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Abstract—In this paper, we study the problem of approximate
containment similarity search. Given two records Q and X , the
containment similarity between Q and X with respect to Q is
|Q∩X|
|Q|

. Given a query record Q and a set of records S , the

containment similarity search finds a set of records from S whose
containment similarity regarding Q is not less than the given
threshold. This problem has many important applications in com-
mercial and scientific fields such as record matching and domain
search. Existing solution relies on the asymmetric LSH method by
transforming the containment similarity to well-studied Jaccard
similarity. In this paper, we use a inherently different framework
by transforming the containment similarity to set intersection.
We propose a novel augmented KMV sketch technique, namely
GB-KMV, which is data-dependent and can achieve a much better
trade-off between the sketch size and the accuracy. We provide
a set of theoretical analysis to underpin the proposed augmented
KMV sketch technique, and show that it outperforms the state-of-
the-art technique LSH-E in terms of estimation accuracy under
practical assumption. Our comprehensive experiments on real-life
datasets verify that GB-KMV is superior to LSH-E in terms of the
space-accuracy trade-off, time-accuracy trade-off, and the sketch
construction time. For instance, with similar estimation accuracy
(F-1 score), GB-KMV is over 100 times faster than LSH-E on
several real-life datasets.

I. INTRODUCTION

In many applications such as information retrieval, data
cleaning, machine learning and user recommendation, an ob-
ject (e.g., document, image, web page and user) is described
by a set of elements (e.g., words, q-grams, and items). One
of the most critical components in these applications is to
define the set similarity between two objects and develop
corresponding similarity query processing techniques. Given
two records (objects) X and Y , a variety of similarity func-
tions/metrics have been identified in the literature for different
scenarios (e.g., [28], [15]). Many indexing techniques have
been developed to support efficient exact and approximate
lookups and joins based on these similarity functions.

Many of the set similarity functions studied are symmetric
functions, i.e., f(X,Y ) = f(Y,X), including widely used
Jaccard similarity and Cosine similarity. In recent years, much
research attention has been given to the asymmetric set similar-
ity functions, which are more appropriate in some applications.
Containment similarity (a.k.a, Jaccard containment similarity)
is one of the representative asymmetric set similarity functions,
where the similarity between two records X and Y is defined

as f(X,Y ) = |X∩Y |
|X| in which |X∩Y | and |X | are intersection

size of X and Y and the size of X , respectively.

Compared with symmetric similarity such as Jaccard simi-
larity, containment similarity gives special consideration on the
query size, which makes it more suitable in some applications.
As shown in [35], containment similarity is useful in record

matching application. Given two text descriptions of two
restaurants X and Y which are represented by two “set of
words” records: {five, guys, burgers, and, fries, downtown,
brooklyn, new, york} and {five, kitchen, berkeley} respectively.
Suppose query Q is {five, guys}, we have that the Jaccard
similarity of Q and X (resp. Y ) is 2

9 = 0.22 ( 14 = 0.25).

Note the Jaccard similarity is f(Q,X) = |Q∩X|
|Q∪X| . Based on

the Jaccard similarity, record Y matches better to query Q, but
intuitively X should be a better choice. This is because the Jac-
card similarity unnessesarily favors the short records. On the
other hand, the containment similarity will lead to the desired
order with f(Q,X) = 2

2 = 1.0 and f(Q, Y ) = 1
2 = 0.5.

Containment similarity search can also support online error-
tolerant search for matching user queries against addresses
(map service) and products (product search). This is because
the regular keyword search is usually based on the containment
search, and containment similarity search provides a natural
error-tolerant alternative [5]. In [44], Zhu et al. show that
containment similarity search is essential in domain search
which enables users to effectively search Open Data.

The containment similarity is also of interest to applications
of computing the fraction of values of one column that are
contained in another column. In a dataset, the discovery of
all inclusion dependencies is a crucial part of data profiling
efforts. It has many applications such as foreign-key detection
and data integration(e.g., [22], [31], [8], [33], [30]).

Challenges. The problem of containment similarity search
has been intensively studied in the literature in recent years
(e.g., [5], [35], [44]). The key challenges of this problem come
from the following three aspects: (i) The number of elements
(i.e., vocabulary size) may be very large. For instance, the
vocabulary will blow up quickly when the higher-order shin-
gles are used [35]. Moreover, query and record may contain
many elements. To deal with the sheer volume of the data,
it is desirable to use sketch technique to provide effectively
and efficiently approximate solutions. (ii) The data distribution
(e.g., record size and element frequency) in real-life application
may be highly skewed. This may lead to poor performance
in practice for data independent sketch methods. (iii) A
subtle difficulty of the approximate solution comes from the
asymmetric property of the containment similarity. It is shown
in [34] that there cannot exist any locality sensitive hashing
(LSH) function family for containment similarity search.

To handle the large scale data and provide quick response,
most existing solutions for containment similarity search seek
to the approximate solutions. Although the use of LSH is re-
stricted, the novel asymmetric LSH method has been designed
in [34] to address the issue by padding techniques. Some
enhancements of asymmetric LSH techniques are proposed
in the following works by introducing different functions
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(e.g., [35]). Observe that the performance of the existing
solutions are sensitive to the skewness of the record size, Zhu
et. al propose a partition-based method based on Minhash LSH
function. By using optimal partition strategy based on the size
distribution of the records, the new approach can achieve much
better time-accuracy trade-off.

We notice that all existing approximate solutions rely on
the LSH functions by transforming the containment similarity
to well-studied Jaccard similarity. That is,

|Q ∩X |

|Q|
=

|Q ∩X |

|Q ∪X |
× |Q ∪X | ×

1

|Q|

As the size of query is usually readily available, the estimation
error come from the computation of Jaccard similarity and
union size of Q and X . Note that although the union size
can be derived from jaccard similarity [44], the large variance
caused by the combination of two estimations remains. This
motivates we to use a different framework by transforming the
containment similarity to set intersection size estimation, and
the error is only contributed by the estimation of |Q∩X |. The
well-known KMV sketch [11] has been widely used to estimate
the set intersection size, which can be immediately applied
to our problem. However, this method is data-independent
and hence cannot well handle the skewed distributions of
records size and element frequency, which is common in real-
life applications. Intuitively, the record with larger size and
the element with high-frequency should be allocated more
resources. In this paper, we theoretically show that the existing
KMV-sketch technique cannot consider these two perspectives
by simple heuristics, e.g., explictly allocating more resource to
record with large size. Consequently, we develop an augmented
KMV sketch to exploit both record size distribution and the
element frequency distribution for better space-accuracy and
time-accuracy trade-offs. Two technique are proposed: (i) we
impose a global threshold to KMV sketch, namely G-KMV
sketch, to achieve better estimate accuracy. As disscussed in
Section IV-A(2), this technique cannot be extended to the
Minhash LSH. (ii) we introduce an extra buffer for each record
to take advantage of the skewness of the element frequency.
A cost model is proposed to carefully choose the buffer size
to optimize the accuracy for the given total space budget and
data distribution.

Contributions. Our principle contributions are summarized as
follows.

• We propose a new augmented KMV sketch technique,
namely GB-KMV , for the problem of approximate
containment similarity search. By imposing a global
threshold and an extra buffer for KMV sketches of the
records, we significanlty enhance the performance as
the new method can better exploit the data distribu-
tions.

• We provide theoretical underpinnings to justify the
design of GB-KMV method. We also theoretically
show that GB-KMV outperforms the state-of-the-art
technique LSH-E in terms of accuracy under realistic
assumption on data distributions.

• Our comprehensive experiments on real-life set-valued
data from various applications demonstrate the effec-
tiveness and efficiency of our proposed method.

Road Map. The rest of the paper is organized as follows.
Section II presents the preliminaries. Section III introduces the

Notation Definition
S a collection of records

X,Q record, query record
x, q record size of X , query size of Q

J(Q,X), s Jaccard similarity between query Q and set X
C(Q,X), t Containment similarity of query Q in set X

s∗ Jaccard similarity threshold
LX the KMV signature (i.e., hash values) of record X
h(X) all hash values of the elements in record X
HX the buffer of record X
t∗ containment similarity threshold
b sketch space budget, measured by the number of

signatures (i.e., hash values or elements)
τ the global threshold for hash values
r the buffer size(with bit unit) of GB-KMV sketch
m number of records in dataset S
n number of distinct elements in dataset S

TABLE I. THE SUMMARY OF NOTATIONS

existing solutions. Our approach, GB-KMV sketch, is devised
in Section IV. Extensive experiments are reported in Section V,
followed by the related work in Section VI. Section VII
concludes the paper.

II. PRELIMINARIES

In this section, we first formally present the problem of
containment similarity search, then introduce some preliminary
knowledge. In Table I, we summarize the important mathemat-
ical notations appearing throughout this paper.

A. Problem Definition

In this paper, the element universe is E = {e1, e2, ..., en}.
Let S be a collection of records (sets) {X1, X2, ..., Xm}’
where Xi ( 1 ≤ i ≤ m) is a set of elements from E .

Before giving the definition of containment similarity, we
first introduce the Jaccard similarity.

Definition 1 (Jaccard Similarity). Given two records X and
Y from S, the Jaccard similarity between X and Y is defined
as the size of the intersection divided by the size of the union,
which is expressed as

J(X,Y ) =
|X ∩ Y |

|X ∪ Y |
(1)

Similar to the Jaccard similarity, the containment similarity
(a.k.a Jaccard containment similarity) is defined as follows.

Definition 2 (Containment Similarity). Given two records X
and Y from S, the containment similarity of X in Y , denoted
by C(X,Y ) is the size of the intersection divided by record
size |X |, which is formally defined as

C(X,Y ) =
|X ∩ Y |

|X |
(2)

Note that by replacing the union size |X∪Y | in Equation 1
with size |X |, we get the containment similarity. It is easy
to see that Jaccard similarity is symmetric while containment
similarity is asymmetric.

In this paper, we focus on the problem of containment
similarity search which is to look up a set of records whose
containment similarity towards a given query record is not
smaller than a given threshold. The formal definition is as
follows.

Definition 3 (Containment Similarity Search). Given a
query Q, and a threshold t∗ ∈ [0, 1] on the containment



id record C(Q,Xi)
X1 {e1, e2, e3, e4, e7} 0.67
X2 {e2, e3, e5} 0.5
X3 {e2, e4, e5} 0.33
X4 {e1, e2, e6, e10} 0.33
Q {e1, e2, e3, e5, e7, e9}

Fig. 1. A four-record dataset and a query Q; C(Q,Xi) is the
containment similarity of Q in Xi

similarity, search for records {X : X ∈ S} from a dataset
S such that:

C(Q,X) ≥ t∗ (3)

Next, we give an example to show the problem of contain-
ment similarity search.

Example 1. Fig. 1 shows a dataset with four records {X1, X2,
X3, X4}, and the element universe is E = {e1, e2, ..., e10}.
Given a query Q = {e1, e2, e3, e5, e7, e9} and a contain-
ment similarity threshold t∗ = 0.5, the records satisfying
C(Q,Xi) ≥ 0.5 are X1, X2.

Problem Statement. In this paper, we investigate the problem
of approximate containment similarity search. For the dataset
S with a large number of records, we aim to build a synopses
of the dataset such that it (i) can efficiently support contain-
ment similarity search with high accuracy, (ii) can handle large
size records, and (iii) has a compact index size.

B. Minwise Hashing

Minwise Hashing is proposed by Broder in [13], [14] for
estimating the Jaccard similarity of two records X and Y . Let
h be a hash function that maps the elements of X and Y to dis-
tinct integers, and define hmin(X) and hmin(Y ) to be the min-
imum hash value of a record X and Y , respectively. Assuming
no hash collision, Broder[13] showed that the Jaccard similar-
ity of X and Y is the probability of two minimum hash values
being equal: Pr[hmin(X) = hmin(Y )] = J(X,Y ). Applying
such k different independent hash functions h1, h2, ..., hk to a
record X(Y , resp.), the MinHash signature of X(Y , resp.) is
to keep k values of hi

min(X)( hmin(Y ), resp.) for k functions.
Let ni, i = 1, 2, ..., k be the indicator function such that

ni :=

{
1 if hi

min(X) = hi
min(Y ),

0 otherwise.
(4)

then the Jaccard similarity between record X and Y can be
estimated as

ŝ = Ĵ(X,Y ) =
1

k

k∑

i=1

ni (5)

Let s = J(X,Y ) be the Jaccard similarity of set X and Y ,

then the expectation of Ĵ is

E(ŝ) = s (6)

and the variance of ŝ is

V ar(ŝ) =
s(1− s)

k
(7)

C. KMV Sketch

The k minimum values(KMV) technique introduced by
Bayer et. al in [11] is to estimate the number of distinct
elements in a large dataset. Given a no-collision hash function
h which maps elements to range [0, 1], a KMV synopses of
a record X , denoted by LX , is to keep k minimum hash
values of X . Then the number of distinct elements |X | can

be estimated by |̂X | = k−1
U(k)

where U(k) is k-th smallest hash

value. By h(X), we denote hash values of all elements in the
record X .

In [11], Bayer et. al also methodically analyse the problem
of distinct element estimation under multi-set operation. As
for union operation, consider two records X and Y with
corresponding KMV synopses LX and LY of size kX and kY ,
respectively. In [11], LX ⊕LY represents the set consisting of
the k smallest hash values in LX ∪ LY where

k = min(kX , kY ) (8)

Then the KMV synopses of X ∪ Y is L = LX ⊕ LY . An
unbiased estimator for the number of distinct elements in X ∪
Y , denoted by D∪ = |X ∪ Y | is as follows.

D̂∪ =
k − 1

U(k)
(9)

For intersection operation, the KMV synopses is L = LX⊕LY

where k = min(kX , kY ). Let K∩ = |{v ∈ L : v ∈ LX∩LY }|,
i.e., K∩ is the number of common distinct hash values of LX

and LY within L. Then the number of distinct elements in
X ∩ Y , denoted by D∩, can be estimated as follows.

D̂∩ =
K∩

k
×

k − 1

U(k)
(10)

The variance of D̂∩, as shown in[11], is

V ar[D̂∩] =
D∩(kD∪ − k2 −D∪ + k +D∩)

k(k − 2)
(11)

III. EXISTING SOLUTIONS

In this section, we present the state-of-the-art technique
for the approximate containment similarity search, followed
by theoretical analysis on the limits of the existing solution.

A. LSH Ensemble Method

LSH Ensemble technique, LSH-E for short, is proposed
by Zhu et. al in [44] to tackle the problem of approximate
containment similarity search. The key idea is : (1) transform
the containment similarity search to the well-studied Jaccard
similarity search; and (2) partition the data by length and
then apply the LSH forest [9] technique for each individual
partition.

Similarity Transformation. Given a record X with size
x = |X |, a query Q with size q = |Q|, containment similarity
t = C(Q,X) and Jaccard similarity s = J(Q,X). The
transformation back and forth are as follows.

s =
t

x
q + 1− t

, t =
(xq + 1)s

1 + s
(12)

Given the containment similarity search threshold as t∗ for
the query q, we may come up with its corresponding Jaccard



similarity threshold s∗ by Equation 12. A straightforward
solution is to apply the existing approximate Jaccard similarity
search technique for each individual record X ∈ D with the
Jaccard similarity threshold s∗ (e.g., compute Jaccard similar-
ity between the query Q and a set X based on their MinHash
signatures). In order to take advantages of the efficient indexing
techniques (e.g., LSH forest [9]), LSH-E will partition the
dataset S.

Data Partition. By partitioning the dataset S according to
the record size, LSH-E can replace x in Equation 12 with its
upper bound u (i.e., the largest record size in the partition) as
an approximation. That is, for the given containment similarity
t∗ we have

s∗ =
t∗

u
q + 1− t∗

(13)

The use of upper bound u will lead to false positives. In [44],
an optimal partition method is designed to minimize the total
number of false positives brought by the use of upper bound
in each partition. By assuming that the record size distribution
follows the power-law distribution and similarity values are
uniformly distributed, it is shown that the optimal partition can
be achieved by ensuring each partition has the equal number
of records (i.e., equal-depth partition).

Containment Similarity Search. For each partition Si of the
data, LSH-E applies the dynamic LSH technique (e.g., LSH
forest [9]). Particularly, the records in Si are indexed by a
MinHash LSH with parameter (b, r) where b is the number of
bands used by the LSH index and r is the number of hash
values in each band. For the given query Q, the b and r
values are carefully chosen by considering their corresponding
number of false positives and false negatives regarding the
existing records. Then the candidate records in each partition
can be retrieved from the MinHash index according to the
corresponding Jaccard similarity thresholds obtained by Equa-
tion 13. The union of the candidate records from all partitions
will be returned as the result of the containment similarity
search.

B. Analysis

One of the LSH-E’s advantages is that it converts the
containment similarity problem to Jaccard similarity search
problem which can be solved by the mature and efficient
MinHash LSH method. Also, LSH-E carefully considers the
record size distribution and partitions the records by record
size. In this sense, we say LSH-E is a data-dependent method
and it is reported that LSH-E significantly outperforms ex-
isting asymmetric LSH based solutions [34], [35] (i.e., data-
independent methods) as LSH-E can exploit the information
of data distribution by partitioning the dataset. However, this
benefit is offset by the fact that the the upper bound will bring
extra false positives, in addition to the error from the MinHash
technique.

Below we theoretically analyse the performance of LSH-E
by studying the expectation and variance of its estimator.

Using the notations same as above, let s = J(Q,X)
be the Jaccard similarity between query Q and set X and
t = C(Q,X) be the containment similarity of Q in X . By
Equation 5, given the MinHash signature of query Q and
X respectively, an unbiased estimator ŝ of Jaccard similarity
s = J(Q,X) is the ratio of collisions in the signature, and the

variance of ŝ is V ar[ŝ] = s(1−s)
k where k is signature size of

each record. Then by transformation Equation 12, the estimator
t̂ of containment similarity t = C(Q,X) by MinHash LSH is

t̂ =
(xq + 1)ŝ

1 + ŝ
(14)

where q = |Q| and x = |X |. The estimator t̂′ of containment
similarity t = C(Q,X) by LSH-E is

t̂′ =
(uq + 1)ŝ

1 + ŝ
(15)

where q = |Q| and u is the upper bound of |X |.

Next, we use Taylor expansions to approximate the ex-
pectation and variance of a function with one random vari-
able [26]. We first give a lemma.

Lemma 1. Given a random variable X with expectation
E[X ] and variance V ar[X ], the expectation of f(X) can be
approximated as

E[f(X)] = f(E[X ] +
f ′′(E[X ])

2
V ar[X ] (16)

and the variance of f(X) can be approximated as

V ar[f(X)] = [f ′(E[X ])]2V ar[X ]−
[f ′′(E[X ])]2

4
V ar2[X ]

(17)

According to Equation 14, let t̂ = f(ŝ) = α ŝ
1+ŝ where

α = x
q +1. We can see that the estimator t̂ is a function of ŝ,

and f ′(ŝ) = α 1
(1+ŝ) and f ′′(ŝ) = −2α 1

(1+ŝ) . Then based on

Lemma 1, the expectation and variance of t̂ are approximated
as

E[t̂] ≈ t(1−
1− s

k(1 + s)2
) (18)

V ar[t̂] ≈
D2

∩(1− s)[k(1 + s)2 − s(1− s)]

q2k2s(1 + s)4
(19)

Similarly, the expectation and variance of LSH-E estimator t̂′

can be approximated as

E[t̂′] ≈ t(
u+ q

x+ q
)(1−

1− s

k(1 + s)2
) (20)

V ar[t̂′] ≈ (
u+ q

x+ q
)2
D2

∩(1− s)[k(1 + s)2 − s(1− s)]

q2k2s(1 + s)4
(21)

The computation details are in technique report [41]. Since
u is the upper bound of x, the variance of LSH-E estimator
V ar[t̂′] is larger than that of MinHash LSH estimator. Also, by
Equation 18 and Equation 20, we can see that both estimators
are biased and LSH-E method is quite sensitive to the setting
of the upper bound u by Equation 20. Because the presence of
upper bound u will enlarge the estimator off true value, LSH-E
method favours recall while the precision will be deteriorated.
The larger the upper bound u is, the worse the precision will
be. Our empirical study shows that LSH-E cannot achieve a
good trade-off between accuracy and space, compared with
our proposed method.



LKMV ki
LX1 {(e2, 0.24), (e7, 0.33), (e4, 0.47)} 3
LX2 {(e5, 0.10), (e2, 0.24), (e3, 0.85)} 3
LX3 {(e5, 0.10), (e2, 0.24)} 2
LX4 {(e10, 0.18), (e2, 0.24)} 2
LQ {(e5, 0.10), (e2, 0.24), (e7, 0.33), (e9, 0.56)} 4

Fig. 2. The KMV sketch of the dataset in Example 1, each signature
consists of element-hash value pairs. ki is the signature size of Xi

IV. OUR APPROACH

In this section, we introduce an augmented KMV sketch
technique to achieve better space-accuracy trade-off for ap-
proximate containment similarity search. Section IV-A briefly
introduces the motivation and main technique of our method,
namely GB-KMV . The detailed implementation is presented
in Section IV-B, followed by extensive theoretical analysis in
Section IV-C.

A. Motivation and Techniques

The key idea of our method is to propose a data-dependent
indexing technique such that we can exploit the distribution of
the data (i.e., record size distribution and element frequency
distribution) for better performance of containment similarity
search. We augment the existing KMV technique by intro-
ducing a global threshold for sample size allocation and a
buffer for frequent elements, namely GB-KMV , to achieve
better trade-off between synopses size and accuracy. Then we
apply the existing set similarity join/search indexing technique
to speed up the containment similarity search.

Below we outline the motivation of the key techniques used
in this paper. Detailed algorithms and theoretical analysis will
be introduced in Section IV-B and IV-C, respectively.

(1) Directly Apply KMV Sketch

Given a query Q and a threshold t∗ on containment
similarity, the goal is to find record X from dataset S such
that

|Q ∩X |

|Q|
≥ t∗, (22)

Applying some simple transformation to Equation 22, we get

|Q ∩X | ≥ t∗|Q|, (23)

Let θ = t∗|Q|, then the containment similarity search problem
is converted into finding record X whose intersection size with
the query Q is not smaller than θ, i.e., |Q ∩X | ≥ θ.

Therefore, we can directly apply the KMV method intro-
duced in Section II-C. Given KMV signatures of a record X
and a query Q, we can estimate their intersection size (|Q∩X |)
according to Equation 10. Then the containment similarity of
Q in X is immediately available given the query size |Q|.
Below, we show an example on how to apply KMV method
to containment similarity search.

Example 2. Fig. 2 shows the KMV sketch on
dataset in Example 1. Given KMV signature of Q
(LQ = {(e5, 0.10), (e2, 0.24), (e7, 0.33), e9, 0.56)}) and
X1 (LX1 = {(e2, 0.24), (e7, 0.33), (e4, 0.47)}), we have
k = min{kQ, k1} = 3, then the size-k KMV synopses of
Q∪X1 is L = LQ⊕LX1 = {(e5, 0.10), (e2, 0.24), (e7, 0.33)},
the k-th smallest hash value U(k) is 0.33 and the
size of intersection of LQ and LX1 within L is

K∩ = |{v : v ∈ LQ ∩ LX1 , v ∈ L}| = 2. Then
the intersection size of Q and X1 is estimated as

D̂∩ = K∩

k × k−1
U(k)

= 2
3 ∗ 2

0.33 = 4.04, and the containment

similarity is t̂ = D̂∩

|Q| = 0.67. Then X1 is returned if the given

containment similarity threshold t∗ is 0.5.

Remark 1. In [44], the size of the query is approximated by
MinHash signature of Q, where KMV sketch can also serve
for the same purpose. But the exact query size is used their
implementation for performance evaluation. In practice, the
query size is readily available, we assume query size is given
throughout the paper.

Optimization of KMV Sketch. Given a space budget b, we
can keep size-ki KMV signatures (i.e., ki minimal hash values)
for each record Xi with

∑n
i=1 ki = b. A natural question

is how to allocate the resource (e.g., setting of ki values)
to achieve the best overall estimation accuracy. Intuitively,
more resources should be allocated to records with more
frequent elements or larger record size, i.e., larger ki for
record with larger size. However, Theorem 1 (Section IV-C2)
suggests that, the optimal resource allocation strategy in terms
of estimation variance is to use the same size of signature for
each record. This is because the minimal of two k-values is
used in Equation 8, and hence the best solution is to evenly
allocate the resource. Thus, we have the KMV sketch based
method for approximate containment similarity search. For the
given budget b, we keep ki = ⌊ b

m⌋ minimal hash values for
each record Xi.

(2) Impose a Global Threshold to KMV Sketch (G-KMV)

The above analysis on optimal KMV sketch suggests an
equal size allocation strategy, that is, each record is associated
with the same size signature. Intuitively we should assign more
resources (i.e., signature size) to the records with large size
because they are more likely to appear in the results. However,
the estimate accuracy of KMV for two sets size intersection
is determined by the sketch with smaller size since we choose
k = min(k1, k2) for KMV signatures of X1 and X2 for D∪

and D∩ in Equation 9, thus it is useless to give more resource
to one of the records. We further explain the reason behind
with the following example.

Before we introduce the global threshold to KMV sketch,
consider the KMV sketch shown in the Fig. 2.

Example 3. Suppose we have LQ =
{(e5, 0.10), (e2, 0.24), (e7, 0.33), (e9, 0.56)} and LX3 =
{(e5, 0.10), (e2, 0.24)} . Although there are four hash values
in LQ ∪ LX3 = {(e5, 0.10), (e2, 0.24), (e7, 0.33), (e9, 0.56)},
we can only consider k = min{kQ, kX3} = 2 smallest
hash values of LQ ∪ LX3 by Equation 8, which is
{(e5, 0.10), (e2, 0.24)}, and the k-th (k = 2) minimum
hash value used in Equation 9 is 0.24. We cannot use k = 4
(i.e., U(k)=0.56) to estimate |Q ∪ X3| because the 4-th
smallest hash value in LQ∪LX3 may not be the 4-th smallest
hash values in h(Q ∪X3), because the unseen 3-rd smallest
hash value of X3 might be (e4, 0.47) for example, which is
smaller than 0.56. Recall that h(Q ∪ X3) denote the hash
values of all elements in Q ∪X3.

Nevertheless, if we know that all the hash values smaller
than a global threshold, say 0.6, are kept for every record, we
can safely use the 4-th hash value of LQ∪LX3 (i.e., 0.56) for
the estimation. This is because we can ensure the 4-th smallest



LGKMV

LX1 {(e2, 0.24), (e7, 0.33), (e4, 0.47)}
LX2 {(e5, 0.10), (e2, 0.24)}
LX3 {(e5, 0.10), (e2, 0.24), (e4, 0.47)}
LX4 {(e10, 0.18), (e2, 0.24)}
LQ {(e5, 0.10), (e2, 0.24), (e7, 0.33)}

Fig. 3. The G-KMV sketch of the dataset in Example 1 with hash
value threshold τ = 0.5
hash value in LQ∪LX3 must be the 4-th smallest hash values
in h(Q ∪X3).

Inspired by the above observation, we can carefully choose
a global threshold τ (e.g., 0.6 in the above example) for a given
space budget b, and ensure all hash values smaller than τ will
be kept for KMV sketch of the records. By imposing a global
threshold, we can identify a better (i.e., larger) k value used
for estimation, compared with Equation 8.

Given a record X and a global threshold τ , the sketch of
a record X is obtained as LX = {h(e) : h(e) ≤ τ, e ∈ X}
where h is the hash function. The sketch of Q (LQ) is defined
in the same way. In this paper, we say a KMV sketch is a
G-KMV sketch if we impose a global threshold to generate
KMV sketch. Then we set k value of the KMV estimation as
follows.

k = |LQ ∪ LX | (24)

Meanwhile, we have K∩ = |LQ ∩ LX |. Let U(k) be the k-th
minimal hash value in LQ ∪ LX , then the overlap size of Q
and X can be estimated as

D̂GKMV
∩ =

K∩

k

k − 1

U(k)
(25)

Then the containment similarity of Q in X is

Ĉ =
D̂GKMV

∩

q
(26)

where q is the query size. We remark that, as a by-product,
the global threshold favours the record with large size because
all elements with hash value smaller than τ are kept for each
record.

Below is an example on how to compute the containment
similarity based on G-KMV sketch.

Example 4. Fig. 3 shows the KMV sketch of dataset
in Example 1 with a global threshold τ = 0.5. Given
the signature of Q(LQ = {(e5, 0.10), (e2, 0.24), (e7, 0.33)})
and X1(LX1 = {(e2, 0.24), (e7, 0.33), (e4, 0.47)}), the
KMV sketch of Q ∪ X1 is L = LQ ∪ LX1 =
{(e5, 0.10), (e2, 0.24), (e7, 0.33), (e4, 0.47)}, the k-th(k = 4)
smallest hash value is U(k) = 0.47, and the size of intersection
of LQ and LX1 within L is K∩ = |{v : v ∈ LQ ∩ LX1 , v ∈
L}| = 2. Then the intersection size of Q and X1 is estimated

as D̂∩ = K∩

k × k−1
U(k)

= 2
4 ∗ 3

0.47 = 3.19, and the containment

similarity is t̂ = D̂∩

|Q| = 0.53. Then X1 is returned if the given

containment similarity threshold t∗ is 0.5.

Correctness of G-KMV sketch. Theorem 2 in Section IV-C3
shows the correctness of the G-KMV sketch.

Comparison with KMV. In Theorem 3 (Section IV-C4), we
theoretically show that G-KMV can achieve better accuracy
compared with KMV .

LH LGKMV

X1 {e1, e2} {(e7, 0.33), (e4, 0.47)}
X2 {e2} {(e5, 0.10)}
X3 {e2} {(e5, 0.10)}
X4 {e1, e2} {e10, 0.18)}
Q {e1, e2} {(e5, 0.10), (e7, 0.33)}

Fig. 4. The GB-KMV sketch of dataset in Example 1

Remark 2. Note that the global threshold technique cannot
be applied to MinHash based techniques. In minHash LSH,
the k minimum hash values are corresponding to k different
independent hash functions, while in KMV sketch, the k-value
sketch is obtained under one hash function. Thus we can only
impose this global threshold on the same hash function for the
KMV sketch based method.

(3) Use Buffer for KMV Sketch (GB-KMV)

In addition to the skewness of the record size, it is also
worthwhile to exploit the skewness of the element frequency.
Intuitively, more resource should be assigned to high-frequency
elements because they are more likely to appear in the records.
However, due to the nature of the hash function used by KMV
sketch, the hash value of an element is independent to its
frequency; that is, all elements have the same opportunity
contributing to the KMV sketch.

One possible solution is to divide the elements into mul-
tiple disjoint groups according to their frequency (e.g., low-
frequency and high-frequency ones), and then apply KMV
sketch for each individual group. The intersection size between
two records Q and X can be computed within each group
and then sum up together. However, our initial experiments
suggest that this will lead to poor accuracy because of the
summation of the intersection size estimations. In Theorem 4
(Section IV-C5), our theoretical analysis suggests that the
combination of estimated results are very likely to make the
overall accuracy worse.

To avoid combining multiple estimation results, we use a
bitmap buffer with size r for each record to exactly keep track
of the r most frequent elements, denoted by EH . Then we
apply G-KMV technique to the remaining elements, resulting
in a new augmented sketch, namely GB-KMV . Now we can
estimate |Q ∩ X | by combining the intersection of their
bitmap buffers (exact solution) and KMV sketches (estimated
solution).

As shown in Fig. 4, suppose we have EH = {e1, e2}
and the global threshold for hash value is τ = 0.5, then the
sketch of each record consists of two parts LH and LGKMV ;
that is, for each record we use bitmap to keep the elements
corresponding to high-frequency elements EH = {e1, e2}, then
we store the left elements with hash value less than τ = 0.5.

Example 5. Given the signature of Q(LQ =
{e1, e2} ∪ {(e5, 0.10), (e7, 0.33)}) and X1(LX1 =
{e1, e2} ∪ {(e7, 0.33), (e4, 0.47)}), the intersection of High-
frequency part is LH

Q ∩ LH
X1

= {e1, e2} with intersection size
as 2; next we consider the G-KMV part. Similar to Example
4, we compute the intersection of LGKMV part. The KMV
sketch is L′ = L′

Q∪L′
X1

= {(e5, 0.10), (e7, 0.33), (e4, 0.47)}.
According to Equation 24, the k-th(k = 3) smallest hash
value is U(k) = 0.47, and the size of intersection of LQ and
LX3 within L is K∩ = |{v : v ∈ LQ ∩ LX3 , v ∈ L}| = 1.
Then the intersection size of Q and X1 in LGKMV part is



estimated as D̂∩ = K∩

k × k−1
U(k)

= 1
3 ∗

2
0.47 = 1.4; together with

the High-frequency part, the intersection size of Q and X1 is
estimated as 2 + 1.4 = 3.4 and the containment similarity is

t̂ = D̂∩

|Q| = 0.53. Then X1 is returned if the given containment

similarity threshold t∗ is 0.5.

Optimal Buffer Size. The key challenge is how to set the
size of bitmap buffer for the best expected performance of
GB-KMV sketch. In Section IV-C6, we provide a theoretical
analysis, which is verified in our performance evaluation.

Comparison with G-KMV. As the G-KMV is a special case
of GB-KMV with buffer size 0 and we carefully choose the
buffer size with our cost model, the accuracy of GB-KMV is
not worse than G-KMV .

Comparison with LSH-E. Through theoretical analysis, we
show that the performance (i.e., the variance of the estimator)
of GB-KMV can always outperform that of LSH-E in Theo-
rem 5 (Section IV-C7).

B. Implementation of GB-KMV

In this section, we introduce the technique details of our
proposed GB-KMV method. We first show how to build GB-
KMV sketch on the dataset S and then present the containment
similarity search algorithm.

GB-KMV Sketch Construction. For each record X ∈ S,
its GB-KMV sketch consists of two components: (1) a buffer
which exactly keeps high-frequency elements, denoted by HX ;
and (2) a G-KMV sketch, which is a KMV sketch with a global
threshold value, denoted by LX .

Algorithm 1: GB-KMV Index Construction

Input : S : dataset; b: space budget;
h: a hash function; r: buffer size

Output : LS , the GB-KMV index of dataset S
Compute buffer size r based on distribution statistics of S and1

the space budget b;
EH ← Top r most frequent elements; EK ← E \ EH ;2

τ ← compute the global threshold for hash values;3

for each record X ∈ S do4

HX ← elements of X in EH ;5

LX ← hash values of elements {e} of X with h(e) ≤ τ ;6

Algorithm 1 illustrates the construction of GB-KMV sketch.
Let the element universe be E = {e1, e2, ..., en} and each
element is associated with its frequency in dataset S. Line 1
calculates a buffer size r for all records based on the skewness
of record size and elements as well as the space budget b in
terms of elements. Details will be introduced in Section IV-C6.
We use EH to denote the set of top-r most frequent elements
(Line 1), and they will be kept in the buffer of each record. Let
EK denote the remaining elements. Line 1 identifies maximal
possible global threshold τ for elements in EK such that the
total size of GB-KMV sketch meets the space budget b. For
each record X , let nX denote the number of elements in EK
with hash values less than τ , we have

∑
X∈S(

r
32 + nX) ≤ b.

Then Lines 1-1 build the buffer HX and G-KMV sketch LX for
every record X ∈ S. In section 2, we will show the correctness
of our sketch in Theorem 2.

Containment Similarity Search. Given the GB-KMV sketch
of the query record Q and the dataset S, we can conduct

approximate similarity search as illustrated in Algorithm 2.
Given a query Q with size q and the similarity threshold t∗,
let θ = t∗ ∗ q(Lines 1-2). With GB-KMV sketch {HQ,LQ},
we can calculate the containment similarity based on

̂|Q ∩X | = |HQ ∩HX |+ D̂GKMV
∩ (27)

where D̂GKMV
∩ is the estimation of overlap size of Q and X

which is calculated by Equation 25 in Section IV-A.

Note that |HQ ∩HX | is the number of common elements
of Q and X in EH .

Algorithm 2: Containment Similarity Search

Input : Q, a query set
t∗, containment similarity threshold

Output : R : records {X} with C(Q,X) ≥ t∗

q ← |Q|;1

θ ← t∗ ∗ q;2

for each record X ∈ S do3

̂|Q ∩X| ← |LQ

H ∩ L
X
H |+ D̂GKMV

∩ ;4

if ̂|Q ∩X| ≥ θ then5

Scandidate = Scandidate ∪X;6

return Scandidate7

Implementation of Containment Similarity Search. In our
implementation, we use a bitmap with size r to keep the
elements in buffer where each bit is reserved for one frequent
element. We can use bitwise intersection operator to efficiently
compute |HQ ∩HX | in Line 2 of Algorithm 2. Note that the
estimator of overlap size by G-KMV method in Equation 25

is D̂GKMV
∩ = K∩

k
k−1
U(k)

. As to the computation of ̂|Q ∩X |, we

apply some transformation to |LQ
H∩LX

H |+D̂GKMV
∩ ≥ θ. Then

we get K∩ ≥ o where o = U(k)(θ−o1) and o1 = |HQ∩HX |.
Since K∩ is the overlap size, then we make use of the
PPjoin* [40] to speed up the search. Note that in order to make
the PPjoin* which is designed for similarity join problem to
be applicable to the similarity search problem, we partition
the dataset S by record size, and in each partition we search
for the records which satisfy K∩ ≥ o, where overlap size is
modified by the lower bound in corresponding partition.

Remark 3. Note that the size-aware overlap set similarity
joins algorithm in [25] can not be applied to our GB-KMV
method, because we need to online construct c-subset inverted
list for each incoming query, which results in very inefficient
performance.

Processing Dynamic Data. Note that our algorithm can be
modified to process dynamic data. Particularly, when new
records come, we compute the new global threshold τ under
the fixed space budget by Line 1 of Algorithm 1, and with the
new global threshold, we maintain the sketch of each record
as shown in Line 1 of Algorithm 1.

C. Theoretical Analysis

In this section, we provide theoretical underpinnings of the
claims and observations in this paper.

1) Background: We need some reasonable assumptions
on the record size distribution, element frequency distribution
and query work-load for a comprehensive analysis. Following
are three popular assumptions widely used in the literature
(e.g., [6], [29], [27], [18], [16], [44], [34]):



• The element frequency in the dataset follows the
power-law distribution, with p1(x) = c1x

−α1 .

• The record size in the dataset follows the power-law
distribution, with p2(x) = c2x

−α2 .

• The query Q is randomly chosen from the records.

Throughout the paper, we use the variance to evaluate the
goodness of an estimator. Regarding the KMV based sketch
techniques (KMV , G-KMV and GB-KMV), we have

Lemma 2. In KMV sketch based methods, the larger the k
value used in Equation 8 and Equation 24 is, the smaller the
variance will be.

It is easy to verify the above lemma by calculating the
derivative of Equation 11 with respect to the variable k. Thus,
in the following analysis of KMV based sketch techniques. We
use the k value (i.e., the sketch size used for estimation) to
evaluate the goodness of the estimation, the larger the better.

2) Optimal KMV Signature Scheme: In this part, we give
an optimal resource allocation strategy for KMV sketch method
in similarity search.

Theorem 1. Given a space budget b, each set is associated
with a size-ki KMV signature and

∑m
i=1 ki = b. For KMV

sketch based containment similarity search, the optimal signa-
ture scheme is to keep the ⌊ b

m⌋ minimal hash values for each
set Xi.

Proof: Given a query Q and dataset S = {X1, ..., Xm},
an optimal signature scheme for containment similarity search
is to minimize the average variance between Q and Xi, i =
1, ...,m. Considering the query Q and set Xi with size-kq KMV
sketch LQ and size-ki sketch LXi

respectively, the sketch size
is k = min{kq, ki} according to Equation 8. By Lemma 2, an
optimal signature scheme is to maximize the total k value(say
T ), then we have the following optimization goal,

max T =

m∑

i=1

min{kq, ki}

s.t. b =

m∑

i=1

ki, ki > 0, i = 1, 2, ...,m

Rank the ki by increasing order, w.l.o.g., let k1, k2, ..., km be
the sketch size sequence after reorder. Let kl be the first in the
sequence such that kl = kq, then we have T = k1 + ...+ kl +
(m− l)kq = b−

∑m
i=l+1(ki−kq). In order to maximize T , we

set ki = kq, i = l + 1, ...,m. Then by b =
∑m

i=1 ki, we have
k1+ ...+kl+kq(m− l) = b. Note that ki ≤ kq, i = 1, ..., l, we
must have ki = kq, i = 1, ..., l. Since Q is randomly selected
from dataset S, we can get that all the ki, i = 1, ...m are equal
and ki = ⌊ b

m⌋.

3) Correctness of GKMV Sketch: In this section, we show
that the G-KMV sketch is a valid KMV sketch.

Theorem 2. Given two records X and Y , let LX and LY be
the G-KMV sketch of X and Y , respectively. Let k = |LX ∪
LY |, then the size-k KMV synopses of X∪Y is L = LX∪LY .

Proof: We show that the above L = LX ∪ LY is a valid
KMV sketch of X ∪ Y . Let k = |LX ∪ LY | and vk is the
k-th smallest hash value in LX ∪ LY . In order to prove that

LX ∪ LY is valid, we show that vk corresponds the element
with the k-th minimal hash value in X∪Y . If not, there should
exist an element e such that h(e′) < vk, e

′ ∈ X ∪ Y and
h(e′) /∈ LX ∪ LY . Note that vk ≤ τ , then h(e′) ≤ τ , thus
h(e′) is included in LX ∪LY , which contradicts to the above
statement.

4) G-KMV: A Better KMV Sketch: In this part, we show
that by imposing a global threshold to KMV sketch, we can
achieve better accuracy. Let LKMV

X and LKMV
Y be the KMV

sketch of X and Y respectively. Let k1 = |LKMV
X | and k2 =

|LKMV
Y |, then the sketch size k value can be set by Equation 8.

Similarly, let LGKMV
X and LGKMV

Y be the G-KMV sketch of
X and Y respectively, and the sketch size k value can be set
by Equation 24.

Theorem 3. With the fixed index space budget, for containment
similarity search the G-KMV sketch method is better than KMV
method in terms of accuracy when the power-law exponent of
element frequency α1 ≤ 3.4.

Proof: Let xj = |Xj |, j = 1, 2, ...,m be the set size and
kj be the signature size of record Xj . The frequency of element
ei is set to be fi. The index space budget is b.

For KMV sketch based method, by Theorem 1, the optimal
signature scheme is k = min(kj , kl) = ⌊ b

m⌋ given the index
space budget b, then the average k value for all pairs of sets
is

k̄KMV =
1

m2

m∑

j=1

m∑

l=1

min(kj , kl) = ⌊
b

m
⌋ (28)

For G-KMV sketch based method, let τ be the hash value
threshold. The probability that hash value h(ei) is included in

signature LGKMV
Xj

is Pr[h(ei) ∈ LGKMV
Xj

] = τ fi
N xj where fi

is the frequency of element ei, and N =
∑n

i=1 fi is the total

number of elements. The size of LGKMV
Xj

can be computed

by lj =
∑n

i=1 Pr[h(ei) ∈ LGKMV
Xj

] = τxj then the total

index space is b =
∑m

j=1 lj =
∑m

j=1 τxj = τN . and the hash

value threshold τ = b
N . Next we compute average sketch size

k value of G-KMV method. The intersection size of LXj
and

LXl

|LXj
∩ LXl

| =

n∑

i=1

τ
fi
N

xj ∗ τ
fi
N

xl = τ2xjxlfn2 (29)

where fn2 =
∑n

i=1 f2
i

N2 . The k value of G-KMV method
according to Equation 24 is

|LXj
∪ LXl

| = τxj + τxl − τ2xjxlfn2 (30)

Then the average k value for all pairs of sets is

k̄GKMV =
1

m2

m∑

j=1

m∑

l=1

|LXj
∪ LXl

| =
2b

m
−

b2

m2
fn2 (31)

Let k̄GKMV ≥ k̄KMV , we get α1 ∈ (0, 0.5] ∪ [(1 + m
b ) −√

(1 + m
b )

m
b , (1 + m

b ) +
√
(1 + m

b )
m
b ]. Note that for the

common setting m
b ≤ 1, we can get α1 ≤ 3.4. The result

makes sense since the power-law(Zipf’s law) exponent of
element frequency is usually less than 3.4 for real datasets.



5) Partition of KMV Sketch Is Not Promising: In this part,
we show that it is difficult to improve the performance of KMV
by dividing elements to multiple groups according to their
frequency and apply KMV estimation individually. W.l.o.g.,
we consider dividing elements into two groups.

We divide the sorted element universe E into two disjoint
parts EH1 and EH2 . Let X and Y be two sets from dataset S
with KMV sketch LX and LY respectively. Let kX = |LX |
and kY = |LY |. The estimator of containment similarity is

Ĉ = D̂∩

q , where D̂∩ is the estimator of intersection size D∩

and q is the query size(x or y).

Corresponding to EH1 and EH2 , we divide X(Y , resp.) to
two parts X1 and X2(Y1 and Y2, resp.). We know that X1 ∩
X2 = Φ and Y1 ∩ Y2 = Φ. Also, let D∩ = |X ∩ Y |,D∪ =
|X∪Y |, we have D∩ = |X1∩Y1|+ |X2∩Y2| and D∪ = |X1∪
Y1|+ |X2∪Y2| since EH1 and EH2 are disjoint. For simplicity,
let D∩1 = |X1 ∩ Y1|, D∪1 = |X1 ∪ Y1|, D∩2 = |X2 ∩ Y2|
and D∪2 = |X2 ∪ Y2|. For X1, X2, Y1 and Y2, the KMV
sketches are LX1 , LX2 , LY1 and LY2 with size kX1 , kX2 , kY1

and kY2 , respectively. Based on this, we give another estimator

as Ĉ′ = D̂∩1+D̂∩2

q , where D̂∩1(D̂∩2, resp.) is the estimator

of intersection size D∩1(D∩2, resp.). Next, we compare the

variance of Ĉ and Ĉ′.

Theorem 4. After dividing the element universe into two
groups and applying KMV sketch in each group, with the same

index space budget, the variance of Ĉ′ is larger than that of

Ĉ.

Proof: Recall the KMV sketch, we have E(Ĉ′) =
E(D̂∩1) + E(D̂∩2) = D∩1 + D∩2 = D∩. Because of the

two disjoint element groups, D̂∩1 and D̂∩2 are independent.

Thus the variance V ar[Ĉ′] = V ar[D̂∩1]+V ar[D̂∩2]
q2 . Next, we

will show

V ar[D̂∩1] + V ar[D̂∩2] ≥ V ar[Ĉ].

Consider the KMV sketch for set X and Y , the sketch size
according to Equation 8 is k = min{kX , kY }. Similarly, for
X1 and Y1, we have the sketch size k1 = min{kX1 , kY1};
for X2 and Y2, we have the sketch size k2 = min{kX2 , kY2}.
Since the index is fixed, we have kX = kX1 + kX2 and kY =
kY1+kY2 . Then, k1+k2 = min{kX1 , kY1}+min{kX2 , kY2} ≤
min{kX , kY } = k.

Let ∆ = V ar[D̂∩1] + V ar[D̂∩2] − V ar[Ĉ], after some

calculation, we have ∆ =
D2

∩1

k2
1

+
D2

∩2

k2
2

−
D2

∩

k2 + D∩1D∪1

k1
+

D∩2D∪2

k2
− D∩D∪

k . Next we show that
D2

∩1

k2
1

+
D2

∩2

k2
2

−
D2

∩

k2 ≥ 0.

Let k1 = 1
αk and k2 = 1

β where 1
α + 1

β = 1 and α, β > 1.

Then we have
D2

∩1

k2
1

+
D2

∩2

k2
2

−
D2

∩

k2 =
α2D2

∩1+β2D2
∩2−D2

∩

k2 =
(α2−1)D2

∩1+(β2−1)D2
∩2−2D∩1D∩2

k2 . As for the upper part in the
above equation, by inequality of arithmetic and geometric
means, we get (α2 − 1)D2

∩1 + (β2 − 1)D2
∩2 − 2D∩1D∩2 ≥

2(
√
(α− 1)(α+ 1)(β − 1)(β + 1)− 1)D∩1D∩2. Since (α−

1)(β−1) = 1, we get
√
(α− 1)(α+ 1)(β − 1)(β + 1)−1 =√

(α+ 1)(β + 1)− 1 ≥ 0, thus
D2

∩1

k2
1

+
D2

∩2

k2
2

−
D2

∩

k2 ≥ 0.

Let ∆1 = D∩1D∪1

k1
+D∩2D∪2

k2
−D∩D∪

k , after some computa-

tion, we have ∆1 = (k1D∪2−k2D∪1)(k1D∩2−k2D∩1)
kk1k2

. As for the
numerator(upper) of ∆1, consider the two parts after dividing

the element universe, if the union size in one part, say D∪2, is
larger, meanwhile the corresponding intersection size D∩2 is
larger, we have ∆1 ≥ 0. This case can be realized since one
of the two groups divided from element universe is made of
high-frequency elements, which will result in large intersection
size and large union size under the proper choice of k, k1, k2.

6) Optimal Buffer Size r : In this part, we show how to
find optimal buffer size r by analysing the variance for GB-
KMV method. Given the space budget b, we first show that the
variance for GB-KMV sketch is a function of f(r, α1, α2, b)
and then we give a method to appropriately choose r. Below
are some notations first.

Given two sets X and Y with G-KMV sketch LX and LY

respectively, the containment similarity of Q in X is computed

by Equation 26 as ĈGKMV =
D̂GKMV

∩

q , where D̂GKMV
∩ =

K∩

k × k−1
U(k)

is the overlap size.

As for the GB-KMV method of set X an Y with sketch
HX∪LX and HY ∪LY respectively, the containment similarity

of Q in X is computed by Equation 27 as ĈGBKMV =
|HQ∩HX |+D̂GKMV

∩

q , where |HQ ∩HX | is the number of com-

mon elements in EH part. It is easy to verify that ĈGBKMV

is an unbiased estimator. Also, the variance of GB-KMV

method estimator is V ar[ĈGBKMV ] =
V ar[D̂GKMV

∩
]

q2 , where

V ar[D̂GKMV
∩ ] corresponds to the variance of the G-KMV

sketch in the GB-KMV sketch.

Next, with the same space budget b, we compute the
average variance of GB-KMV method.

Consider the GB-KMV index construction which is in-
troduced in Section IV-B by Algorithm 1. Let N be the
total number of elements and b the space budget in terms
of elements for index construction. Assume that we keep
r high-frequency elements by bitmap in the buffer, which
have N1 =

∑m
j=1 |HXj

| =
∑r

i=1 fi elements and occupy

T1 = m∗r/32 index space. Then the total number of elements
left for G-KMV sketch is N2 = N −N1 and the index space
for G-KMV sketch is T2 = b− T1.

Given two sets Xj and Xl, the variance of overlap size
estimator in Equation 11 is as follows

V ar[D̂∩] =
D∩(kD∪ − k2 −D∪ + k +D∩)

k(k − 2)
(32)

where D∪ = |Xj ∪Xl|, D∩ = |Xj ∩Xl| and k is the sketch
size. Since the variance is concerned with the union size D∪,
the intersection size D∩ and the signature size k, we first
calculate these three formulas, then compute the variance.

Consider the two sets Xj , Xl from dataset S with GB-KMV
sketch HXj

∪LXj
and HXj

∪LXj
respectively. The element ei

is associated with frequency fi, and the probability of element

ei appearing in record Xj is Pr[h(ei) ∈ LXj
] = fi

N xj . Given
a hash value threshold τ , the G-KMV signature size of set Xj

is computed as kj = τ(xj − |HXj
|). The total index space in

G-KMV sketch is
∑m

j=1 kj = T2 = b− T1 = b− r
32 ∗m, then

we get τ = b−r/32∗m
N−N1

.

Similar to Equation 29, 30, the sketch size k value for GB-
KMV sketch is k = τ(xj + xl) − τ2x1x2(fn2 − fr2) where



fn2 =
∑

n
i+1 f2

i

N2 , fr2 =
∑

r
i+1 f2

i

N2 . The intersection size and union
size of Xj and Xl are D∩ = xjxl(fn2 − fr2) and D∪ =

(xj +xl)(1− fr)−xjxl(fn2 − fr2) where fr =
∑r

i=1 fi
N , then

the variance of GB-KMV method by Equation 32 is

V ar[ĈGBKMV ] =
(xj + xl)xl

kxj
F1 +

x2
l

k
F2 +

xl

xj
F3

where F1 = fn2 − fr2 , F2 = −(fn2 − fr2)
2 and F3 =

−(fn2 − fr2), and the average variance of GB-KMV method

V arGBKMV = 1
m2

∑m
j=1

∑m
l=1 V ar[ĈGBKMV ] is

V arGBKMV = L1F1 + L2F2 + L3F3

where L1 = 1
m2

∑m
j=1

∑m
l=1

(xj+xl)xjxl

kx2
j

, L2 =

1
m2

∑m
j=1

∑m
l=1

(xjxl)
2

kx2
j

and L3 = 1
m2

∑m
j=1

∑m
l=1

xl

xj
.

Note that F1, F2, F3 is concerned with the element
frequency which can be computed by using the distribution
p1(x) = c1x

−α1 ; L1, L2, L3 is related to the record
size which can be computed by using p2(x) = c2x

−α2

and k is related to the index budget size b and buffer
size r, then V arGBKMV can be restated as V arGBKMV =

L1F1+L2F2+L3F3 = 1
m2 [A

(d1−α1−r1−α1)(d1−2α1−r1−2α1 )
b− m

32 r
−

B (d1−α1−r1−α1)(d1−2α1−r1−2α1)2

b− m
32 r

] −

C(d1−2α1 − r1−2α1 ) where A =
N(α1−1)2

(1−2α1)d1−α1(d1−α1−1)2
(α2−1)2

−α2(2−α2)
(x

2−α2
t −x

2−α2
1 )(x

−α2
t −x

−α2
1 )

(x
−α2+1
t −x

−α2+1
1 )2

,

B = N(α1−1)4

(1−2α1)2d1−α1(d1−α1−1)4
(α2−1)2

−α2(3−α2)

(x
3−α2
t −x

3−α2
1 )(x

−α2
t −x

−α2
1 )

(x
−α2+1
t −x

−α2+1
1 )2

and C = (α1−1)2

(1−2α1)(d1−α1−1)2
(α2−1)2

−α2(2−α2)
(x

2−α2
t −x

2−α2
1 )(x

−α2
t −x

−α2
1 )

(x
−α2+1
t −x

−α2+1
1 )2

Moreover, we have V arGBKMV =
a1r

5α1+1+a2r
5α1+a3r

4α1+1+a4r
3α1+2+a5r

3α1+1+a6r
2α1+2+a7r

α1+2+a8r
3

(b− m
32 r)r

5α1

where a1 = C m
32d

1−2α1 , a2 = Ad2−2α1 − Bd3−5α1 −
bCd1−2α1 , a3 = −Ad1−α1 + Bd2−4α1 , a4 = −C m

32 ,

a5 = −Ad1−α1 + 2Bd2−2α1 + bC, a6 = A − 2Bd1−2α1 ,
a7 = −Bd1−α1 and a8 = B.

We can see that the variance V arGBKMV can be regarded
as a function of f(r, α1, α2, b), i.e.,

V arGBKMV = f(r, α1, α2, b) (33)

Similarly, for the G-KMV sketch based method, the variance
can be calculated as

V ar[ĈGKMV ] =
(xj + xl)xjxl

kx2
j

F ′
1 +

(xjxl)
2

kx2
j

F ′
2 +

xjxl

x2
j

F ′
3

where F ′
1 = fn2 , F ′

2 = −f2
n2 , F ′

3 = −fn2 and k =
b
N (xj + xl)− ( b

N )2xjxlfn2 . Let ∆V ar = V ar[ĈGBKMV ]−

V ar[ĈGKMV ], then for all pairs of Xj , Xl, the average of
∆V ar is V∆ = 1

m2

∑m
j=1

∑m
l=1 ∆V ar. Moreover, we can

rewrite V∆ as V∆ = L1(F
′
1−F1)+L2(F

′
2−F2)+L3(F

′
3−F3).

Eventually, in order to find the optimal r, i.e., the number
of high-frequency elements in GB-KMV method, we give
the optimization goal as maxr VGBKMV = f(r, α1, α2, b),
s.t. V∆ < 0.

In order to compute the above optimization problem, we
try to extract the roots of the first derivative function of
Equation 33( i.e., f(r, α1, α2, b)) with respect to r. However,
the derivative function is a polynomial function with degree

of r larger than four. According to Abel’s impossibility the-
orem [39], there is no algebraic solution, thus we try to give
the numerical solution.

Recall that we use bitmap to keep the r high-frequency
elements, given the space budget b, the element frequency and
record size distribution with power-law exponent α1 and α2

respectively, the optimization goal maxr VGBKMV can be
considered as a function maxr f(r, b, α1, α2). Given a dataset
S and the space budget b, we can get the power-law exponent
α1, α2. Then we assign 8, 16, 24, ... to r and calculate the
f(r, b, α1, α2). In this way, we can give a good guide to the
choice of r.

7) GB-KMV Sketch provides Better Accuracy than LSH-E
Method: In Section III-B, we have shown that the variance of
LSH-E estimator(Equation 21) is larger than that of MinHash
LSH estimator(Equation 19). Note that G-KMV sketch is a
special case of GB-KMV sketch when the buffer size r = 0.
By choosing an optimal buffer size r in IV-C6, it can guarantee
that the performance of GB-KMV is not worse than G-KMV .
Below, we show that G-KMV outperforms MinHash LSH in
terms of estimate accuracy.

Theorem 5. The variance of G-KMV method is smaller than
that of minHash LSH method given the same sketch size.

Proof: Suppose that the minHash LSH method uses k′

hash functions to the dataset, then the total sketch size is T =
mk′. Let τ be the global threshold of G-KMV method, we

have τ = mk′

N where N is the total number of elements in
dataset.

We first consider the G-KMV method. Similar to Equa-
tion 29, 30, the intersection size of Xj and Xl is D∩ =

xjxl

∑n
i=1

f2
i

N2 , and the union size is D∪ = xj + xl −

xjxl

∑n
i=1

f2
i

N2 . Then by Equation 11 the variance of the G-
KMV method to estimate the containment similarity of Xj in
Xl can be rewritten as

VG-KMV =
(xj + xl)xjxl

kx2
j

F1 +
(xjxl)

2

kx2
j

F2 +
xjxl

x2
j

F3 (34)

where F1 = fn2 , F2 = −(fn2)2, F3 = −fn2 and fn2 =∑n
i=1

f2
i

N2 .

Next we compute the k value of the sketch. Note that τ
is the global threshold of G-KMV method. The k value corre-
sponding the intersection size of Xj and Xl by Equation 24
is k = τ(xj + xl) − τ2xjxlfn2 . Then the average variance
V1 = 1

m2

∑m
j=1

∑m
l=1 VG-KMV is

V1 =
1

m2
(L1F1 + L2F2 + L3F3)

where L1 =
∑m

j=1

∑m
l=1

(xj+xl)xjxl

x2
j
k

, L2 =
∑m

j=1

∑m
l=1

(xjxl)
2

kx2
j

and L3 =
∑m

j=1

∑m
l=1

xjxl

x2
j

. After

some computation, V1 = 1
k′ [

(α2−1)3

−α2(2−α2)
W1fn2 +

(α2−1)3

α2(2−α2)(3−α2)
W2(fn2)2 + k′ (α2−1)2

α2(2−α2)
W3fn2 ]

where W1 =
(x
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1 )2(x
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, W3 =

(x
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t −x

2−α2
1 )(x

−α2
t −x

−α2
1 )

(x
−α2+1
t −x

−α2+1
1 )2

and fn2 = (1−α1)
2

1−2α1

d1−2α1−1
(d1−α1−1)2

.



Note that xt(x1, resp.) is the largest(smallest, resp.) set size
and d is the distinct number of elements.

Next we take into account the minHash LSH method.

Given two sets Xj and Xl, by Equation 19, the vari-
ance of minHash LSH method to estimate the containment
similarity of Xj in Xl is VminH = 1

k′ [a1fn2 + a2(fn2)2 +

a3(fn2)3 + a4(fn2)4] where a1 = xl +
x2
l

xj
, a2 = −4x2

l ,

a3 = 5
xjx

3
l

xj+xl
and a4 = −2

x2
jx

4
l

(xj+xl)2
. Then the average variance

V2 = 1
m2

∑m
j=1

∑m
l=1 VminH is

V2 =
1

k′m2
[A1fn2 +A2(fn2)2 +A3(fn2)3 +A4(fn2)4]

where A1 = α2−1
2−α2
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]

Note that fn2 is computed by the distribution p1(x) =
c1x

−α1 and the sum over set size is computed by the set size
distribution p2(x) = c2x

−α2 , and the variance V1 and V2 is
dependent on α1 and α2. Compare the variance V1 and V2, we
get that V1 < V2 for all α1 > 0 and α2 > 0.

Next, we analyse the performance of the two methods with
the dataset following uniform distribution(i.e., α1 = 0, α2 =
0).

For G-KMV method, the average variance is

V ′
1 =

1

m2
(L1F1 + L2F2 + L3F3)

where L1 =
∑m

j=1

∑m
l=1

(xj+xl)xjxl

x2
j
k

, L2 =
∑m

j=1

∑m
l=1

(xjxl)
2

kx2
j

and L3 =
∑m

j=1

∑m
l=1

xjxl

x2
j

.

After some computation, V ′
1 = 1

k′ [
(α2−1)3
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W1fn2 −
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.

Note that xt(x1, resp.) is the largest(smallest, resp.) set size
and d is the distinct number of elements.

For LSH-E method, the average variance is

V ′
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Similarly, we can get that V ′
1 < V ′

2 .

Remark 4. We have illustrated that the variance of GB-KMV
is smaller than that of LSH-E. Then by Chebyshev’s inequality,
i.e., Pr(|X−µ| ≥ ǫσ) ≤ 1

ǫ2 where µ is the expectation, δ is the
standard deviation and ǫ > 1 is a constant, we consider the
probability that values lie outside the interval [µ− ǫδ, µ+ ǫδ],
that is, values deviating from the expectation. By Theorem 5,
we get that the standard deviation δ1 of GB-KMV is smaller
than δ2 of LSH-E, then with the same interval [µ− ǫδ, µ+ ǫδ],
the constant ǫ1 for GB-KMV is larger than ǫ2 for LSH-E, thus
the probability that values lie outside the interval for GB-KMV
is smaller than that for LSH-E, which means that the result
of GB-KMV is more concentrated around the expected value
than that of LSH-E.

V. PERFORMANCE STUDIES

In this section, we empirically evaluate the performance
of our proposed GB-KMV method and compare LSH Ensem-
ble [44] as baseline. We also compare our approximate GB-
KMV method with the exact containment similarity search
method. All experiments are conducted on PCs with Intel Xeon
2 × 2.3GHz CPU and 128GB RAM running Debian Linux,
and the source code of GB-KMV is made available [1].

A. Experimental Setup
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Fig. 5. Effect of Buffer Size

Approximate Algorithms. In the experiments, the approxi-
mate algorithms evaluated are as follows.

• GB-KMV. Our approach proposed in Section IV-B.

• LSH-E. The state-of-the-art approxiamte containment
similarity search method proposed in [44].

The above two algorithms are implemented in Go program-
ming language. We get the source code of LSH-E from [44].
For LSH-E, we follow the parameter setting from [44].

Exact Algorithms. To better evaluate the proposed methods,
we also compare our approximate method GB-KMV with the
following two exact containment similarity search methods.

• PPjoin *. We extend the prefix-filtering based method
from [40] to tackle the containment similarity search
problem.

• FrequentSet. The state-of-the-art exact containment
similarity search method proposed in [5].



Dataset Abbrev Type Record #Records AvgLength #DistinctEle α1-eleFreq α2-recSize
Netflix [12] NETFLIX Rating Movie 480,189 209.25 17,770 1.14 4.95
Delicious [2] DELIC Folksonomy User 833,081 98.42 4,512,099 1.14 3.05
CaOpenData [44] COD Folksonomy User 65,553 6284 111,011,807 1.09 1.81
Enron [3] ENRON Text Email 517,431 133.57 1,113,219 1.16 3.10
Reuters [4] REUTERS Folksonomy User 833,081 77.6 283,906 1.32 6.61
Webspam [38] WEBSPAM Text Text 350,000 3728 16,609,143 1.33 9.34
WDC Web Table [44] WDC Text Text 262,893,406 29.2 111,562,175 1.08 2.4

TABLE II. CHARACTERISTICS OF DATASETS
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Fig. 6. GB-KMV , G-KMV , KMV comparison

Remark 5. A novel size-aware overlap set similarity join
algorithm has been recently proposed in [25]. Although the
containment similarity search relies on the set overlap, their
technique cannot be trivially applied because we need to
construct c-subset inverted lists for each possible query size.
In particular, in the size-aware overlap set similarity join
algorithm, it is required to build the c-subset inverted list for
the given overlap threshold c. In our GB-KMV method, the
threshold c corresponds to |Q| ∗ t∗ , where |Q| is the query
size and t∗ is the similarity threshold, thus with different query
size |Q|, we need to build different |Q|∗t∗-subset inverted lists,
which is very inefficient.

Datasets. We deployed 7 real-life datasets with different
data properties. Note that the records with size less than 10
are discarded from dataset. We also remove the stop words
(e.g., ”the”) from the dataset. Table II shows the detailed
characteristics of the 7 datasets. Each dataset is illustrated

with the dataset type, the representations of record, the number
of records in the dataset, the average record length, and the
number of distinct elements in the dataset. We also report the
power-law exponent α1 and α2 (skewness) of the record size
and element frequency of the dataset respectively. Note that
we make use of the framework in [18] to quantify the power-
law exponent. The dataset Canadian Open Data appears in the
state-of-the-art algorithm LSH-E [44] .

Settings. We borrow the idea from the evaluation of LSH-E
in [44] to use Fα score (α=1, 0.5) to evaluate the accuracy of
the containment similarity search. Given a query Q randomly
selected from the dataset S and a containment similarity
threshold t∗, we define T = {X : t(Q,X) ≥ t∗, X ∈ S}
as the ground truth set and A as the collection of records
returned by some search algorithms. The precision and recall

to evaluate the experiment accuracy are Precision = |T∩A|
|A|

and Recall = |T∩A|
|T | respectively. The Fα score is defined as

follows.

Fα =
(1 + α2) ∗ Precision ∗Recall

α2 ∗ Precision+Recall
(35)

Note that we use F0.5 score because LSH-E favours recall
in [44]. We use the datasets from Table II to evaluate the
performance of our algorithm, and we randomly choose 200
queries from the dataset.

As to the default values, the similarity threshold is set as
t∗ = 0.5. In the experiments, we use the ratio of space budget
to the total dataset size to measure the space used. For our
GB-KMV method, it is set to 10%. For LSH-E method, we
use the same default values in [44] where the signature size
of each record is 256 and the number of partition is 32. By
varying the number of hash functions, we change the space
used in LSH-E.

B. Performance Tuning

As shown in Section IV-C6, we can use the variance
estimation function to identify a good buffer size r for GB-
KMV method based on the skewness of record size and
element frequency, as well as the space budget. In Fig. 5,
we use NETFLIX and ENRON to evaluate the goodness of
the function by comparing the trend of the variance and the
estimation accuracy. By varying the buffer size r, Fig. 5 reports
the estimated variance (right side y axis) based on the variance
function in Section IV-C6 as well as the F1 score (left side y
axis) of the corresponding GB-KMV sketch with buffer size r.
Fig. 5(a) shows that the best buffer size for variance estimation
(prefer small value) is around 400, while the GB-KMV method
achieves the best F1 score (prefer large value) with buffer
size around 380. They respectively become 220 and 230 in
Fig. 5(b). This suggests that our variance estimation function
is quite reliable to identify a good buffer size. In the following
experiments, GB-KMV method will use buffer size suggested
by this system, instead of manually tuning.
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Fig. 7. Accuracy versus Space on COD
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Fig. 8. Accuracy versus Space on DELIC
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Fig. 9. Accuracy versus Space on ENRON
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Fig. 10. Accuracy versus Space on NETFLIX

We also compare the performance of KMV , G-KMV , and
GB-KMV methods in Fig. 6 to evaluate the effectiveness of
using global threshold and the buffer on 7 datasets. It is shown
that the use of new KMV estimator with global threshold (i.e.,
Equation 26) can significantly improve the search accuracy.
By using a buffer whose size is suggested by the system, we
can further enhance the performance under the same space
budget. In the following experiments, we use GB-KMV for
the performance comparison with the state-of-the-art technique
LSH-E.

C. Space v.s. Accuracy

An important measurement for sketch technique is the
trade-off between the space and accuracy. We evaluate the
space-accuracy trade-offs of GB-KMV method and LSH-
E method in Figs. 7-13 by varying the space usage on
five datasets NETFLIX, DELIC, COD, ENRON, REUTERS,
WEBSPAM and WDC. We use F1 score, F0.5 score, precision
and recall to measure the accuracy. By changing the number
of hash functions, we tune the space used in LSH-E. It is
reported that our GB-KMV can beat the LSH-E in terms of
space-accuracy trade-off with a big margin under all settings.

We also plot the distribution of accuracy (i.e., min, max
and avgerage value) to compare our GB-KMV method with
LSH-E in Fig. 14.

Meanwhile, by changing the similarity threshold, F1 score
is reported in Fig. 15 on dataset NETFLIX and COD. We
can see that with various similarity thresholds, our GB-KMV
always outperforms LSH-E.

We also evaluate the space-accuracy trade-offs on synthetic
datasets with 100K records in Fig. 16 where the record size
and the element frequency follow the zipf distribution. We
can see that on datasets with different record size and element
frequency skewness, GB-KMV consistently outperforms LSH-
E in terms of space-accuracy trade-off.

D. Time v.s. Accuracy

Another important measurement for the sketch technique
is the trade-off between time and accuracy. Hopefully, the
sketch should be able to quickly complete the search with a
good accuracy. We tune the index size of GB-KMV to show
the trade-off. As to the LSH-E, we tune the number of hash
functions. The time is reported as the average search time per
query. In Fig. 17, we evaluate the time-accuracy trade-offs
for GB-KMV and LSH-E on four datasets COD, NETFLIX,
DELIC and ENRON where the accuracy is measured by F1

score. It is shown that with the similar accuracy (F1 score),
GB-KMV is significantly faster than LSH-E. For datasets COD,
DELIC and ENRON, GB-KMV can be 100 times faster than
LSH-E with the same F1 score. It is observed that the accuracy
(F1 score) improvement of LSH-E algorithm is very slow
compared with GB-KMV method. This is because the LSH-E
method favours recall and the precision performance is quite
poor even for a large number of hash functions, resulting in a
poor F1 score which considers both precision and recall.



 0

 0.2

 0.4

 0.6

5% 10%

F
-1

 S
c
o
re

SpaceUsed

GB-KMV
LSH-E

 0

 0.2

 0.4

 0.6

5% 10%

P
re

c
is

io
n

SpaceUsed

GB-KMV
LSH-E

 0

 0.2

 0.4

 0.6

 0.8

5% 10%

R
e
c
a
ll

SpaceUsed

GB-KMV
LSH-E

 0

 0.2

 0.4

 0.6

5% 10%

F
-0

.5
 S

c
o
re

SpaceUsed

GB-KMV
LSH-E

Fig. 11. Accuracy versus Space on REUTERS
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Fig. 12. Accuracy versus Space on WEBSPAM
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Fig. 13. Accuracy versus Space on WDC

Dataset GB-KMV LSH-E
NETFLIX 10 118
DELIC 10 211
COD 10 4
ENRON 10 185
REUTERS 10 329
WEBSPAM 10 7
WDC 10 109

TABLE III. THE SPACE USAGE(%)

E. Sketch Construction Time

In this part, we compare the sketch construction time
of GB-KMV and LSH-E on different datasets under default
settings. As expected, GB-KMV uses much less sketch con-
struction time than that of LSH-E since GB-KMV sketch need
only one hash function, while LSH-E needs multiple for a
decent accuracy. Note that, for the internet scale dataset WDC,
the index construction time for GB-KMV is around 10 minutes,
while for LSH-E it is above 60 minutes. We also give the
space usage of the two methods on each dataset in Table III.
The space usage of GB-KMV is 10% as mentioned in Settings.
For LSH-E in some dataset, the space is over 100% because
there are many records with size less than the number of hash
functions 256.

F. Supplementary Experiment

Evaluation on Uniform Distribution. In Theorem 5, we have
theoretically shown that when the dataset follows uniform dis-
tribution (i.e., α1 = 0 and α2 = 0), our GB-KMV method can
outperform the LSH-E method. In this part, we experimentally
illustrate the performance on dataset with uniform distribution.
We generate 100k records where the record size is uniformly
distributed between 10 and 5000, and each element is randomly
chosen from 100, 000 distinct elements. Fig. 19(a) illustrates
the time-accuracy trade-off of GB-KMV and LSH-E on the
synthetic dataset with 100K records. It is reported that, to
achieve the same accuracy (F1 score), GB-KMV consumes
much less time than LSH-E.

Comparison with Exact Algorithms. We also compare the

running time of our proposed method GB-KMV with two
exact containment similarity search methods PPjoin* [40]
and FreqSet [5]. Experiments are conducted on the dataset
WebSpam, which consists of 350, 000 records and has the
average length around 3, 700. We partition the data into 5
groups based on their record size with boundaries increasing
from 1, 000 to 5, 000. As expected, Fig. 19(b) shows that the
running time of our approximate algorithm is not sensitive
to the growth of the record size because a fixed number of
samples are used for a given budget. GB-KMV outperforms
two exact algorithm by a big margin, especially when the
record size is large, with a decent accuracy (i.e., with F1 score
and recall always larger than 0.8 and 0.9 under all settings).

G. Discussion Summary

In the accuracy comparison between GB-KMV and LSH-E,
it is remarkable to see that the accuracy (i.e., F1 score) is very
low on some datasets. We give some discussions as follows.

First we should point out that in [44], the accuracy of LSH-
E is only evaluated on only one dataset COD, in which both
our GB-KMV method and LSH-E can achieve decent accuracy
performance with F1 score above 0.5.

As mentioned in III-A, the LSH-E method first transforms
the containment similarity to Jaccard similarity, then in order
to make use of the efficient index techniques, LSH-E partitions
the dataset and uses the upper bound to approximate the record
size in each partition. which can favour recall but result in extra
false positives as analysed in section III-B. However, the LSH-
E method does not provide a partition scheme associated with
different data distribution, and the algorithm setting (e.g., 256
hash functions and 32 partitions) can not perform well in some
dataset.

VI. RELATED WORK

In this Section, we review two closely related categories
of work on set containment similarity search.
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Fig. 14. The distribution of Accuracy

Exact Set Similarity Queries. Exact set similarity query has
been widely studied in the literature. Existing solutions are
mainly based on the filtering-verification framework which can
be divided into two categories, prefix-filter based method and
partition-filter based method. Prefix-filter based method is first
introduced by Bayardo et al. in [10]. Xiao et al. [40] further
improve the prefix-filter method by exploring positional filter
and suffix filter techniques. In [32], Mann et al. introduce an
efficient candidate verification algorithm which significantly
improves the efficiency compared with the other prefix filter
algorithms. Wang et al. [36] consider the relations among
records in query processing to improve the performance. Deng
et al. in [23] present an efficient similarity search method
where each object is a collection of sets. For partition-based
method, in [7], Arasu et al. devise a two-level algorithm
which uses partition and enumeration techniques to search for
exact similar records. Deng et al. in [24] develop a partition-
based method which can effectively prune the candidate size
at the cost higher filtering cost. In [43], Zhang et al. propose
an efficient framework for exact set similarity search based
on tree index structure. In [25], Deng et al. present a size-
aware algorithm which divides all the sets into small and
large ones by size and processes them separately. Regarding
exact containment similarity search, Agrawal et al. in [5] build
the inverted lists on the token-sets and considered the string
transformation.

Approximate Set Similarity Queries. The approximate
set similarity queries mostly adopt the Locality Sensitive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8

F
-1

 S
c
o

re

Similarity Threshold

GB-KMV
LSH-E

(a) NETFLIX

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8

F
-1

 S
c
o

re

Similarity Threshold

GB-KMV
LSH-E

(b) DELIC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8

F
-1

 S
c
o

re

Similarity Threshold

GB-KMV
LSH-E

(c) COD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8

F
-1

 S
c
o

re

Similarity Threshold

GB-KMV
LSH-E

(d) ENRON

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8

F
-1

 S
c
o

re

Similarity Threshold

GB-KMV
LSH-E

(e) REUTERS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8

F
-1

 S
c
o

re

Similarity Threshold

GB-KMV
LSH-E

(f) WEBSPAM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8

F
-1

 S
c
o

re

Similarity Threshold

GB-KMV
LSH-E

(g) WDC

Fig. 15. Accuracy versus Similarity threshold
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Fig. 16. EleFreq z-value varying from 0.4 to 1.2 with recSize z-value
1.0; recSize z-value varying from 0.8 to 1.4 with eleFreq z-value 0.8

Hashing(LSH) [28] techniques. For Jaccard similarity, Min-
Hash [14] is used for approximate similarity search. Asym-
metric minwise hashing is a technique for approximate con-
tainment similarity search [35]. This method makes use of
vector transformation by padding some values into sets, which
makes all sets in the index have same cardinality as the largest
set. After the transformation, the near neighbours with respect
to Jaccard similarity of the transformed sets are the same as
near neighbours in containment similarity of the original sets.
Thus, MinHash LSH can be used to index the transformed sets,
such that the sets with larger containment similarity scores can
be returned with higher probability. In [35], they show that
asymmetric minwise hashing is advantageous in containment
similarity search over datasets such as news articles and emails,
while Zhu et. al in [44] finds that for datasets which are very
skewed in set size distribution, asymmetric minwise hashing
will reduce the recall.

The KMV sketch technique has been widely used to esti-
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mate the cardinality of record size [42], [20], [37]. The idea of
imposing a global threshold on KMV sketch is first proposed
in [37] in the context of term pattern size estimation. However,
there is no theoretical analysis for the estimation performance.
In [17], Christiani et al. give a data structure for approximate
similarity search under Braun-Blanquet similarity which has a
1-1 mapping to Jaccard similarity if all the sizes of records are
fixed. In [19], Cohen et al. introduce a new estimator for set
intersection size, but it is still based on the MinHash technique.
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Fig. 19. Supplementary experiments

In [21], Dahlgaard et al. develop a new sketch method which
has the alignment property and same concentration bounds as
MinHash.

VII. CONCLUSION

In this paper, we study the problem of approximate contain-
ment similarity search. The existing solutions to this problem
are based on the MinHash LSH technique. We develop an
augmented KMV sketch technique, namely GB-KMV , which
is data-dependent and can effectively exploit the distributions
of record size and element frequency. We provide thorough
theoretical analysis to justify the design of GB-KMV , and show
that the proposed method can outperform the state-of-the-
art technique in terms of space-accuracy trade-off. Extensive
experiments on real-life set-valued datasets from a variety of
applications demonstrate the superior performance of GB-KMV
method compared with the state-of-the-art technique.
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