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Abstract—Online social networks have become the medium for
efficient viral marketing exploiting social influence in information
diffusion. However, the emerging application Social Coupon (SC)
incorporating social referral into coupons cannot be efficiently
solved by previous researches which do not take into account the
effect of SC allocation. The number of allocated SCs restricts
the number of influenced friends for each user. In the paper,
we investigate not only the seed selection problem but also
the effect of SC allocation for optimizing the redemption rate
which represents the efficiency of SC allocation. Accordingly, we
formulate a problem named Seed Selection and SC allocation for
Redemption Maximization (S3CRM) and prove the hardness of
S3CRM. We design an effective algorithm with a performance
guarantee, called Seed Selection and Social Coupon allocation
algorithm. For S3CRM, we introduce the notion of marginal
redemption to evaluate the efficiency of investment in seeds
and SCs. Moreover, for a balanced investment, we develop a
new graph structure called guaranteed path, to explore the
opportunity to optimize the redemption rate. Finally, we perform
a comprehensive evaluation on our proposed algorithm with
various baselines. The results validate our ideas and show the
effectiveness of the proposed algorithm over baselines.

I. INTRODUCTION

Online social networks (OSNs), e.g., Facebook, Twitter,
have fostered efficient diffusion of information and advertise-
ment. Social influence [1] is the cornerstone of viral marketing
and draws a wide spectrum of research, such as influence
maximization (IM) [2]–[16] (identifying the k seed users for
maximizing the total influence spread) and profit maximization
(PM) [17]–[23] (maximizing the total benefit from influ-
enced users subtracted by the total expense). Recently, Social
Coupon (SC) [24], [25], emerges to incorporate social referral
into coupons [24], [25]. Real examples include Dropbox1,
which offers free space to a user that shares cost-effective deals
to Facebook friends. The user will acquire 500 MB free space
after any friend accepts the deal (up to 16 GB for each user).
Airbnb2 allows users to invite their Facebook friends to sign up
and completes the first trip, whereas $29 and $18 travel credits
will be rewarded to the invitee and the inviter (up to $5000 for

1https://www.dropbox.com/referrals
2https://www.airbnb.com/invite, https://www.airbnb.com/help/article/2269/

airbnb-referral-program-terms-and-conditions

each user), respectively. Similarly, Booking.com3 encourages
social referral (up to 10 friends for each user). To efficiently
facilitate SC, new start-up companies (e.g., ReferralCandy and
Extole4) develop a customized SC system for e-commerce
websites of clients. However, SC has drawn much less research
attention, and currently the efficiency of SC is usually low
(0.8% and 15.9% for offline and online SC), because resources
are not properly allocated to valuable users [26].

The research of IM blossoms from Kempe et al. [2] that
introduced the basic formulation, propagation models and the
corresponding approximation algorithm, and many follow-up
studies improve the efficiency for massive social networks
[3]–[16]. PM [17]–[23] addresses the trade-off between the
seed cost and the benefit of influenced users. However, SC
is different to IM and PM due to the following reasons. 1)
For SC, not only the seeds but also the internal nodes in
an influence spread are required to be selected and allocated
resources. In contrast, IM and PM target on only the seeds. 2)
For SC, each internal node is associated with an SC constraint,
which limits the maximum number of friends that can be
referred and receive SC (i.e., influenced by SC and then
redeem it). For example, at most 32 (16 GB/500 MB) friends
can receive SC from each Dropbox user. On the contrary,
each internal node in IM and PM can influence an arbitrary
number of friends since no resource is allocated. Therefore,
the shape of a spread can be controlled more precisely by SC
(e.g., broader or deeper) by carefully selecting internal nodes
and allocating different resources to each of them. Moreover,
each internal node is more inclined to be activated due to the
reward from social referral.

In this paper, therefore, we make the first attempt to explore
seed selection with SC allocation. Simultaneously selecting
and allocating resources to both seeds and internal nodes raise
the following new research challenges. The first one is a benefit
and total cost trade-off between the benefit of influenced users
and the total cost of seeds and SCs. Unlike previous works,
SC needs to allocate difference resources to activate seeds

3https://www.booking.com/content/referral-faq.en-gb.html
4https://www.referralcandy.com, https://www.extole.com
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directly and internal nodes through SCs. It is important to
carefully examine the benefit of activating users by SCs or
delegating them as seeds. The second one is investment trade-
off between the investment in seeds and internal nodes due
to a limited budget. Seeds start the influence spread while
internal nodes sustain it, and the activation of seeds is usually
more expensive. Thus, it is important to carefully allocate the
resource to derive an efficient spread. The third one is SC
allocation trade-off between allocating SCs to users near seeds
and users with high benefit but far from seeds. Allocating SCs
to users near seeds can strengthen the influence spread from
its root, i.e., increase the number of expected redeemed SCs,
while allocating SCs to high benefit users can improve the
efficiency of the investment.

To address the above challenges, we formulate a new
optimization problem, named Seed Selection and SC alloca-
tion for Redemption Maximization (S3CRM). In contrast to
selecting only seeds to maximize the influence [2]–[16] or
profit [17]–[23], S3CRM aims to select seeds and internal
nodes and allocate SCs to users such that the redemption rate
is maximized. The redemption rate is the ratio of the expected
benefit of influenced users to the total cost (i.e., the sum of
seed cost and SC cost). It is important to choose a proper seed
set and internal nodes to start and shape the influence spread.
Moreover, it is crucial to balance the investment in seeds and
SCs, and meanwhile the total cost must be ensured within the
investment budget.

We first prove the NP-hardness for S3CRM and then devise
an approximation algorithm, named Seed Selection and SC
allocation Algorithm (S3CA). For the benefit and total cost
trade-off, S3CA introduces marginal redemption to measure
the extra benefit obtained by activating a seed or allocating
an SC. For investment trade-off, S3CA deploys the resource
by iteratively investing a new seed or an SC to an acti-
vated user with the highest marginal redemption to balance
the investment in seeds and SCs. For SC allocation trade-
off, S3CA first constructs guaranteed paths to identify all
possibly influenced inactive users for each seed under the
budget constraint. Moreover, S3CA introduces amelioration
index and deterioration index to evaluate the improvement and
deterioration of the maneuver of the previous deployed SCs
to optimize the redemption rate. Finally, we evaluate S3CA
with real datasets, and the simulation results show that S3CA
can effectively improve the redemption rate up to 30 times
comparing to the baselines.

The rest of this paper is organized as follows. Section II
reviews the related works. The problem formulation and the
hardness analysis are given in Section III. We present the
algorithm design in Section IV, and the performance analysis
is described in Section V. The experimental results are shown
in Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

Influence maximization focuses on the pinpoint of the k
most influential users in an OSN, and the identified users
are delegated to start the influence propagation. The studies

of influence maximization blossom from Kempe et al. [2]
introducing the basic formulation and propagation models.
Furthermore, submodularity exhibits when the influence dif-
fuses with the models, and thus they proposed a (1 − 1/e)–
approximation algorithm. After the algorithm is proposed,
many studies followed up to improve the efficiency [3]–[16]
for massive OSNs. However, these works are not applicable
to the SC scenario since they consider only seed selection
without the SC allocation of internal nodes.

Tang et al. [17] state that the optimal profit cannot be
derived from influence maximization since the influential users
are probably expensive for activation, which results in a trade-
off between the expense and the benefit of propagation. Thus
profit maximization emerges, and profit is defined as the ben-
efit from influenced users subtracted by the cost of activating
seeds in [17]. Tang et al. [18] take the cost of activating non-
seed users into consideration, which is a constant number for
each user. However, it is not applicable to the SC scenario
where the cost of non-seed users depends on the number
of their allocated SCs. Zhu et al. [19] and Zhang et al.
[20] find the profits of activating users for the competitive
environment and multiple products, respectively. Khan et al.
[21] formulated a revenue maximization problem from the
perspective of the host of OSNs. Furthermore, Lu et al. [22]
and Zhu et al. [23] maximize the profit, where people are
not influenced unless the price meets their expectation. These
works [19]–[23] are complementary to S3CRM.

III. OSN MODEL AND PROBLEM FORMULATION

For the SC scenario, independent cascade (IC) model5 [2] is
extended by imposing an SC constraint to each user as follows.
The influence propagation starts from the selected seeds, and
then the seeds switch to the active state and try to activate
their friends with the influence probability. Moreover, for each
vi ∈ V , the maximum number of activated friends is restricted
by the SC constraint (i.e., no more than ki). The activation
starts from the friend with the highest to the lowest influence
probability, since in reality the friend with the highest influence
probability is most likely to redeem the SC. Each user can be
activated only once, and the activation process stops when no
more user can be activated.

For convenience, we have summarized all notations in
Table I. The definitions of notations are explained as fol-
lows. Users V of the OSN and their relationships E form
a weighted directed graph G = {V,E}, where each edge
e(i, j) ∈ E between vi and vj ∈ V has a weight P (e(i, j)),
and b(vi), cseed(vi), and csc(vi) are the benefit, seed cost,
and SC cost of vi, respectively. ki ∈ [0, |N(vi)|] ∈ N is
the SC constraint for each vi, where |N(vi)| is the number
of vi’s friends. Moreover, S and I are the seed set and
the internal node set, respectively. K(I) = {ki|∀vi ∈ I}
is the SC allocation. Let Cseed(S) be the total cost of S.
Let Csc(K(I)) =

∑
vi∈I,vj∈N(vi)

E[ki, csc(vj)], where vj
is vi’s friend with the j-th highest influence probability and

5Since the SC is usually redeemed solely, the linear threshold is not suitable.



TABLE I
NOTATIONS OF S3CRM AND S3CA

Notation in Problem Definition
|N(vi)| number of vi’s friends (out-neighbors)
cseed(vi), csc(vi), b(vi) seed cost, SC cost, benefit of vi
ki ∈ [0, |N(vi)|] ∈ N SC constraint of vi
S ⊂ V , I ⊂ V seed set, internal node set
K(I) = {ki|∀vi ∈ I} SC allocation
Cseed(S), Csc(K(I)) total seed cost, expected SC cost of K(I)
E[Ki, csc(vj)] expected SC cost (vi distributes an SC to vj )
B(S,K(I)) expected benefit of the influence propagation
E[S,K(I), b(vi)] expected benefit of vi with S and K(I)
Binv investment budget
Notation in Algorithm Definition
τ
vi,γi
Ŝ,Î

MR of selecting vi as seed (allocate coupon)

g(s, vi) the GP from seed s to user vi
U l̂s l̂-th level set of visited siblings from seed s
K̂(I) (cs,vli

) SC allocation (cost) for each g(s, vli)
Ia(g(s, vi)) marginal ratio of g(s, vi)
m (M ) single (set) maneuver operation
∆vj (k) retrieve k SCs from vj
Id(∆vj (k)) ratio of benefit loss to retrieved SC cost

βm,M
∗

g(s,vi)
(B,C) the maneuver (benefit,cost) gap

δK difference of total allocated SCs number
bMj (cMj ) denote the benefit (cost) gain based on M

Bm,M
g(s,vi)

(Cm,M
g(s,vi)

) benefit (cost) gap after m maneuver operation
Notation in Proof Definition
V kb top k highest influence users in Vb
cref , Copt reference cost, optimal cost set
C1 (C2) the first (second) largest cost in Copt
Csort sorted cost set from the smallest to the largest
eref (ec) reference (corresponding candidate) edge set
b0 (c0) ratio of benefit (cost) variation of users.
e∗t maximum benefit edge of OPT
O(M) time of evaluating the expected benefit

E[ki, csc(vj)] is the expected SC cost to distribute an SC to
vj . If j ≤ ki, E[ki, csc(vj)] = csc(vj)P (e(i, j)); otherwise
j > ki, E[ki, csc(vj)] = csc(vj)P (e(i, j))P (k̄i) , where
P (k̄i) is the probability that at most ki − 1 friends vĵ ∈
N(vi), ĵ < j success to redeem the SC. Let B(S,K(I)) =∑
vi∈I E[S,K(I), b(vi)] be the expected benefit of the in-

fluence propagation, where E[S,K(I), b(vi)] is the expected
benefit of vi with the seed set S and SC allocation K(I).
Finally, the investment budget is Binv .

Consider Dropbox as an example. Users distribute SCs (post
the invite link) to their Facebook friends. Once a friend vi
receives the SC (installs Dropbox through the link), 500 MB
of free space is rewarded (i.e., csc(vi)). For each vi ∈ V , the
maximum number of friends receiving the reward is restricted
by the number of allocated SCs (i.e., ki = 32).

S3CRM problem:
Given an OSN, a propagation model, and the benefit, SC

cost, and seed cost for each user, S3CRM is to identify of
a seed set S, the internal node set I , and the SC allocation
K(I), to maximize the redemption rate, which is the ratio of
the benefit from activated users to the sum of seed costs and
SC costs, under an investment budget constraint Binv . S3CRM

is formulated as follows.

arg max
S⊂V,I⊂V,K(I)

B(S,K(I))

Cseed(S) + Csc(K(I))
, (1a)

subject to

Cseed(S) + Csc(K(I)) ≤ Binv. (1b)

The redemption rate has been widely adopted as an effective
measure for coupons in marketing research [25], [26], because
the redemption rate considers not only the total benefit but
also the marginal benefit of the budget (e.g., the additional
benefit to spend the last 10% budget). Considering a simple
example G = (V,E) with two vertices, where V = {u, v},
E = ∅, and Binv = 1. For the two users, coupon costs are
cseed(u) = ε and cseed(v) = 1 − ε, and the benefit for them
are 1 − ε and ε, respectively, where ε is an arbitrarily small
constant. The maximum benefit is 1 by selecting both vertices,
but the maximum redemption rate is 1−ε

ε by choosing only u
as the seed. User v is not selected since the additional benefit ε
generated by choosing v is tiny, but a large budget (i.e., 1− ε)
is required. Therefore, the redemption rate is widely adopted
by marketing research to achieve the best performance/cost
ratio.

Special cases: We first give two commonly used coupon
strategies, and then we show the strategies and IM are special
cases of S3CRM as follows. 1) Limited coupon strategy is
applied by Dropbox, Airbnb, Booking.com, etc., where ki of
each user is an identical constant number, e.g., ki = 32 with
Dropbox. Thus, it is a special case of S3CRM with a prede-
termined SC allocation K̂(I), which selects only seeds under
the remaining budget (i.e., Binv − Csc(K̂(I))). 2) Unlimited
coupon strategy allocates unlimited SCs to users, which im-
plies that the SC cost is marginal (i.e., csc(vi) = 0, ∀vi ∈ V ),
and is adopted by Uber6, Lyft7, and Hotel.com8. Thus, it is a
special case of S3CRM, which is arg maxS⊂V

B(S)
Cseed(S)

, such
that Cseed(S) ≤ Binv . Since the SC constraint is removed,
the propagation model reduces to the IC model. Similarly, IM
is a special case of S3CRM with the SC cost equals to 0 and
the SC constraint is unlimited for each user (detail later).

Comparison example: Fig. 1 compares IM, PM, and S3CRM
with the default parameters (not presented in the figure) as
follows. For each user vi, both cseed(vi) and csc(vi) are 1,
and b(vi) = 3. The investment budget Binv is 3.5. Moreover,
for the results, the users allocated with SCs and the users
within the influence spread are marked in yellow and green,
respectively. Since IM and PM do not consider SC allocation,
unlimited coupon strategy is applied. For simplicity, we restrict
the example of selecting only one seed and allocating two SCs.

Fig. 1(a) shows the result of IM applying unlimited coupon
strategy. For selecting v3 as a seed (i.e., k3 = |N(v3)| = 2),
the expected benefit is 3 + 3 ∗ 0.7 + 3 ∗ 0.5 = 6.6 and the total

6https://help.uber.com/h/27ecd6af-4929-4c53-a81c-f9fbf2432fd4
7http://get.lyft.com/invites
8https://refer.hotels.com/friends/us?traffic source=mWebHP

https://help.uber.com/h/27ecd6af-4929-4c53-a81c-f9fbf2432fd4
http://get.lyft.com/invites
https://refer.hotels.com/friends/us?traffic_source=mWebHP


Fig. 1. A simple example comparing three different methods. (a) Result of
IM with unlimited coupon strategy. (b) Result of PM with unlimited coupon
strategy. (c) Result of S3CRM.

cost is Cseed(v3) +Csc(k3) = 1.5 + (1 ∗ 0.7 + 1 ∗ 0.5) = 2.7.
For v1 and v2 as a seed, the expected benefits are 6.15
and 4.68, and the total costs are 2.05 and 2.1, respectively.
Thus IM allocates two SCs to the selected seed v3 with the
maximum expected benefit (i.e., 6.6) and the redemption rate
is 6.6/2.7 = 2.45. Fig. 1(b) is the result of PM applying
unlimited coupon strategy. For v1 as a seed, the profit is
derived by the expected benefit minus the seed cost (i.e.,
(3 + 3 ∗ 0.55 + 3 ∗ 0.5) − 1 = 5.15). For v2 and v3 as a
seed, the profit are 3.68 and 5.1, respectively, and the total
costs are the same as IM. Thus, PM allocates two SCs to the
selected seed v1, which results in the maximum profit, and the
redemption rate is 6.15/2.05 = 3.

Fig. 1(c) shows the result of S3CRM. For selecting v1 as
a seed, the remaining budget (i.e., Binv − cseed(v1) = 2.5)
is invested with three cases as follows: 1) Allocating two
SCs to v1. The expected benefit and the total cost are
3+3∗0.55+3∗0.5 = 6.15 and 1+(1∗0.55+1∗0.5) = 2.05,
respectively, and the redemption rate is 6.15/2.05 = 3. 2)
Allocating one SC to each of v1 and v2. The expected benefit
and the total cost are 5.46 and 1.975, respectively. Note
that, since k1 = 1, the probability of activating v2 becomes
(1 − 0.55) ∗ 0.5 (i.e., v4 fails to redeem the SC) and we call
e(1, 2) a dependent edge (marked in red) while others indepen-
dent edge. Thus, the redemption rate is 5.46/1.98 = 2.76. 3)
Allocating one SC to each of v1 and v4. The expected benefit
is 8.295 and the total cost is 2.675, and thus the redemption
rate is 8.295/2.675 = 3.1. The allocation process iteratively
calculates the redemption rate by assuming users as seeds.
The final result is selecting seed v1 and allocating SCs by
{k1 = 1, k4 = 1} with the maximum redemption rate 3.1.

Fig. 1 shows that S3CRM derives the best redemption rate
by carefully examining all possible combinations of seeds and
SC allocation. Note that though cseed(v4) = cseed(v5) > Binv
(i.e., v4 and v5 never become a seed), S3CRM can reap the
highest benefit among users (i.e., b(v5)) through allocating an
SC to v4 while IM and PM fail to activate v5.

Theorem 1. S3CRM is NP-hard and can not be approximated
within 1− 1/e+ ε, where ε is an arbitrarily small constant.

Proof. We first give a special case of S3CRM, and then prove
that it can be reduced to IM, which derives the hardness of

S3CRM. The special case is given as follows. For the OSN
G = {V,E}, the set of users V = {vu ∪Va ∪Vb} includes an
unique user vu and two identical set of users Va and Vb. For
each user vbi ∈ Vb, vbi connects to only the counterpart vai ∈ Va
with the weight of 1. Let V kb denote the set of users in Vb, who
have the top k highest influence. The unique user vu connects
to each user in V kb with a weight of 1. The seed cost of vu is k
while the seed costs of users in Va and Vb are arbitrarily large,
and thus vu is the only candidate of seed. For each user vbi ∈
Vb, let csc(vbi ) = ε, where ε is an arbitrarily small constant. For
each user vai ∈ Va, let csc(vai ) = 0 which implies that if the
counterpart vbi is activated by vu, it is activated simultaneously,
and then the influence spread of users in Va is unlimited by
the SC constraint (reduces to the IC model). Let b(vu) = ε,
and for each user vbi ∈ Vb and vab ∈ Va, let b(vbi ) = 0 and
b(vai ) = 1, respectively. Moreover, let Binv = k + kε, which
implies that the seed vu can be allocated with at most k SCs.

For the solution of the special case, the seed set Ŝ = {vu}
and the internal node set Î = {vu ∪ Va ∪ V kb }, where vu is
allocated with k SCs (i.e., ku = k) while the users in Va have
no SC constraints. Thus, the expected benefit is not less than ε
(i.e., benefit of the seed b(vu)) and the total cost ranges from
k to k+ kε (i.e., from seed cost of vu to Binv). Furthermore,
the special case can be reduced to IM as follows. Given a IM
with the OSN G′ = {V ′, E′}, where V ′ = {Va ∪V kb } and E′

is the set of edges between users in V ′, and the seed size of k.
For any feasible solution of the special case (i.e., Ŝ and Î), V kb
is a feasible solution of the IM problem. On the other hand,
let V̂ denote the seed set selected by solving the IM problem.
For any feasible solution of the IM problem, V̂ = V kb since
vu connects the top k influential users, and thus we can derive
a feasible solution of the special case.

For the objective function, the expected benefit derived from
the IM problem is slightly less than the expected benefit from
the special case by ε, which is negligible. Likewise, the total
cost of the special case is approximately equal to k (i.e.,
k + kε ≈ k) since the SC cost of users in Vb is negligible.
Therefore, the special case can be reduced to IM. Furthermore,
IM is as hard as maximum k–cover problem by the reduction
that setting all influence probability to 1 of IM. Hence, S3CRM
is as hard as the maximum k–cover problem and the hardness
is 1− 1/e+ ε [27].

IV. ALGORITHM DESIGN

To effectively solve S3CRM, we design an approximation
algorithm, namely Seed Selection and SC allocation Algorithm
(S3CA). In contrast to IM [2]–[16] and PM [17]–[23] focusing
on solely seed selection and ignoring the SC allocation,
S3CA introduces the notion of Marginal Redemption (MR)
to prioritize the investment in seeds and allocating SCs to
users. For each user, MR represents the ratio of the expected
benefit gain to the expected cost gain after activated as a
seed or allocated with an extra SC, and therefore a user with
a larger MR receives the investment (seed or SC) first. To
address the investment trade-off, S3CA deploys the investment



Fig. 2. Reduction of S3CRM to IM

by carefully examining the MR for three strategies as follows:
1) broadening the current influence spread, 2) deepening the
current influence spread, and 3) initiating a new source (seed)
of the influence spread.

To address the SC allocation trade-off, S3CA introduces
the notion of Guaranteed Path (GP) to identify the users
with high benefit but receiving no resources (not activated)
from the previous deployment. For each user in a GP, the
SCs are always sufficient for distribution to ensure the highest
activation probability (i.e., no dependent edge) and improve
the redemption rate. To evaluate the possible improvement
for each GP, S3CA introduces Amelioration Index (AI) and
Deterioration Index (DI), which are the ratio of improved and
decreased expected benefit to the allocated and retrieved SC
cost. Then, S3CA can maneuver the investment in SCs to
optimize the redemption rate by examining AI and DI.

S3CA includes three phases: 1) Investment Deployment
(ID), 2) Guaranteed Paths Identification (GPI), and 3) SC
Maneuver (SCM). For the investment trade-off, ID exploits
MR to iteratively deploy the investment by adopting the
strategy with the highest MR. GPI continues to identify the
GPs of inactive users with high benefit. Based on the derived
GPs, SCM carefully examines the opportunity to maneuver the
SCs allocated to users in the ID phase to create a new spread,
such that the redemption rate is optimized.

A. Algorithm Description

1) Investment Deployment (ID): ID first deploys the invest-
ment in seeds and internal nodes under the investment budget
by three strategies as follows: 1) activating the source (seed)
of a new influence spread, 2) allocating an SC to a user to
broaden the current influence spread; meanwhile, enhancing
the influence probability by changing an edge from dependent
to independent (e.g., by allocating an SC to v1 in Fig. 1(c),
the influence probability improves 27.5%), and 3) allocating
an SC to the user in the end of the current influence spread to
deepen the spread. Nonetheless, previous works (IM [2]–[16]
and PM [17]–[23]) includes no such subtle manipulations of
influence spreads.

S3CA introduces pivot source for the evaluation of invest-
ment in seeds and SCs, which is derived as follows. For each
user, ID calculates the MR (detailed later) of the nodes selected

Fig. 3. Results of the example of ID. (a) Iteration 1. (b) Iteration 2. (c)
Iteration 3. (d) Iteration 4.

as a seed or allocated with an SC after becoming a seed
(i.e., updating Ki to 1), and it then iteratively applies the
one with the maximum positive MR. Once a user is selected,
it is included in a priority queue Q (sorted by redemption
rate). Moreover, when an SC is allocated to a seed in Q, the
redemption rate is updated. The process stops when all MR
becomes negative or all users are included in Q. Afterward, vi
is popped from Q as the initial of the influence spread, and it
is then included to the candidate seed set Ŝ and the candidate
internal node set Î (if Ki = 1). Moreover, {Ŝ, Î , K(Î)} is
included in the candidate deployment D. ID further pops vp
from Q as the pivot source for the comparison of the MR of
allocating an SC to users.

For the investment trade-off, ID iteratively examines the
MR of allocating an SC to users (strategy 2 and 3) and the
redemption rate of the pivot source vp (strategy 1). If the user
vi has the maximum MR larger than the redemption rate of vp,
ID invests an SC in vi (i.e., increases Ki by 1) and includes
vi in Î if vi /∈ Î; otherwise, ID initiates a new source vp and
includes vp in Ŝ and Î , and it pops the next pivot source from
Q. In each iteration, D includes the current deployment {Ŝ,
Î , K(Î)}. The process stops when the total cost exceeds the
investment budget Binv , and the final deployment of ID is
D∗ ∈ D with the highest redemption rate. Specifically, let γi
denote the binary variable (initialized as 1) indicating that if a
user vi is selected as seed for the first time, γi = 1; otherwise,
γi = 0. If γi = 1, MR of selecting vi as a seed is defined as
τvi,γi
Ŝ,Î

= B(Ŝ∪vi,K(Î))−B(Ŝ,K(Î))

Cseed(Ŝ∪vi)−Cseed(Ŝ)
; otherwise, MR of allocating

an SC to vi is defined as τvi,γi
Ŝ,Î

= B(Ŝ,K(Î∪vi))−B(Ŝ,K(Î))

Csc(K(Î∪vi))−Csc(K(Î))
.

Note that when vi ∈ Î , K(Î ∪ vi) is different from K(Î)
since Ki is increased by 1.

Example 1. Fig. 3 presents an example of ID with the input
setting as follows. For each user vi, b(vi) = csc(vi) = 1,
and cseed(vi) ≈ ∞ except that cseed(v1) ≈ 0. The dependent
edges are marked in red. Since the only possible seed is v1,
the queue Q contains only v1, and the influence starts from
v1 allocated with an SC. The expected benefit and cost are
approximately 1 + (1 ∗ 0.6 + 1 ∗ (1 − 0.6) ∗ 0.4) = 1.76 and
0+1∗0.6+1∗ (1−0.6)∗0.4 = 0.76, respectively. In the first
iteration, the expected benefit gains of allocating an SC to v1
(K1 = 2), v2 (K1 = 1, K2 = 1), and v3 (K1 = 1, K3 = 1)
are (1 + 1∗0.6 + 1∗0.4)−1.76 = 0.24, (1 + 1∗0.6 + 1∗ (1−
0.6)∗0.4+1∗0.6∗0.5+1∗0.6∗(1−0.5)∗0.4)−1.76) = 0.42,
1 + 1 ∗ 0.6 + 1 ∗ (1− 0.6) ∗ 0.4 + 1 ∗ (1− 0.6) ∗ 0.4 ∗ 0.8 + 1 ∗



(1− 0.6) ∗ 0.4 ∗ (1− 0.8) ∗ 0.7)− 1.76 = 0.15, respectively.
Moreover, the expected cost gains of allocating an SC to v1
(K1 = 2), v2 (K1 = 1, K2 = 1), and v3 (K1 = 1, K3 = 1)
are (1 ∗ 0.6 + 1 ∗ 0.4) − 0.76 = 0.24, (1 ∗ 0.6 + 1 ∗ (1 −
0.6) ∗ 0.4 + 1 ∗ 0.5 + 1 ∗ (1 − 0.5) ∗ 0.4) − 0.76 = 0.7, and
(1 ∗ 0.6 + 1 ∗ (1− 0.6) ∗ 0.4 + 1 ∗ 0.8 + 1 ∗ (1− 0.8) ∗ 0.7)−
0.76 = 0.94, respectively. Thus, MR of allocating an SC to v1
(K1 = 2), v2 (K1 = 1, K2 = 1), and v3 (K1 = 1, K3 = 1)
are 0.24/0.24 = 1, 0.42/0.7 = 0.6, and 0.15/0.94 = 0.16,
respectively, and the SC is allocated to v1 with the maximum
MR. Fig. 3(a) shows the result of the first iteration and the
result of the following iterations are shown in Fig. 3.

Fig. 3 presents the subtle manipulation of the influence
spread by S3CA with the investment in seeds and SCs,
which cannot be accomplished by previous works [2]–[23].
IM [2]–[16] selects the most influential user v3 as the seed.
However, the seed cost cseed(v3) is not considered and can be
arbitrarily large. Although PM [17]–[23] takes the seed cost
into consideration, it cannot decide the user (e.g., v2 or v3
in Fig. 3(a)) to allocate SCs (even applying existing coupon
strategies), and it may result in a miserable redemption rate.

2) Guaranteed Paths Identification (GPI): For the SC allo-
cation trade-off, GPI constructs the Guaranteed Paths (GP) to
identify the inactive but possibly influenced users based on the
result of ID D∗ = {S∗, I∗,K(I∗)}. For each seed s ∈ S∗,
the possibly influenced inactive users are restrained by the
remaining budget (i.e., subtracting the investment budget by
the seed cost). Moreover, for the GP to a possibly influenced
inactive user, all edges are independent edges to guarantee the
highest influence probability. Nonetheless, existing strategies
like unlimited and limited coupon strategies cannot identify
these users, and it thereby tends to influence those with high
benefits.

For each seed s ∈ S∗, GPI constructs the GP g(s, vi) from
s to each possibly influenced inactive user vi as follows. GPI
first marks s as visited, and it then traverses the descendants
of s in DFS manner. For each visited node, the traversal
starts from its child with the highest to the lowest influence
probability. When a user vi is visited, GPI includes the
following nodes in a temporary set ĝ, including the visited
siblings of both vi and vi’s ascendants. It then sets ĉ as the
total expected SC cost of all users in ĝ. If ĉ ≤ Binv−cseed(s),
1) g(s, vi) is set to ĝ with a guaranteed cost cs,vi = ĉ, 2) for
each user vj in ĝ, Kj is set to the number of visited children
(i.e., each user could receive an SC), 3) it updates the expected
benefit bs,vi , and 4) GPI proceeds to traverse vi’s children.
Otherwise, GPI stops traversing vi’s children and unvisited
siblings (i.e., siblings with influence probability lower than
vi’s), and it traverses back to the next sibling of vi’s parent
(i.e., the sibling next to vi’s parent in the descending order of
influence probability). The process stops when no more user
can be visited (i.e., ĉ > Binv − cseed(s)).

More specifically, for each user vli in the l-th level, let
U l̂s denote the set of visited siblings in the l̂-th level before
visiting vli by the traversal starting from a seed s. A guaranteed

Fig. 4. Examples of guaranteed paths. (a) g(v1, v7). (b) g(v1, v13). (c)
g(v1, v15) .

path from s to vli is g(s, vli) = {vj |∀vj ∈ U l̂s, l̂ ≤ l}.
For each g(s, vli), let K̂(I) = {K̂j |∀vj ∈ g(s, vli)} denote
its SC allocation, where K̂j is the SC constraint of vj in
g(s, vli). Moreover, K̂j equals to the number of vj’s visited
children, and the guaranteed cost is cs,vli = Csc(K̂(I)) (i.e.,
the expected SC cost that each user in g(s, vli) could receive
an SC).

Example 2. Fig. 4 presents three examples of GP, and
the users of the GPs are marked in blue and yellow
(end of the path). For each node, the children on the
left side has a higher influence probability. In Fig. 4(a),
g(v1, v7) = {v1, v2, v4, v5, v6, v7}, and Fig. 4(b) and 4(c)
present g(v1, v13) and g(v1, v15), respectively. Moreover, the
expected benefit of a GP involves not only the visited users
but also the users connected by the dependent edges (marked
in green). GP is a novel structure specially designed for the
SC environment, which is not included in the previous works
[2]–[23]. GP can identify the possibly influenced inactive users
with high benefits and then guide the influence spread for
reaping the benefits. However, existing coupon strategies (lim-
ited and unlimited) cannot obtain the benefits since they either
apply over-simplified methods or ignore the SC allocation.

3) SC Maneuver (SCM): To optimize the redemption rate,
SCM examines the opportunity to maneuver the allocated
SCs (i.e., K(I∗)) for creating new spreads based on the
derived GPs P . SCM introduces Amelioration Index (AI) and
Deterioration Index (DI) to evaluate the amelioration and the
deterioration of redemption rate by allocating and retrieving
SCs, respectively. For each g(s, vi) ∈ P , AI Ia(g(s, vi)) is the
ratio of the expected benefit gains Ba(g(s, vi)) to the expected
SC cost of the allocated SCs Ca(g(s, vi)). For retrieving k SCs
from vj , DI Id(∆vj (k)) is the ratio of the expected benefit loss
to the expected SC cost of the retrieved SCs. Let m and M
denote a maneuver operation and a set of maneuver operations
(detailed later). To evaluate the efficiency of maneuvering
SCs, SCM introduces Maneuver Gap (MG) βm,Mg(s,vi)

which is
the ratio of the benefit gap to the cost gap. The benefit gap
Bm,Mg(s,vi)

and the cost gap Cm,Mg(s,vi)
are the difference between

the expected benefit gain and the expected SC cost before and
after including m in M . Equipped with the above notions,
S3CA can examine the improvement of creating each GP,
the debasement of redemption rate by retrieving SCs, and
the efficiency of maneuvering SCs, whereas these fine-grained
operations are not considered in the previous works [2]–[23].



SCM calculates Ia(g(s, vi)) for each g(s, vi) ∈ P . From
the largest to the smallest Ia(g(s, vi)), if 1) its guaranteed cost
cs,vi does not exceed the total invested SC cost Csc(K(I∗))
and 2) vi cannot be activated by D∗ (Kp ∈ K(I∗) = 0, where
vp is vi’s parent), SCM then determines whether to create
g(s, vi) as follows. Let vi∗ and δK denote the nearest possibly
activated ascendant of vi by D∗ and the difference between
the total number of SCs allocated in g(s, vi) and g(s, vi∗),
respectively. Let M∗ denote the set of maneuver operations,
where a maneuver operation m includes a DI Id(∆vj (k)),
maneuver mapping K = {Kj

i |vi, vj ∈ V } (e.g., Kj
i = 3

represents maneuvering 3 SCs from vj to vi), the index of the
last user with SCs maneuvered. If the total number of the ma-
neuvered SCs

∑
∀K∈M∗,∀Kj

i∈K
Kj
i < δK, SCM calculates the

DIs of all vj ∈ I∗ and derives a set of corresponding maneuver
operations M . From the maneuver operation m ∈M with the
smallest to the largest DI Id(∆vj (k)), if Id(∆vj (k)) < βm,M

∗

g(s,vi)
and the redemption rate is improved by K ∈ m, SCM includes
m in M∗ and proceeds to find the next maneuver operation. If
Id(∆vj (k)) ≥ βm,M

∗

g(s,vi)
or the redemption rate is not improved,

SCM skips this GP and proceeds to examine the next GP.
When

∑
∀K∈M∗,∀Kj

i∈K
Kj
i = δK, g(s, vi) is created based

on M∗. The process ends after all GPs in P are examined.
SCM evaluates the DIs and derives the set of corresponding

maneuver operations as follows. Let Kj and K̂j denote vj’s
SC allocation of K(I∗) and g(s, vi), respectively. For each
vj ∈ I∗, if it has spare SCs for creating g(s, vi) (i.e., Kj >
K̂j), SCM calculates DIs by retrieving all possible numbers k
of SCs (1 ≤ k ≤ Kj−K̂j), as opposite to the derivation of MR
(i.e., retrieving instead of adding SCs). Let î∗ denote the index
of user whom SCM maneuvers SCs to, which starts from the
nearest possibly activated ascendant of vi. Let S denote the
sum of SCs already maneuvered to vî∗ according to the current
M∗ (i.e.,

∑
ĵ∈K̂K

ĵ

î∗
, where K̂ is the union of all K ∈ M∗).

SCM builds the maneuver mapping K by splitting the k SCs
to vî∗ and his descendants starting from vî∗ . First, SCM sets
Kj

î∗
= K̂î∗−(Kî∗+S) (the number of SCs required for filling

vî∗ ’s SC allocation to K̂î∗ ) if k is large enough. Otherwise,
Kj

î∗
= k. Then if the total cost after retrieving Kj

î∗
SCs of vj

to vî∗ is less than Binv , Kj

î∗
is included in K. If the number

of remaining SCs ∆k > 0, SCM moves to the next target
(i.e., set î∗ to the index of vî∗ ’s child with SCs in g(s, vi)).
When the mapping of k SCs are determined (i.e., ∆k = 0),
the maneuver operation {Id(∆vj (k)),K, î∗} is included in the
candidate maneuver operation set M . The process stops when
all possible vj are examined.

Specifically, for each g(s, vi), let vj denote vi’s nearest ac-
tivated ascendant and its AI Ia(g(s, vi)) = Ba(g(s,vi))

Ca(g(s,vi))
, where

Ba(g(s, vi)) = bs,vi − bs,vj and Ca(g(s, vi)) = cs,vi − cs,vj .
Let bMj and cMj denote the benefit gain and cost gain by
maneuvering SCs to vj and its descendant according to M ,
respectively. The benefit gap and the cost gap are defined as
Bm,Mg(s,vi)

= bm∪Mj − bMj and Cm,Mg(s,vi)
= cm∪Mj − cMj .

Example 3. Fig. 5 presents an example of SCM. Fig. 5(a) is

Fig. 5. Example of a maneuver operation. (a) K1 = 2, K2 = 2, and K3 = 1.
(b) g(v1, v15). (c) g(v1, v4)

the result of Fig. 3(d) attached with two high benefit (50 for
each) but inactive users v14 and v15 with low SC costs. Fig.
5(b) is g(v1, v15) with bv1,v15 = 10.41 and cv1,v15 = 2.66,
whereas Fig. 5(c) presents g(v1, v4) with bv1,v4 = 2.18
and cv1,v4 = 1.46. The largest AI is Im(g(v1, v15)) =
Bm(g(v1, v15))/Cm(g(v1, v15)) = 8.23/1.2 = 6.86, and the
cost of g(v1, v15) is less than the total cost derived from ID
(i.e., 2.66 < 2.84). In the first iteration, the sorted DIs are
Id(∆v3(1)) = 0.38/0.94 = 0.4, Id(∆v2(1)) = 0.12/0.2 =
0.6, and Id(∆v1(1)) = 0.47/0.24 = 1.94, and thus the
only SC of v3 is maneuvered to v4. Then, in the second
iteration, the sorted DIs, are Id(∆v2(1)) = 0.12/0.2 = 0.6 and
Id(∆v1(1)) = 0.24/0.24 = 1, and an SC of v2 is maneuvered
to v8. Finally, in the last iteration, an SC is maneuvered
from v1 to v8, and the redemption rate is improved by
380% (i.e., 3.91/1.03 = 3.8). By carefully examining AI,
DI, and MG, S3CA further optimizes the redemption rate
by reaping the high benefits of users guided by GPs. S3CA
shapes the influence spread according to the features of users,
which cannot be accomplished by the previous works [2]–[23]
applying any existing coupon strategies.

Algorithm 1 presents the pseudo-code of S3CA with three
phases: 1) Investment Deployment (ID) (Line 1–24), 2) Guar-
anteed Paths Identification (GPI) (Line 25–34), and 3) SC
Maneuver (SCM) (Line 35–48). Specifically, ID first identifies
the pivot source by iteratively selecting a user vi with the
maximum positive marginal redemption (MR) and adding it
to a queue Q prioritized by redemption rate (Line 4–7). Then,
the initial seed is popped from Q as the initial investment
deployment D, and the pivot source vp is popped from Q to
compare the MR of users not in Q (Line 9). Subsequently,
ID deploys the investment by iteratively examining the MR of
each user and the redemption rate of vp (Line 10–23). Three
strategies are applied to broaden and deepen the influence
(Line 12–15, Line 16–19) by allocating an SC to vi ∈ Î ,
vi /∈ Î , and then activate a new seed (Line 20–21). The user
with the maximum value of MR or redemption rate is invested
by an SC or assigned as a seed.

Moreover, the guaranteed paths GPs are identified by the
GPI procedure (Alg. 2) in a Depth-First Search manner. On



Algorithm 1 Seed Selection and SC allocation Algorithm
1: Initialize a priority queue Q, γi = 1, ∀vi ∈ V̂ , V̂ ← V
2: while V̂ 6= ∅ and there exists a positive MR do
3: τ̂ ← 0, î← ∅
4: for all vi ∈ V̂ do
5: if τvi,γi

Ŝ,Î
> τ̂ and Cseed(vi) + Csc({Ki = 1}) ≤ Binv

6: then τ̂ ← τ
vi,γi
Ŝ,Î

, î← i

7: if γî = 1 then γî ← 0, push vi to Q
8: otherwise Ki ← 1, V̂ ← V̂ \ vî
9: vi ← pop Q, D ← {Ŝ ← vi, Î ← vi,K(Î) ← Ki}, vp ← pop Q,
R← redemption rate of vp with Kp

10: while Q 6= ∅ and there exists a positive MR do
11: τ̂ ← R, î← p
12: for all vi ∈ Î do
13: ∆K(Î)← increase Ki in K(Î) by 1, γi ← 0
14: if τvi,γi

Ŝ,Î
> R and Cseed(Ŝ) + Csc(∆K(Î)) ≤ Binv

15: then R← τ
vi,γi
Ŝ,Î

, î← i

16: for all vi /∈ Î and vi ∈ V is influenced do
17: ∆Î ← Î ∪ vi, K(∆Î)← K(Î) ∪Ki = 1, γi ← 0
18: if τvi,γi

Ŝ,∆Î
> R and Cseed(Ŝ) + Csc(K(∆Î)) ≤ Binv

19: then R← τ
vi,γi
Ŝ,∆Î

, î← i

20: if î = p and Cseed(Ŝ ∪ vp) + Csc(K(Î ∪ vp)) ≤ Binv
21: then Ŝ ← Ŝ ∪ î, Î ← Î ∪ î, update K(Î), vp ← pop Q
22: else Î ← Î ∪ î, update K(Î)
23: D ← D ∪ {Ŝ, Î, K(Î)}
24: D∗ ∈ D with the maximum redemption rate, P ← ∅
25: P ← call GPI procedure (Alg. 2) with input {G,D∗, Binv}
26: Sort Ia(g(s, vi)) in descending order: I1

a , I2
a ,· · · ,I|P|a ; vp is vi’s parent

27: for Ina (g(s, vi)), n = 1 to |P| do
28: if cs,vi ≤ Csc(K(I∗)) and Kp ∈ K(I∗) = 0 then
29: vi∗ ← the nearest possibly activated ascendant of vi
30: δK ←

∑
vj∈g(s,vi) Kj −

∑
vj∈g(s,vi∗ ) Kj

31: M∗ ← {0,K = ∅, i∗}
32: while

∑
∀K∈M∗,∀Kj

i∈K
Kj
i < δK do

33: M ← call DIMD procedure (Alg. 3) with input {G, D∗,
g(s, vi), M∗}

34: for m = {Id(∆vj (k)),K, î∗} ∈ M in ascending order
according to Id(∆vj (k)) do

35: if Id(∆vj (k)) < βm,M
∗

g(s,vi)
and redemption rate increases

36: then M∗ ←M∗ ∪m, i∗ ← î∗, break for-loop
37: if All Id(∆vj (k)) > βm,M

∗

g(s,vi)
or redemption rate decreases

38: then Skip this GP, proceed to the next GP
39: Update D∗ according to M∗

the same level, GPI traverses users in ascending order of their
influence probabilities (Line 25). In Alg. 2, GPI traverses from
each seed s in S∗ to find GPs g(s, vi) to each vi, where g(s, vi)
is the set of the visited siblings of both vi and vi’s ascendants
(Line 6). When GPI visits vi, if g(s, vi)’s cost (total SC cost of
users in g(s, vi)) is smaller than the budget, g(s, vi) is included
in a GP set P . Otherwise, GPI stops traversing vi’s children
and unvisited siblings, and it traverses back to the next sibling
of vi’s parent. The process stops when no more user can be
visited (Line 7–10).

Finally, SCM determines whether to create each g(s, vi) ∈
P based on the Amelioration Index (AI) Ia(g(s, vi)), which
is the ratio of the expected benefit gain to the expected SC
cost (Line 27–39). SCM examines Ia(g(s, vi)) in descending
order and checks the Deterioration Index (DI) Id(∆vj (k)) of
each influenced user vj , which is the ratio of the expected
benefit loss to the expected SC cost by retrieved ∆vj (k) SCs,

Algorithm 2 Guaranteed Paths Identification (GPI)
Input: G = {V,E}, D∗ = {S∗, I∗,K(I∗)}, and Binv
Output: P
1: for all s ∈ S∗ do
2: Push s in stack Ψ, U lis ← ∅, visited[vi]← false, ∀i
3: while Ψ 6= ∅ do
4: vi ← pop Ψ
5: if visited[vi] = false then
6: ĝ ← {vi} ∪ {vj |∀vj ∈ U

lj
s , ∀lj ≤ li}, ĉ←

∑
vj∈ĝ csc(vj)

7: if ĉ ≤ Binv − cseed(s) then
8: visited[vi]← true, g(s, vi)← ĝ, cs,vi ← ĉ

9: U
li
s ← U

li
s ∪ vi, bs,vi ←

∑
vj∈ĝ b(vj)

10: P ← P ∪ {g(s, vi), cs,vi , bs,vi}, push vj ∈ N(vi) in Ψ
ascendant order of p(i, j)

Algorithm 3 Derivation of DI and Maneuver Operation
(DIMD)
Input: G = {V,E}, D∗ = {S∗, I∗,K(I∗)}, g(s, vi), and M∗
Output: M
1: M ← ∅, i∗ ← i∗ of the last attached element of M∗
2: for all vj ∈ I∗ do
3: if Kj > K̂j then
4: for k = 1 to Kj − K̂j do
5: ∆K(I∗)← K(I∗) with Kj decreased by k
6: Id(∆vj (k))← B(S∗,K(I∗))−B(S∗,∆K(I∗))

Csc(S∗,K(I∗))−Csc(S∗,∆K(I∗))

7: K ← ∅, ∆k ← k, î∗ ← i∗, K̂ ← union of all maneuver
mapping in M∗, S ←

∑
ĵ∈K̂K

ĵ

î∗

8: while Kî∗ + S < K̂î∗ and ∆k > 0 do
9: if K̂î∗ − (Kî∗ + S) < ∆k

10: then Kj

î∗
← K̂î∗ − (Kî∗ + S), ∆k ← ∆k −Kj

î∗

11: if K̂î∗ − (Kî∗ + S) = ∆k

12: then Kj

î∗
← ∆k, ∆k ← 0

13: if the total cost after retrieving Kj

î∗
SCs from vj to vî∗ is

less than Binv
14: then K ← K ∪ Kj

î∗
. 1) If ∆k 6= 0, î∗ ← the descendant

of vî∗ with SCs in g(s, vi). 2) If ∆k = 0, M ← M ∪
{Id(∆vj (k)),K, î∗}

15: Else Break the while-loop

according to the DIMD procedure (Line 33). Specifically, in
the DIMD procedure (Alg. 3), let Kj and K̂j denote vj’s SC
allocation of K(I∗) and g(s, vi), respectively. For each vj ∈
I∗, if it has spare SCs for creating g(s, vi) (i.e., Kj > K̂j),
DIMD calculates DIs by retrieving all possible numbers k of
SCs (1 ≤ k ≤ Kj − K̂j) (Line 2–15). SCM sets Kj

î∗
, which

is the number of maneuvered SCs from vj to the target user
vî∗ , depending on ∆k (Line 9–12). Subsequently, if the total
cost after retrieving Kj

î∗
SCs of vj to vî∗ is less than Binv ,

Kj

î∗
is included in K. Then, if the number of remaining SCs

∆k > 0, SCM moves to the next target. Otherwise ∆k =
0, the maneuver operation {Id(∆vj (k)),K, î∗} is included in
the candidate maneuver operation set M (Line 13–14). DIMD
stops when all possible vj are examined and returns to Alg.
1. DIMD returns all possible influenced users to retrieve SCs
for maneuvering SCs to reduce the redemption loss. Besides,
a set of the maneuver operations M , which records the detail
of retrieve/maneuver SCs, are performed. Based on M , SCM
decides whether to create g(s, vi) to optimize the redemption
rate (Line 34–38). Then, the final investment deployment D∗



is updated (Line 39).

V. PERFORMANCE ANALYSIS

In the following, we first prove that the expected benefit
B(S,K(I)) is a non-submodular function and derive the
reference edges based on Observation 1, which finds the
relation between the optimal solution (OPT ) and the pivot
sources derived from ID in Sec. IV. We analyze B(S,K(I))
to keep a certain level of submodularity. Subsequently, we
prove that S3CA is a (1− e− 1

c − ε)-approximation algorithm,
where c is a constant.

Lemma 1. For the S3CRM problem, the expected benefit func-
tion is non-submodular, and the cost functions are modular.

Proof. For ease of description, we transform S3CRM to an
edge selection problem as follows. We first add a virtual
node t to the OSN G = {V,E}, which connects to all
vertices in V . For selecting each seed s, it is transformed
to select the edge e(t, s) and assign its weight (influence
probability) to 1, whereas for each non-seed user, the weight
is 0. The propagation begins from t, and then t activates the
selected seeds with their seed costs. Second, similar to [2], we
conduct the analysis on an implemented deterministic graph
G′. For each user vi, the SC allocation (i.e., assigning Ki)
is transformed to selecting the out-edges (friends) iteratively
from the one with the highest influence probability in G′. The
expected benefit is updated based on the influence propagation
of the selected edges and the selection process stops when the
total cost exceeds Binv . Thus, the problem is transformed to
arg maxE′⊂E

B(E′)
C(E′) , where E′ is the selected edges.

For each edge e(i, j), we call it a live edge if vi successfully
activates vj ; otherwise, we call it a pseudo-live edge. For each
live edge, there must exist one path from the virtual node,
where all edges are live, and thus we call it a live path. Let
E1 and E2 denote any two set of selected edges, where E1 ⊆
E2 ⊆ E. We prove that the expected benefit function B(e) is
non-submodular by including each edge ê ∈ E \ E2 in both
E1 and E2 with three cases as follows. 1) ê is pseudo-live
after being included in both E1 and E2. We have B(E2∪ ê)−
B(E2) = B(E1 ∪ ê) − B(E1) = 0 since no user becomes
active (i.e., no benefit gain). 2) ê is live after being included
in both E2 and E1, which implies that ê is either attached to
a live path existing in both E2 and E1 or the cause to a path
turning to live. For the first case, B(E2∪e)−B(E2) ≤ B(E1∪
e)−B(E1), whereas for the latter one, B(E2∪e)−B(E2) ≥
B(E1∪e)−B(E1). 3) ê is live after being included in E2 but
pseudo-live in E1, which implies that ê is attached to a live
path existing in E2 but not in E1. Thus, B(E2∪e)−B(E2) ≥
B(E1 ∪ e)−B(E1).

For each selected edge e(i, j), its cost is cseed(j)P (e(i, j))
or csc(j)P (e(i, j)), when vi is the virtual node or user,
respectively. Note that, G′ includes no dependent edge since
P (e(i, j)) is determined, and thus the cost of non-selected
edges is 0. The total cost function C(e) is the sum of the
cost of the selected edges. Let E1 and E2 denote any two set
of selected edges, where E1 ⊆ E2 ⊆ E. By including each

edge ê ∈ E \ E2 in both E1 and E2, C(E2 ∪ ê) − C(E2) =
C(E1 ∪ ê)− C(E1) = C(ê), and thus the cost function C is
modular.

Observation 1. Given a reference cost cref , any set of costs
that includes cref and a cost higher than cref , or two identical
costs of cref , is not the set of costs of the optimal solution
Copt.

Let C1 and C2 denote the first and second largest costs in
Copt. Note that the cost includes the seed cost and the SC
cost since we conduct the analysis on the transformed edge
selection problem. Moreover, let Csort denote the sorted costs
(from the smallest to the largest), which has |E′| elements
(|E′| is the number of edges of the transformed problem). For
each cost in Csort as the reference cost cref , we assume it
is C1 with the following properties: 1) if C1 = C2, any set
contains cref and a cost higher than cref is not Copt, and 2)
if C1 > C2, any set containing two elements of cref is not
Copt.

Based on Observation 1, we can derive the reference edge
set eref similar to the pivot source as follows. First, we
initialize a candidate set of reference edges ê = ∅. For each
cost in Csort as the reference cost cref , let Ct = {c|∀c ≤
cref ∈ Csort or ∀c < cref ∈ Csort} denote the target set
of costs, which corresponds to the assumptions C1 = C2

(i.e, ∀c ≤ cref ) and C1 > C2 (i.e., ∀c < cref ). Then the
set of edges within Ct with the first two highest MRs are
selected iteratively and included in ê. Finally, the edge set in
ê with the highest redemption rate is selected as eref . Note that
eref contains either two edges from the virtual node or one
path from the virtual node, which corresponds to selecting two
seeds or a seed allocated with an SC in S3CRM, respectively.

Lemma 2. Within the space C∗t strictly contains OPT , where
cref = C1. if the corresponding candidate edge set ec has
B(ec)
C(ec)

≥ C0
B(OPT )
C(OPT ) , where C0 ≤ 1 is a constant, then the

result of S3CA is always no less than (1−ε)C0
B(OPT )
C(OPT ) , where

ε is an arbitrary constant.

Proof. We adopt eref as the connection between the result of
S3CA, ec, and OPT. First, the relation between ec and OPT is
proved to find the relation between eref and OPT. Then, we
prove the relation between S3CA and eref and subsequently
the one between S3CA and OPT.

First, we prove that B(eref )
C(eref )

≥ C0
B(OPT )
C(OPT ) as follows.

Because the set of costs of the optimal solution Copt never
resides in Csort \ Ct for each cref based on Observation 1,
we derive the reference edges eref from the target cost sets
Ct of all reference costs cref , where Copt must exist. When
cref = C1, C∗t is the smallest space containing Copt, and its
corresponding candidate edges ec is derived as the edges with
the first two highest MRs are included in ê. Moreover, eref
has the highest redemption rate among all edge sets in ê (i.e.,
B(eref )
C(eref )

≥ B(ec)
C(ec)

). Thus, if B(ec)
C(ec)

≥ C0
B(OPT )
C(OPT ) , where C0 ≤ 1

is a constant, then B(eref )
C(eref )

≥ C0
B(OPT )
C(OPT ) .



Note that B(eref )
C(eref )

can be derived easily since eref contains
at most two edges. However, for S3CA, the calculation of
the expected benefit B(S,K(I)) is more difficult due to the
influence propagation [2]. Hence, following previous works,
B(S,K(I)) can be obtained approximately by sampling meth-
ods, such as Monte Carlo [2] and reverse greedy [15]. More
specifically, it first tosses a coin for each edge with the given
influence probability to generate a graph. The users reachable
from the seed set by the paths with the allocated coupons will
be activated. Note that if a user vi is allocated with more
than ki coupons with the corresponding ki living edges after
tossing coins, it will only receive the former ki coupons from
the incident edges with the largest influence probability. The
accuracy of estimating B(S,K(I)) increases as the number of
sampling increases, and an arbitrarily close approximation can
be obtained, and thus the estimation is (1− ε)–approximated.

Finally, we find the relationship between the result of S3CA
and OPT as follows. For the pivot source identification in Sec.
IV, all users are assumed as a seed and included in the priority
queue Q. For each user as a seed, the MR after activation and
the MR of allocation with an SC after activation are examined.
S3CA invests a seed or an SC with the highest positive MR
iteratively, and the user is included in Q (with one SC or
not). The first two elements of Q are popped out as the initial
influence spread and the pivot source. Let s1 and s2 denote
the first two elements of Q. Let eu1 (eu2 ) and ed1 (ed2) denote the
edges from the virtual node and the ones to the activated child
by s1 (s2), respectively. The result of S3CA is at least as large
as (1−ε)B({eu1 ,e

d
1 ,e

u
2 ,e

d
2})

C({eu1 ,ed1 ,eu2 ,ed2})
, since S3CA ensures an improvement

in each movement (i.e., ID, GPI, and SCM) with an estimated
bias of B(S,K(I)), i.e., (1− ε).

Let e1ref and e2ref denote the two edges of eref , which
have the first two highest MRs. Furthermore, e1ref and
e2ref are iteratively selected in the same way of selecting
{eu1 , ed1, eu2 , ed2}, and thus e1ref and e2ref ∈ {eu1 , ed1, eu2 , ed2}.
Therefore, B({eu1 ,e

d
1 ,e

u
2 ,e

d
2})

C({eu1 ,ed1 ,eu2 ,ed2})
≥ B(eref )

C(eref )
, implying that the result

of S3CA is always no less than (1− ε)C0
B(OPT )
C(OPT ) .

After analyzing the relations among the result of S3CA,
redemption rate of eref , and the redemption rate of ec, we
further analyze the relation between the redemption rate of
OPT and ec. Since the expected benefit function is non-
submodular according to Lemma 1, we first derive an upper
bound of the expected benefit function and then find the
approximation ratio of S3CA as follows.

Let Xj denote the result of ec in the j-th iteration, where
j = 0, 1, 2, and b0 = max(b(vi))

min(b(vj))
, ∀vi, vj ∈ V , denotes the

ratio of the maximum benefit to the minimum benefit of users.
Let e∗t denote the selected edge with the maximum benefit of
OPT . By assuming OPT \X1 = e∗1, e

∗
2, · · · , e∗k, we have the

following lemma.

Lemma 3. There exists a decomposition of OPT in some
order such that for j = 0, 1,

∑k
i=1(B(Xj ∪{e∗1 ∪ · · ·∪ e∗i })−

B(Xj ∪ {e∗1 ∪ · · · ∪ e∗i−1}) ≤ b0
∑k
i=1B(e∗t ).

Proof. Since the influence spread starts from the virtual node
of the transformed problem, it is intuitive that OPT forms a
connected graph rooted at the virtual node; otherwise, there
is no gain of redemption rate. Similarly, ec is also a rooted
connected graph. Thus, for OPT , there exhibits an order of
edges becoming live from the root, which is denoted as Yi =
{e∗1 ∪ · · · ∪ e∗i }, where the activation begins from 1 to i. Let
Y = OPT \X1 = {e∗1 ∪ ...e∗k} by the activation order from 1
to k. For any i = 1, · · · , k, B(X1∪{e∗1∪· · ·∪e∗i })−B(X1∪
{e∗1∪· · ·∪e∗i−1}) ≤ B(e∗i ) ≤ b0B(e∗t ). Hence,

∑k
i=1(B(X1∪

{e∗1∪· · ·∪e∗i })−B(X1∪{e∗1∪· · ·∪e∗i−1}) ≤
∑k
i=1 b0B(e∗t ).

For j = 0 (i.e., X0), we can derive the same result following
the same analysis; therefore, the lemma is proved.

Although the expected benefit function is non-submodular,
with the upper bound derived by Lemma 3, let c0 =
max(cseed(vi)∪csc(vi))
min(cseed(vj)∪csc(vj)) , ∀vi, vj ∈ V denote the ratio of the
maximum cost to the minimum cost of users, the performance
bound of S3CA is derived as follows.

Theorem 2. S3CA is a (1 − e−
1

b0c0 − ε)–approximation
algorithm for the S3CRM.

Proof. Since the expected benefit function is monotone in-
creasing, by the decomposition Lemma 3, we have
B(OPT ) ≤ B(X1 ∪ (OPT \X1))
= B(X1) +

∑k
i=1(B(X1 ∪ {e∗1 ∪ · · · ∪ e∗i })−B(X1 ∪ {e∗1 ∪

· · · ∪ e∗i−1})
≤ B(X1) + b0

∑k
i=1 e

∗
t

= B(X1) + b0
∑k
i=1(B(X1 ∪ e∗t )−B(X1))

= B(X1) + b0
∑k
i=1

B(X1∪e∗t )−B(X1)
C(X1∪e∗t )−C(X1)

(C(X1 ∪ e∗t )−C(X1)).
By iteratively selecting the edges with the maximum MR,

B(X1) + b0
∑k
i=1

B(X1∪e∗t )−B(X1)
C(X1∪e∗t )−C(X1)

(C(X1 ∪ e∗t )−C(X1)) ≤
B(X1) + b0

∑k
i=1

B(X1∪x2)−B(X1)
C(X1∪x2)−C(X1)

(C(X1 ∪ e∗t )−C(X1)) ≤
B(X1)+b0

∑k
i=1

B(X1∪x2)−B(X1)
C(X1∪x2)−C(X1)

c0(C(X1∪e∗i )−C(X1)) ≤
B(X1) + b0c0

B(X2)−B(X1)
C(X2)−C(X1)

C(OPT ).
The last inequality holds since C is a linear function. Thus,

B(OPT )−B(X1) ≤ b0c0
B(X2)−B(X1)

C(X2)− C(X1)
C(OPT ). (2)

By applying the same analysis on X0,

B(OPT )−B(X0) ≤ b0c0
B(X1)−B(X0)

C(X1)− C(X0)
C(OPT ). (3)

Let δi = B(OPT )− B(Xi) and αi = b0c0C(OPT )
C(Xi)−C(Xi−1)

. By
Inequalities 2 and 3,

δ2
δ1
≤ (1− 1

α2
),

and
δ1
δ0
≤ (1− 1

α1
),

respectively.



By multiplying the left hand and right hand of the above
two inequalities separately,

δ2 = B(OPT )−B(X2)

≤ (1− C(X2)− C(X1)

b0c0C(OPT )
)(1− C(X1)− C(X0)

b0c0C(OPT )
)B(OPT )

≤ e−
C(X2)−C(X1)

b0c0C(OPT ) × e−
C(X1)−C(X0)

b0c0C(OPT ) B(OPT )

= e
− C(X2)

b0c0C(OPT )B(OPT ).

Thus,

B(X2) ≥ (1− e−
C(X2)

b0c0C(OPT ) )B(OPT ),

which implies

B(X2)

C(X2)
≥ (1− e−

C(X2)

b0c0C(OPT ) )
b0c0C(OPT )

C(X2)

B(OPT )

b0c0C(OPT )
.

Since (1− e−x)x−1 is monotone decreasing in x ≤ 1
b0c0

and
C(X2)

b0c0C(OPT ) ≤
1

b0c0
,

B(X2)

C(X2)
≥ (1− e−

C(X2)

b0c0C(OPT ) )
b0c0C(OPT )

C(X2)

B(OPT )

b0c0C(OPT )

≥ (1− e−
1

b0c0 )
B(OPT )

C(OPT )
.

Finally, since X2 = ec,

B(ec)

C(ec)
≥ (1− e−

1
b0c0 )

B(OPT )

C(OPT )
.

Hence, due to the estimation bias (Lemma 2), S3CA is a
(1−ε)(1−e−

1
b0c0 )–approximation algorithm for S3CRM. For

simplicity, we combine the ratio as (1− e−
1

b0c0 − ε), where ε
is an arbitrarily small constant. Furthermore, when b0 and c0
are both bounded (i.e., 1), S3CA is a constant approximation
algorithm for S3CRM.

Time complexity. For the weighted directed graph G =
{V,E}, let |V | and |E| denote the number of users and
edges, respectively. The time complexity of the ID phase
is O(M(|V | + |E|)) since it first takes O(2M |V |) time to
construct the priority queue Q, and it then invests the budget
in SCs and seeds by examining the MR of allocating an SC or
activating a seed in O(M |E|) and O(M |V |) time, respectively.
Note that both the size of coupon allocation and seed set
are bounded by the budget. The time complexity of the GPI
phase is O(M |V |(|V | + |E|)) since for each seed, the GPs
are identified by a DFS-based traversal in O(|V |+ |E|) time,
where the size of seed set is bounded by the budget. The time
complexity of the SCM phase is O(M |V ||E|) because for
each derived GP, the DIs are derived by retrieving SCs from
each inactive user vj that is possibly to be influenced, whereas
the number of GP is bounded by |V |, and the DIs are bounded
by |E|. Moreover, the size of DIs is bounded by the vertex
induced graph of GP. Therefore, the overall time complexity
is O(M |E|) + O(M |V ||E|) + O(M |V ||E|) = O(M |V ||E|)
and correlated to the size of the OSN. In particular, the time
O(M) of evaluating the expected benefit can be speeded up
by Monte Carlo [2] and reverse greedy methods [15].

VI. EXPERIMENT

A. Experiment Setup

We compare S3CA with IM [2]–[16] and PM [17]–[23]
in four OSNs, i.e., Facebook, Epinions, Google+ [28], and
Douban [29], with the detailed setting in Table II. Since IM
and PM are not designed for SC, two real coupon strategies are
adopted as follows. 1) Limited coupon strategy is provided by
Dropbox, Airbnb, Booking.com, etc., where the SC constraint
is specified by a constant k, i.e., Ki = k, ∀vi ∈ V . 2)
Unlimited coupon strategy is provided by Uber, Lyft, and
Hotels.com, etc., where the SC constraint of each user is
specified by the number of friends, i.e., Ki = N(vi), ∀vi ∈ V .
For the limited coupon strategy, the SC constraint of each
user is set to 32 according to Dropbox. We denote IM-
U (PM-U) and IM-L (PM-L) as IM with unlimited coupon
strategy and limited coupon strategy, respectively. For IM-U
and IM-L, the seed size is set to |V |

2n for n = 0, 1, · · · , 10
[17], and the seed size resulting in the maximum influence is
selected as the result. The default setting of the IM algorithm
follows the previous work [17]. Moreover, we design a two-
stage heuristic algorithm, IM-S. The first stage employs the
existing IM algorithm [17]. The second stage connects every
two seeds with the shortest paths, where the weight of each
edge e(i, j) is 1 − P (e(i, j)) (i.e., an edge with a higher
influence probability having a smaller weight). Afterward, IM-
S uniformly distributes SCs to the users in the paths such that
the overall seed cost and SC cost satisfy the investment budget
constraint.

The influence propagates under the extended IC model [2]
as described in Sec. III. Following [3], [6], [8], [9], [14],
[15], [17], [18], for each edge e(i, j), the influence probability
P (e(i, j)) is set to the reciprocal of vj’s in-degree. We adopt
the normal benefit setting [17], i.e., for each user, the benefit is
randomly generated by a normal distribution N (µ, σ), where
µ and σ are the mean and standard deviation, respectively.
For each user, the seed cost is proportional to the number
of her friends (out-degree) [17]. Moreover, the uniform SC
cost follows the real coupon strategies from Dropbox and
Hotels.com. To evaluate the effect of different benefits and
SC costs, we control the ratio λ of the total benefit to the
total SC cost, where λ =

∑
vi∈V

b(vi)∑
vi∈V

csc(vi)
. Moreover, the effect

of different seed costs and benefits is examined by controlling
the ratio κ of the total seed cost to the total benefit, where
κ =

∑
∀vi∈V

cseed(vi)∑
∀vi∈V

b(vi)
. For all OSNs, the default setting of λ

and κ are 1 and 10, respectively. We evaluate 1) the redemption
rate, 2) total benefit, 3) the ratio of the total selected seed cost
to total allocated SC cost (seed-SC rate), and 4) the average
maximum hop number from seeds, by changing 1) Binv , 2)
coupon strategies of baseline algorithms, 3) λ, and 4) κ. Each
simulation result is averaged over 1000 samples.

B. Simulation Results

Fig. 6 compares the investment efficiency of IM-U, PM-U,
IM-L, PM-L, IM-S, and S3CA, in the datasets of Table II.
The results are similar for most datasets. Due to the space



TABLE II
DATASETS AND THE CORRESPONDING ARGUMENTS

Dataset Facebook Epinions Google+ Douban
Nodes 4K 76K 108K 5.5M
Edges 88K 509K 13.7M 86M
Binv 10K 50K 200K 1M
µ, σ 10, 2 20, 4 50, 10 100, 20

constraint, we present the results of Douban and Facebook.
First, the impact on both redemption rate and total benefit
from different investment budgets Binv is investigated in
Fig. 6(a)–(b). The results manifest that S3CA achieves the
highest redemption rate and total benefit since it maximizes
the total expected benefit while reducing the total cost. In
Fig. 6(a), though the redemption rate of S3CA sustains in a
certain level as Binv increasing, Fig. 6(b) shows that the total
benefit increases when Binv increases. Note that the total cost
approximately equals to Binv for all algorithms in all settings
and thereby is not presented in this section. Fig. 6 presents the
results of IM-S. The redemption rate and total benefit of IM-S
improve in Fig. 6(a) and (b) with a larger investment budget,
but IM-S acquires much smaller redemption rate and benefit
compared with other approaches, because it only distributes
SCs to the users on the shortest paths and thereby fails to
obtain the benefits outside the paths. In Fig. 6(c) and (d), IM-
S improves with a larger λ, which is the ratio of total benefit
to total SC cost of users, because it is able to acquire a higher
benefit from each SC with a higher λ. Fig. 6(e) and (f) manifest
that IM-S incurs more running time (sometimes higher than
S3CA) as the budget grows, because more shortest paths
spanning an increasing number of seeds become candidates
for SC distribution.

Fig. 7 investigates the impacts on the seed-SC rate with
different Binv , λ, and κ, in different datasets, and the results
show that S3CA carefully balances the investment in seeds
and SCs according to different parameters. In Fig. 7(a)–(b),
S3CA increases the investment in seeds (i.e., the seed-SC
rate increases) while Binv increasing. With the generous in
investment, more seeds can be deployed for more influential
sources. In Fig. 7(c)–(d), the benefit of each user increases
while the SC cost is fixed, which implies that the benefit
per unit of investment also increases. Thus, for the seeds, the
benefit surpasses its seed cost and the benefit of allocating an
SC to other non-seed users, S3CA decides to invest more in
seeds. Moreover, the seed-SC rate of baseline algorithms has
negligible changes in Fig. 7(a)–(d) since they do not consider
the SC allocation. In Fig. 7(e)–(f), for different κ, all baseline
algorithms increase the investment in seeds since the seed
cost increases as κ increasing. However, S3CA decreases the
investment in seeds while the seed cost (κ) increases and
invests more in SCs to optimize the redemption rate. Thus,
S3CA is capable of balancing the investment in seeds and
SCs according to different budgets, λ, and κ.

Table III and IV show the average farthest hop from seeds
and the average running time, respectively. Table III shows
that S3CA can deepen the influence spread by allocating SCs

Fig. 6. Investment efficiency. (a) Redemption rate with different investment
budgets in Douban. (b) Total benefit with different investment budgets in
Douban. (c) Redemption rate with different λ in Douban. (d) Redemption
rate with different λ in Facebook. (e) Running time with Binv = 2M. (f)
Running time with Binv = 3M

and the average farthest hops ranging from 2.046 to 3.355.
However, for the baseline algorithms, the average farthest
hops reside between 1 to 1.939. Thus, the results manifest
the effectiveness of S3CA to disseminate SCs to a wider area
in OSNs. Moreover, the running time is listed in Table IV.
Since S3CA activates the seeds and allocates the SCs under
the investment budget, the running time is closely related to
the investment budget. Thus, the running time is proportional
to the investment budget and less related to the size of OSN,
which is shown in Table IV.

C. Case Study

We have incorporated real SC policies provided by Airbnb
and Booking.com on the real dataset in Table II. We have
employed the adoption model [30] for each user to find the
users that accept SCs. We have adopted real gross margin
to set the benefit according to the accounting research [31].
We have used the real datasets of social networks in [29].
More specifically, the SC costs are 50 and 100, and the SC
allocations are 100 and 10 according to Airbnb and Book-
ing.com, respectively. Since Booking.com has not revealed its
SC cost, here we refer to the one in Hotels.com to assign the
SC cost. Moreover, the adoption model [30], which quantifies
the probability of users adopting a coupon, is to uniformly



Fig. 7. Seed-SC rate. (a) Different investment budgets in Facebook. (b)
Different investment budgets in Epinions. (c) Different λ in Facebook. (d)
Different λ in Google+. (e) Different κ in Facebook. (f) Different κ in Douban.

select 85%, 10%, and 5% of users with 3
√
csc, csc, c2sc and

all normalized by 3
√
csc + csc + c2sc. For the benefit setting,

we adopt the gross margin for SCs from accounting research
[31], which is defined as b(vi)−csc(vi)

b(vi)
∗ 100 (%) for each vi.

Fig. 8 presents the new results with the above setting.
The redemption rate increases with a larger gross margin
in Fig. 8(a) due to more benefits generated from each user.
The redemption rate of Booking.com in Fig. 8(c) is higher
because Airbnb has higher SC allocation, but more SCs are
not redeemed by users. Therefore, fewer users are influenced
and activated. Moreover, for PM-L and PM-U, the redemption
rate increases with 60% gross margin in Fig. 8(c), because the
benefit is sustained, but some seeds can be discarded to reduce
the cost as shown in Fig. 8(d). S3CA achieves the highest
redemption rate with different gross margins in Airbnb and
Booking.com, since in addition to finding influential seeds,
S3CA obtains more benefits with guaranteed paths, which
connect and influence high-benefit users by SCs.

D. Performance of S3CA

To validate the approximation ratio, we have compared
S3CA with the optimal solution obtained by computation-
intensive exhaustive search in small networks with 150 nodes
generated by PPGG [32].9 We change the gross margin for
SCs from accounting research [31]. Compared with other

9The input parameters for PPGG are 1) 11 patterns, 2) support of 1000,
3) clustering coefficient of 0.6394, and 4) power-law parameter η = 1.7 and
2.5.

Fig. 8. Case study with different gross margin. (a) Redemption rate of Airbnb.
(b) Seed-SC cost of Airbnb. (c) Redemption rate of Hotels.com. (d) Seed-SC
cost of Hotels.com.

TABLE III
AVERAGE FARTHEST HOPS FROM SEEDS

Dataset IM-U IM-L PM-U PM-L S3CA
Facebook 1.958 1.000 1.872 1.004 3.579
Epinions 1.381 1.000 1.120 1.002 3.363
Google+ 1.724 1.000 1.723 1.000 2.690
Douban 1.014 1.000 1.002 1.001 3.134

algorithms, Fig. 10(a) shows that S3CA is closer to the
optimal solution, and the redemption rates of some baseline
algorithms are even smaller than the worst-case bounds of
S3CA, which are derived from the optimal solutions multiplied
by the approximation ratio. Fig. 10(b) shows that all solutions
returned by S3CA are above the worst-case bound, indicating
that the approximation ratio holds for the empirical cases.

To test the scalability, we first adopt PPGG [32] to generate
large Facebook-like synthetic networks. Fig. 9 presents the
running time and the explored ratio (i.e., the ratio of the
number of explored nodes of S3CA to the network size)
with different network sizes and investment budgets. Fig. 9(a)
indicates that the running time becomes larger as the network
size grows, but the explored ratio decreases under a fixed
budget in Fig. 9(b) (i.e., S3CA stops exploring new nodes
when the budget is run out). In contrast, Fig. 9(c) and (d)
indicate that both the running time and explored ratio become
larger as the investment budget increases, since S3CA in this
case is required to examine more candidates for the efficient
distribution of SCs.

VII. CONCLUSION

To the best of our knowledge, this paper makes the first
attempt to explore the seed selection with SC allocation under
a limited investment budget. We formulate a novel optimiza-
tion problem S3CRM and design an approximation algorithm
S3CA to optimize the redemption rate in social coupon sce-
nario. S3CA first deploys the investment in seeds and social
coupons by carefully examining the marginal redemption of



Fig. 9. Scalability experiments. (a) Running time with different network size.
(b) Explored ratio with different network size. (c) Running time with different
investment budgets. (d) Explored ratio with different investment budgets.

Fig. 10. Performance of S3CA. (a) Average results of baselines, S3CA, OPT,
and worst-case. (b) All results of S3CA, OPT, and worst-case.

three strategies which are deepening the influence spread,
broadening the influence spread, and initiating another start
of the influence spread. S3CA then identifies the guaranteed
paths to explore the opportunity to optimize the redemption
rate by maneuvering the social coupons. After obtaining the
guaranteed paths, S3CA further examines the amelioration
index and the deterioration index of the amelioration and
the deterioration by maneuvering social coupons to users and
retrieving social coupons from users, respectively. Finally,
S3CA optimizes the redemption rate by maneuvering the SCs
from the users with lower deterioration indices to the users
with higher amelioration index. Simulation results show that
S3CA can effectively improve the investment efficiency up to
30 times of the results of the baseline algorithms.
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