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Abstract—Partial evaluation has recently been used for pro-
cessing SPARQL queries over a large resource description
framework (RDF) graph in a distributed environment. However,
the previous approach is inefficient when dealing with complex
queries. In this study, we further improve the “partial evaluation
and assembly” framework for answering SPARQL queries over a
distributed RDF graph, while providing performance guarantees.
Our key idea is to explore the intrinsic structural characteristics
of partial matches to filter out irrelevant partial results, while
providing performance guarantees on a network trace (data ship-
ment) or the computational cost (response time). We also propose
an efficient assembly algorithm to utilize the characteristics of
partial matches to merge them and form final results. To improve
the efficiency of finding partial matches further, we propose
an optimization that communicates variables’ candidates among
sites to avoid redundant computations. In addition, although our
approach is partitioning-tolerant, different partitioning strate-
gies result in different performances, and we evaluate different
partitioning strategies for our approach. Experiments over both
real and synthetic RDF datasets confirm the superiority of our
approach.

I. Introduction

The resource description framework (RDF) is a semantic
web data model that represents data as a collection of triples
of the form 〈subject, property, object〉. An RDF dataset can
also be represented as a graph where subjects and objects
are vertices, and triples are edges with labels between ver-
tices. Meanwhile, SPARQL is a query language designed for
retrieving and manipulating an RDF dataset, and its primary
building block is the basic graph pattern (BGP). A BGP query
can also be seen as a query graph, and answering a BGP
query is equivalent to finding subgraph matches of the query
graph over the RDF graph. In this study, we focus on the
evaluation of BGP queries. An example SPARQL query of
four triple patterns (e.g., ?t label ?l) is listed in the following,
and retrieves all people influencing Crispin Wright and their
interests:

S e l e c t ? p2 , ? l where {? t l a b e l ? l .
? p1 i n f l u e n c e d B y ? p2 . ? p2 m a i n I n t e r e s t ? t .
? p1 name ‘ ‘ C r i s p i n Wright ’ ’@en . } .

With the increasing size of RDF data published on the
Web, it is necessary for us to design a distributed database
system to process SPARQL queries. In many applications, the

RDF graphs are geographically or administratively distributed
over the sites, and the RDF repository partitioning strategy
is not controlled by the distributed RDF system itself. For
example, the European Bioinformatics Institute1 has built up
a uniform platform for users to query multiple bioinformatics
RDF datasets, including BioModels, Biosamples, ChEMBL,
Ensembl, Atlas, Reactome, and OLS. These datasets are
provided by different data publishers, and should be adminis-
tratively partitioned according to their data publishers. Thus,
partitioning-tolerant SPARQL processing is desirable.

For partitioning-tolerant SPARQL processing on distributed
RDF graphs, Peng et al.[18] discuss how to evaluate SPARQL
queries in a “partial evaluation and assembly” framework.
However, the framework’s efficiency has significant potential
for improvement. Its major bottleneck is the large volume of
partial evaluation results, leading to a high cost for generating
and assembling the results.

In this study, we propose several optimizations for the
“partial evaluation and assembly” framework [18], to prune
the irrelevant partial evaluation results, and assemble them
efficiently to form the final results. The first step is to compress
all partial evaluation results into a compact data structure
named the local partial match equivalence class (LEC) feature.
Then, we can communicate the LEC features among sites to
filter out some irrelevant partial evaluation results. We can
prove that the proposed optimization technique is partition
bounded in both response time and data shipment [3]. The
second step is to assemble all local partial matches based
on their LEC features. Finally, to avoid further redundant
computations within the sites, we propose an optimization that
communicates variables’ candidates among the sites to prune
some irrelevant candidates. In addition, although our approach
is partitioning-tolerant, different partitioning strategies result
in different performances, and we also evaluate different
partitioning strategies for our approach.

Thus, we make the following contributions in this study.
• We explore the intrinsic structural characteristics of par-

tial results to compress them into a compact data struc-
ture, the LEC feature. We communicate and utilize the

1https://www.ebi.ac.uk/rdf/
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LEC features to prune some irrelevant partial results. We
prove theoretically that the LEC feature can guarantee the
performance of the pruning optimization in both response
time and data shipment.

• We propose an efficient LEC feature-based assembly
algorithm to merge all the partial results together and
form the final results.

• We present an optimization based on the communication
of the variables’ internal candidates among different sites
to avoid further redundant computations within the sites.

• We define a specific cost model for our method to
measure the cost of different partitioning strategies, and to
select the best partitioning from the existing partitionings.

• We conduct experiments over both real and synthetic RDF
datasets to confirm the superiority of our approach.

II. Background

A. Distributed RDF Graph and SPARQL Query

An RDF dataset can be represented as a graph where
subjects and objects are vertices, and triples are labeled edges.
In this study, an RDF graph G is vertex-disjoint-partitioned
into a number of fragments, each of which resides at one
site. The vertex-disjoint partitioning methods guarantee that
there are no overlapping vertices between fragments. Here,
to guarantee data integrity and consistency, we store some
replicas of crossing edges. Formally, we define the distributed
RDF graph as follows:

Definition 1: (Distributed RDF Graph) Let u and
−−→
uu′

denote the vertex and edge in an RDF graph. A distributed
RDF graph G = {V, E,Σ} consists of a set of fragments
F = {F1, F2, ..., Fk}, where each Fi is specified by (Vi∪Ve

i , Ei∪
Ec

i ,Σi) (i = 1, ..., k) such that:
1) {V1, ...,Vk} is a partitioning of V , i.e., Vi ∩ V j = ∅, 1 ≤

i, j ≤ k, i , j and
⋃

i=1,...,k Vi = V ;
2) Ei ⊆ Vi × Vi, i = 1, ..., k;
3) Ec

i is a set of crossing edges between Fi and other
fragments, i.e.,

Ec
i = (

⋃
1≤ j≤k∧ j,i

{−−→uu′|u ∈ Fi ∧ u′ ∈ F j ∧
−−→
uu′ ∈ E})⋃

(
⋃

1≤ j≤k∧ j,i
{−−→u′u|u ∈ Fi ∧ u′ ∈ F j ∧

−−→
u′u ∈ E})

4) A vertex u′ ∈ Ve
i if and only if vertex u′ resides in other

fragment F j and u′ is an endpoint of a crossing edge
between fragment Fi and F j (Fi , F j), i.e.,

Ve
i = (

⋃
1≤ j≤k∧ j,i

{u′|−−→uu′ ∈ Ec
i ∧ u ∈ Fi}) ⋃

(
⋃

1≤ j≤k∧ j,i
{u′|−−→u′u ∈ Ec

i ∧ u ∈ Fi})
5) Vertices in Ve

i are called extended vertices of Fi, and
vertices in Vi are called internal vertices of Fi; and

6) Σi is a set of edge labels in Fi.
Example 1: Fig. 1 shows a distributed RDF graph G con-

sisting of three fragments F1, F2, and F3. The numbers besides
the vertices are vertex IDs that are introduced for ease of

presentation. In Fig. 1,
−−−−−−−→
001, 006 and

−−−−−−−→
006, 005 are crossing

edges between F1 and F2. In addition, edge
−−−−−−−→
001, 012 is a

crossing edge between F1 and F3. Hence, Ve
1 = {006, 012}

and Ec
1 = {−−−−−−−→001, 006,

−−−−−−−→
006, 005,

−−−−−−−→
001, 012}.�

001
s1:Phi1“1942-12-21”

002

003
“Crispin Wright”@en

005
s1:Int1

“Philosophy of language”@en
004

006
s2:Phi2

“Michael Dummett”
007 008

s2:Int2

009
“Metaphysics”@en

s2:Int3
010

011
“Philosophy of logic”@en

012
s3:Phi3 s3:Int4

013

“Ludwig Wittgenstein”@en
015 016

“1889-04-26” “Logic”@en
017

s2:Phi4
014

018
“Rudolf Carnap”@en

019
s3:Pla1

020
“Ronsdorf”@en

F1 F2

F3
influencedBy birthPlace

influencedBy mainInterest

mainInterest

mainInterest

mainInterest

mainInterest

label

label

label label

label

name

name

namename

birthDate

birthDate

Fig. 1. Distributed RDF Graph

Similarly, a SPARQL query can also be represented as a
query graph Q. In this study, we focus on BGP queries as
they are foundational to SPARQL, and focus on techniques
for handling them.

Definition 2: (SPARQL BGP Query) A SPARQL BGP
query is denoted as Q = {VQ, EQ,ΣQ}, where VQ ⊆ V ∪ VVar

is a set of vertices, V denotes all vertices in the RDF graph
G, VVar is a set of variables, and EQ ⊆ VQ × VQ is a multiset
of edges in Q. Each edge e in EQ either has an edge label in
Σ (i.e., property), or the edge label is a variable.

Example 2: Fig. 2 shows the query graph corresponding to
the example query shown in Section I. There are four edges
in the query graph, and each edge maps to a triple pattern in
the example query. Both vertices and edges in the query graph
can be variable. �

?p2
v1

?t
v2

?p1
v3

?l
v4

“Crispin Wright”@en
v5

influencedBy

mainInterest

label

name

Fig. 2. SPARQL Query Graph

We assume that Q is a connected graph; otherwise, all con-
nected components of Q are considered separately. Answering
a SPARQL query is equivalent to finding all subgraphs of G
homomorphic to Q. The subgraphs of G homomorphic to Q
are called matches of Q over G.

Definition 3: (SPARQL Match) Consider an RDF graph G
and a connected query graph Q that has n vertices {v1, ..., vn}.
A subgraph M with m vertices {u1, ..., um} (in G) is said to
be a match of Q if and only if there exists a function f
from {v1, ..., vn} to {u1, ..., um} (n ≥ m) where the following
conditions hold: if vi is not a variable, f (vi) and vi have
the same uniform resource identifier (URI) or literal value
(1 ≤ i ≤ n); if vi is a variable, there is no constraint over



F1

s2:Phi2
006

s1:Phi1
001

“Crispin Wright”@en
003

influencedBy
name

[006,NULL,001,NULL,003]
PM1

1

s3:Phi3
012

s1:Phi1
001

“Crispin Wright”@en
003

influencedBy
name

[012,NULL,001,NULL,003]
PM2

1

s2:Phi2
006

s1:Int1
005

“Philosophy of language”@en
004

mainInterest

label

[006,005,NULL,004,NULL]
PM3

1

F2
s2:Phi2

006

s2:Int2
008

“Metaphysics”@en
009

s1:Phi1
001

influencedBy

mainInterest

label

[006,008,001,009,NULL]
PM1

2

s2:Phi2
006

s2:Int3
010

“Philosophy of logic”@en
011

s1:Phi1
001

influencedBy

mainInterest

label

[006,010,001,011,NULL]
PM2

2

s2:Phi2
006

s1:Int1
005

s1:Phi1
001

influencedBy

mainInterest

[006,005,001,NULL,NULL]
PM3

2

F3
s3:Phi3

012

s3:Int4
013

“Logic”@en
017

s1:Phi1
001

influencedBy

mainInterest

label

[012,013,001,017,NULL]
PM1

3

s2:Phi4
014

s3:Int4
013

“Logic”@en
017

mainInterest

label

[014,013,NULL,017,NULL]
PM2

3

Fig. 3. Example Local Partial Matches

f (vi) except that f (vi) ∈ {u1, ..., um} ; and if there exists an
edge −−→viv j in Q, there also exists an edge

−−−−−−−−→
f (vi) f (v j) in G. Let

L(−−→viv j) denote a multi-set of labels between vi and v j in Q,
and L(

−−−−−−−−→
f (vi) f (v j)) denote a multi-set of labels between f (vi)

and f (v j) in G. There must exist an injective function from
edge labels in L(−−→viv j) to edge labels in L(

−−−−−−−−→
f (vi) f (v j)). Note

that a variable edge label in L(−−→viv j) can match any edge label
in L(

−−−−−−−−→
f (vi) f (v j)).

Definition 4: (Problem Statement) Let G be a distributed
RDF graph that consists of a set of fragments F =

{F1, . . . , Fk}, and let S = {S 1, . . . , S k} be a set of sites such
that Fi is located at S i. Given a SPARQL BGP query Q, our
goal is to find all matches of Q over G.

Note that for simplicity of exposition, we are assuming that
each site hosts one fragment. Finding matches in a site can be
evaluated locally using a centralized RDF triple store. In this
study, we only focus on how to find the matches crossing
multiple sites efficiently. In our prototype experiments, we
modify gStore [25] to perform partial evaluation.

Example 3: Given a SPARQL query graph Q in Fig. 2,
there exists a crossing match mapping to the subgraph induced
by vertices 003,001,006,008, and 009 (shown in the red
vertices and edges in Fig. 1).�

B. Partial Evaluation-Based SPARQL Query Evaluation

As we extend the distributed SPARQL query evaluation
approach based on the “partial evaluation and assembly”
framework in [18], we give its brief background here.

In our framework, each site S i receives the full query graph
Q, and computes the partial answers (called local partial
matches) based on the known input Fi (we assume that
each site hosts one fragment, as indicated by its subscript).

Intuitively, a local partial match PMi is an overlapping part
between a crossing match M and fragment Fi. Moreover, M
may or may not exist depending on the as-yet unavailable
input G′ . Based only on the known input Fi, we cannot judge
whether M exists or not.

Definition 5: (Local Partial Match) Given a SPARQL
query graph Q and a connected subgraph PM with n vertices
{u1, ..., un} (n ≤ |VQ|) in a fragment Fk, PM is a local partial
match in Fk if and only if there exists a function f : VQ

→ {u1, ..., un} ∪ {NULL} that holds the following conditions:

1) If vi is not a variable, f (vi) and vi have the same URI
or literal value or f (vi) = NULL.

2) If vi is a variable, f (vi) ∈ {u1, ..., un} or f (vi) = NULL.
3) If there exists an edge −−→viv j in Q (i , j), then PM should

meet one of the following five conditions: there also
exists an edge

−−−−−−−−→
f (vi) f (v j) in PM with property p and p is

the same as the property of −−→viv j, there also exists an edge−−−−−−−−→
f (vi) f (v j) in PM with property p and the property of
−−→viv j is a variable, there does not exist an edge

−−−−−−−−→
f (vi) f (v j)

but f (vi) and f (v j) are both in Ve
k , f (vi) = NULL, or

f (v j) = NULL.
4) PM contains at least one crossing edge, guaranteeing

that an empty match does not qualify.
5) If f (vi) ∈ Vk (i.e., f (vi) is an internal vertex of Fk)

and ∃−−→viv j ∈ Q (or −−→v jvi ∈ Q), there must exist f (v j) ,
NULL and ∃−−−−−−−−→f (vi) f (v j) ∈ PM (or ∃−−−−−−−−→f (v j) f (vi) ∈ PM).
Furthermore, if −−→viv j (or −−→v jvi) has a property p,

−−−−−−−−→
f (vi) f (v j)

(or
−−−−−−−−→
f (v j) f (vi)) has the same property p.

6) If f (vi) and f (v j) are internal vertices of Fk, then there
exist a weakly connected path π between vi and v j in Q
and each vertex in π maps to an internal vertex of Fk.



The vector [ f (v1), ..., f (vn)] is a serialization of a local
partial match. f −1(PM) is the subgraph (of Q) induced by
a set of vertices, where for any vertex v ∈ f −1(PM), f (v) is
not NULL.

Generally, a local partial match is a subset of a complete
SPARQL match. The first three conditions in Definition 5
are analogous to a SPARQL match while vertices of query
Q are allowed to match a special value NULL. The fourth
condition requires that a local partial match must have at least
one crossing edges, as it is used to form the possible crossing
match. The fifth condition is that if vertex v (in query Q) is
matched to an internal vertex, all neighbors of v should also
be matched in this local partial match. The sixth condition is
to ensure the correctness of our framework [18].

Example 4: Given a query Q in Fig. 2 and a distributed
RDF graph G in Fig. 1, Fig. 3 shows all local partial matches
and their serialization vectors in each fragment. A local partial
match in the fragment Fi is denoted as PM j

i , where the
superscripts distinguish local partial matches in the same
fragment. Furthermore, we underline all extended vertices in
serialization vectors.

For example, PM1
1 is the overlapping part between the

crossing match discussed in Example 3 and fragment F1. PM1
1

contains a crossing edge
−−−−−−−→
001, 006. In PM1

1 , the query vertices
v3 and v5 are matched to the internal vertices 001 and 003 of
F1, so v3 and v5 are weakly connected and all neighbors of v3
and v5 are also matched. �

For a SPARQL query, local partial matches bear structural
similarities (see Section IV-A); hence, they can be represented
as vectors of Boolean formulas associated with crossing edges
(see Section IV-B). We can utilize these formulas to filter out
some irrelevant local partial matches (see Section IV-C). Last,
the remaining local partial matches are assembled to get the
final answer (see Section V). Note that, in this study, we focus
on how to represent the local partial matches in a compact way
and prune some irrelevant local partial matches. We use the
algorithm in [18] directly to find local partial matches.

III. Overview

We extend the partial evaluation and assembly [12] frame-
work to answer SPARQL queries over a distributed RDF graph
G, as shown in Fig. 4. In our execution model, there are two
stages: the partial evaluation stage and the assembly stage.

In the partial evaluation stage, each site S i first receives the
full query graph Q and finds all sets of internal candidates.The
coordinator site assembles all sets of internal candidates from
different sites, and gains the candidates’ sets of all variables
(Section VI). The coordinator site distributes the candidates’
sets, and each site uses them to determine the local partial
matches of Q in Fi, at each site S i. We explore the intrin-
sic structural similarities of local partial matches to divide
these local partial matches into some equivalence classes,
and propose a compact data structure named the LEC feature
(Definition 8) to compress them. Only by joining LEC features
can we determine the local partial matches that can contribute
to the complete matches (Section IV). In addition, we can also

prove that the communication cost of all LEC features depends
only on the size of the query and the partitioning of the graph
(Section IV-D).

In the assembly stage, we divide all local partial matches
into groups, and propose a join algorithm based on the LEC
features (Section V).

S1

S2

Sn

Local partial matches 

in S1

Local partial matches 

in S2

Local partial matches 

in Sn

Boolean 

answers

Boolean 

SPARQL queries

Assemble 

all LEC 

features
…… ……

Initialization Partial Evaluation Assembly
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S2
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in S2
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local partial 
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g variables' 

internal 

candidates

Fig. 4. Overview of Our Method

IV. LEC Feature-based Optimization

A. Local Partial Match Equivalence Class

As discussed in [18], only local partial matches with
common crossing edges from different fragments may join
together via their common crossing edges. Hence, if two local
partial matches generated from the same fragment contain the
same crossing edges and these crossing edges map to the
same query edges, then they can join with the same other
local partial matches, and this means that they should have
similar structures. For example, let us consider two local
partial matches, PM1

2 and PM2
2 in Fig. 3. They contain the

common crossing edge
−−−−−−−→
001, 006, and

−−−−−−−→
001, 006 maps to the

query edge −−−→v3v1 in both PM1
2 and PM2

2 . Thus, PM1
2 and PM2

2
are homomorphic to the same subgraph of the query graph.
Any other local partial match (like PM1

1) that can join with
PM1

2 can also join with PM2
2 .

We formalize the observation as the following theorem.
Theorem 1: Given two local partial matches PMi and PM j

from fragment Fk with functions fi and f j, we can learn that
f −1
i (PMi) = f −1

j (PM j), where f −1
i (PMi) and f −1

i (PMi) are the
subgraphs of Q induced by the matched vertices, if they meet
the following conditions:

1) ∀−−→uiu j ∈ PMi(or PM j), if −−→uiu j ∈ Ec
k, −−→uiu j ∈ PM j(or PMi);

and
2) ∀−−→uiu j ∈ PMi(or PM j), if −−→uiu j ∈ Ec

k, f −1
i (ui) = f −1

j (ui)
and f −1

i (u j) = f −1
j (u j).

Proof: First, we prove that ∀v ∈ f −1
i (PMi), v ∈ f −1

j (PM j).
For any vertex v ∈ f −1

i (PMi), there are two cases: 1) PMi

contains an edge e ∈ Ec
k and fi(v) is an endpoint of e; and 2)

all edges adjacent to fi(v) in PMi are not crossing edges.
If PMi contains an edge e ∈ Ec

k and fi(v) is an endpoint of e,
e ∈ Ec

k, e ∈ PM j. Hence, fi(v) ∈ PM j. Furthermore, because of
condition 2, v = f −1

i ( fi(v)) = f −1
j ( fi(v)). Thus, v ∈ f −1

j (PM j).
Then, let us consider the case that all edges adjacent to fi(v)

in PMi are not crossing edges. Because fi(v) does not belong



to any crossing edges in PMi, fi(v) is an internal vertex of Fk.
According to condition 6 of Definition 5, there exists a weakly
connected path between v and any other vertices mapping
to internal vertices in PMi. Therefore, given a crossing edge−−−−−−−−−→
fi(v1) fi(v2) ∈ PMi where fi(v1) is an internal vertex, there
exists a weakly connected path π = {v1, v2, ..., v} in f −1

i (PMi),
and all vertices in π map to internal vertices of Fk.

Let us consider the vertices in π from v1 to v one by one.
As fi(v1) is an endpoint of a crossing edge, v1 ∈ f −1

j (PM j). In
addition, because PMi and PM j are from the same fragment,
f j(v1) in PM j is still an internal vertex. According to condition
5 of Definition 5, all neighbors of v1 have been matched in
PM j, so v2 has been matched in PM j. Furthermore, f j(v2)
must be an internal vertex. Otherwise,

−−−−−−−−−−→
f j(v1) f j(v2) is a crossing

edge, so v2 = f −1
j ( f j(v2)) = f −1

i ( f j(v2)). In other words, f j(v2)
is an extended vertex of Fk and also maps to v2 in f −1

i (PMi).
This is in conflict with the fact that all vertices in π map to
internal vertices of Fk. By that analogy, we can prove that
all other vertices in π have been matched in PM j. Hence,
v ∈ f −1

j (PM j) and f j(v) is an internal vertex.
Similarly, we can prove that ∀v ∈ f −1

j (PM j), v ∈ f −1
i (PMi).

Therefore, the vertex set of f −1
i (PMi) is equal to the vertex

set of f −1
j (PM j). Moreover, for each vertex v in f −1

i (PMi)
and f −1

j (PM j), both of fi(v) and f j(v) are internal vertices or
extended vertices.

In contrast, for each edge −−−→v1v2 ∈ f −1
i (PMi), owing to the

condition 3 of Definition 5, at least one vertex of fi(v1)
and fi(v2) is an internal vertex. Supposing that fi(v1) is an
internal vertex, f j(v1) should also be an internal vertex, so−−−→v1v2 ∈ f −1

j (PM j). In the same way, we can prove that
∀−−−→v1v2 ∈ f −1

j (PM j), −−−→v1v2 ∈ f −1
i (PMi). Hence, the edge set of

f −1
i (PMi) is equal to the edge set of f −1

j (PM j).
In conclusion, f −1

i (PMi) = f −1
j (PM j).

Based on the above theorem, we can avoid exhaustive
enumerations among irrelevant local partial matches with the
same crossing edges that do not contribute to the final matches
and result in significant data communication. Our strategy
explores the intrinsic structural characteristics of the local
partial matches only to generate combinations. If a generated
combination cannot contribute to a valid match, we can filter
out the local partial matches corresponding to the combination.
To define the combination of multiple local partial matches,
we first define the concept of a local partial match equivalence
relation as follows.

Definition 6: (Local Partial Match Equivalence Relation)
Let Ω denote all local partial matches and ∼ be an equivalence
relation over all local partial matches in Ω such that PMi

∼ PM j if PMi(with function fi) and PM j(with function f j)
satisfy the following three conditions:

1) PMi and PM j are from the same fragment Fk;
2) ∀−−→uiu j ∈ PMi(or PM j), if −−→uiu j ∈ Ec

k, −−→uiu j ∈ PM j(or PMi);
and

3) ∀−−→uiu j ∈ PMi(or PM j), if −−→uiu j ∈ Ec
k, f −1

i (ui) = f −1
j (ui)

and f −1
i (u j) = f −1

j (u j).

Based on the above equivalence relation, all local partial
matches equivalent to a local partial match PMi can be
combined together to form the Local partial match Equivalence
Class (LEC) of PMi as follows.

Definition 7: (Local Partial Match Equivalence Class)
The local partial match equivalence class (LEC) of a local
partial match PMi is denoted [PMi], and is defined as the set

[PMi] = {PM j ∈ Ω | PM j ∼ PMi}
Then, we can prove that if two local partial matches can

join together, then all other local partial matches in the
corresponding LECs of the two local partial matches can also
join together. Put another way, we only need to select one local
partial match of a LEC as a representative to check whether
all local partial matches in the LEC can join with other local
partial matches. This prunes out many permutations of joining
local partial matches of two LECs.

Theorem 2: Given two LECs [PMi] and [PM j], if a local
partial match PMi can join with a local partial match PM j,
then any local partial matches in [PMi] can join with any local
partial matches in [PM j].

Proof: As discussed in [18], if PMi and PM j can join
together, then they are generated from different fragments, they
share at least one common crossing edge that corresponds to
the same query edge, and the same query vertex cannot be
matched by different vertices in them.

Because PMi and PM j are from different fragments, ac-
cording to Definition 6, any local partial match in [PMi]
is generated from different fragments from any local partial
match in [PM j]. Furthermore, all local partial matches in
[PMi] (or [PM j]) contain the same crossing edges that map to
the same query edges, so any local partial match in [PMi] (or
[PM j]) shares at least one common crossing edge with any
local partial match in [PM j] (or [PMi]).

In addition, as our fragmentation is vertex-disjoint, the query
vertices that the internal vertices in PMi map to should be
different from the query vertices mapped to by the internal
vertices in PM j. Hence, the internal vertices in any local partial
match of [PMi] (or [PM j]) cannot conflict with the internal
vertices that any local partial match of [PM j] (or [PMi]) map
to. In addition, as the crossing edges in PMi does not conflict
with the crossing edges in PM j and Definition 6 defines that
the local partial matches in the same LEC share the same
crossing edges and their mappings, the extended vertices in
any local partial match of [PMi] (or [PM j]) cannot conflict
with the vertices that any local partial match of [PM j] (or
[PMi]) map to.

In summary, any two local partial matches in [PM j] and
[PMi] meet all conditions that two joinable local partial
matches should meet. Hence, the theorem is proven.

Example 5: Given all local partial matches in Fig 3, there
are seven LECs as follows.

F1 : [PM1
1] = {PM1

1}; [PM2
1] = {PM2

1}, [PM3
1] = {PM1

1};
F2 : [PM1

2] = [PM2
2] = {PM1

2 , PM2
2}, [PM3

2] = {PM3
2};

F3 : [PM1
3] = {PM1

3}, [PM2
3] = {PM2

3};



As PM1
1 can join with PM1

2 and PM1
2 and PM2

2 are in the
same LEC, PM1

1 can also join with PM2
2 .�

B. LEC Feature
Theorems 1 and 2 show that many local partial matches

have the same structures, and can be combined together as a
LEC to join with local partial matches of other LECs through
their common crossing edges. The observations imply that we
can only use the same structure of local partial matches in a
LEC and the common crossing edges of the LEC to determine
whether the local partial matches of the LEC can join with the
local partial matches of other LECs.

Hence, given a LEC [PM], we maintain it as a compact data
structure called the LEC feature that only contains the same
structure of local partial matches in [PM] and the common
crossing edges of [PM], as follows:

Definition 8: (LEC Feature) Given a local partial match
PM with function f and its LEC [PM], its LEC feature
LF([PM]) = {F, g, LECS ign} consists of three components:

1) The fragment identifier, F, that PM is from;
2) A function g, which maps crossing edge −−→uiu j in PM to

its corresponding mapping
−−−−−−−−−−−−→
f −1(ui) f −1(u j) in EQ; and

3) A bitstring of the length |VQ|, LECS ign, where the i-th
bit is set to ‘1’ if f (vi) maps to an internal vertex of F.

Fig. 5 shows a LEC feature LF([PM1
1]) for the LEC [PM1

1]
shown in Example 5. In LF([PM1

1]), F1 is the fragment
identifier of the fragment that PM1

1 is generated from, and
{−−−−−−−→001, 006 → −−−→v3v1} is the set of crossing edges in PM1

1 and
their corresponding query edges; as the internal vertices in
PM1

1 match the query vertices v3 and v5 that correspond to the
third and fifth bits of LECS ign, the LECS ign in LF([PM1

1])
is [00101].

Example 6: Given the LECs in Example 5, their LEC
features are as follows:

LF([PM1
1]) = {F1, {−−−−−−−→001, 006→ −−−→v3v1}, [00101]}

LF([PM2
1]) = {F1, {−−−−−−−→001, 012→ −−−→v3v1}, [00101]}

LF([PM3
1]) = {F1, {−−−−−−−→006, 005→ −−−→v1v2}, [01010]}

LF([PM1
2]) = LF([PM2

2]) = {F2, {−−−−−−−→001, 006 → −−−→v3v1},
[11010]}

LF([PM3
2]) = {F2, {−−−−−−−→006, 005 → −−−→v1v2,

−−−−−−−→
001, 006 → −−−→v3v1},

[10000]}
LF([PM1

3]) = {F3, {−−−−−−−→001, 012→ −−−→v3v1}, [11010]}
LF([PM2

3]) = {F3, {−−−−−−−→014, 013→ −−−→v1v2}, [01010]} �

{F1,
−−−−−−−→
001, 006→ −−−→v3v1 , [ 0 0 1 0 1 ] }

PM1
1

s2:Phi2
006

s1:Phi1
001

“Crispin Wright”@en
003influencedBy

name

[006,NULL,001,NULL,003]

PM1
1 LF([PM1

1])

Fig. 5. LEC Feature LF([PM1
1 ]) (PM1

1 is the only element in [PM1
1 ])

Given a SPARQL query Q and a fragment Fi, we can find all
LEC features (according to Definition 5) in Fi, and utilize them

together to filter out some irrelevant local partial matches. In
this study, we mainly focus on how to compress all local
partial matches into LEC features. A high-level description
of computing LEC features is outlined in Algorithm 1.

Algorithm 1: Computing LEC Features
Input: The set of all local partial matches in fragment

Fi, denoted as Ω(Fi).
Output: The set of all LEC features in Fi, denoted as

Ω(Fi), denoted as Ψ(Fi).
1 for each local partial match PM in Ω(Fi) do
2 Initialize a LEC feature LF;
3 LF.F ← Fi;
4 for each mapping (−−→uiu j,

−−→viv j) in PM do
5 if ui (or u j) is an extended vertex of fragment Fi

then
6 LF.LECS ign[i] (or LF.LECS ign[ j]) ← ‘0’;
7 LF.g ← LF.g ∪ (−−→uiu j,

−−→viv j);
8 else
9 LF.LECS ign[i]← ‘1’ and LF.LECS ign[ j]←

‘1’;
10 if Ψ(Fi) does not contain LF then
11 Ψ(Fi) ← Ψ(Fi) ∪ LF;
12 Return Ω(Fi);

The above process consists of determining what the
LEC feature of a local partial match PM is. We first
initialize a LEC feature LF with the fragment identi-
fer Fi. Then, we scan all mappings in PM. For each
mapping (−−→uiu j,

−−→viv j), if ui (or u j) is an extended vertex,
we set LF.LECS ign[i] (or LF.LECS ign[ j]) as ‘0’, and
LF.LECS ign[i] (or LF.LECS ign[ j]) as ‘1’ and add (−−→uiu j,

−−→viv j)
into LF.g. Last, we insert LF into the set of all LEC features
in Fi. This above step iterates over each local partial match.
Constructing all LEC features only requires a linear scan
on the local partial matches; hence, it can be done on-the-
fly because the local partial matches stream out from the
evaluation.

C. LEC Feature-based Pruning Algorithm

In this section, based on the definition of the LEC feature
and its properties, we propose an optimization technique that
prunes some irrelevant local partial matches.

First, we define the conditions under which two local partial
matches can join together as Definition 9, and prove the
correctness of the join conditions as Theorem 3.

Definition 9: (Joinable) Given two local partial matches
PMi and PM j, they are joinable if their LEC features
LF([PMi]) and LF([PM j]) meet the following conditions:

1) LF([PMi]).F , LF([PM j]).F;
2) There exist at least one edge −−→uiu j, such that

LF([PMi]).g(−−→uiu j) = LF([PM j]).g(−−→uiu j);
3) There exist no two edges −−→uiu j and

−−→
u′iu
′
j in the domains

of LF([PMi]).g and LF([PM j]).g, respectively, such that
LF([PMi]).g(−−→uiu j) = LF([PM j]).g(

−−→
u′iu
′
j); and



4) All bits in LF([PMi]).LECS ign ∧ LF([PM j]).LECS ign
are ‘0’.

Theorem 3: Given two LEC [PMi] and [PM j], if the LEC
features of [PMi] and [PM j] are joinable, then any local partial
match in [PMi] can join with any local partial match in [PM j].

Proof: Due to Condition 1 of Definition 9, any local par-
tial match in [PMi] is generated from different fragments than
any local partial match in [PM j] is generated from. Condition
2 of Definition 9 means that any local partial matches in [PMi]
shares at least one common crossing edge mapping to the same
query edge with any local partial matches in [PM j]. Condition
3 of Definition 9 implies that the same query vertex cannot
be matched by different vertices in crossing edges of local
partial matches in [PMi] and [PM j]. Condition 4 of Definition
9 means that the same query vertex cannot be matched by
different internal vertices edges of local partial matches in
[PMi] and [PM j].

In summary, all conditions of Definition 9 imply that all
local partial matches in [PMi] and [PM j] meet all joining
conditions discussed in [18]. Hence, any local partial match
in [PMi] can join with any local partial match in [PM j].

Further, we prove in the following theorem that only by
using all LEC features can we determine whether the local
partial matches of a LEC can contribute to the complete
matches.

Theorem 4: Given m (m ≤ |VQ|) local partial matches
PM1, PM2, ..., PMm, the local partial matches can join together
to form a match of Q if their corresponding LEC features meet
the following conditions:

1) For any PMi, there exists a local partial match PM j

( j , i) that [PMi] and [PM j] are joinable;
2) ∀1 ≤ i , j ≤ m, all bits in LF([PMi]).LECS ign ∧

LF([PM j]). LECS ign are ‘0’; and
3) All bits in LF([PM1]).LECS ign∨ LF([PM2]).LECS ign
∨... ∨ LF([PMm]).LECS ign are ‘1’.

Proof: Here, we prove that if the three conditions in
Theorem 4 are met, then PM1 Z PM2 Z ... Z PMm is a
match of Q.

Conditions 1 and 2 in Theorem 4 guarantees that the m local
partial matches can join together. Condition 3 in Theorem 4
means that each vertex u in PM1 Z PM2 Z ... Z PMm is an
internal vertex of one local partial match PMi (i ≤ m). As u is
an internal vertex in PMi, all of u’s adjacent edges have been
matched. Then, we can know all edges in PM1 Z PM2 Z ... Z
PMm have been matched. Hence, PM1 Z PM2 Z ... Z PMm

is a match of Q.
Theorem 4 implies that we only need assemble all LEC

features to determine which local partial matches can con-
tribute to the complete match. Only when all bits in LECS ign
of the joined result of some LEC features are ‘1’ can the
corresponding local partial matches join to form a SPARQL
match.

Therefore, we can assemble all LEC Features and merge
them together to prune some irrelevant local partial matches. If
a LEC feature cannot contribute to a union result of some LEC

features’ LECS ign where all bits are ‘1’, then all local partial
matches corresponding to the LEC feature can be pruned.

The straightforward approach of merging all LEC features
is to check whether each pair of LEC features are joinable.
However, the join space of the straightforward approach is
very large; hence, we propose a partitioning-based optimized
technique to reduce the join space. The intuition of our
partitioning-based technique is that we divide all LEC features
into multiple groups, such that two LEC features in the same
group cannot be joinable. Then, we only consider joining LEC
features from different groups.

Theorem 5: Given two LEC features LFi and LF j, if
LFi.LECS ign = LF j.LECS ign, LFi and LF j are not joinable.

Proof: Because LFi.LECS ign is equal to LF j.LECS ign,
LFi. LECS ign ∧ LF j.LECS ign = LFi.LECS ign = LF j.
LECS ign. According to Condition 4 of Definition 5, there is at
least one internal vertex in a local partial match, so there is at
least one ‘1’ in LFi.LECS ign and LF j.LECS ign. Therefore,
there is at least one ‘1’ in LFi.LECS ign∧LF j.LECS ign, which
is in conflict with Condition 4 of Definition 9.

Definition 10: (LEC Feature Group) Let Ψ denote all
LEC features. P = {P1, ..., Pn} is a set of LEC feature groups
for Ψ if and only if each group Pi (i = 1, ..., n) consists of a
set of LEC features all having the same LECS ign.

Example 7: Given all LEC features in Example 6, the LEC
feature groups {P1, P2, P3, P4, P5} are as follows.

P1 = {LF([PM1
1]), LF([PM2

1])},
P2 = {LF([PM3

1])}, P3 = {LF([PM1
2]), LF([PM1

3])},
P4 = {LF([PM3

2])}, P5 = {LF([PM2
3])}. �

Given a set P of LEC feature groups, we build a join graph
(denoted as JG = {V JG, EJG}) as follows. In a join graph, one
vertex indicates a LEC feature group. We introduce an edge
between two vertices in the join graph if and only if some of
their corresponding LEC feature groups can be joinable. Fig.
6 shows the join graph of P.

P1

P4

P3

P2

P5

Fig. 6. Join Graph

We propose an algorithm (Algorithm 2) based on a depth-
first search (DFS) traversal over the join graph, to filter out
the irrelevant LEC features. For example, P5 = LF([PM2

3]) in
our example can be filtered out after we execute Algorithm 2.

D. Analysis

To analyze the complexity of the above optimization tech-
nique, we consider the communication and computation costs.
The communication cost is the data shipment needed in the
above optimization technique, whereas the computation cost is
the response time needed for evaluating the query at different
sites in parallel. In general, our method can guarantee the
following:



Algorithm 2: LEC Feature-based Pruning Algorithm
Input: A set P = {P1, ..., Pn} of LEC feature groups and

the join graph JG
Output: The set RS of LEC features that can contribute

to complete matches
1 RS ← ∅;
2 while V JG , ∅ do
3 Find the vertex vmin ∈ V JG corresponding to LEC

feature group Pmin, where Pmin has the smallest size;
4 Call Function ComLECFJoin({vmin}, Pmin, JG,RS );
5 Remove vmin from V JG;
6 Remove all outliers remaining in JG;

Function ComLECFJoin(V, P, JG,RS )
1 for each vertex v in JG adjacent to at least one vertex in V,

where v corresponds to LEC feature group P′ do
2 Set P′′ ← ∅;
3 for each LEC feature LFi in P do
4 for each LEC feature LF j in P′ do
5 if LFi and LF j are joinable then
6 LFk ← LFi Z LF j;
7 if all bits in LFk.LECS ign are ‘1’ then
8 Insert all LEC features corresponding to

vertices in V into RS ;
9 else

10 Put LFk into P′′;
11 Call Function ComLECFJoin(V ∪ {v}, P′′, JG);

Communication cost. As discussed previously, our opti-
mization technique assembles the LEC features to prune the
local partial matches. A general formula for determining the
communication cost can be specified as CostLF × |Ψ|, where
CostLF is the size of a LEC feature, and |Ψ| is the number of
LEC features.

For any LEC feature {F, g, LECS ign}, its cost, CostLF ,
consists of three components. The first component is the cost
of the fragment identifier F, which is a constant. The second
component is the cost of the function g mapping the crossing
edges to the query edges. The number of crossing edges is
at most |EQ|, so the complexity of g is O(|EQ|). The last
component, LECS ign, is defined as a bitstring of fixed-length
|VQ|, so the cost of LECS ign is also Q(|VQ|). In summary, the
cost of any LEC feature is O(|EQ| + |VQ|).

In contrast, the number of LEC features, |Ψ|, only depends
on the number of crossing edges in fragment Fi , i.e., |Ec

i |,
because of the LEC features only introduced by these crossing
edges. In the worst case, each query edge can map to any edge
in Ec

i , and then the number of LEC features is O(|Ec
i ||E

Q |).
Hence, the number of LEC features is O(

∑|F |
i=1 |Ec

i ||E
Q |).

Overall, the total communication cost is O(
∑|F |

i=1 |Ec
i ||E

Q | ×
(|EQ|+ |VQ|)). Thus, given a distributed RDF graph G, our op-
timization technique has the property that the communication
cost of evaluating a query depends mainly on the size of the
query and the partitioning of the graph.

Computation cost.There are two parts of our optimization

technique: partial evaluation for computing LEC features, and
assembly for joining LEC features to obtain the final answer.
We discuss the costs of the two stages as follows:

First, computing local partial matches to determine LEC
features is performed on each fragment Fi in parallel, and it
takes O(|Vi ∪Ve

i ||V
Q |) time to compute all local partial matches

for each fragment. Hence, it takes at most O(|Vm ∪ Ve
m||VQ |)

time to get all LEC features from all sites, where Vm ∪ Ve
m is

the vertex set of the largest fragment in F .
Second, we only need to scan all LEC features once to

partition them, so it takes O(|Ψ|) to partition all LEC features.
In addition, given a partitioning P = {P1, ..., Pn}, joining all
LEC features costs

∏i=n
i=1 |Pi|, which is bounded by O(( |Ψ||VQ | )

|VQ |).
As discussed previously, |Ψ| independent of the entire graph
G; hence, the response time is also independent of G.

In summary, the data shipment of our method depends on
the size of query graph and the number of crossing edges only,
and the response time of our method depends only on the
size of query graph, the largest fragment, and the number of
edges across different fragments. Thus, our method is partition
bounded in both data shipment and response time [3].

V. LEC Feature-based Assembly

After we gain all local partial matches, we need to assemble
and join all them to form all complete matches. In this section,
we discuss the join-based assembly of local partial matches
to compute the final results. The join method proposed in
[18] is a partitioning-based join algorithm, where the local
partial matches are divided into multiple partitions based on
their internal candidates, such that two local partial matches
in the same partitions cannot be joinable. All local partial
matches in the same partition map to the internal vertices for a
given variable. In [18], the authors prove that the local partial
matches in the same partition cannot be joined.

The join space of the join algorithm in [18] is still large.
As discussed previously, we can determine whether two local
partial matches in two different fragments can join according
to their corresponding LEC features. Thus, we propose an
optimized technique based on the LEC features of the local
partial matches to join the local partial matches.

The intuition of our method is that we divide all local partial
matches into multiple groups based on their LEC features as
proved in Theorem 5, such that two local partial matches in
the same group cannot be joinable. Then, we only consider
joining local partial matches from different groups.

Definition 11: (LEC Feature-based Local Partial Match
Group) G = {Gr1, ...,Grn} is a set of local partial match groups
for Ω if and only if each group Gri (i = 1, ..., n) consists of a set
of local partial matches and the corresponding LEC features
of the local partial matches have the same LECS ign.

Example 8: Given all local partial matches in Fig. 3, after
PM2

3 is pruned during LEC feature-based optimization, the
LECSign-based local partial match groups {Gr1,Gr2,Gr3,Gr4}
are as follows:

Gr1 = {PM1
1 , PM2

1},Gr2 = {PM3
1},



Gr3 = {PM1
2 , PM2

2 , PM1
3},Gr4 = {PM3

2} �
Given a set G of LECSign-based local partial match groups,

we also build a local partial match group join graph (denoted
as LG = {VGr, EGr}) as follows. In a join graph, one vertex
indicates a LEC feature-based local partial match group. We
introduce an edge between two vertices in the join graph if
and only if some of their corresponding LEC features can be
joinable. Here, the join graph of G is shown in Fig. 7.

Gr1

Gr4

Gr3

Gr2

Fig. 7. Local Partial Match Group Join Graph

Then, we use Algorithm 3 based on the DFS traversal over
the local partial match group join graph to get the complete
matches.

Algorithm 3: LEC Feature-based Assembly Algorithm
Input: A set G = {Gr1, ...,Grn} of LEC feature-based

local partial match groups and its join graph LG
Output: The set of complete matches, MS

1 while VGr , ∅ do
2 Find the vertex vmin ∈ VGr corresponding to LEC

feature-based local partial match group Grmin, where
Grmin has the smallest size;

3 Call Function ComParJoin({vmin},Grmin, LG,MS );
4 Remove vmin from VGr;
5 Remove all outliers remaining in LG;
6 Return false;

Function ComParJoin(V,Gr, LG,MS )
1 for each vertex v in LG adjacent to at least one vertex in V,

where v corresponds to Gr′ do
2 Gr′′ ← ∅;
3 for each local partial match PMi in Gr do
4 for each local partial match PM j in Gr′ do
5 if PMi and PM j are joinable then
6 PMk ← PMi Z PM j;
7 if all vertices in PMk are matched then
8 Put PMk into MS ;
9 else

10 Put PMk into Gr′′;
11 Call Function ComParJoin(V ∪ {v},Gr′′, LG,MS );

VI. Assembling Variables’ Internal Candidates

In this section, we present another optimization technique:
assembling variables’ internal candidates. This technique is
based on using the internal candidates of all variables in each
site to filter out some false positives.

Existing RDF database systems used in sites storing indi-
vidual fragments often adopt a filter-and-evaluate framework.

They first compute out the candidates of all variables, and then
search matches over these candidates. The process of finding
candidates is often very quick. Hence, we can modify the
codes of these systems and assemble the internal candidates
in the coordinator site. When the set of internal candidates
for variable v (denoted as C(Q, v)) has been found, we do not
find local partial matches directly, but send the set of internal
candidates to the coordinator site.

The major benefit for assembling variables’ internal can-
didates is to avoid some false positive local partial matches.
When a site finds local partial matches, it does not consider
how to join them with local partial matches in other sites.
Hence, many unnecessary candidates may be generated, and
they do not appear in any complete matches. To filter out these
unnecessary candidates, the coordinator site can assemble and
union the candidates’ sets of a variable from all sites. If a
candidate of variable v can appear in a complete match, it
must belong to v’s internal candidate sets from all sites. Then,
when we compute the local partial matches, we avoid forming
the local partial matches over those extended candidates that
do not appear in the assembled internal candidates.

In practice, there may be too many internal candidates for
each variable, resulting in a high communication cost. To
reduce the communication cost, we compress the information
of all internal candidates for each variable into a fixed-length
bit vector. For variable v, we associate it with a fixed length
bit vector Bv. We define a hash function to map each of v’s
internal candidates in a site to a bit in Bv. Then, all v’s internal
candidates can be compressed in Bv. Thus, the coordinator
site only needs to assemble all bit vectors of variables from
different sites and to perform bitwise OR operations over bit
vectors of a variable from different sites. We can send the
result bit vectors of all variables to different sites and filter
out some false positive candidates. Because the length of a bit
vector is fixed, the communication cost is not too expensive.

Smaller search space can speed up evaluating the SPARQL
query, meanwhile modern distributed environments have much
faster communication networks than in the past. Hence, it
is beneficial for us to afford the cost of communicating the
candidate bit vectors between the coordinator site and the sites.

Algorithm 4 describes the optimization of assembling vari-
ables’ internal candidates. The coordinator site receives and
unions the bit vectors of candidates of all variables. Then, the
coordinator site sends the result bit vectors of all variables
to sites. For each site, it firstly finds out the candidates of
variables locally, and compresses them into bit vectors. It then
sends all bit vectors to the coordinator site, and waits for the
bit vectors of all variables from the coordinator site.

With the received bit vectors of all variables, the site can
filter out many false positive extended candidates during the
computing of the local partial matches.

VII. Impact of Partitioning Strategies

In this section, we analyze the impact of different partition-
ing strategies for our method.



Algorithm 4: Assembling Variables’ Internal Candidates
Input: A distributed RDF graph G over sites {S 1, ..., S m},

coordinator site S c, and the SPARQL query Q.
Output: The internal bit vector Bv of any variable v.

1 The Coordinator Site S c:
2 for each variable v in Q do
3 Bv ← 0;
4 for each site S i do
5 Receive B′v from S i;
6 Bv ← Bv ∨ B′v;
7 for each site S i do
8 Send Bv to S i;
9 The Site S i:

10 for each variable v in Q do
11 Find C(Q, v) and B′v ← 0;
12 for each internal candidate c in C(Q, v) do
13 Use a hash function h to map c to an integer h(c);
14 Set the h(c)-th bit of B′v to 1;
15 Send Bv to S c;
16 Receive Bv from S c;

According to the above analysis, the costs of our method
are mainly dependent on the number of LEC features. The
straightforward heuristic is to reduce the number of crossing
edges. However, if we examine the complexity of the cost
more deeply, we discover that the small size of an edge cut
does not always result in a small number of LEC features. For
example, let us consider two example partitionings in Fig. 8.
Although the partitioning in Fig. 8(b) results in more crossing
edges, its crossing edges are scattered to different boundary
vertices. In contrast, all crossing edges in Fig. 8(a) are adjacent
to one boundary vertex. When a star query Q of two edges as

Fig. 8(c) is input, it maps to
(

4
2

)
+

(
4
1

)
= 10 LEC features

for the partitioning in Fig. 8(a), and
(

3
2

)
+

(
3
1

)
+

(
2
2

)
+(

2
1

)
= 9 LEC features for the partitioning in Fig. 8(b).

(a) (b) (c)

Fig. 8. Comparison of Different Partitionings

Based on the above observation, in a good partitioning for
our method, the crossing edges need to be scattered to as many
vertices as possible. Given a partitioning F = {F1, F2, ..., Fk}
and the set of its crossing edges Ec, we define the distribution

of crossing edges over a vertex v, pF (v), as follows.

pF (v) = |N(v) ∩ Ec|/(2 × |Ec|)
In the above, N(v) is the set of v’s neighbors. Note that,

an edge can be adjacent to two vertices, so the divisor in
pF (v) should be 2× |Ec|, which can ensure that the sum of the
distributions over all vertices is 1.

Then, the expectation of the number of crossing edges
adjacent to a vertex v is as follows.

EF (v) = |N(v) ∩ Ec| × pF (v)

Then, the total expectation of the number of crossing edges
distributed to all vertices is as follows.

EF (V) =
∑
v∈V

EF (v)

To scatter the crossing edges to as many vertices as possible,
the above expectation should be as small as possible.

In addition, when we partition the graph, we should also
balance the sizes of all fragments. Thus, we should avoid
generating a fragment with too many edges. Here, we use the
edge number of the largest fragment to measure the balance
of fragments. In summary, we combine the above two factors
to define the cost of a partitioning as follows.

CostPartitioning(F ) = EF (V) × max
1≤i≤k
|Ei ∪ Ec

i |

Here, a more sophisticated partitioning strategy is beyond
the scope of this study. We only select the partitioning with
the smallest cost from the existing partitioning strategies. For
example, the cost of the partitioning in Fig. 8(a) is 27.5, and
the cost of the partitioning in Fig. 8(b) is 23.4. Hence, the
partitioning in Fig. 8(b) is a better partitioning to be selected.

VIII. Experiments

In this section, we use some real and synthetic RDF datasets
to conduct our experiments.

A. Setting

LUBM. LUBM [5] is a benchmark that adopts an ontology
for the university domain, and can generate RDF data scalable
to an arbitrary size. We generate three datasets of triples from
100 million to 1 billion, whose sizes vary from 15 GB to 150
GB. The dataset of 100 million triples is denoted as LUBM
100M, the one of 500 million triples is LUBM 500M and the
one of 1 billion triples is LUBM 1B. We use the 7 benchmark
queries in [1] (denoted as LQ1 − LQ7) to test our methods.

YAGO2. YAGO2 [11] is a real RDF dataset that is extracted
from Wikipedia. YAGO2 also integrates its facts with the
WordNet thesaurus. It contains approximately 284 million
triples of 44 GB. We use the benchmark queries in [1] (denoted
as YQ1 − YQ4) to evaluate our methods.

BTC. BTC2 is a real dataset used for the Billion Triples
Track of the Semantic Web Challenge, and contains approx-
imately 1 billion triples of 176 GB. We use the 7 queries
(denoted as BQ1 − BQ7) in [18] to test our methods.



TABLE I
Evaluation of Each Stage on LUBM 100M

Partial Evaluation Assembly
Assembling Variables’
Internal Candidates

Time of Local
Partial Match

LEC Feature-based Opti-
mization

Time of LEC
Feature-based

Total Time
(in ms)

Local
Partial

Matches’
Number

Crossing
Matches’

Time
(in ms)

Data Shipment
(in KB)

Computation
(in ms)

Time
(in ms)

Data Shipment
(in KB) Time(in ms) Assembly

(in ms)
Matches’
Number

Number

LQ1 4,029 2,032 21,550 2,054 38,882 27,633 12,539 40,172 276,327 21 21
LQ2 0 0 8,488 0 0 0 0 8,488 0 864,197 0
LQ3 568 16 2,795 0 0 3,363 0 3,363 0 0 0
LQ4

√
0 0 221 0 0 0 0 221 0 10 0

LQ5
√

0 0 187 0 0 0 0 187 0 10 0
LQ6

√
1,556 136 1,516 61 1 3,133 9 3,142 228 125 114

LQ7 7,827 2,268 25,779 2,323 5,057 35,929 12,582 48,511 973,255 35,434 35,077√
means that the query involves some selective triple patterns.

TABLE II
Evaluation of Each Stage on YAGO2

Partial Evaluation Assembly
Assembling Variables’
Internal Candidates

Time of Local
Partial Match

LEC Feature-based Opti-
mization

Time of LEC
Feature-based

Total Time
(in ms)

Local
Partial

Matches’
Number

Crossing
Matches’

Time
(in ms)

Data Shipment
(in KB)

Computation
(in ms)

Time
(in ms)

Data Shipment
(in KB) Time(in ms) Assembly

(in ms)
Matches’
Number

Number

YQ1 188 13 1,007 879 6 2,094 79 2,153 811 17 17
YQ2 315 15 999 26 1 1,340 0 1,340 0 0 0
YQ3 1,341 137 3,292 1,599 1,317 6,232 21,404 27,636 816,382 605,993 588,390
YQ4 388 27 2,036 1,602 293 4,026 686 4,712 16,661 226 224

TABLE III
Evaluation of Each Stage on BTC

Partial Evaluation Assembly
Assembling Variables’
Internal Candidates

Time of Local
Partial Match

LEC Feature-based Opti-
mization

Time of LEC
Feature-based

Total Time
(in ms)

Local
Partial

Matches’
Number

Crossing
Matches’

Time
(in ms)

Data Shipment
(in KB)

Computation
(in ms)

Time
(in ms)

Data Shipment
(in KB) Time(in ms) Assembly

(in ms)
Matches’
Number

Number

BQ1
√

0 0 259 0 0 0 0 259 0 1 0
BQ2

√
0 0 269 0 0 0 0 269 0 2 0

BQ3
√

0 0 187 0 0 0 0 187 0 0 0
BQ4

√
39,842 2,699 45,723 2,511 1 88,076 93 88,169 5 4 4

BQ5
√

45,962 1,929 6,858 1,504 1 54,324 2 54,326 16 12 11
BQ6 19,663 1,047 1,589 756 1 22,008 2 22,010 0 0 0
BQ7 35,849 3,071 21,233 2,848 1 59,930 24 59,954 0 0 0

We conduct all experiments on a cluster of 12 machines
running Linux, each of which has two CPU with six cores
of 1.2 GHz. Each machine has 128 GB memory and 28
TB disk storage. We select one of these machines as the
coordinator machine. We use MPICH-3.0.4 running on C++

for communication. By default, we use a hash function H(v)
to assign each vertex v in RDF graph to the i-th fragment if
H(v) MOD N = i, where N = 12 is the number of machines.
Each machine stores a single fragment.

In this study, we revise gStore [25] to find local partial
matches at each site. We denote our method as gStoreD.
We compare our approach with four other systems, including
DREAM [7], S2X [19], S2RDF [20] and CliqueSquare [4].
The codes of these systems were released by [1] in GitHub3.
We also release our codes in GitHub4.

B. Evaluation of Each Stage

In this experiment, we study the performance of our ap-
proaches at each stage (i.e., partial evaluation and assembly

2http://km.aifb.kit.edu/projects/btc-2012/
3https://github.com/ecrc/rdf-exp
4https://github.com/bnu05pp/gStoreD

process) with regard to different queries in LUBM 100M,
YAGO2 and BTC. We report the running time of each stage,
the size of the data shipment, the number of intermediate and
complete results, and the communication time with regard to
different queries in Tables I, II and III. Generally, the query
performance mainly depends on two factors: the shape of the
query graph and the existence of the selective triple patterns.

For the shape of the query graph, we divide all benchmark
queries into two categories according to the complexities of
their structures: stars and other shapes. The evaluation times
for star queries (LQ2, LQ4 and LQ5 in LUBM, and BQ1,
BQ2 and BQ3 in BTC) are short. Each crossing edge in the
distributed RDF graph is replicated, so any results of star
queries are certain to be in a single fragment, and we can
directly compute out the results over each fragment without
considering communications and our optimization techniques.
In contrast, queries of other query shapes involve multiple
fragments, and generate local partial matches that increase
the search space of the partial evaluation and the assembly
process. Thus, evaluating them has a worse performance.

For the selective triple patterns, our method processes
queries with selective triple patterns faster than queries without



selective triple patterns. The performance of our method is
dependent on the computation and assembly of local partial
matches. The selective triple patterns can be used to filter
out many irrelevant candidates and local partial matches,
which significantly reduces the search space for computing
and joining the local partial matches.

C. Evaluation of Different Optimizations

This experiment uses LUBM 100M and YAGO2 to test the
effect of the three optimization techniques proposed in this
study. Here, because star queries can be evaluated without
involving any optimization techniques, we only consider the
benchmark queries of other shapes (LQ1, LQ3, LQ6 and LQ7 in
LUBM and all queries in YAGO2). We design a baseline that
does not utilize any proposed optimization techniques (denoted
as gS toreD-Basic), a baseline using only the optimization of
the LEC feature-based assembly (denoted as gS toreD-LA),
and a baseline using only the optimizations of the LEC feature-
based assembly and LEC feature-based optimization (denoted
as gS toreD-LO). Fig. 9 shows the experiment results.

In general, the optimization of LEC feature-based assem-
bly only repartitions the local partial matches to reduce the
join space and does not lead to extra communications, so
gS toreD-LA has the same partial evaluation stage as gS toreD-
Basic, and their difference is only on the assembly stage.
Because gS toreD-LA optimizes the joining order without
the extra communications, it is always faster than gS toreD-
Basic. In contrast, the optimizations of assembling variables’
internal candidates and LEC feature-based optimization lead
to extra communications for internal candidates and local
partial matches, so they may result in extra processing times.
However, the optimizations are effective, and improve the
performance in most cases. Especially for the selective queries
of complex shapes (LQ3 in LUBM and YQ1, YQ2, YQ4 in
YAGO2), the optimizations can improve the performance by
orders of magnitude.
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Fig. 9. Evaluation of Different Optimizations

D. Evaluation of Different Partitioning Strategies

The aim of this experiment is to highlight the differences
among different partitioning strategies. In this experiment, we
use LUBM 100M and YAGO2 and test three partitioning
strategies, hash partitioning, semantic hash partitioning [15],
and METIS [14]. Here, we also only consider the benchmark

queries of other shapes. Table IV shows the costs of the
different partitionings defined in Section VII, while Fig. 10
shows the evaluation times of our method over different
partitionings.

The hash partitioning can uniformly distribute vertices and
crossing edges among different fragments. Hence, the cost
of the hash partitioning is not too high. The semantic hash
partitioning is based on the URI hierarchy. For LUBM 100M,
because different entities have different URI hierarchies, the
semantic hash partitioning can partition the entities totally
based on their domains, which greatly reduces its partitioning
cost. In contrast, all entities in YAGO2 have the same URI
hierarchy, and the cost of the semantic hash partitioning
is approximately same as the hash partitioning. Hence, the
performance of our method over LUBM 100M in the semantic
hash partitioning is better than other partitionings, while the
performance over YAGO2 is similar. In addition, although
there are fewer crossing edges in METIS, its partitioning result
is much more imbalanced than the hash partitioning, indicating
that the cost of METIS is high. Hence, the performance in
METIS is always worse than the hash partitioning for YAGO2.

TABLE IV
CostPartitioning

Hash Semantic Hash METIS
YAGO2 0.76 × 1014 0.77 × 1014 1.49 × 1014

LUBM 100M 0.92 × 109 0.55 × 109 0.67 × 109
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Fig. 10. Evaluation Time of Different Partitioning Strategies

E. Scalability Test

We investigate the effect of data size on query evaluation
times in this experiment. We generate three LUBM datasets,
varying from 100 million to 1 billion triples, to test our
method. Fig. 11 shows the experiment results. As mentioned
in Section VIII-B, we divide the queries into four categories
according to their structures: star queries (LQ2, LQ4 and LQ5)
and other queries (LQ1, LQ3, LQ6 and LQ7).

In general, because the number of crossing edges linearly
increases as the data size increases and our approach is
partition bounded, the query response time also increases
proportionally to the data size. Here, for queries of other
shapes, the query response times may grow faster. This is
because the other query graph shapes cause more complex



operations in query processing, such as joining and assembly,
and a larger number of local partial matches. However, even
for queries of complex structures, the query performance is
scalable with the RDF graph size on the benchmark datasets.
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Fig. 11. Scalability Test

F. Online Performance Comparison

In this experiment, we evaluate the online performance
of our method on different partitionings of three datasets,
YAGO2, LUBM 1B, and BTC. Fig. 12 shows the perfor-
mances. Note that METIS can only be used on YAGO2, and
fails to partition LUBM 1B and BTC in our setting.

The results of this experiment include a comparative eval-
uation of our method against four state-of-the-art public disk-
based distributed RDF systems proposed in the most recent
three years, including DREAM [7], S2X [19], S2RDF [20],
and CliqueSquare [4], which are provided by [1]. Other
distributed RDF systems in the most recent three years are
either unreleased, or are memory-based systems that are in
different environments than targeted in this study. Note that
S2X fails to run all queries on LUBM 1B. We also run
DREAM and CliqueSquare over BTC, while S2X and S2RDF
fail over BTC.

Generally, our method is partitioning-tolerant, and the per-
formances of our method over different partitionings show the
superiority of our proposed approach.

In particular, S2X, S2RDF, and CliqueSquare are three
cloud-based systems that suffer from the expensive overhead
of scans and joins in the cloud. Only when the queries (LQ1,
LQ2 and LQ7 in LUBM) are unselective and are evaluated
over a very large RDF dataset (LUBM 1B) that can generate
many intermediate results might they have better performances
than DREAM and our approach when running over ill-suited
partitionings. However, when our method runs over partition-
ings with the smallest costs (hash partitioning for YAGO2
and semantic hash partitioning for LUBM 1B and BTC), our
method can outperform others.

On the other hand, when the queries (LQ3, LQ4, LQ5 and
LQ6 in LUBM 1B and all queries in BTC) are selective or
the RDF dataset (YAGO2) is not very large, DREAM [7] and
our system can outperform the cloud-based systems in most
cases. Here, DREAM builds a single RDF-3X database for the
entire dataset in each site, and decomposes the input query
into multiple star-shape subqueries, where each subquery

is answered by a single site. This can greatly reduce the
performances over the selective queries and small datasets.
However, DREAM exhibits excessive replication, and causes
huge overhead when processing complex queries. When a
query is complex, it may lead to multiple large subqueries.
Evaluating the large subqueries over a site of the entire dataset
often results in many intermediate results, and joining these
intermediate results is also costly. Our method, running over
the best partitionings, can always be comparable to DREAM.
In addition, DREAM fails to process YQ2.

IX. RelatedWork

Distributed SPARQL Query Processing. There have been
many works on distributed SPARQL query processing, and a
very good survey is [13]. In recent years, some approaches
such as [4], [24], [23], [8], [9], [17], [7], [20], [10] have been
proposed. We classify them into three classes: cloud-based
approaches, partitioning based approaches, and partitioning-
tolerant approaches.

First, some recent works (e.g., [4], [20], [19]) focus on
managing RDF datasets using cloud platforms. CliqueSquare
[4] discusses how to build query plans by relying on n-ary
(star) equality joins in Hadoop. S2RDF [20] uses Spark SQL
to store the RDF data in a vertical partitioning schema and
materializes some extra join relations. In the online phase,
S2RDF transforms the query into SQL queries and merges
the results of the SQL queries. S2X [19] uses GraphX in
Spark to evaluate SPARQL queries. S2X first distributes all
triple patterns to all vertices. Then, vertices validate their
triple candidacy with their neighbors by exchanging messages.
Lastly, the partial results are collected and merged. Stylus [10]
uses Trinity [21], a distributed in-memory key-value store, to
maintain the adjacent list of the RDF graph while considering
the types. In the online phase, Stylus decomposes the query
into multiple star subqueries and evaluates the subqueries by
using the interfaces of Trinity.

Second, some approaches [24], [23], [8], [9], [17] are
partition-based. They divide an RDF graph into several parti-
tions. Each partition is placed at a site that installs a centralized
RDF system to manage it. At run time, a SPARQL query
is decomposed into several subqueries that can be answered
locally at a site. The results of the subqueries are finally
merged. Each of these approaches has its own data parti-
tioning strategy, and different partitioning strategies result in
different query decomposition methods. DiploCloud [24] asks
the administrator to define some templates as the partition
unit. DiploCloud stores the instantiations of the templates
in compact lists as in a column-oriented database system;
PathBMC [23] adopts the end-to-end path as the partition unit
to partition the data and query graph; AdHash [8] and AdPart
[9] directly use the subject values to partition the RDF graph
and mainly discuss how to reduce the communication cost
during distributed query evaluation; and Peng et al. [17] mine
some frequent patterns in the log as the partitioning units.

DREAM [7] and Peng et al. [18] are two other approaches
that neither partition RDF graphs nor use existing cloud
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Fig. 12. Online Performance Comparison

platforms. In DREAM [7], each site maintains the whole
RDF dataset. For query processing, DREAM divides the
input query into subqueries, and executes each subquery in
a site. The intermediate results are merged to produce the
final matches. Peng et al. [18] propose a partition-tolerant
distributed approach based on the “partial evaluation and
assembly” framework. However, its efficiency has a large
potential for improvement.

Partial Evaluation. As surveyed in [12], partial evaluation
has found many applications ranging from compiler opti-
mization to distributed evaluation of functional programming
languages. Recently, partial evaluation has been used for eval-
uating queries on distributed graphs, as in [16], [2], [3], [6],
[22]. In [2], [6], the authors provide algorithms for evaluating
reachability queries on distributed graphs based on partial
evaluation. In [16], [3], the authors study partial evaluation
algorithms and optimizations for distributed graph simulation.
Wang et al. [22] discuss how to answer regular path queries
on large-scale RDF graphs using partial evaluation. Peng et
al. [18] discuss how to employ the “partial evaluation and
assembly” framework to handle SPARQL queries, but it fails
to provide performance guarantees on the total network traffic
and the response time.

X. Conclusion

In this study, we propose three optimizations to improve the
partial evaluation-based distributed SPARQL query processing
approach. The first is to compress the partial evaluation results
in a compact data structure named the LEC feature, and to
communicate them among sites to filter out some irrelevant
partial evaluation results while providing some performance
guarantees. The second is the LEC feature-based assembly of
all local partial matches to reduce the search space. Moreover,
we propose an optimization that communicates variables’
candidates among the sites to avoid irrelevant local partial
matches. We also discuss the impact of different partitionings
over our approach. In addition, we perform extensive experi-
ments to confirm our approach.
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