function (Algorithm 3), we first
check whether the two heaps, NP and OP , are empty. If
both heaps are empty, null is returned (Line 19). If only
NP is empty, we return Ph

1 , the first element of OP . If
only OP is empty, we find the children of n1 and n2,
the top pair in NP , and insert them pairwise into OP
or NP , depending on whether they are index or leaf
nodes (Lines 9-16). If neither heap is empty, we compare
H(A(Ph

1 )) with ˆH(n1, n2). If the former is larger, it means
Ph

1 must be the object pair with the maximum H(A(P1))

and will be returned. Otherwise, we insert the children
pairs of n1 and n2 into OP or NP .

Next, we discuss the construction of PB-tree. It is
similar to B-tree, except for the metric of object clustering
and bound object generation. Starting with an empty
tree, the objects are sequentially inserted into this tree
according to a clustering metric. We define a new met-
ric D(lbo, ubo) to measure the distance between bound
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objects lbo and ubo:

D(lbo, ubo) =
X

i

u

2ubo

i
u

.v · i
u

.p�
X

i

l

2lbo

i
l

.v · i
l

.p. (17)

For object insertion and node splitting during PB-
tree construction, smaller D(lbo, ubo) is preferred to get
tighter bounds of ˇP (o1 > o2) and ˆP (o1 > o2) in Eq. (13)
and (14).

For bound object generation, Algorithm 4 shows how
to compute the lower bound for a set of objects, and a
similar algorithm can compute the upper bound. Fig. 4
shows an example, in which we want to construct the
lbo and ubo of o1, o2, and o3. We first sort the instances
of these objects by their values and get an instance list
I: {i31, i21, i11, i22, i32, i12}. To compute lbo, we access
the list in the ascending order. During the construction
process, we maintain a global variable tp to record the
sum of probabilities of the constructed instances in lbo,
as well as a variable rp for each object o

x

to record the
difference between tp and the sum of probabilities of the
accessed instances of o

x

. All o
x

.rp and tp are initialized
as 0 (Lines 3-5). The first accessed instance is i31. Since
o3.rp = 0 < i31.p (Lines 9 and 12), the first instance of
lbo, i.e., i

l1, is constructed, where i
l1.v = i31.v = 1 and

i
l1.p = i31.p = 0.2. Meanwhile, tp, o1.rp, and o2.rp are all

updated to 0.2 (Lines 16, 20, 21). The second accessed
instance is i21. Since o2.rp = 0.2 < i21.p, we construct
the second instance i

l2 for lbo, where i
l2.v = i21.v = 2

and i
l2.p = i21.p � o2.rp = 0.5. tp and o1.rp, o3.rp

are then increased by 0.5 and become 0.7, 0.7, and 0.5,
while o2.rp is set to 0. The third accessed instance is
i11. Since o1.rp = 0.7 > i11.p, nothing happens except
o1.rp is decreased by i11.p and updated to 0.1. The next
accessed instance is i22. Here o2.rp = 0 < i22.p = 0.3
and we construct the third instance i

l3 for lbo, where
i
l3.v = i22.v = 4 and i

l3.p = 0.3� 0 = 0.3. tp is increased
by 0.3 and becomes 1 now. After that, the construction
process is terminated and lbo is returned (Line 19). The
construction of ubo is similar except that we access the
instances in descending order of their values.

In fact, the bounds constructed by Algorithm 4 are the
tightest bounds of a node, where “tightest” is defined as
follows:

Definition 5: The Tightest Bounds. Given two psedo-
objects lbo and ubo, and a PB-tree node n, lbo and ubo are
the tightest lower and upper bounds of n iff: 1) lbo and ubo
are bound objects of n; 2) for any bound objects lbo0, ubo0

of n, it holds that lbo0 E lbo, ubo E ubo0.
The following theorem proves that our algorithm

achieves the tightest bounds.
Theorem 2: Alogrithm 4 returns the tightest lower

bounds of a node.
Proof. Omitted due to space limitations. See Appendix

B for detailed proof.
As a side-effect, the tightness of our bound also en-

sures the tightness of the bound of ˇP (o1 > o2) and
ˆP (o1 > o2). This guarantees the efficiency and correct-
ness of pruning effect of PB-tree.

4.2 Derivation of �(A(P1))

A brute-force solution to deriving �(A(P1)) is to com-
pute all possible top-k results in S

k

as well as their

probabilities. However, the cardinality of such results
is Ck

|I|, where |I| is the total number of instances. As
|I| and k grow up, the computation cost would become
prohibitively high. In this section, we propose a bound-
based solution to estimate the value of �(A(P1)). The
basic idea is to get a tight lower bound and a tight
upper bound for each �(A(P1)), and to use an arbitrary
value within the bounds to approximate the exact value
of �(A(P1)).

Let us assume P1=(o1, o2) is the crowdsourced
object pair. According to the definition of
�(A(P1)), �(A(P1)) = H(S

k

, (o1, o2)) � H(S
k

) =P
s2S

k

(h(P (s, o1 > o2)) + h(P (s, o1 < o2)) � h(P (s)),
where s is an arbitrary combination of k objects
in S

k

, P (s) is the probability of s being a top-k
result, and P (s, o1 > o2) is the joint probability of
both s being a top-k result and o1 > o2. Obviously,
for any s, P (s) = P (s, o1 > o2) + P (s, o1 < o2). s
can be divided into four subsets by o1 and o2: 1)
S1 = {s|o1 2 s, o2 /2 s}; 2) S2 = {s|o1 /2 s, o2 2 s}; 3)
S1,2 = {s|o1 2 s, o2 2 s}; and 4) S

�

= {s|o1 /2 s, o2 /2 s}.
For all s 2 S1, o1 > o2 always holds. Hence,
P (s) = P (s, o1 > o2) and P (s, o1 < o2) = 0, which
means h(P (s, o1 > o2)) + h(P (s, o1 < o2))� h(P (s)) = 0.
Similarly, for all s 2 S2, we also have
h(P (s, o1 > o2)) + h(P (s, o1 < o2)) � h(P (s)) = 0.
Therefore, we only need to consider s 2 S1,2 or S

�

, i.e.,
�(A(P1)) =

P
s2S1,2

S
S;
(h(P (s, o1 > o2)) + h(P (s, o1 <

o2))� h(P (s)).
Let IP (o1, o2) denote the Cartesian product of in-

stances of o1 and o2, i.e., IP (o1, o2) = {(i1, i2)|i1 2 o1, i2 2
o2}. According to the comparison relationship of i1.v
and i2.v, IP (o1, o2) can be divided into two subsets,
i.e., IP1(o1, o2) = {(i1, i2)|i1 2 o1, i2 2 o2, i1 < i2}
and IP2(o1, o2) = {(i1, i2)|i1 2 o1, i2 2 o2, i1 > i2}.
Let PT

k

(i1, i2, Ot

) denote the total probability that both
i1 and i2 are contained by the top-k results of object
set O

t

, and NPT
k

(i1, i2, Ot

) denote the total probability
that neither i1 nor i2 is contained by the top-k results
of O

t

. For brevity, if O
t

is identical to O, we omit
it in the notation. To derive the bounds, we sort the
instance pairs (i1, i2) in IP (o1, o2) to get two sorted lists
IP

pt

(o1, o2) and IP
npt

(o1, o2), where the former is in the
descending order of max{i1.v, i2.v}, and the latter is in
the ascending order of min{i1.v, i2.v}. Let �1,2(o1, o2) =P

s2S1,2
(h(P (s, o1 > o2)) + h(P (s, o1 < o2)) � h(P (s))),

�

�

(o1, o2) =

P
s2S

�

(h(P (s, o1 > o2)) + h(P (s, o1 <
o2)) � h(P (s))). Let P (i1, i2) denote the probability that
a possible world contains both i1 and i2, i.e., P (i1, i2) =
i1.p ⇥ i2.p. Algorithm 5 shows the derivation of lower
bound and upper bound of �1,2(o1, o2) (denoted by
“ ˇ�1,2(o1, o2)” and “ ˆ�1,2(o1, o2)” ). The derivation of
lower bound and upper bound of �

�

(o1, o2) (denoted
by “ ˇ�

�

(o1, o2)” and “ ˆ�
�

(o1, o2)” ) is similar, except that
we use list IP

npt

(o1, o2) instead of IP
pt

(o1, o2), and use
function NPT

k

instead of PT
k

.
For all possible instance pairs (i1, i2) belonging to

(o1, o2), PT
k

(i1, i2) and NPT
k

(i1, i2) can be derived by
slightly modifying the algorithm in [4], which can com-
pute the probability of a given instance i being a top-
k result in O (denoted by PT

k

(i, O)). Without loss of
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Algorithm 5 Derivation of the Bounds of �1,2(o1, o2)

INPUT: IP1(o1, o2), IP2(o1, o2), IPpt

(o1, o2)
OUTPUT: ˇ

�1,2(o1, o2), ˆ

�1,2(o1, o2)
1: pt1  

P
(i1,i2)2IP1(o1,o2)

PT
k

(i1, i2)
2: pt2  

P
(i1,i2)2IP2(o1,o2)

PT
k

(i1, i2)

3: ˆ

�1,2(o1, o2)  h(pt1) + h(pt2) - h(pt1 + pt2)
4: ˇ

�1,2(o1, o2)  0
5: while IP

pt

(o1, o2) is not empty do
6: (ix1 , ix2 )  Dequeue(IP

pt

(o1, o2))
7: p1  0
8: p2  0
9: if ix1 .v < ix2 then

10: p1  PT
k

(ix1 , i
x

2)

11: else
12: p2  PT

k

(ix1 , i
x

2)

13: for each instance pair (iy1, i
y

2) after (ix1 , ix2 ) in
IP

pt

(o1, o2) do
14: if iy1.v < iy2 then
15: p1  p1 +PT

k

(ix1 , i
x

2) ⇥ P (iy1 ,i
y

2)
P (ix1 ,i

x

2 )

16: else
17: p2  p2 + PT

k

(ix1 , i
x

2) ⇥ P (iy1 ,i
y

2)
P (ix1 ,i

x

2 )

18: PT
k

(iy1, i
y

2)  PT
k

(iy1, i
y

2) - PT
k

(ix1 , i
x

2) ⇥ P (iy1 ,i
y

2)
P (ix1 ,i

x

2 )

19: ˇ

�1,2(o1, o2)  ˇ

�1,2(o1, o2) + (h(p1) + h(p2)-h(p1 +
p2))

o1

o2

i11(10, 0.5)

i21(20, 0.6) i22(30, 0.4)

i12(40, 0.5)

Fig. 5. An Example of Algorithm 5
generality, we assume i1.v < i2.v. To derive PT

k

(i1, i2),
we first compute PT

k�1(i2, O�{o1}), the probability that
instance i2 is a top-k� 1 result of object set O� {o1}. In
this case, if i1 exists, both i1 and i2 must be in the top-
k of O. Hence, PT

k

(i1, i2) = P (i1) · PT
k�1(i2, O � {o1}).

Similarly, NPT
k

(i1, i2) = P (i2)·(1�PT
k�1(i1, O� {o2})).

The computational complexity for deriving PT
k

(i, O) is
O(k|I|), where |I| is the total number of instances. Let
m

i

denote the number of instances of object o
i

. The
complexity of computing the bound of �1,2(o1, o2) by
Algorithm 5 is O(km1m2).

Fig. 5 shows an example of Algorithm 5. Both o1
and o2 contain two instances, whose values and prob-
abilities are shown in the parentheses. There are four
instance pairs (i11, i21), (i11, i22), (i12, i21), and (i12, i22).
According to the comparison relationship of two in-
stances, IP1(o1, o2) = {(i11, i21), (i11, i22)}, IP2(o1, o2) =

{(i12, i21), (i12, i22)}. We assume PT
k

(i11, i21) = 0.015,
PT

k

(i11, i22) = 0.01, PT
k

(i12, i21) = 0.012, and
PT

k

(i12, i22) = 0.008. Hence, pt1 = 0.015 + 0.01 =

0.025, pt2 = 0.012 + 0.008 = 0.02. We have ˆ

�1,2(o1, o2)
= h(0.025) + h(0.02) � h(0.025 + 0.02) = 0.030. The
list IP

pt

(o1, o2) = {(i12, i22), (i12, i21), (i11, i22), (i11, i21)}.
To derive ˇ

�1,2(o1, o2), we access the instance pairs in
IP

pt

(o1, o2) sequentially. When accessing the first in-
stance pair (i12, i22), p1 = PT

k

(i12, i22) · P (i11,i21)
P (i12,i22)

+ PT
k

(i12, i22) · P (i11,i22)
P (i12,i22)

= 0.02, p2 = PT
k

(i12, i22) +

PT
k

(i12, i22) · P (i12,i21)
P (i12,i22)

= 0.02, ˇ

�1,2(o1, o2) is updated
to h(p1) + h(p2) � h(p1 + p2) = 0.028. According to
Line 17, PT

k

(i12, i21), PT
k

(i11, i22), and PT
k

(i11, i21) are
respectively updated to 0, 0.002, and 0.003. As such, we
can skip (i12, i21). When accessing (i11, i22) and (i11, i21),
p2 is 0. Thus, h(p1)+h(p2)�h(p1+p2)=0 and ˇ

�1,2(o1, o2)
remains unchanged and finally equals 0.028.

In the following, we will prove that the bounds de-
scribed above are correct. The tightness of such bounds
will be demonstrated by the experiments in Section 6.3.4.

Theorem 3: The bounds computed by Algorithm 5 are
correct.

Proof. Omitted due to space limitations. See Appendix
C for detailed proof.

4.3 Complexity Analysis
As discussed in Section 4.2, the complexity to approxi-
mate �(A(P1)) is O(km1m2), where m1 and m2 are the
numbers of instances in the object pair. In the worst case,
the pruning effect of Algorithm 1 is zero and all object
pairs should be explored. As such, Algorithm 1 has the
worst time complexity O(n2

), where n is the number of
the objects. Thus, the totally complexity of the object pair
selection is O(km1m2n2

) = O(kN2
), where N is the total

number of the instances. Fortunately, in practice, most
of the object pairs can be pruned by Algorithm 1 so that
its real performance is much better than the worst case.

4.4 Optimizations
Although many unnecessary object pairs can be pruned
by PB-tree, the pruning rule in Algorithm 3 is still loose
and therefore many index nodes could not be pruned at
early time. If we consider Algorithms 1 and 3 together,
ˆH(n1, n2) is regarded as the upper bound of EI(S

k

|P1),
where P1 = (o1, o2), and o1 and o2 are two arbitrary
objects under n1 and n2, respectively. Since EI(S

k

|P1) =

H(A(P1)) � �(A(P1)), such an upper bound can be
further tightened if it also considers �(A(P1)) as below.

Let us revisit Algorithms 1 and 3. The searching pro-
cess will be stopped if EI

max

is larger than H(E(Ph

1 )),
where Ph

1 is the first object pair of OP in Algorithm 3.
On the other hand, the upper bound of EI(S

k

|P1) can
also be computed by the bound objects of n1 and n2,
where (n1, n2) is the first element of NP in Algorithm 3.
As such, we replace ˆH(n1, n2) in Algorithms 2 and 3
by such upper bounds (denoted by ˆEI(n1, n2)). Also,
the node pairs in NP are sorted by ˆEI(n1, n2), which
will make some index node pairs pruned early. In the
following theorem, we propose an efficient method to
derive ˆEI(n1, n2).

Theorem 4: Given two PB-tree nodes n1 and n2, let ib
u1

and ib
u2 denote the largest instances of n1.ubo and n2.ubo,

ib
l1 and ib

l2 denote the smallest instances of n1.lbo and
n2.lbo. Further let i

u1, i
u2, i

l1, and i
l2 denote the instances

under n1 and n2 that contribute to ib
u1, ib

u2, ib
l1, and ib

l2,
respectively. ˆEI(n1, n2) can be assigned as follows:

ˆEI(n1, n2) =
ˆH(n1, n2)⇥ (1 � PT

k

(i
u1,iu2)

P (i
u1)⇥P (i

u2)

� NPT

k

(i
l1,il2)

P (i
l1)⇥P (i

l2)
).

(18)

Proof. Omitted due to space limitations. See Appendix
G for detailed proof.
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4.5 Extension to Order-Sensitive Crowdsourcing
Problem
Similar to the order-insensitive setting, Eq. (11), i.e.,
EI(S

k

|P
n

) = H(A(P
n

)) � �(A(P
n

)), still works in
the order-sensitive setting. As such, the derivation of
H(A(P1)) is the same as that of the order-insensitive
setting, except to modify the derivation of �(A(P1)).
Let s be an arbitrary k-object combination in S

k

. As
discussed in Section 4.2, s can be divided into four cases:
S1, S2, S1,2, and S;. While S1 and S2 can be omitted due
to the same reason as in the order-insensitive setting,
S1,2 can also be ignored because either “o1 > o2” or
“o1 > o2” holds. If “o1 > o2” holds, P (s, o1 < o2) = 0 and
h(P (s, o1 > o2)) = h(P (s)), which means h(P (s, o1 >
o2))+h(P (s, o1 < o2))�h(P (s)) = 0. A similar rule works
if “o1 < o2” holds. Thus, we only need to consider S;,
i.e., �(A(P1)) =

P
s2S;

(h(P (s, o1 > o2)) + h(P (s, o1 <
o2)) � h(P (s)) = �;(o1, o2). Finally, we can still use
Algorithm 5 to derive �;(o1, o2) in the order-sensitive
setting.

5 MULTI-QUOTA SELECTION PROBLEM
The main drawback of single-quota crowdsourcing is
that it can only post one pair of objects at a time, whereas
usually multiple object pairs need to be outsourced
to gain significant quality improvement. Sequentially
crowdsourcing them one by one is inefficient because of
the high latency incurred in the crowdsourcing process.
An alternative, therefore, is to select a batch of object
pairs and crowdsource them altogether. As such, the
multi-quota selection problem, as a reiteration of Defi-
nition 3, is to select n object pairs that can achieve the
highest excepted quality improvement EI(S

k

|P
n

).
From Eq. (11), to find the optimal EI(S

k

|P
n

) we
need to enumerate all combinations of n object pairs.
Obviously, the cost is prohibitively high for large k and
n, as shown in the following theorem.

Theorem 5: Let O(X
k

) be the asymptotic complexity to
compute EI(S

k

|P
n

) for an object pair set P
n

with n pairs,
then the asymptotic complexity for finding the optimal
EI(S

k

|P
n

) is O(n!m2nX
k

). Here n⌧ m, the number of
uncertain objects.

Proof. We prove this by mathematical induction. Let
the theorem be true for t  n, that is, the complexity is
O(n!m2nX

k

) and P⇤
n

denotes the n object pairs that lead
to this optimality. The key observation is that the optimal
P⇤
n+1 has the property that one of its subset must be

the optimal object pairs of its size. As such, the optimal
P⇤
n+1 can only be among these object pair combinations:

P⇤
n

[ ⇧

1
m

, P⇤
n�1 [ ⇧

2
m

, · · · , P⇤
1 [ ⇧

n

m

, where ⇧

i

m

denotes
all possible combinations of i pairs from m objects. By
replacing P⇤

i

with O(i!m2iX
k

) and ⇧

i

m

with m2i in the
above combinations and summing them up, the asymp-
totic complexity of finding P⇤

n+1 is O((n+1)!m2n+2X
k

).
⇤

In what follows, we propose two heuristic algorithms
to find an approximate solution. First, we can use the
single-quota selection algorithm to select top-t object
pairs with the highest expected quality improvement.
This can be achieved by slightly modifying the stop con-
dition in Algorithm 1 as to find t object pairs with larger

quality improvement than the next object pair. Although
this is efficient, the disadvantage is that some pairs may
contain the same object, which reduces their joint quality
improvement. For example, given t=2, the top-2 object
pairs with the highest expected quality improvement are
(o1, o2) and (o2, o3) independently. However, by joining
these two pairs, we may not achieve the highest quality
improvement as the information about the object o2 from
both pairs overlaps.

The second heuristic greedily finds the next pair that
achieves the largest joint quality improvement with
currently selected object pairs, and it stops until all t
quota is used up. In this heuristic, the key problem
is to find that next object pair. Formally, assuming j
object pairs (denoted by P

j

) have been selected so far,
the problem is to find the next object pair P1 that
maximizes EI(S

k

|(P
j

+ P1)). According to Eq. (11),
EI(S

k

|(P
j

+ P1)) = H(E(P
j

+ P1)) � �(E(P
j

+ P1)).
For the object pairs at the top, �(E(P

j

+ P1)) is much
smaller than H(E(P

j

+ P1)), so we can use �(E(P
j

))

+ �(A(P1)) to approximate it. For H(E(P
j

+ P1)), we
can compute it by aggregating the probabilities of 2

j+1

combinations of these object pairs. However, the com-
putational complexity is O(2

j

), which is large if j grows
up. To speed up, we exploit a property of entropy — if
events are independent, their joint entropy is equal to
the sum of individual entropies of each event. Since two
object pairs are independent when they do not share an
object, we can divide j+1 pairs into disjoint subsets that
do not share objects each other. This effectively reduces
the time complexity from O(2

j

) to O(2

x

), where x is the
maximum cardinality of these subsets.

6 PERFORMANCE EVALUATION
6.1 Experiment Setup
In this section, we conduct experimental studies to
show the effectiveness and efficiency of our proposed
algorithms. The experiments aim to: (1) evaluate the
effectiveness of our pairwise crowdsourcing model to
result quality improvement for top-k queries on a real
crowdsourcing platform; (2) evaluate the efficiency and
scalability of our proposed object-pair selection algo-
rithms. We perform experiments on three datasets:

• AGE: We use the data from the AgeGuessing web-
site [1], which provides photos of people for users
to guess their ages. We crawled 600 photos and the
associated guessed answers as the uncertain dataset.
Each photo can be regarded as an uncertain object
and each answer as an instance (with a guessed age
being the value and its percentage being the proba-
bility). On average, each object contains 8 instances.

• IMDB: This dataset contains the user ratings (i.e.,
instances) of 4,999 movies (i.e., uncertain objects)
from imdb.com [2]. Each movie contains 2 ratings
on average, and each rating is associated with a
confidence, which is treated as the probability of this
rating instance.

• SYN: Besides the real AGE and IMDB datasets, we
generate a synthetic dataset SYN mainly for the
efficiency and scalability tests. The dataset contains
100,000 synthesized uncertain objects, each with 3
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instances on average. More specifically, for each
object we create a random cluster of values in an
interval of 50 from [0, 10000]. The probabilities of
these values follow a skewed distribution.

The experiments were executed on a laptop (Intel Core
i5 2.5GHz CPU and 8GB RAM) running Mac OS X 10.8.5
operating system. The codes were written in Java (JDK
1.6).

6.2 Effectiveness (Real Crowdsourcing)
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Fig. 6. Experiments on Real Crowdsourcing
In this experiment, for the single-quota setting, we

investigate the quality improvement by cleaning a single
object pair (labeled by “SQ”). The quality improvement
is the difference between the query result qualities before
and after cleaning, where the query result quality is
computed by Eq. 4. For some large k, to reduce the com-
putational cost, we approximate the quality by omitting
some possible worlds with extremely low probabilities.
For comparison, we also show the quality improvement
of a random selection method (labeled by “RAND”),
which is the average out of 100 randomly selected
object pairs. An improved version of this method, la-
beled by “RAND K”, selects the object pairs only from
the top 20% highest probable objects. For the multi-
quota setting, we adopt two heuristics introduced in
Section 5. “HRS1” represents the method which selects
top-m object pairs with the highest expected quality
improvement, while “HRS2” is based on the greedy
algorithm.

We conducted the experiments on the real crowd-
sourcing platform, Amazon Mechanical Turk (AMT for
short)3 for dataset AGE. With the object pair selection
algorithm developed in Sections 4 and 5, we selected
pairs of photos and posted them on AMT. The workers
(photo experts) in AMT compared the ages in pair of
photos and selected the photo with an elder age. Each
pair was assigned to 10 workers and each worker can
get $0.01 as the reward. We then measured the quality
improvement brought by these comparison results. We
used the probability distribution of the crowdsourcing
results as P (o

x

> o
y

) and P (o
x

< o
y

) to compute
the actual quality in Eq. (6). As shown in Fig. 6, both
the single-quota selection and multi-quota selection al-
gorithms significantly outperform the random methods.
We also observed that the results from the crowd follow
almost the same probability distribution as the original
dataset from the AgeGuessing website, but with a shift of
its mean by a probability bias. In our results, the average

3. https://www.mturk.com

value of this bias is 0.19. This observation will be used
in the following simulation-based experiments.

6.3 Effectiveness (Simulation)

In this subsection, we evaluate the effectiveness of our
pairwise-comparison solution by simulating the crowd’s
behaviors on datasets IMDB and SYN, which are sig-
nificantly larger than the AGE dataset used in the real
experiment. According to our observation in Section 6.2,
we assume that the results from the crowd follow the
same probability distribution as the original data, added
by a probability distribution bias ✓ (set to 0.19 by de-
fault). That is, for objects o

x

and o
y

, the crowd will return
o
x

> o
y

with the probability P
real

defined in Eq. (19), and
vice versa.

P
real

=

(
min{1, P (o

x

> o
y

) + ✓} if P (o
x

> o
y

) > 0.5,

max{0, P (o
x

> o
y

)� ✓} if P (o
x

> o
y

) < 0.5.
(19)

6.3.1 Quality Improvement by Single Quota
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Fig. 7. Quality Improvement of Single Quota (Order-
Insensitive)
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Fig. 8. Quality Improvement of Single Quota (Order-
Sensitive)

We conduct the experiments under both the order-
sensitive and order-insensitive top-k definitions; the re-
sults are shown in Figs. 7 and 8, respectively. In Fig. 7,
we can see that the quality improvement of SQ is about
two times larger than that of RAND K, while RAND
hardly gains any improvement. As k grows up, the
performance of RAND becomes slightly better as the
probability of the selected pair hitting the top-k result
increases. Fig. 8 exhibits similar trends, except that the
absolute values of each experiment are larger than those
under the order-insensitive definition. This is because the
order-sensitivity brings a larger degree of diversity. In
the interest of space, we only show the results under the
order-insensitive setting in the sequel.
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Fig. 9. Probability Distribution of Top-k Results

6.3.2 Meaning of Quality Improvement
To show the direct consequence of quality improve-
ment, Fig. 9 plots the probability distribution of top-
ranked results after crowdsourcing. The horizontal axis
represents the ranking of the result and the vertical axis
is its corresponding probability. We can see that the
probabilities of the SQ results are more centralized than
those of RAND K and RAND, which means that users
can have higher confidence to identify a high ranking
result from others.

6.3.3 Quality Improvement by Multiple Quota
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Fig. 10. Effect of Object Pair Quota

In this subsection, we investigate the quality improve-
ment under the multi-quota setting by varying k and the
quota number. In Fig. 10, we can see that both HRS1 and
HRS2 outperform RAND, while HRS2 performs slightly
better than HRS1. As the object-pair quota grows up,
the quality improvement increases as well. However,
it starts to saturate after the quota reaches a certain
value, which is called the convergence value. As shown in
Fig. 10, for larger k, the convergence value is also larger
because it brings more diversity. For the same reason, the
convergence values in SYN are also larger than those in
IMDB.

6.3.4 Deviation of �(A(P1))
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Fig. 11. Deviation of �(A(P1))

In this subsection, we evaluate the deviation of ap-
proximated �(A(P1)) from the final result. In Fig. 11,
we list top-Q object pairs with the highest expected

quality improvement and calculate the average deviation
of �(A(P1)), i.e., the difference between the upper bound
and lower bound of �(A(P1)). For comparison, we also
list the quality improvement of single quota (labeled by
“SQ”). Fig. 11 shows that as the value of Q enlarges, the
deviation of �(A(P1)) slightly increases. It is because the
object pairs with higher expected quality improvement
tend to have lower �(A(P1)), which subsequently leads
to less deviation. We also observe that even when Q
grows up to 10, the deviation is still much less than SQ
and therefore can be ignored.

6.4 Efficiency
One of the main contribution of this paper to optimize
the efficiency of the proposed algorithms. We devel-
oped several techniques including PB-tree, bound-based
method and optimization in Section 4.4. In this subsec-
tion, we evaluate the performance of these techniques.
We assume all data are preloaded into the main memory
and therefore the main metric of the efficiency is the
elapsed time of algorithm execution. The two algorithms
under evaluation are “PBTREE” and “OPT.” The former
uses PB-tree to sort the object pairs in the descending
order of H(A(P1)), whereas the latter adopts the opti-
mization in Section 4.4. As a baseline algorithm, we also
show the results of the brute-force algorithm (labeled by
“BF”), which does not adopt any optimization.

6.4.1 Overall Elapsed Time
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Fig. 12. Overall Elapsed Time
First, we conduct the experiments on datasets AGE

and IMDB. Fig. 12 shows as k increase, the performance
of BF degrades significantly since the computational cost
of �(A(P1)) becomes very huge (see Section 6.4.2). If k
is set to 15, it will take over 10

6 seconds, which makes
BF impractical. The elapsed time of PBTREE and OPT
are both acceptable, while the latter performs the best
since it prunes more node pairs which do not contain
top-k results.

6.4.2 Scalability
In this subsection, we examine the scalability of our
proposed algorithms. We evaluate these algorithms on
the synthesized data where we vary the cardinality of
object set. Fig. 13(a) shows the results. As the cardinality
increases, BF becomes very inefficient, while PBTREE
and OPT are still acceptable. To explain the reason, we
break down the time cost of each step. First, we measure
the time to sort the object pairs by their H(A(P1)).
The brute-force algorithm has to consider every object
pair, which takes O(n2) time. Fig. 13(b) shows that
compared with BF, PBTREE only needs 1% of the total
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Fig. 13. Scalability

CPU time when the cardinality is 100K. Second, we also
test the effectiveness of �(A(P1)) derivation introduced
in Section 4.2. Since the number of possible top-k results
is very large, our bound-based algorithm omits those
results with low probabilities. By contrast, the brute-
force algorithm calculates all top-k results by using the
method developed in [29]. Fig. 13(c) and 13(d) show the
average time cost in calculating �(A(P1)) of one object
pair under various cardinality and k settings. By default,
we set k to 15 and the number of objects to 10K. The
results show that BF uses much more time than our
bound-based method, which is the main reason that BF
is inferior in terms of the overall elapsed time.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new pairwise crowd-
sourcing model to reduce the uncertainty of top-k query
results on probabilistic databases. We defined the quality
of object-level top-k ranking in terms of entropy and
formulated the optimal object-pair selection problem for
maximum quality improvement. We devised a PB-tree
index which facilitates the selection of object pairs under
both single-quota and multi-quota budgets, followed by
a bound-based method for quality improvement esti-
mation. We have also extended the proposed solutions
to order-sensitive settings. Extensive experimental re-
sults demonstrate the effectiveness and efficiency of our
proposed models and algorithms under various system
settings. In particular, our proposed pairwise selection
solution outperforms the random selection method by
up to 30 times in terms of quality improvement. In terms
of efficiency, our proposed algorithms and optimizations
reduce the elapsed time of the brute-force algorithm
from several days to only one minute.

As for future work, we will extend this work to other
probabilistic queries. First, we plan to extend our model
to explore the correlations between the outcomes of
objects. For example, two “similar” objects are likely
to have similar values. Thus, an interesting idea is
to cluster the objects and select representatives from
each cluster for pairwise cleaning. Second, we plan to
adapt our pairwise crowdsourcing model to reduce the
uncertainty of probabilistic ranking-aggregate queries,

which rank object groups by their aggregated values.
Since such queries should consider the aggregated value
of the whole group, it is more sophisticated than an
ordinary probabilistic top-k query. Third, we are going to
extend our model to improve the quality of probabilistic
graph queries. Since the edges in a graph reflect the
relationships among the nodes, it is promising to exploit
crowdsourcing to determine whether such relationships
exist.

ACKNOWLEDGEMENT
This work was supported by National Natural Science
Foundation of China (Grant No.: 61572413, 61572193
and U1636205), NSF of Shanghai (No.: 17ZR1444900),
and Research Grants Council, Hong Kong SAR, China,
under projects 12244916, 12201615, 12202414, 12200914,
15238116, and C1008-16G.

REFERENCES
[1] http://www.ageguess.org.
[2] http://infolab.stanford.edu/trio/code/movie data.triql.
[3] Y. Baba and H. Kashima. Statistical quality estimation for

general crowdsourcing tasks. In KDD, 2013.
[4] T. Bernecker, H. Kriegel, N. Mamoulis, M. Renz, and

A. Zuefle. Scalable probabilistic similarity ranking in
uncertain databases. TKDE, 22(9): 1234-1246, 2010.

[5] R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data
with quality guarantees. PVLDB, 1(1): 722-735, 2008.

[6] E. Ciceri, P. Fraternali, D. Martinenghi, and M. Tagliasac-
chi. Crowdsourcing for Top-K Query Processing over
Uncertain Data. TKDE, 28(1): 41-52, 2016.

[7] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries
for probabilistic data and expected ranks. In ICDE, 2009.

[8] X. Chu, J. Morcos, I. Ilyas, M. Ouzzani, P. Papotti, N. Tang,
and Y. Ye. KATARA: A data cleaning system powered by
knowledge bases and crowdsourcing. In SIGMOD, 2015.

[9] G. Demartini, D. Difallah, and P. Cudré-Mauroux. Zen-
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