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Abstract—In social network analysis, structural cohesion (or
vertex connectivity) is a fundamental metric in measuring the
cohesion of social groups. Given an undirected graph, a k-vertex
connected component (k-VCC) is a maximal connected subgraph
whose structural cohesion is at least k. A k-VCC has many
outstanding structural properties, such as high cohesiveness, high
robustness, and subgraph overlapping. In this paper, given a
graph G and an integer k, we study the problem of computing all
k-VCCs in G. The general idea for this problem is to recursively
partition the graph into overlapped subgraphs. We prove the
upper bound of the number of partitions, which implies the
polynomial running time algorithm for the k-VCC enumeration.
However, the basic solution is costly in computing the vertex cut.
To improve the algorithmic efficiency, we observe that the key is
reducing the number of local connectivity testings. We propose
two effective optimization strategies, namely neighbor sweep
and group sweep, to significantly reduce the number of local
connectivity testings. We conduct extensive performance studies
using ten large real datasets to demonstrate the efficiency of
our proposed algorithms. The experimental results demonstrate
that our approach can achieve a speedup of up to two orders of
magnitude compared to the state-of-the-art algorithm.

I. INTRODUCTION

With the proliferation of social information in networks, so-
cial network analysis 1 is an important subject, and significant
research efforts have been done towards many fundamental
problems in investigating social structures in networks [1],
such as pagerank [2], centrality [3] and modularity [4]. In the
social network group, structural cohesion 2 refers to the min-
imum number of members who, if removed from the group,
would disconnect this group. It is identical to the conception of
vertex connectivity in graph theory. The structural cohesion is
a fundamental and important sociological metric in measuring
the cohesion of social groups [5], [6].

Given an undirected graph G, a k-vertex connected compo-
nent (k-VCC) 3, also named k-component [7] or k-block [8],
is a maximal connected subgraph whose vertex connectivity is
at least k. Fig. 1 shows an example; there are four 4-VCCs,
namely G1, G2, G3, and G4 in G. The subgraph formed by
the union of G1 and G2 is not a k-VCC, because it will be
disconnected by removing two vertices a and b.

1https://en.wikipedia.org/wiki/Social network analysis
2https://en.wikipedia.org/wiki/Structural cohesion
3https://en.wikipedia.org/wiki/K-vertex-connected graph
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Fig. 1: An example for k-VCC in graph G.

In addition to the aforementioned powerful and robust
sociological property of the vertex connectivity itself, the
k-VCC has several outstanding structural properties. Firstly,
given any graph G, Whitney Theorem [9] proves the vertex
connectivity of G is no greater than the edge connectivity and
the minimum degree. This implies a k-VCC is nested in a k-
edge connected component (k-ECC) [10] and a k-core [11].
Therefore, a k-VCC is generally more cohesive and inherits all
the structural properties of a k-ECC and a k-core. Secondly,
small diameter is considered as an important feature for a good
community in [12]. The diameter of a k-VCC G′(V ′, E′) is
bounded by d |V

′|−1
κ(G′) e where κ(G′) is the vertex connectivity

of G′ [13]. Thirdly, community overlap is regarded as an
important feature of many real-world complex networks [14].
The vertex overlap is allowed between different k-VCCs, and
the number of overlapped vertices between two k-VCCs is
bounded by the parameter k. Even though overlap exists, the
number of k-VCCs in the graph is bounded by n/2, where
n is the number of vertices in the graph. The detailed proof
can be found in Section IV. This indicates that redundancies
in the k-VCCs are limited.

In this paper, given a graph G and an integer k, we
aim to compute all k-VCCs in G. This problem has many
applications. For example, in a social network, computing all
k-VCCs can identify communities of highly related users, and
provide valuable information for recommendation systems and
advertisement platforms. In a co-authorship network, a k-VCC
may be a research group. Some researchers may participate
in several groups and perform as overlapped entities. This
problem can also be used to visualize the graph structure [7].

Existing Solutions. Given a graph G and an integer k, a
straightforward idea for computing k-VCCs is recursively

https://en.wikipedia.org/wiki/Social_network_analysis
https://en.wikipedia.org/wiki/Structural_cohesion
https://en.wikipedia.org/wiki/K-vertex-connected_graph


finding a vertex cut with fewer than k vertices and partitioning
the graph [15], [16], [17]. Here, a vertex cut of G is a set of
vertices, the removal of which disconnects the graph. Based
on the vertex cut, G is partitioned into overlapped subgraphs,
each of which contains all vertices in the cut along with
their incident edges. This approach recursively partitions each
subgraph until no such cut exists. In this way, they compute
all k-VCCs. For example, suppose the graph G is the union
of G1 and G2 in Fig. 1. Given k = 4, we find a vertex cut
containing two vertices a and b. We partition the graph into
two subgraphs G1 and G2 that overlap two vertices a, b and an
edge (a, b). Since neither G1 nor G2 has any vertex cut with
fewer then k vertices, we compute G1 and G2 as 4-VCCs.

The key to this partition-based approach is computing the
minimum vertex cut. Menger’s Theorem [18] justifies that the
minimum-size cut for a vertex pair is the number of vertex-
independent paths between them. Based on this theorem, the
minimum vertex cut can be computed in polynomial time
using maximum flow techniques [15], [16].
Motivations. Even though the partition-based approach suc-
cessfully computes the k-VCCs in a graph G, several chal-
lenges still remain. When performing a partition operation,
overlapped vertices are duplicated, and the total number of
partitions can be very large. Additionally, as discussed above,
the crucial operation in the algorithm is computing the mini-
mum vertex cut or, namely, local connectivity testing, which
tests whether two vertices u and v can be disconnected in two
components by removing at most k− 1 vertices from G. This
is also the dominating cost in the algorithm. To find a vertex
cut with fewer than k vertices, we need to conduct local con-
nectivity testing between a source vertex s and each of other
vertices v in G in the worst case. Given that straightforwardly
using this framework is costly and not scalable to big graphs, a
recent work [17] proposes an approximate solution. However,
they do not have any approximation ratio. [19] also studies
the same problem, while they design a special algorithm only
for small parameter k such as 2 or 3.
Our Approaches. Given a graph G and an integer k, we first
prove that both the number of overlapped partitions and the
number of k-VCCs are bounded by n/2, which indicates the
polynomial running time of the partition-based algorithm. We
observe the key to improving algorithmic efficiency is to reduce
the number of local connectivity testings in a graph. Given a
source vertex s, if we can avoid testing the local connectivity
between s and a certain vertex v, we call it as we can sweep
vertex v. Given a graph G and a parameter k, we propose two
strategies to sweep vertices.

• Neighbor Sweep. We locate a special kind of vertices
with certain properties. Once any one of these vertices is
tested or swept, we safely sweep all its neighbors. We call
this strategy neighbor sweep. Additionally, we maintain a
deposit value for each vertex, and once we finish testing
or sweep a vertex, we increase the deposit values for its
neighbors. If the deposit value of a vertex satisfies certain
conditions, such vertex can also be swept.

• Group Sweep. We introduce a method to divide vertices
in a graph into disjoint groups. If a vertex in a group
has certain properties, vertices in the whole group can
be swept. We call this strategy group sweep. Moreover,
we maintain a group deposit value for each group. Once
we test or sweep a vertex in the group, we increase the
corresponding group deposit value. If the group deposit
value satisfies certain conditions, vertices in the whole
group can also be swept.

Even though these two strategies are studied independently,
they can be used together and boost the effectiveness of each
other. With these two sweep strategies, we significantly reduce
the number of local connectivity testings in the algorithm.
Contributions. We summarize the main contributions below.
• A polynomial time algorithm based on overlapped graph

partition. Given a graph G and an integer k, we prove
that the sum of the number of overlapped partitions and
the number of k-VCCs is less than number of vertices
in G, which indicates a polynomial time algorithm to
enumerate all k-VCCs in G.

• Two effective pruning strategies. We design two pruning
strategies, namely neighbor sweep and group sweep, to
largely reduce the number of local connectivity testings
and thus significantly speed up the algorithm.

• Extensive performance studies. We conduct extensive
performance studies on 10 large real-world graphs to
demonstrate the efficiency of our proposed algorithms.

Outline. The rest of this paper is organized as follows.
Section II formally defines the problem. Section III intro-
duces an existing framework to compute all k-VCCs in a
given graph. Section IV gives a basic implementation of the
framework and analyzes the time complexity of the algorithm.
Section V introduces several strategies to speed up the algo-
rithm. Section VI evaluates the model and algorithms using
extensive experiments. Section VII reviews related works and
Section VIII concludes the paper. Note that due to the space
limitation, we omit the proof for some lemmas and theorems.

II. PRELIMINARY

A. Problem Statement
In this paper, we consider an undirected and unweighted

graph G(V,E), where V is the set of vertices and E is
the set of edges. The number of vertices and the number of
edges are denoted by n = |V | and m = |E| respectively.
We denote the neighbor set of a vertex u by N(u), i.e.,
N(u) = {v ∈ V |(u, v) ∈ E}, and the degree of u by
d(u) = |N(u)|. Given two graphs g and g′, we use g ⊆ g′

to denote that g is a subgraph of g′. Given a set of vertices
Vs, the induced subgraph G[Vs] is a subgraph of G such that
G[Vs] = (Vs, {(u, v) ∈ E|u, v ∈ Vs}). For any two subgraphs
g and g′ of G, we use g ∪ g′ to denote the union of g and g′,
i.e., g∪g′ = (V (g)∪V (g′), E(g)∪E(g′)). Before stating the
problem, we give some basic definitions as follows.

DEFINITION 1. (VERTEX CONNECTIVITY) The vertex con-
nectivity of a graph G, denoted by κ(G), is defined as the



Algorithm 1 KVCC-ENUM(G, k)

Input: a graph G and an integer k;
Output: all k-vertex connected components;
1: V CCk(G)← ∅;
2: while ∃u : d(u) < k do remove u and incident edges;
3: identify connected components G = {G1, G2, ..., Gt} in G;
4: for all connected component Gi ∈ G do
5: S ← GLOBAL-CUT(Gi, k);
6: if S = ∅ then
7: V CCk(G)← V CCk(G) ∪ {Gi};
8: else
9: Gi ← OVERLAP-PARTITION(Gi,S);

10: for all Gj
i ∈ Gi do

11: V CCk(G)← V CCk(G) ∪ KVCC-ENUM(Gj
i , k);

12: return V CCk(G);
13: Procedure OVERLAP-PARTITION(Graph G, Vertex Cut S)
14: G ← ∅;
15: G′ ← G[V (G) \ S];
16: for all connected component G′

i in G′ do
17: G ← G ∪ {G[V (G′

i) ∪ S]};
18: return G;

minimum number of vertices whose removal results in either a
disconnected graph or a trivial graph (a single-vertex graph).

DEFINITION 2. (K-VERTEX CONNECTED) A graph G is k-
vertex connected if: 1) |V (G)| > k; and 2) remaining graph
is still connected after removing any (k− 1) vertices. That is,
κ(G) ≥ k.

We use the term k-connected for short when the context
is clear. It is easy to see that any nontrivial connected graph
is at least 1-connected. Based on Definition 2, we define the
k-Vertex Connected Component (k-VCC) as follows.
DEFINITION 3. (K-VERTEX CONNECTED COMPONENT)
Given a graph G, a subgraph g is a k-vertex connected
component (k-VCC) of G if: 1) g is k-vertex connected; and
2) g is maximal. i.e., @g′ ⊆ G, s.t. κ(g′) ≥ k, g ( g′.
Problem Definition. Given a graph G and an integer k, we
study the problem of computing all k-VCCs in G.

III. PARTITION-BASED FRAMEWORK

In this section, we introduce the partition-based framework
for computing all k-VCCs in a given graph G. For the ease of
presentation, we named it KVCC-ENUM. Before introducing
the details, we define the vertex cut.
DEFINITION 4. (VERTEX CUT) Given a connected graph G,
a vertex subset S ⊂ V is a vertex cut if the removal of S from
G results in a disconnected graph.

According to Definition 4, the vertex cut may not be
unique for a given graph G, and the vertex connectivity is the
cardinality of the minimum vertex cut. For a complete graph,
there is no vertex cut since any two vertices are adjacent.
The size of a vertex cut is the number of vertices in the cut.
Similarly, the edge cut is a set of edges whose removal results
in a disconnected graph. In the rest of this paper, we use the
term cut for short to represent the vertex cut when the context
is clear.
The Framework. Given a graph G, the general idea of the
framework KVCC-ENUM is given as follows. If G is k-
connected, G is a k-VCC. Otherwise, there exists a qualified

cut S whose size is less than k. In this case, we compute such
vertex cut and partition the graph G. The partition procedure
is repeated until each remaining subgraph is a k-VCC. Given
that a k-VCC must be contained in a k-core (a graph with
the minimum degree no smaller than k [11]) [9], the k-core
is computed in advance to reduce the graph size.

We arrange the pseudocode of KVCC-ENUM in Algo-
rithm 1. In line 2, it computes k-core by iteratively removing
the vertices whose degree is less than k. Then it identifies con-
nected components of the input graph G. For each connected
component Gi (line 4), KVCC-ENUM computes a cut of Gi by
invoking GLOBAL-CUT (line 5). Here, we only need to find a
cut with fewer than k vertices instead of a minimum cut. The
detailed implementation of GLOBAL-CUT will be introduced
later. If there is no such cut, that means Gi is k-connected and
we add it to the result list V CCk(G) (line 6-7). Otherwise, the
graph is partitioned into overlapped subgraphs using the cut S
by invoking OVERLAP-PARTITION (line 9). KVCC-ENUM
recursively cuts each of other subgraphs (line 11) until all
remaining subgraphs are k-VCCs. Next, we introduce the
subroutine OVERLAP PARTITION.

G1 G2 G1 G2

Fig. 2: An example of overlapped graph partition.

Overlapped Graph Partition. We partition a graph G
into overlapped subgraphs using a cut S. Subroutine
OVERLAP-PARTITION is shown in line 13-18 of Algo-
rithm 1. We add the cut S into each connected component
G′i of G′ and return the induced subgraph G[V (G′i) ∪ S] as
the partitioned subgraph (line 17-18). An example is given in
Fig. 2. Given k = 3, we compute two 3-VCCs, G1 and G2,
by duplicating the two cut vertices and their inner edges

IV. BASIC SOLUTION

In Algorithm 1, a crucial part is computing a vertex cut of
G by invoking GLOBAL-CUT. In this section, we introduce
an existing implementation for GLOBAL-CUT [15], [16], [17],
[20], and then we explore optimization strategies to accelerate
the computation of the vertex cut in Section V.

A. Vertex Cut Computation
We first give some necessary definitions before introducing

the basic implementation of GLOBAL-CUT.
DEFINITION 5. (MINIMUM u-v CUT) A vertex cut S is a u-v
cut if u and v are in disjoint subsets after removing S, and it
is a minimum u-v cut if its size is no larger than that of other
u-v cuts.
DEFINITION 6. (LOCAL CONNECTIVITY) Given a graph G,
the local connectivity of two vertices u and v, denoted by
κ(u, v,G), is defined as the size of the minimum u-v cut.
κ(u, v,G) = +∞ if no such cut exists.



Algorithm 2 GLOBAL-CUT(G, k)
Input: a graph G and an integer k;
Output: a vertex cut with fewer than k vertices;
1: compute a sparse certification SC of G;
2: select a source vertex u with the minimum degree;
3: construct the directed flow graph SC of SC;
4: for all v ∈ V do
5: S ← LOC-CUT(u, v,SC,SC);
6: if S 6= ∅ then return S;
7: for all va ∈ N(u) do
8: for all vb ∈ N(u) do
9: S ← LOC-CUT(va, vb,SC,SC);

10: if S 6= ∅ then return S;
11: return ∅;
12: Procedure LOC-CUT(u, v,G,G)
13: if v ∈ N(u) or v = u then return ∅;
14: λ← calculate the maximum flow from u to v in G;
15: if λ ≥ k then return ∅;
16: compute the minimum edge cut in G;
17: return the corresponding vertex cut in G;

Based on Definition 6, we define two local k connectivity
relations as follows:

• u ≡kG v: The local connectivity between u and v is no
less than k in graph G, i.e., κ(u, v,G) ≥ k.

• u 6≡kG v: The local connectivity between u and v is less
than k in graph G, i.e., κ(u, v,G) < k.

We omit the index G when the context is clear. Once u ≡k
v, we say u and v is k-local connected. Obviously, u ≡k v is
equivalent to v ≡k u and the following lemma holds.

LEMMA 1. u ≡k v if (u, v) ∈ E.

The GLOBAL-CUT Algorithm. The pseudocode of
GLOBAL-CUT is given in Algorithm 2. Given a graph G,
we assume that G contains a vertex cut S such that |S| < k.
Consider an arbitrary source vertex u. There are only two
cases: (i) u 6∈ S and (ii) u ∈ S . The general idea of
algorithm GLOBAL-CUT is considering these two cases. In
the first phase (line 4-6), we select a vertex u and test the
local connectivity between u and all other vertices v in G by
invoking LOC-CUT. We have either (a) u ∈ S or (b) G is
k-connected if each local connectivity is no less than k. In
the second phase (line 7-10), we consider the case u ∈ S and
test the local connectivity between any two neighbors of u
based on Lemma 2 [20].
LEMMA 2. Given a non-k-vertex connected graph G and a
vertex u ∈ S where S is a minimal vertex cut and |S| < k,
there exist v, v′ ∈ N(u) such that v 6≡k v′.

To test the connectivity of two vertices, we need to trans-
form the original graph into a directed flow graph with 2n
vertices and n+2m edges and the capacities of all edges are
1 (line 3). The local connectivity between u and v is equal to
the max-flow between them on directed flow graph. LOC-CUT
returns the corresponding vertex cut if the max-flow is less
than k (line 15-17). More details about directed flow graph
can be found in [21].
Sparse Certificate. Based on the basic GLOBAL-CUT, we
adopt an optimization in Algorithm 2; that is computing

G

G1

F1

G2 G3

SC

F3F2

Fig. 3: The sparse certificate of G with k = 3

a sparse certificate [22] of the original graph (line 1). We
introduce the definition of sparse certificate as follows.
DEFINITION 7. (CERTIFICATE) A certificate for the k-vertex
connectivity of G is a subset E′ of E such that the subgraph
(V,E′) is k-vertex connected if and only if G is k-vertex
connected.
DEFINITION 8. (SPARSE CERTIFICATE) A certificate for k-
vertex connectivity of G is called sparse if it has O(k · n)
edges.

From the definitions, we can see that a sparse certificate
is equivalent to the original graph w.r.t k-vertex connectivity.
Meanwhile, it can bound the edge size. We will show that the
sparse certificate can not only be used to reduce the graph
size, but also used to further reduce local connectivity testings
in Section V. The sparse certificate is computed according to
the following theorem [22].
THEOREM 1. Let G(V,E) be an undirected graph and let n
denote the number of vertices. Let k be a positive integer. For
i = 1, 2, ..., k, let Ei be the edge set of a scan first search
forest Fi in the graph Gi−1 = (V,E−(E1∪E2∪ ...∪Ei−1)),
where G0 = G. Then E1 ∪ E2 ∪ ... ∪ Ek is a certificate for
the k-vertex connectivity of G, and this certificate has at most
k × (n− 1) edges.

The detail about the scan first search can be found in [23],
[22]. For the simplicity, we can replace it by breadth first
search here, since the breadth first search is a special case of
scan first search. Based on Theorem 1, we can construct a
sparse certificate of G using breadth first search k times, each
of which creates a scan first search forest Fi. An example of
constructing sparse certificate is given as follows.
EXAMPLE 1. Fig. 3 presents construction of a sparse certifi-
cate for G. Let k = 3. For i ∈ {1, 2, 3}, Fi denotes the scan
first search forest computed from Gi−1. Gi is computed by
removing the edges in Fi from Gi−1. G0 is the input graph
G. The sparse certificate SC is shown on the right side of G
with SC = F1∪F2∪F3. All removed edges are shown in G3.

B. Algorithm Analysis

Given that there does not exist any theoretical analysis for
the running time of the overall framework KVCC-ENUM [17],
we prove that KVCC-ENUM terminates in polynomial time in
this section. In the directed flow graph, all edge capacities are
equal to 1 and every vertex either has a single edge emanating
from it or has a single edge entering it. For this kind of



graph, the time complexity for computing the maximum flow
is O(n0.5m) [24]. Note that we do not need to calculate the
exact flow value in the algorithm. Once the flow value reaches
k, we know that local connectivity between any two given
vertices is at least k and we can terminate the maximum flow
algorithm. The time complexity for the flow computation is
O(min(n0.5, k) · m). Given a flow value and corresponding
residual network, we can perform a depth first search to find
the cut. It costs O(m + n) time. As a result, we have the
following lemma:
LEMMA 3. The time complexity of algorithm LOC-CUT is
O(min(n0.5, k) ·m).

Next we discuss the time complexity of GLOBAL-CUT. The
construction of both sparse certificate and directed flow graph
costs O(m + n) time. Let δ denote the minimum degree in
the input graph. We can easily get following lemma.
LEMMA 4. GLOBAL-CUT invokes LOC-CUT O(n + δ2)
times in the worst case.

Below we discuss the time complexity of the entire algo-
rithm KVCC-ENUM. KVCC-ENUM iteratively removes ver-
tices with a degree of less than k (line 2). This costs O(m+n)
time. Identifying all connected components (line 3) can be
performed by adopting a depth first search in O(m+n) time.
To study the number of times that GLOBAL-CUT is invoked,
we first give the following lemmas.
LEMMA 5. For each connected component C computed by
overlapped partition in Algorithm 1, |V (C)| ≥ k + 1.
PROOF. Let S denote a vertex cut in an overlapped partition.
C is one of the connected components computed in this
partition. Let H denote the vertex set of all vertices in V (C)
but not in S, i.e., H = {u|u ∈ V (C), u 6∈ S}. We have H 6= ∅.
Note that each vertex in the graph has a degree of at least k
in G (line 5 in Algorithm 1). There exist at least k neighbors
for each vertex u in H and therefore for each neighbor v
of u we have v ∈ C according to Lemma 1. Thus, we have
|V (C)| ≥ k + 1.
LEMMA 6. The total number of overlapped partitions during
the algorithm KVCC-ENUM is no greater than n−k−1

2 .
PROOF. Suppose that λ is the total number of overlapped
partitions during the whole algorithm KVCC-ENUM. This
generates at least λ + 1 connected components. We know
from Lemma 5 that each connected component contains at
least k + 1 vertices. Thus, we have at least (λ + 1)(k + 1)
vertices in total. On the other hand, we increase at most
k − 1 vertices in each subgraph derived by an overlapped
partition. Thus, at most λ(k− 1) vertices are added. We have
(λ+ 1)(k+ 1) ≤ n+ λ(k− 1). Rearranging the formula, we
have λ ≤ n−k−1

2 .

We then prove the upper bound for the number of k-VCCs.

THEOREM 2. Given a graph G and an integer k, the number
of k-VCCs is bounded by n

2 , i.e., |V CCk(G)| < |V (G)|
2 .

PROOF. Similar to the proof of Lemma 6, let λ be the number
of overlapped partitions in the whole algorithm KVCC-ENUM.
At most λ(k − 1) vertices are added. Let σ be the number of
connected components computed in all partitions. We have

σ > λ. Each connected component contains at least k + 1
vertices according to Lemma 5. Note that each connected
component is either a k-VCC or a graph that does not contain
any k-VCC. Otherwise, the connected component will be
further partitioned. Let x be the number of k-VCCs and y be
the number of connected components that do not contain any
k-VCC, i.e., x+y = σ. We know that a k-VCC contains at least
k+1 vertices. Thus there are at least x(k+1)+y(k+1) vertices
after finishing all partitions. We have x(k + 1) + y(k + 1) ≤
n+ λ(k − 1). Since λ < σ and σ = x+ y, we rearrange the
formula as x(k + 1) + y(k + 1) < n+ x(k − 1) + y(k − 1).
Therefore, we have x < n

2 .

THEOREM 3. The total time complexity of KVCC-ENUM is
O(min(n0.5, k) ·m · (n+ δ2) · n).
PROOF. The total time complexity of KVCC-ENUM is de-
pendent on the number of times GLOBAL-CUT is invoked.
Suppose GLOBAL-CUT is invoked p times during the whole
KVCC-ENUM algorithm, the number of overlapped partitions
during the whole KVCC-ENUM algorithm is p1 and the total
number of k-VCCs is p2. It is easy to see that p = p1 + p2.
From Lemma 6, we know that p1 ≤ n−k−1

2 < n
2 . From

Theorem 2, we know that p2 < n
2 . Therefore, we have

p = p1 + p2 < n. According to Lemma 3 and Lemma 4,
the theorem holds.
Discussion. Theorem 3 shows that all k-VCCs can be enu-
merated in polynomial time. Although the time complexity is
still high, it performs much better in practice. Note that the
time complexity is the product of three parts:
• The first part O(min(n1/2, k) ·m) is the time complexity

for LOC-CUT to test whether there exists a vertex cut of
size smaller than k. In practice, the graph to be tested is
much smaller than the original graph G since (1) The
graph to be tested has been pruned using the k-core
technique and sparse certification technique. (2) Due to
the graph partition scheme, the input graph is partitioned
into many smaller graphs.

• The second part O(n+ δ2) is the number of times such
that LOC-CUT (local connectivity testing) is invoked
by the algorithm GLOBAL-CUT. We will discuss how
to significantly reduce the number of local connectivity
testings in Section V.

• The third part O(n) is the number of times
GLOBAL-CUT is invoked. In practice, the number
can be significantly reduced since the number of
k-VCCs is usually much smaller than n

2 .

V. SEARCH REDUCTION

In the previous section, we introduce a basic solution for
k-VCC enumeration. Recall that in the worst case, we need
to test local connectivity between the source vertex u and all
other vertices in G in GLOBAL-CUT, and we also need to test
local connectivity for every pair of neighbors of u. Therefore,
the key to improving the algorithm is to reduce the number
of local connectivity testings (LOC-CUT). In this section, we
propose several techniques to avoid unnecessary testings. We



can avoid testing local connectivity of a vertex pair (u, v)
if we can guarantee that u ≡k v. We call such operation a
sweep operation. Below, we introduce two ways to efficiently
prune unnecessary testings, namely neighbor sweep and group
sweep, in Section V-A and Section V-B respectively.

A. Neighbor Sweep

In this section, we propose a neighbor sweep strategy to
prune unnecessary local connectivity testings (LOC-CUT) in
the first phase of GLOBAL-CUT. Generally, given a source
vertex u, we aim to skip testing the local connectivity of (u, v)
according to the information of the neighbors of v. Below, we
explore two neighbor sweep strategies, namely neighbor sweep
using side-vertex and neighbor sweep using vertex deposit.
Neighbor Sweep using Side-Vertex. We first define side-
vertex as follows.
DEFINITION 9. (SIDE-VERTEX) Given a graph G and an
integer k, a vertex u is called a side-vertex if there does not
exist a vertex cut S such that |S| < k and u ∈ S.

Based on Definition 9, we give the following lemma to
show the transitive property regarding the local k connectivity
relation ≡k.
LEMMA 7. Given a graph G and an integer k, suppose a ≡k b
and b ≡k c, we have a ≡k c if b is a side-vertex.

A wise way to use the transitive property of the local con-
nectivity relation in Lemma 7 can largely reduce the number
of unnecessary testings. Consider a selected source vertex u in
algorithm GLOBAL-CUT. We assume that LOC-CUT (line 5)
returns ∅ for a vertex v, i.e., u ≡k v. We know from Lemma 7
that the vertex pair (u,w) can be skipped for local connectivity
testing if (i) v ≡k w and (ii) v is a side-vertex. For condition
(i), we can use a simple necessary condition according to
Lemma 1, that is, for any vertices v and w, v ≡k w if
(v, w) ∈ E. In the following, we focus on condition (ii) and
look for necessary conditions to efficiently check whether a
vertex is a side-vertex.
Side-Vertex Detection. To check whether a vertex is a side-
vertex, we can easily derive the following lemma based on
Definition 9.
LEMMA 8. Given a graph G, a vertex u is a side-vertex if
and only if ∀v, v′ ∈ N(u), v ≡k v′.

Recall that two vertices are k-local connected if they are
neighbors of each other. For the k-local connectivity of non-
connected vertices, we give another necessary condition below.
LEMMA 9. Given two vertices u and v, u ≡k v if |N(u) ∩
N(v)| ≥ k.

Combining Lemma 8 and Lemma 9, we derive the following
necessary condition to check whether a vertex is a side-vertex.
THEOREM 4. A vertex u is a side-vertex if ∀v, v′ ∈ N(u),
either (v, v′) ∈ E or |N(v) ∩N(v′)| ≥ k.
DEFINITION 10. (STRONG SIDE-VERTEX) A vertex u is
called a strong side-vertex if it satisfies the conditions in
Theorem 4.

Based on Definition 10, we define the following sweep rule.
(Neighbor Sweep Rule 1) Given a graph G and an integer k,
let u be a selected source vertex in algorithm GLOBAL-CUT

and v be a strong side-vertex in the graph. We can skip the
local connectivity testings of all pairs of (u,w) if we have
u ≡k v and w ∈ N(v).

We give an example for neighbor sweep rule 1 below.
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Fig. 4: Strong side-vertex and vertex deposit when k = 3

EXAMPLE 2. Fig. 4 (a) presents a strong side-vertex s in G
given k = 3. Assume that r is the source vertex. Any two
neighbors of s are either connected by an edge or have at
least 3 common neighbors. If r ≡k s, we safely sweep all
neighbors of s, which are marked by the gray color.

Next, we discuss how to efficiently detect and maintain all
strong side-vertices.
Strong Side-Vertex Computation. Following Theorem 4, we
can compute all strong side-vertices v in advance and sweep
all neighbors of v once v is k connected with the source vertex
(line 5 in GLOBAL-CUT). We derive the following lemma.
LEMMA 10. The time complexity of computing all strong side-
vertices in graph G is O(

∑
u∈V (G) d(u)

2).
After computing all strong side-vertices for the original

graph G, we do not need to recompute strong side-vertices
in the partitioned graph from scratch. Instead, we can reduce
the number of strong side-vertex checks by making use of
the already computed strong side-vertices in G. We efficiently
detect non-strong side-vertices and strong side-vertices respec-
tively based on Lemma 11 and Lemma 12.
LEMMA 11. Let G be a graph and Gi be one of the graphs
derived by partitioning G using OVERLAP-PARTITION in
Algorithm 1, a vertex is a strong side-vertex in G if it is a
strong side-vertex in Gi.

From Lemma 11, we know that a vertex is not a strong
side-vertex in Gi if it is not a strong side-vertex in G. This
property allows us checking limited number of vertices in Gi,
which is the set of strong side-vertices in G.
LEMMA 12. Let G be a graph, Gi be one of the graphs
derived by partitioning G using OVERLAP-PARTITION in
Algorithm 1, and S is a vertex cut of G, for any vertex
v ∈ V (Gi), if v is a strong side-vertex in G and N(v)∩S = ∅,
then v is also a strong side-vertex in Gi.

Based on Lemma 11 and Lemma 12, in a graph Gi
partitioned from graph G by vertex cut S, we can reduce
the scope of strong side-vertex checks from the vertices in
the whole graph Gi to the vertices u satisfying following two
conditions simultaneously:
• u is a strong side-vertex in G; and
• N(u) ∩ S 6= ∅.

Neighbor Sweep using Vertex Deposit. The strong side-
vertex strategy heavily relies on the number of strong side-
vertices. Next, we investigate a new strategy called vertex de-



posit, to further sweep vertices based on neighbor information.
We first give the following lemma:
LEMMA 13. Given a source vertex u, for any vertex v ∈
V (G), we have u ≡k v if there exist k vertices w1, w2, . . . , wk
such that u ≡k wi and wi ∈ N(v) for any 1 ≤ i ≤ k.
PROOF. We prove it by contradiction. Assume that u 6≡k v.
There exists a vertex cut S with k−1 or fewer vertices between
u and v. For any wi(1 ≤ i ≤ k), we have wi ≡k v since
wi ∈ N(v) (Lemma 1) and we also have wi ≡k u. Since
u 6≡k v, wi cannot satisfy both wi ≡k u and wi ≡k v unless
wi ∈ S. Therefore, we compute a cut S with at least k vertices
w1, w2, . . ., wk. This contradicts |S| < k.

Based on Lemma 13, given a source vertex u, once we
find a vertex v with at least k neighbors wi satisfying u ≡k
wi, we have u ≡k v without testing their local connectivity.
To efficiently detect such vertices, we define deposit of each
vertex as follows.
DEFINITION 11. (Vertex Deposit) Given a source vertex u,
the deposit for each vertex v, denoted by depositu(v), is the
number of neighbors w of v such that u ≡k w.

According to Definition 11, suppose u is the source vertex
and for each vertex v, depositu(v) is a dynamic value de-
pending on the number of processed vertex pairs. The vertex
deposit for each vertex is initialized by 0. Once we know
w ≡k u for a vertex w, we can increase depositu(v) for each
v ∈ N(w) by 1. We deduce the following theorem according
to Lemma 13 and Definition 11.
THEOREM 5. Given a source vertex u, for any vertex v, we
have u ≡k v if depositu(v) ≥ k.

Based on Theorem 5, we derive our second neighbor sweep
rule.
(Neighbor Sweep Rule 2) Given a selected source vertex u,
we can skip the local connectivity testing of pair (u, v) if
depositu(v) ≥ k.

EXAMPLE 3. Fig. 4 (b) gives an example of vertex deposit
strategy. Given the graph G and parameter k = 3, let vertex
r be the selected source vertex. We have v0, v1, v2 and v3 are
local k-connected with vertex r, i.e., r ≡k vi, i ∈ 0, 1, 2, 3,
since v0, v1, v2 and v3 are neighbors of r. We deposit once for
the neighbors of each tested vertex. The deposit value for each
influenced vertices is given in the figure. We mark the vertices
with deposit no less than 3 by dark gray. The local connectivity
testing between r and such a vertex can be skipped.

To increase the deposit of a vertex v, we only need any
neighbor of v is local k-connected with the source vertex u.
We can also use vertex deposit strategy when processing strong
side-vertices. Given a source vertex u and a strong side-vertex
v, we sweep all w ∈ N(v) if u ≡k v. Then we increase the
deposit for each non-swept vertex w′ ∈ N(w). In other words,
for a strong side-vertex, we can possibly sweep its 2-hop
neighbors by combining the two neighbor sweep strategies.
An example is given below.
EXAMPLE 4. Fig. 5 (a) shows the process for a strong side-
vertex s. Given a source vertex r, assume s is a strong side-
vertex and r ≡k s. All neighbors of s are swept and all 2-
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Fig. 5: Increasing deposit with neighbor and group sweep
hop neighbors of s increase their deposits accordingly. The
increased deposit for each vertex is shown in the figure.

B. Group Sweep

The neighbor sweep strategy only prune unnecessary local
connectivity testings in the first phase of GLOBAL-CUT by
using the neighborhood information. In this subsection, we
introduce a new pruning strategy namely group sweep, which
can prune unnecessary local connectivity testings in a batch
manner. In group sweep, we do not limit the swept vertices
to the neighbors of certain vertices. Specifically, we aim to
partition vertices into vertex groups and sweep a whole group
when it satisfies certain conditions. In addition, our group
sweep strategy can also be applied to reduce unnecessary local
connectivity testings in both phases of GLOBAL-CUT.

First, we define a new relation regarding a vertex u and a
set of vertices C as follows.

u ≡k C: For all vertices v ∈ C, u ≡k v.

Given a source vertex u and a side-vertex v, we assume
u ≡k v. According to the transitive relation in Lemma 7, we
skip testing the pairs of vertices u and w if w ≡k v. In our
neighbor sweep strategy, we select all neighbors of v as such
vertices w, i.e., u ≡k N(v). To sweep more vertices each
time, we define the side-group.
DEFINITION 12. (SIDE-GROUP) Given a graph G and an
integer k, a vertex set CC is a side-group if ∀u, v ∈ CC, u ≡k v.

Next, we introduce how to construct the side-groups, and
then discuss our group sweep rules.
Side-Group Construction. Section IV-A introduces sparse
certificate to bound the graph size. Let Fi and Gi be the
notations defined in Theorem 1. Assume G is not k-connected
and there exists a vertex cut S with |S| < k. We introduce
the following lemma [22].
LEMMA 14. Fk does not contain a tree path whose two end
points are in different connected components of G− S .

Here, a tree path is a sequence of tree nodes u0, u1, ..., ut,
in which there is a tree edge connecting ui and ui+1 for each
0 ≤ i < t. Based on Lemma 14, we deduce the following
theorem.
THEOREM 6. Let CC denote the vertex set of any connected
component in Fk. CC is a side-group.
EXAMPLE 5. Review the construction of a sparse certificate
in Fig. 3. Given k = 3, two connected components with more
than one vertex are computed in F3. The number of vertices
in the two connected components are 6 and 9 respectively.



Each of them is a side-group and any two vertices in the
same connected component is local 3-connected. Note that the
connected component with 6 vertices contains two vertices in
the vertex cut as marked by gray.

We denote all side-groups as CS = {CC1, CC2, . . . , CCt}.
According to Theorem 6, CS can be easily computed as a
by-product of the sparse certificate. With CS , according to
the transitive relation in Lemma 7, we can easily infer the
following pruning rule.
(Group Sweep Rule 1) Let u be the source vertex in the
algorithm GLOBAL-CUT, given a side-group CC, if there
exists a strong side-vertex v ∈ CC such that u ≡k v, we can
skip the local connectivity testings of vertex pairs (u,w) for
all w ∈ CC − {v}.

The above rule relies on the successful detection of a strong
side-vertex in each side-group. In the following, we further
introduce a deposit based scheme to handle the scenario that
no strong side-vertex exists in the side-group.
Group Deposit. Similar with the vertex deposit strategy, the
group deposit strategy aims to deposit the values in a group
level. To show our group deposit scheme, we first introduce
the following lemma.
LEMMA 15. Given a source vertex u, an integer k, and a side-
group CC, we have u ≡k CC if |{v|v ∈ CC, u ≡k v}| ≥ k.
PROOF. We prove it by contradiction. Assume that there exists
a vertex w in CC such that u 6≡k w. A vertex cut S exists with
|S| < k. Let v0, v1, ..., vk−1 be the k vertices in CC such
that u ≡k vi, 0 ≤ i ≤ k − 1. We have w ≡k vi based on
Definition 12. Each vi must belong to S since u 6≡k w. As a
result, the size of S is at least k. This contradicts |S| < k.

Based on Lemma 15, given a source vertex u, once we find
a side-group CC with at least k vertices v with u ≡k v, we can
get u ≡k CC without testing the local connectivity from u to
other vertices in CC. To efficiently detect such side-groups CC,
we define the group deposit of a side-group CC as follows.
DEFINITION 13. (Group Deposit) Given a source vertex
u, the group deposit for each side-group CC, denoted by
g-depositu(CC), is the number of vertices v ∈ CC such that
u ≡k v.

According to Definition 13, for each side-group CC ∈ CS,
g-depositu(CC) is a dynamic value depending on the already
processed vertex pairs. The group deposit for each side-group
CC is initialized by 0. Once v ≡k u for a certain vertex v ∈ CC,
we can increase g-depositu(CC) by 1. We infer the following
theorem according to Lemma 15 and Definition 13.
THEOREM 7. Given a source vertex u, for any side-group
CC ∈ CS, we have u ≡k CC if g-depositu(CC) ≥ k.

Next, we derive our second group sweep rule as follows.
(Group Sweep Rule 2) Given a selected source vertex u, we
can skip the local connectivity testings between u and vertices
in CC if g-depositu(CC) ≥ k.

Note that a group sweep operation can further trigger a
neighbor sweep operation and vice versa, since both operations
result in new local k-connected vertex pairs. We show an
example below.

Algorithm 3 GLOBAL-CUT∗(G, k)
Input: a graph G and an integer k;
Output: a vertex cut with size smaller than k;
1: compute a sparse certification SC of G and collect all side-groups

as CS = {CC1, ..., CCt};
2: construct the directed flow graph SC of SC;
3: SV ← compute all strong side vertices in SC;
4: if SV = ∅ then
5: select a vertex u with the minimum degree;
6: else
7: randomly select a vertex u from SV;
8: for all CCi in CS: g-depositu(CCi)← 0;
9: for all v in V : depositu(v)← 0, pru(v)← false;

10: SWEEP(u, pru, depositu, g-depositu, CS);
11: for all v ∈ V in non-ascending order of dist(u, v,G) do
12: if pru(v) = true then continue;
13: S ← LOC-CUT(u, v,SC,SC);
14: if S 6= ∅ then return S;
15: SWEEP(v, pru, depositu, g-depositu, CS);
16: if u is not a strong side-vertex then
17: for all va ∈ N(u) do
18: for all vb ∈ N(u) do
19: if va and vb are in the same CCi then continue;
20: S ← LOC-CUT(u, v,SC,SC);
21: if S 6= ∅ then return S;
22: return ∅;

EXAMPLE 6. Fig. 5 (b) presents an example of group sweep.
Suppose k = 3 and the gray area is a detected side-group.
Given a source vertex r, assume that a, b, c are the tested
vertices with r ≡k a, r ≡k b and r ≡k c respectively.
According to Theorem 7, we can safely sweep all vertices in
the same side-group. Also, we apply the vertex deposit strategy
for neighbors outside the side-group. The increased value of
deposit is shown on each vertex.

Next we show that the side-groups can also be used to
prune the local connectivity testings in the second phase
of GLOBAL-CUT. Recall that in the second phase of
GLOBAL-CUT, given a source vertex u, we need to test the
local connectivity of every pair (va, vb) of the neighbors of
u. With side-groups, we can easily infer the following group
sweep rule.
(Group Sweep Rule 3) Let u be the source vertex, and va and
vb be two neighbors of u. If va and vb belong to the same
side-group, we have va ≡k vb and thus we do not need to
test the local connectivity of (va, vb) in the second phase of
GLOBAL-CUT.

The detailed implementation of the neighbor sweep and
group sweep techniques is given in the following section.

C. The Overall Algorithm

In this section, we combine our pruning strategies and give
the implementation of optimized algorithm GLOBAL-CUT∗.
The pseudocode is presented in Algorithm 3. We can replace
GLOBAL-CUT with GLOBAL-CUT∗ in KVCC-ENUM to gen-
erate our final algorithm to compute all k-VCCs.

The GLOBAL-CUT∗ algorithm still follows the idea of
GLOBAL-CUT. Given a source vertex u, phase 1 (line 8-15)
considers the case that u /∈ S. Phase 2 (line 16-21) considers



Algorithm 4 SWEEP(v, pru, depositu, g-depositu, CS)
1: pru(v)← true;
2: for all w ∈ N(v) s.t. pru(w) = false do
3: depositu(w)++;
4: if v is a strong side-vertex or depositu(w) ≥ k then
5: SWEEP(w, pru, depositu, g-depositu, CS);
6: if v is contained in a CCi and CCi has not been processed then
7: g-depositu(CCi)++;
8: if v is a strong side-vertex or g-depositu(CCi) ≥ k then
9: mark CCi as processed;

10: for all w ∈ CCi s.t. pru(w) = false do
11: SWEEP(w, pru, depositu, g-depositu, CS)

the case that u ∈ S. If in both phases, the vertex cut S is not
found, we simply return ∅ in line 22.

We compute the side-groups CS while computing the sparse
certificate (line 1). We only consider the side-group whose size
is larger than k, since the group can be swept only if at least k
vertices in the group are swept according to Theorem 7. Then
we compute all strong side-vertices, SV based on Theorem 4
(line 3). Here, the strong side-vertices are computed based on
the method discussed in Section V-A. If SV is not empty, we
can select one inside vertex as source vertex u and do not
need to consider the phase 2, because u cannot be in any cut
S with |S| < k in this case. Otherwise, we still select the
source vertex u with the minimum degree (line 4-7).

In phase 1 (line 8-15), we initialize the group deposit for
each side-group as 0 (line 8) Also, we initialize the local
deposit for each vertex as 0 and pru for each vertex as false
(line 9). Here, pru is used to mark whether a vertex can be
swept. We first apply the sweeping rules on the source vertex
by invoking SWEEP procedure (line 10). Intuitively, a vertex
that is close to the source vertex u tends to be in the same k-
VCC with u. In other words, a vertex v that is far away from u
tends to be separated from u by a vertex cut S. Therefore, we
process vertices v in G according to the non-ascending order
of dist(u, v,G) (line 11). For each vertex v to be processed
in phase 1, we skip it if pru(v) is true (line 12). Otherwise,
we test the local connectivity of u and v using LOC-CUT
(line 13). If there is a cut S with size smaller than k, we simply
return S (line 15). Otherwise, we invoke SWEEP procedure
to sweep vertices using the sweep rules. We will introduce the
SWEEP procedure in detail later.

In phase 2 (line 16-21), we check whether u is a strong
side-vertex. If so, we skip phase 2. Otherwise, we perform
pair-wise local connectivity testings for all vertices in N(u).
Here, we apply the group sweep rule 3 and skip testing those
pairs of vertices that are in the same side-group.
Procedure SWEEP. The procedure SWEEP is shown in
Algorithm 4. To sweep a vertex v, we set pru(v) to be true.
This operation may result in neighbor sweep and group sweep
of other vertices as follows.
• (Neighbor Sweep) We adopt the neighbor sweep rules in

line 1-5. For all the neighbors w of v that have not been
swept, we increase depositu(w) by 1. Then we consider
two cases. The first case is that v is a strong side-vertex.
According to neighbor sweep rule 1, w can be swept since
w is a neighbor of v. The second case is depositu(w) ≥

Datasets |V | |E| d

ca-CondMat 23,133 93,497 8.08
ca-AstroPh 18,772 198,110 21.11
Stanford 281,903 2,312,497 16.41
cnr 325,557 3,216,152 19.76
DBLP 986,324 6,707,236 13.60
Web-BerkStan 685,230 7,600,595 22.18
as-Skitter 1,696,415 11,095,298 13.08
cit-Patents 3,774,768 16,518,948 8.75
LiveJournal 4,847,571 68,993,773 28.47
Webbase 118,142,155 1,019,903,190 17.27

TABLE I: Network Statistics
k. According to neighbor sweep rule 2, w can be swept.
In both cases, we invoke SWEEP to sweep w recursively.

• (Group Sweep) In line 6-11, we adopt the group sweep
rules if v is contained in a side-group. We first increase
g-depositu(CCi) by 1 based on Definition 13. Then we
consider two cases. The first case is that v is a strong side-
vertex. According to group sweep rule 1 in Section V-B,
we can sweep all vertices in CCi. The second case is that
g-depositu(CCi) ≥ k. According to group sweep rule 2,
we sweep all vertices in CCi. In both cases we recursively
invoke SWEEP to sweep vertices(line 8-11).

VI. EXPERIMENTS

In this section, we experimentally evaluate the performance
of our proposed algorithms. We use VCCE to denote the
state-of-the-art solution for exactly computing k-VCCs, which
invokes GLOBAL-CUT (Algorithm 2) to compute a vertex cut
[15], [16], [17]. We use VCCE∗ to denote our final optimized
algorithm with both neighbor sweep and group sweep strate-
gies. In contrast to VCCE, VCCE∗ invokes GLOBAL-CUT∗

which is given in Algorithm 3.
All algorithms are implemented in C++ using gcc complier

at -O3 optimization level. All the experiments are conducted
under a Linux operating system running on a machine with
an Intel Xeon 3.4GHz CPU, 32GB 1866MHz DDR3-RAM.
Datasets. We evaluate algorithms on 10 publicly available
real-world networks, collaboration network of Arxiv Con-
densed Matter (ca-CondMat), collaboration network of Arxiv
Astro Physics (ca-AstroPh), web graph of Stanford.edu (Stan-
ford), web graph of Italian CNR domain (cnr), DBLP collab-
oration network (DBLP), web graph of Berkeley and Stanford
(Web-BerkStan), Internet topology graph (as-Skitter), citation
network among US Patents (cit-Patents), LiveJournal online
social network (LiveJournal), and web graph form WebBase
crawler (Webbase). The detailed statistics are shown in Table I.
The networks are displayed in non-decreasing order regarding
the number of edges. All networks and corresponding detailed
description can be found in SNAP4 and Webgraph5.
Parameter Setting. Given a graph G, let kmax(G) be the
maximum k such that a k-VCC exists. For the input parameter
k, we choose 20%, 40%, 60%, and 80% of the kmax(G) of
each tested graph G, with k = 40% · kmax(G) as default.

4http://snap.stanford.edu/index.html
5http://webgraph.di.unimi.it/

http://snap.stanford.edu/index.html
http://webgraph.di.unimi.it/
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Fig. 6: Performance on different datasets

A. Performance Studies on Real-World Graphs
We report the running time of VCCE∗ on all datasets with

VCCE as a comparison in Fig. 6. We can find that VCCE∗

is significantly faster than VCCE on most of datasets. It is
the widest that the gap between the bars of two algorithms
on ca-AstroPh; VCCE∗ costs about 4 seconds, while VCCE
costs over 500 seconds. Note that the algorithmic speedup on
DBLP is not obvious. In this case, a large number of vertices
are removed due to the k-core constraint and the number
of k-VCCs in DBLP is small under the default parameter
setting. Even though about 45% of LOC-CUT invocations are
avoided in VCCE∗ due to our pruning techniques, the total
number of LOC-CUT invocations is quite small (about 100)
in VCCE. When the parameter k drops to 20% of kmax on
DBLP, VCCE costs about 80 seconds, while VCCE∗ costs
only about 4 seconds. The detailed relationship between the
algorithmic efficiency and the parameter k will be analyzed
later. In the largest dataset Webbase, VCCE∗ costs about 140
seconds, while VCCE costs about 390 seconds.
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Fig. 7: Against basic algorithm (Vary k)
Vary k. We report the running time of our proposed algorithms
on different datasets when varying k in Fig. 7. Due to the space
limitation, we only show the results on ca-AstroPh, Stanford,
cnr and LiveJournal, while the results on other datasets have
similar trends.

The running time of VCCE presents a downward trend on all
datasets when raising k. For example, in Fig. 7 (c), VCCE costs
about 17 minutes to compute all k-VCCs in cnr when k =
20% · kmax; the running time drops to under 1 second given
k = 80% · kmax. The decrease of running time of VCCE is

Input Parameter Non-Pru NS 1 NS 2 GS
ca-AstroPh

20% · kmax 3.5% 20.4% 30.2% 45.9%
40% · kmax 3.8% 40.0% 23.8% 32.3%
60% · kmax 13.8% 42.10% 38.40% 5.70%
80% · kmax 100% 0% 0% 0%

avg 4.1% 27.3% 28.7% 39.9%
Stanford

20% · kmax 2.9% 32.3% 14.0% 50.9%
40% · kmax 10.1% 12.0% 18.7% 59.2%
60% · kmax 7.1% 3.6% 25.6% 63.6%
80% · kmax 12.0% 0% 14.7% 73.3%

avg 3.3% 30.7% 14.4% 51.6%
cnr

20% · kmax 3.0% 12.4% 16.0% 68.6%
40% · kmax 30.7% 8.9% 47.3% 13.2%
60% · kmax 15.8% 27.1% 16.3% 40.7%
80% · kmax 61.1% 38.9% 0% 0%

avg 7.0% 12.1% 20.4% 60.5%
LiveJournal

20% · kmax 1.5% 3.6% 39.2% 55.7%
40% · kmax 8.5% 6.9% 61.1% 23.4%
60% · kmax 19.3% 2.6% 69.7% 8.4%
80% · kmax 84.4% 15.6% 0% 0%

avg 3.4% 4.0% 43.2% 49.4%

TABLE II: Evaluating pruning rules

mainly due to following two reasons. First, given a large value
of parameter k, a large number of vertices are removed due to
the k-core constraint (line 2 of Algorithm 1). Second, it is more
likely to find a qualified vertex cut (line 15 of GLOBAL-CUT)
given a high value of parameter k; that means the graph is
more likely to be partitioned into small subgraphs.

We can find in Fig. 7 that VCCE∗ is faster than VCCE on
all parameter settings and the gap between the running time
of two algorithms is wide when k is small. This phenomenon
demonstrates that our optimized techniques is more effective
when VCCE requires a great amount of computational cost.
For example, in Fig. 7 (a), VCCE costs over 2 hours when
k is 20% of kmax. In contrast, VCCE∗ only need about 30
seconds, which is over 200× faster than VCCE. The running
time of VCCE∗ and VCCE drops to about 0.3 seconds and 0.7
seconds respectively when k = 80% · kmax.

Note that there exists a slight increase for the running time
of VCCE∗ from 60% to 80% in Fig. 7 (d). This is because both
of the numbers of strong side-vertices and vertices in side-
groups decrease when raising k. Even though the total number
of max-flow computations in VCCE decreases, the ratio of
pruned computations increases and this leads to a compromise
result. Similar phenomenon also appears in Fig. 7 (b) from
60% to 80%.

B. Evaluating Optimization Techniques

To further investigate the effectiveness of our sweep rules,
we also track each processed vertex during the performance
of VCCE∗ and record the number of vertices pruned by
each strategy. Specifically, when performing sweep procedure,
we separately mark the vertices pruned by neighbor sweep
rule 1 (strong-side vertex), neighbor sweep rule 2 (neighbor
deposit) and group sweep. Here, we divide neighbor sweep
into two detailed sub-rules since the both of them perform
well and the effectiveness of these two strategies is not very



consistent in different datasets. For each vertex v in line 11
of GLOBAL-CUT∗, we increase the count for corresponding
strategy if v is pruned (line 12). We also record the number of
vertices which are non-pruned and really tested (line 13). For
each dataset, we record these data on different k from 20%
to 80% of kmax. Additionally, we sum the processed vertices
on all parameter settings and calculate the average ratio of
each pruning rule for each dataset. All results are summarized
in Table II. NS 1 and NS 2 represent neighbor sweep rule 1
and neighbor sweep rule 2 respectively. GS is group sweep
and Non-Pru means the proportion of non-pruned vertices. If
more than one rules can be adopted to prune a vertex, we
mark this vertex according to the following priority, NS 1,
NS 2 and GS.

The result shows our pruning strategies are effective, es-
pecially when k is small. The average ratio of non-pruned
vertices is less than 10% on all datasets, and when k =
20%·kmax, the ratio of non-pruned vertices is under 5% on all
tested datasets and even drops to about 1.5% on LiveJournal.
The ratio of non-pruned vertices roughly presents an upward
trend on most of datasets. For example, on ca-AstroPh, that
ratio reaches 3.8% and 13.8% on 40% · kmax and 60% · kmax
respectively. We can see that there exists no pruned vertex
when k = 80% · kmax on ca-AstroPh, because the number of
max-flow computations is already very small and the room for
improvement is not enough. On ca-AstroPh, VCCE∗ computes
max-flow only 1 time on 80% · kmax.

The effectiveness of different rules depends on the detailed
graph structure. We can find that the average ratio of group
sweep rules is the largest on all datasets. It accounts for about
39.9% of total on ca-AstroPh and up to 60.5% on cnr. The
neighbor sweep rule 1 performs well on Stanford; its average
ratio is about 30.7%. However, this rule only prunes about
4% of total on LiveJournal. By contrast, the average ratio of
neighbor sweep rule 2 is about 14.4% on Stanford, but up to
43.2% on LiveJournal.

C. Scalability Testing

In this section, we test the scalability of our proposed algo-
rithms. We choose two real graph datasets cnr and LiveJournal
as representatives. For each dataset, we vary the graph size
and graph density by randomly sampling vertices and edges
respectively from 20% to 100%. When sampling vertices, we
get the induced subgraph of the sampled vertices, and when
sampling edges, we get the incident vertices of the edges as
the vertex set. About the parameter setting, we fix k to 10%
of kmax of the original graph for all sampling ratio on each
dataset. The experimental results are shown in Fig. 8.

Fig. 8 (a) and (b) report the processing time of our proposed
algorithms when varying |V | in cnr and LiveJournal respec-
tively. The curves in Fig. 8 (c) and (d) report the processing
time of our algorithms on cnr and LiveJournal respectively
when varying |E|. Note that in Fig. 8 (b) and (d), the running
time of VCCE is not given on 60% and 80%, since the
corresponding procedure cannot finish in 24 hours.

10
-2

10
0

10
2

10
4

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e 

(s
)

(a) cnr (vary |V |)

10
-2

10
0

10
2

10
4

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e 

(s
)

(b) LiveJournal (vary |V |)

10
-1

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e 

(s
)

(c) cnr (vary |E|)

10
0

10
1

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e 

(s
)

(d) LiveJournal (vary |E|)

VCCE VCCE*

Fig. 8: Scalability testing

The efficiency of VCCE heavily relies on the detail graph
structures, and the lines of VCCE are not stable. For example,
in Fig. 8 (a), the running time of VCCE is about 3 seconds
when sampling 20% nodes, and it reaches about 40 minutes on
60%. Then running time drops slightly to about 27 minutes
on 80%, and increase back to about 30 minutes on 100%.
By contrast, the running time of VCCE∗ presents a steadily
upward trend on all datasets when the sampling ratio increases.
For example, VCCE∗ costs less than 0.1 second on 20% in
Fig. 8 (a); its running time reaches about 15 seconds, 28
seconds and 62 seconds on 40%, 60% and 80% respectively.
VCCE∗ costs about 2 minutes on 100%, which is 15× faster
than VCCE. The result shows that our pruning strategies are
effective and our optimized algorithm is more efficient and
scalable than the basic algorithm.

VII. RELATED WORK

Cohesive Subgraph. In social network analysis, several co-
hesive subgraph metrics have been studied for graph seg-
mentation. [25], [26] propose algorithms for maximal clique
enumeration. However, the definition of clique is too strict,
and some relaxed metrics are proposed, which can be roughly
classified into the following three categories.
1. Global Cohesiveness. [27] defines an s-clique model by
allowing the distance between two vertices to be at most s.
However, it does not require all intermediate vertices are in the
s-clique itself. [28] proposes an s-club model requiring that
all intermediate vertices are in the same s-club. k-plex allows
each vertex in such subgraph can miss at most k neighbors
[29], [30]. Quasi-clique is a subgraph with n vertices and at
least γ ∗

(
n
2

)
edges [31].

2. Local Degree and Triangulation. k-core is maximal sub-
graph in which each vertex has a degree at least k [11]. k-
truss has also been investigated in [32], [33], [34]. It requires
each edge in a k-truss is contained in at least k− 2 triangles.
This model is also independently defined as k-mutual-friend
subgraph in [35]. Based on triangles, DN-graph [36] with
parameter k is a connected subgraph G′(V ′, E′) satisfying



following two conditions: 1) Every connected pair of vertices
in G′ shares at least λ common neighbors. 2) For any v ∈
V \V ′, λ(V ′ ∪{v}) < λ; and for any v ∈ V ′, λ(V ′\{v}) ≤ λ.
3. Connectivity Cohesiveness. In this category, most of ex-
isting works only consider edge connectivity of a graph.
The edge connectivity of a graph is the minimum number
of edges whose removal disconnect the graph. [37] first
proposes algorithm to efficiently compute frequent closed k-
edge connected subgraphs from a set of data graphs. However,
a frequent closed subgraph may not be an induced subgraph.
To conquer this problem, [10] gives a cut-based method to
compute all k-edge connected components in a graph. [38]
proposes a decomposition framework for the same problem
to further improve efficiency. [17] follows the basic partition-
based framework for computing k-VCCs. They also propose
an approximate algorithm to achieve a speedup. [19] computes
k-VCCs for small k values.
Vertex Connectivity. [24] proves the time complexity of com-
puting maximum flow reaches O(n0.5m) in an unweighted
directed graph while each vertex inside has either a single edge
emanating from it or a single edge entering it. This result is
used to test the vertex connectivity of a graph with given k in
O(n0.5m2) time. [39] further reduces the time complexity of
such problem to O(k3m+knm). There are also other solutions
for finding the vertex connectivity of a graph [40], [20]. To
speed up the computation of vertex connectivity, [22] finds a
sparse certificate of k-vertex connectivity.

VIII. CONCLUSIONS

Computing all k-vertex connected components is a foun-
dational problem and has been studied recently. The state-of-
the-art solution does not provide the polynomial running time
guarantee, and requires high computational cost on computing
the vertex cut. In this paper, we study the problem of k-
VCC enumeration and prove that the algorithm terminates
in polynomial time. We propose several optimization strate-
gies to significantly improve the efficiency of the algorithm.
We conduct extensive experiments using ten real datasets to
demonstrate the efficiency of our approach.
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