
Title Identifying the most interactive object in
spatial databases

Author(s) Amagata, Daichi; Hara, Takahiro

Citation Proceedings - International Conference on Data
Engineering. 2019, 2019-April, p. 1286-1297

Version Type AM

URL https://hdl.handle.net/11094/92850

rights

© 2019 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Identifying the Most Interactive Object
in Spatial Databases

Daichi Amagata
Osaka University

amagata.daichi@ist.osaka-u.ac.jp

Takahiro Hara
Osaka University

hara@ist.osaka-u.ac.jp

Abstract—This paper investigates a new query, called an MIO
query, that retrieves the Most Interactive Object in a given spatial
dataset. Consider that an object consists of many spatial points.
Given a distance threshold, we say that two objects interact
with each other if they have a pair of points whose distance
is within the threshold. An MIO query outputs the object that
interacts with other objects the most, and it is useful for analytical
applications e.g., neuroscience and trajectory databases.

The MIO query processing problem is challenging: a nested
loop algorithm is computationally inefficient and a theoretical al-
gorithm is computationally efficient but incurs a quadratic space
cost. Our solution efficiently processes MIO queries with a novel
index, BIGrid (a hybrid index of compressed Bitset, Inverted
list, and spatial Grid structures), with a practical memory cost.
Furthermore, our solution is designed so that previous query
results and multi-core environments can be exploited to accelerate
query processing efficiency. Our experiments on synthetic and
real datasets demonstrate the efficiency of our solution.

I. INTRODUCTION

Recently, to enable data analysis by spatial query process-
ing, an object has often been modeled by a set of spatial
points, in, for example, neuroscience [1], computer vision
[2], and trajectory databases [3]. Fig. 1 illustrates a real
object, namely a rat neuron [4] which is represented by three-
dimensional points. In this paper, we focus on such objects
and devise a novel analytical query, called MIO, that retrieves
the most interactive object in a given spatial dataset.

Consider an object collection O where each object o ∈ O
is a set of three-dimensional (or two-dimensional) points (i.e.,
o = P = {p1, p2, ..., p|P |}). An MIO query specifies a
distance threshold r, and the score of o is defined by the
number of objects o′ ∈ O\{o} where there exists a pair of
points p ∈ o and p′ ∈ o′ such that dist(p, p′) ≤ r. The
query outputs the object with the highest score. Assume that
o could interact with o′ if ∃p ∈ o and ∃p′ ∈ o′ such that
dist(p, p′) ≤ r. Then we see that an MIO query identifies the
object that could interact with other objects the most.

A. Motivating examples

In the following examples, which motivate us to address
the problem of MIO query processing, we demonstrate how
analytical applications benefit from the problem.
EXAMPLE 1 (NEUROSCIENCE). Neuroscience simulations
have recently been modeling a neuron by three-dimensional
points to study neuronal mechanisms [5], [6]. Neurons com-
municate by transmitting signals through synaptic connections

Fig. 1. A neuron represented by 3-dimensional points [4]

between them, and it is well known that synapses can form
only when axons and dendrites (parts of neurons) are within
close proximity. Therefore, a simulation specifies a distance
threshold r, and assumes that two neurons interact (i.e., can
communicate) with each other if they respectively have points
p and p′ such that dist(p, p′) ≤ r [1], [7], [8]. It is also known
that, like hubs in networks, there are some neurons that have
synaptic connections with many neurons [9]. Such neurons
play a key role in brain function, thereby identifying and
analyzing them is important [10]. Since our problem retrieves
the most interactive object, MIO queries enable neuroscientists
to obtain important neurons from simulations.

EXAMPLE 2 (TRAJECTORY ANALYSIS). Because of advances
in bio-logging technologies, trajectories of many animals have
been collected [11]. Because trajectories are effective objects
for studying the features and behaviors of animals [12], tra-
jectory analysis has been receiving much attention [13]–[15].
Our problem also could help understanding animal behaviors.
For example, it helps to mine motion patterns with spatial
constraints. In Fig. 2, we show a red trajectory o, which is
identified by an MIO query (r = 4[m]) on a bird trajectory set
[11]. This trajectory interacts with approximately 30% of all
trajectories. We see that some other trajectories have moving
patterns similar to that of o. Birds have social relationships
with spatial constraints [16], and one example is leader-
follower (i.e., many individuals follow the motion pattern of
a leader) [17]. How to organize social relationships can be
analyzed from the MIO query results, e.g., by extracting the
(sub-)trajectories of o and their nearby (sub-)trajectories [18].

B. Challenge

In the applications described in Section I-A, users would
utilize MIO queries while varying the distance threshold r,

Fig. 2. The red trajectory is identified by our problem and interacts with
approximately 30% trajectories in a trajectory set [11], when r = 4[m] (x-y
coordinates are respectively [1000000, 5000000] and [100000, 700000]).

because they need to obtain deep insights. However, if each
MIO query incurs a long processing time, only a limited
number of trials (e.g., simulations) may be possible. To avoid
such a situation, an algorithm that efficiently processes a given
MIO query is required.
Trade-off between computational and memory efficiencies.
A naive algorithm for this problem is a nested loop approach:
for each object o ∈ O, we execute pairwise distance com-
putation between p ∈ o and p′ ∈ o′ for ∀p ∈ o, ∀p′ ∈ o′,
and ∀o′ ∈ O\{o}. Let n and m be the cardinality of O and
the average number of points in an object ∈ O, respectively.
The nested loop algorithm incurs O(n2m2) time, which is
not scalable. As we show in Section II-B, there is an online
algorithm that can process an MIO query in O(n log n) time.
Although this algorithm is theoretically sound, it requires very
costly pre-processing and incurs O(n2) memory, which is also
impractical. These two algorithms, in addition, imply that this
problem has a trade-off relationship between computational
and memory efficiencies. Therefore, a good solution should
process an MIO query with a practical memory cost.
Leveraging previous results and multiple CPU cores. Ana-
lytical applications issue many queries, and, in the motivating
applications, distance thresholds are usually fine-grained [14],
[19]. From this observation, it is intuitively seen that some
intermediate results of previously issued MIO queries can be
leveraged to accelerate processing a given MIO query. More-
over, recent CPUs are equipped with multi-core processors,
and multi-core processing is an option for reducing latency.
To obtain its benefit, however, a partitioning approach, which
satisfies load balancing, is required. This renders a non-trivial
challenge that the solution can make good use of multiple CPU
cores.

C. Contribution

We overcome the above challenges and make the following
contributions.
• We address the problem of identifying the most interactive

object in a spatial dataset (Section II). To the best of our
knowledge, this problem has not been tackled so far.

• We propose a novel index, BIGrid (a hybrid index of
compressed Bitset, Inverted list, and spatial Grid structures).
Given a distance threshold, a BIGrid is built online, thereby
our solution does not rely on any pre-processing. This
BIGrid facilitates efficient score lower-bounding, upper-
bounding, and verification, with a reasonable memory cost.
During these operations, we employ a labeling approach,
to suggest which points are necessary to exactly compute
lower-bound, upper-bound, and score for future queries
(Section III).

• Furthermore, we optimize our solution to parallelize BIGrid
building, lower-bounding, upper-bounding, and verification,
while considering load balancing in multi-core environ-
ments (Section IV).

• We conduct extensive experiments on both real and syn-
thetic datasets to evaluate our solution (Section V). The
results demonstrate that our solution is basically more than
10 times faster than competitors.

In addition to the above contents, related works are reviewed
in Section VI, and Section VII concludes the paper.

II. PRELIMINARY

A. Problem definition

Let O and n respectively be a collection of objects and its
cardinality (i.e., n = |O|). An object oi ∈ O is a set of three-
dimensional points1, that is, oi = Pi = {p1i , ..., p

|Pi|
i }. Each

object in O may have a different number of points. Let m be
the average point size in O (i.e., m =

∑
|Pi|
n). We assume that

O is memory-resident and static. Given a distance threshold
r and two objects o and o′, we consider that they have an
interaction if they have a pair of points p ∈ o and p′ ∈ o′

such that dist(p, p′) ≤ r. Note that dist(p, p′) computes the
Euclidean distance between p and p′, as employed in [1], [8].
An MIO query provides a score with o by taking into account
the above concept2. Now we define MIO queries.
DEFINITION 1 (MIO QUERY). Given a collection of objects
O and an MIO query with a user-specified distance threshold
r > 0, the score of oi ∈ O, τ(oi), is defined as follows.

τ(oi) = |Oi|

where

Oi = {oj | oj ∈ O\{oi},∃p ∈ oi,∃p′ ∈ oj , dist(p, p
′) ≤ r}

(1)
The MIO query outputs o∗, the object in O with the highest
score. (Ties are broken arbitrarily).
The objective of this paper is to provide the exact answer while
minimizing the processing time.

1Dealing with two-dimensional points is straightforward, thus its detail is
omitted. In addition, as we consider geo-spatial points, higher dimensional
points are out of the scope of this paper.

2Although we consider only spatial dimension, some applications may
require to take a temporal dimension into account. For example, two objects
interact with each other iff they have points whose distance is within r and
the difference of their generation time is within δ. We can deal with this case
without non-trivial extension (see Appendix B)

B. Nested loop and theoretical algorithms
The MIO query processing problem is challenging, due to

its scoring function. The score of oi is obtained from the
distance-based relationships between oi and the other objects.
Besides, as illustrated in Figs. 1 and 2, the shapes of objects
are complex. From this fact, we see that building minimum
bounding rectangle based indices, e.g., R-trees, is not effective,
because they would make uselessly large rectangles with large
empty spaces. Since this problem has not yet been addressed,
we first consider the following solutions.
Nested loop algorithm. Perhaps the most intuitive approach
is based on spatial self-join, which retrieves all pairs of points
whose distances are within r. It is important to note that we
do not have to retrieve all pairs of points. Assume that we
compute τ(o) and now compare o and o′. When we find that
dist(p, p′) ≤ r, where p ∈ o and p′ ∈ o′, we no longer have
to find other pairs of points between o and o′.

Algorithm 1: Nested loop (NL)
Input: O, r

1 o∗ ← ∅
2 for ∀oi ∈ O do
3 for ∀oj ∈ O such that j > i do
4 f ← 0

5 for ∀pk
i ∈ oi do

6 for ∀pl
j ∈ oj do

7 if dist(pk
i , p

l
j) ≤ r then

8 τ(oi)← τ(oi) + 1, τ(oj)← τ(oj) + 1
9 f ← 1

10 break

11 if f = 1 then
12 break

13 if τ(o∗) < τ(oi) then
14 o∗ ← oi

15 return o∗

Algorithm 1 details NL, a non-indexed nested loop algo-
rithm. NL does not require any pre-processing, which is an
advantage. However, to obtain τ(o), O(nm2) time is required.
NL hence incurs O(n2m2) time, which is very costly.
Theoretical algorithm. We next consider a theoretically faster
algorithm than NL and show that there is an online algorithm
that outputs o∗ in O(n log n) time.
THEOREM 1. There is an online algorithm that outputs o∗ in
O(n log n) time.
PROOF. Assume that for an object oi ∈ O, we have an array
Ai that stores the distances of the closest point pairs between
oi and the other objects in O. If the distance of the closest
point pair between oi and oj is within a distance threshold
r, it is guaranteed that oj ∈ Oi (see Equation (1)). Assume
furthermore that Ai is sorted in ascending order of distance.
Given a distance threshold r, τ(oi) is obtained by a binary
search on Ai, which requires O(log n) time. To compute o∗,
we execute the same operation for all oj ∈ O. This algorithm
therefore can output o∗ in O(n log n) time. □

Although this algorithm is theoretically sound and the index
(arrays) is general to any r, there are some critical drawbacks

in practice. First, its space cost is O(n2), which is derived from
the arrays for all objects in O and is not scalable. Second, its
pre-processing cost is significant. To build Ai, we have to re-
trieve the closest point pairs for all oj ∈ O\{oi}. Given oi and
oj , finding their closest pair requires at least O(|Pi| log |Pj |)
time [20], whose amortized cost is O(m logm). Finding the
closest pairs between oi and the other objects thereby requires
O(nm logm). Besides, sorting them incurs O(n log n) time.
We now see that building Ai requires O(n(m logm+ log n))
time, thus the pre-processing cost is O(n2(m logm+ log n)).

In summary, NL is computationally inefficient. The theoret-
ical algorithm is space inefficient and its pre-processing cost
is prohibitive, thus cannot be a practical option for analytical
applications that want to obtain some insights as soon as data
is available [21]. Motivated by these results, we design an
algorithm that can efficiently process an MIO query with a
practical memory cost.

III. MIO QUERY PROCESSING

The main bottleneck of MIO query processing is score com-
putation, since, when τ(o) is computed, o has to be compared
with the other objects. Therefore, to minimize processing time,
it is important to reduce the number of score computations.
The challenge is how to prune unnecessary score computations
without sacrificing correctness. We overcome this challenge
and propose an efficient solution.

Main idea. To prune unnecessary score computations, we de-
vise lower- and upper-bounding techniques. A natural question
is how to compute a lower-bound and an upper-bound for
a given object with reasonable costs. Our answer is derived
from the facts that (i) the score is the set size and (ii) a
pair of points whose distance can be or certainly is within
r is efficiently obtained by employing spatial grids. For points
p ∈ o, if we know the distances between p and points of other
objects are certainly within r and the corresponding objects are
represented by bitsets, we can obtain a lower-bound of τ(o)
by using a fast bitwise OR operation. An upper-bound of τ(o)
is also obtained similarly. Our solution employs this idea and
a novel grid-based index that enables such lower- and upper-
bounding. A nice property of our lower- and upper-bounding
is that they do not need distance computation.

Algorithm 2: Framework
Input: O, r

1 GRID-MAPPING(O, r) ▷build the BIGrid
2 τ low

max ← LOWER-BOUNDING(O, r) ▷lower-bound comp.
3 Ocand ← UPPER-BOUNDING(O, r, τ low

max) ▷upper-bound comp.
and pruning

4 o∗ ← VERIFICATION(Ocand, r) ▷exact score comp.

5 return o∗

Framework. Algorithm 2 describes the overview of our
solution. To start with, we build our novel index BIGrid
online and then employ a filter-and-verification framework.
More specifically, given an MIO query, we first execute GRID-
MAPPING(O, r) that builds a BIGrid. Then, for each o ∈ O,

we compute its lower-bound score by utilizing the BIGrid
and obtain the maximum lower-bound τ lowmax in LOWER-
BOUNDING(O, r). We next compute an upper-bound score for
each o ∈ O, prune objects that cannot be o∗, and insert non-
pruned objects into Ocand, in UPPER-BOUNDING(O, r, τ lowmax).
After that, in VERIFICATION(Ocand, r), we compute the exact
score of o ∈ Ocand if it needs to be verified.

In the following, we elaborate the detail of BIGrid in Section
III-A. Our bounding technique is presented in Section III-B,
and the verification step is described in Section III-C. Besides,
in Section III-D, we introduce how to use previous results to
accelerate MIO query processing.

A. BIGrid structure

We devise a novel index BIGrid (a hybrid index of com-
pressed Bitset, Inverted list, and spatial Grid structures), to
enable efficient bounding and score computation. A BIGrid
consists of two uniform grids, small- and large-grids, which
are formally defined below.

DEFINITION 2 (SMALL-GRID). The small-grid for an MIO
query with r is a set of cells csK , where K represents a key,
and is implemented by a hash table. The width of each cell
is r√

3
. (Given a point p ∈ oi, its key for the small-grid is

obtained from its spatial coordinates and r√
3

.) Each cell csK
has a compressed bitset b(csK) whose i-th bit is 1, iff oi has
a point whose key is K.

DEFINITION 3 (LARGE-GRID). The large-grid for an MIO
query with r is a set of cells clK , where K represents a key,
and is implemented by a hash table. The width of each cell
is ⌈r⌉. (Given a point p ∈ oi, its key for the large-grid is
obtained from its spatial coordinates and ⌈r⌉.) Each cell clK
has an inverted list I(clK) and two compressed bitsets b(clK)
and badj(clK). I(clK) is a collection of posting lists I(clK)[oi],
each of which maintains a set of points pji whose keys are K.
For b(clK), iff I(clK)[oi] exists, the i-th bit is 1. On the other
hand, badj(clK) =

∨
b(clK′), where K ′ is K or the key of the

adjacent cell of clK .

Fig. 3 illustrates the BIGrid structure3, and we show an
example of a cell of the large-grid below.

EXAMPLE 3. Fig. 4 illustrates a cell clK of the large-grid,
where points p1i , p4i , p2i+1, and p1i+2, whose keys are K, are
mapped into the cell. These points are maintained by the
inverted list I(clK), and the i-th, (i + 1)-th, and (i + 2)-th
bits of b(clK) are 1 (we assume that they are compressed).

It can be seen that the small-grid does not maintain points
and the large-grid does with inverted lists. The small- and
large-grids do not share their keys, since, given a point p,
its key for the small-grid (large-grid) is obtained from its
coordinates and r√

3
(⌈r⌉). Note that, given a cell of the large-

grid, accessing its adjacent cell takes O(1) amortized time.

3BIGrid is orthogonal to any compressed bitset, and we use EWAH [22]
as our implementation. Selecting an optimal compressed bitset for a given
dataset is beyond the scope of this paper.

Cell

key

𝐾

…

𝐾′

Small-grid hash table

Compressed

bitset

𝐛 𝑐𝐾
𝑠

…

𝐛 𝑐𝐾′
𝑠

Cell

key

𝐾

…

𝐾′

Large-grid hash table

Inverted

list

Compressed

bitset

Compressed

bitset (union)

𝐼 𝑐𝐾
𝑙 𝐛 𝑐𝐾

𝑙 𝐛𝑎𝑑𝑗 𝑐𝐾
𝑙

… … …

𝐼 𝑐𝐾′
𝑙 𝐛 𝑐𝐾′

𝑙 𝐛𝑎𝑑𝑗 𝑐𝐾′
𝑙

Fig. 3. Illustration of the BIGrid structure

𝑟

𝑟

𝑟
𝑜𝑖 {𝑝𝑖

1, 𝑝𝑖
4}

𝑜𝑖+1 {𝑝𝑖+1
2 }

𝑜𝑖+2 {𝑝𝑖+2
1 }

𝐼 𝑐𝐾
𝑙

𝐛 𝑐𝐾
𝑙 = 0…1

𝑐𝐾
𝑙

𝐛𝒂𝒅𝒋 𝑐𝐾
𝑙 = 1…010…1

Fig. 4. Illustration of a cell clK of the large-grid

An intuition behind the idea of employing compressed bitset
is its effectiveness for skewed datasets. It is well known that
there are dense and sparse spaces in real datasets [6], as
illustrated in Fig. 2. In general, a compressed bitset compacts
a sequence of bits if each bit of the sequence is the same, such
as 00...0 (corresponding to a sparse space) and 11...1 (corre-
sponding to a dense space). In both cases, the compressed
bitset becomes compact, which is not only space efficient but
also computationally efficient. If we use uncompressed bitsets,
each cell always needs n bits, which incurs a large amount of
memory4. (The compressed bitset(s) of each cell may or may
not have different bit length due to the compression.) The
small-grid (large-grid) is exploited for lower-bounding (upper-
bounding and verification), and we show why we use a ceiling
function for large-grid in Section III-D.

GRID-MAPPING(O, r). Definitions 2 and 3 describe that a
BIGrid is specific to a user-specified distance threshold r.
Therefore, the BIGrid is built online. Algorithm 3 details the
BIGrid construction. For all oi ∈ O, we execute the following
operations for each pji ∈ oi.

Building the small-grid. We first compute the key of pji for
the small-grid, and let the key be K. If csK exists in the small-
grid, we set the i-th bit of b(csK) as 15. (If it does not exist,
we simply create the cell, update the bit, and insert it into
the small-grid.) Let |b(csK)| be the number of bits set as 1
in b(csK). We confirm whether |b(csK)| becomes 2 or more.
If it becomes 2, the cell has some points of two objects, and
assume that the i′-th bit is also 1. We make oi and oi′ maintain
the key K with key list (denoted by oi.L and oi′ .L), which is
utilized in the lower-bounding step. If it becomes more than 2,
we update only oi.L, because the other corresponding objects
already contain K in their key lists.

4In the case of the default setting of our experiment, the compression ratio
of the compressed bitsets is more than 80% and at most 99.9% in bytes,
compared with uncompressed bitsets.

5When the i-th bit is set as 1, its lower bits, except the i′-th (i′ < i) ones
where oi′ has a point whose key is K, are considered to be 0, and compressed
(if possible).

Algorithm 3: GRID-MAPPING(O, r)

1 for ∀oi ∈ O do
2 for ∀pj

i ∈ oi do
3 /* Building the small-grid */
4 K ← the key of pj

i for the small-grid
5 if csK exists in the small-grid then
6 Set the i-th bit of b(csK) as 1
7 if |b(csK)| becomes 2 (the i′-th bit is already 1) then
8 oi′ .L← oi′ .L ∪ {K}, oi.L← oi.L ∪ {K}

9 if |b(csK)| becomes more than 2 then
10 oi.L← oi.L ∪ {K}

11 else
12 Create csK and set the i-th bit of b(csK) as 1
13 Insert csK into the small-grid

14 /* Building the large-grid */
15 K ← the key of pj

i for the large-grid
16 if clK exists in the large-grid then
17 Set the i-th bit of b(clK) as 1

18 I(clK)[oi]← I(clK)[oi] ∪ {pj
i}

19 else
20 Create clK and execute lines 17–18
21 Insert clK into the large-grid

Building the large-grid. The operations for building the large-
grid are essentially the same as those of the small-grid. The
difference is to update inverted lists, which is described in
lines 18 and 20, instead of maintaining key lists. Note that we
do not create badj(clK) in this step, to avoid a significant cell
access cost. The bitset is created in the upper-bounding step.

It is important to note the following observations. (i) No
empty cells: because we create cells when they are needed,
empty cells are never generated. This is an important require-
ment for main-memory processing [6]. (ii) No replication: a
point is mapped to only a single cell. (iii) Efficient building:
each operation in Algorithm 3 takes a constant time. The time
complexity of GRID-MAPPING(O, r) is thus O(nm).

Discussion about offline index building. One may consider
an approach that builds BIGrid with a certain distance thresh-
old r′. We show that this approach is not efficient in Appendix
A. (It may be intuitively seen, because r is an arbitrary value
and not known in advance, suggesting that finding good r′ for
any r is hard.)

B. Lower- and upper-bounding

We next focus on how to obtain a lower-bound and an upper-
bound scores of a given object o ∈ O with the BIGrid. Thanks
to the BIGrid structure, it is easy to compute them.

Lower-bounding. We compute a lower-bound score for each
object in O. Given oi ∈ O, we exploit its key list to obtain
a lower-bound of τ(oi). Recall that, given a cell csK of the
small-grid, |b(csK)| is the number of bits set as 1 in the
compressed bitset of csK . We utilize the following lemma for
lower-bounding.

LEMMA 1 (LOWER-BOUND). Given an object oi and the
BIGrid built by Algorithm 3, the following inequality holds.

|
∨

∀K∈oi.L

b(csK)| − 1 ≤ τ(oi) (2)

Algorithm 4: LOWER-BOUNDING(O, r)

1 τ low
max ← 0

2 for ∀oi ∈ O do
3 b(oi)← ∅ ▷b(oi) is a temporal compressed bitset
4 for ∀K ∈ oi.L do
5 b(oi)← b(oi)∨ b(csK) ▷bitwise OR operation

6 τ low(oi)← |b(oi)| − 1

7 if τ low(oi) > τ low
max then

8 τ low
max ← τ low(oi)

9 return τ low
max

PROOF. Recall that the width of a cell of the small-grid is r√
3

.
Given two 3-dimensional points p and p′ which are mapped
into the same cell of the small-grid, we can guarantee that
dist(p, p′) ≤ r. Therefore, if the i-th and j-th bits of b(csK)
are 1, we have oj ∈ Oi (see Equation (1)), because they have
at least one pair of points p ∈ oi and p′ ∈ oj such that
dist(p, p′) ≤ r. Now we see that

∨
∀K∈oi.L b(csK) represents

a union of sets of objects that certainly have point pairs with
oi such that dist(p, p′) ≤ r. Note that the i-th bit of b(csK) is
1, so we need the subtraction “−1”. □

Let τ low(oi) be |
∨
∀K∈oi.L b(csK)| − 1. We describe why

oi.L is enough for computing τ low(oi). A straightforward
approach to computing τ low(oi) is that for all pji ∈ oi, we
access its corresponding cell of the small-grid and execute a
bitwise OR operation. Unfortunately, this approach may access
unnecessary cells. Assume that |b(csK)| = 1 and the i-th bit is
1. From Equation (2), the compressed bitset of this cell does
not contribute to τ low(oi). Algorithm 3 avoids maintaining
such cells (i.e., oi.L does not have such K).

LOWER-BOUNDING(O, r). In Algorithm 4, we describe the
detail of the lower-bounding step. We first set τ lowmax as 0. Next,
for each oi ∈ O, we create b(oi) (a temporal compressed
bitset) and compute its lower-bound by accessing all cells
whose keys are maintained by oi.L and using a bitwise OR
operation between b(oi) and b(csK). We then update τ lowmax if
τ lowmax < τ low(oi). At the end of this algorithm, we have τ lowmax =
argmaxO τ low(oi).

Let cost(b,b’) be the cost of bitwise operation between
two compressed bitsets b and b’. The time complexity of
computing τ low(oi) is O(

∑
oi.L

cost(b(oi),b(csK))). There-
fore, Algorithm 4 takes O(n

∑
oi.L

cost(b(oi),b(csK))) time6.

Upper-bounding. This step is very similar to the lower-
bounding step. To obtain τupp(oi), an upper-bound score of
oi, we utilize the following lemma.

LEMMA 2 (UPPER-BOUND). Let oi.L′ be the set of all keys of
the points for the large-grid in oi. Given an object oi and the
BIGrid built by Algorithm 3, the following inequality holds.

τ(oi) ≤ |
∨

∀K∈oi.L′

badj(clK)| − 1

6In our implementation, cost(b,b’) = O(size(b)+size(b’)), where
size(b) is the size of b in bytes [23]. Actually, this size can be re-
garded as a constant in practice for skewed datasets. In this case, we have
O(n

∑
oi.L

cost(b(oi),b(csK))) ≈ O(nm′), where m′ is the average size
of oi.L.

Algorithm 5: UPPER-BOUNDING(O, r, τ lowmax)

1 Ocand ← ∅ ▷Ocand is a set of candidate objects for
o∗

2 K ← ∅ ▷K is a set of keys
3 for ∀oi ∈ O do
4 b(oi)← ∅ ▷b(oi) is a temporal compressed bitset
5 for ∀pj

i ∈ oi do
6 K ← the key of pj

i for the large-grid
7 if K /∈ K then
8 K ← K ∪ {K}
9 Compute badj(clK) ▷see Definition 3

10 b(oi)← b(oi)∨ badj(clK) ▷bitwise OR operation

11 τupp(oi)← |b(oi)| − 1

12 if τupp(oi) ≥ τ low
max then

13 Ocand ← Ocand ∪ {oi}

14 Sort Ocand in descending order of upper-bound

15 return Ocand

PROOF. Recall that badj(clK) =
∨

b(clK′), where K ′ is K or
the key of the adjacent cell of clK . Assume that a point pji is
mapped to clK . Since the width of each cell of the large-grid is
⌈r⌉, points p, which may satisfy dist(pji , p) ≤ r, exist in clK
or its adjacent cells. The remaining discussion is essentially
the same as the proof of Lemma 1. □
Now we have the following theorem.
THEOREM 2. Consider an object oi and τ lowmax obtained by
Algorithm 4. If τupp(oi) < τ lowmax, oi ̸= o∗.
PROOF. From Lemmas 1 and 2. □
UPPER-BOUNDING(O, r, τ lowmax). We utilize Lemma 2 and The-
orem 2 to compute τupp(oi) and prune unnecessary score
computations. Algorithm 5 outlines our upper-bounding. Let
Ocand and K respectively be sets of candidate objects for o∗

and keys, which are empty sets at first. Given oi ∈ O, we
create a temporal compressed bitset b(oi) as well as lower-
bounding. Then, for all pji ∈ oi, we compute its key K for
the large-grid and confirm K ∈ K or not. If not, badj(clK) has
not been computed, so we compute it by accessing clK and its
adjacent cells and then insert K into K. We update b(oi) by
a bitwise OR operation between it and badj(clK), and obtain
τupp(oi) by Lemma 2. If τupp(oi) ≥ τ lowmax, we insert oi into
Ocand, and otherwise it is pruned by Theorem 2. The above
operations are repeated for all oi ∈ O. Finally, we sort Ocand

in descending order of upper-bound.
Let the number of cells of the large-grid be g. Com-

puting badj(clK) for each cell of the large-grid takes
O(g

∑
cost(badj(clK),b(clK′))) time. (The number of adjacent

cells of each cell is bounded by a constant, e.g., 26 in a
three-dimensional space.) Similar to lower-bounding, the time
complexity of computing an upper-bound for all objects in
O is O(n

∑
oi.L′cost(b(oi),badj(clK))). Therefore, the time

complexity of Algorithm 5 is obtained by summing the two
time complexities. (The sorting cost is dominated by them, and
our experiments show that computing τupp(oi) is faster than
computing τ(oi) by a factor at least one order of magnitude.)

C. Verification
In this step, we obtain the answer of the MIO query, o∗.

To this end efficiently, we employ a best-first approach, due

to the following corollary which is obtained from Lemma 2.
COROLLARY 1 (EARLY TERMINATION). Consider Ocand as a
queue. We dequeue the front object of Ocand and compute its
exact score. Let o be the object whose score is the best among
a set of objects that have been dequeued so far. Besides, let
o′ be the current front object. If τ(o) ≥ τupp(o′), we have
o∗ = o.
The BIGrid structure is effective not only for the bounding
techniques but also for exact score computation. We show that
it can avoid unnecessary cell accesses and pairwise distance
computations.
VERIFICATION(Ocand, r). Let o be an intermediate result, and
it is initialized at ∅ (so, τ(o) is 0 at first). In what follows,
the detail of this step is described.
1) We dequeue the front object of Ocand, and let the object

be oi. If τupp(oi) ≤ τ(o), it is guaranteed that o = o∗ by
Corollary 1, thus we terminate query processing. Other-
wise, we proceed to the next operation.

2) As with the bounding step, we create a temporal com-
pressed bitset b(oi) and set its i-th bit as 1. Given p ∈ oi,
we do the following. We compute its key K for the large-
grid and access clK . Let b be badj(clK)− b(oi). If |b| = 0,
b(oi) already contains all objects (by bit representation)
some of whose points are mapped to clK and its adjacent
cells. (Recall that for a point p whose key for the large-grid
is K, the points p′, where dist(p, p′) ≤ r, exist at clK or its
adjacent cells.) In this case, we do not need to access the
adjacent cells. If |b| > 0, we have to access the adjacent
cells clK′ but can avoid unnecessary score computation
by leveraging inverted lists. It is important to note that
candidate objects that can be in Oi are represented by
b. Specifically, if the j-th bit of b is 1, oj may be in
Oi. We therefore access only posting lists I(clK′)[oj] such
that the j-th bit of b is 1, to avoid unnecessary distance
computation. If there is a point p′ ∈ I(clK′)[oj] such that
dist(p, p′) ≤ r, we set the j-th bit of b(oi) (b) as 1 (0).
Again, if |b| = 0, the adjacent cells of clK have no more
candidate objects, thereby we deal with the next point.
This operation is executed for all p ∈ oi.

3) Then we have τ(oi) = |b(oi)| − 1. If τ(o) < τ(oi), we
replace the intermediate result and go back to the first
operation.

Algorithm 6 summarizes this step.
Discussion about top-k variant. Although Definition 1 fo-
cuses on the object with the highest score, our solution can
easily deal with its top-k variant. If applications require top-k
objects with the highest score, we compute the k-th highest
lower-bound instead of τ lowmax in the lower-bounding step and
use it in the upper-bounding step. In the verification step, after
computing the scores of k objects, we set a threshold. Then
Corollary 1 is applied accordingly.

D. Leveraging previous results

Algorithms 5 and 6 may incur some unnecessary computa-
tions. This is because there may exist some points in o that

Algorithm 6: VERIFICATION(Ocand, r)

1 o← ∅ ▷o is an intermediate result
2 while |Ocand| > 0 do
3 oi ← the front object of Ocand ▷dequeue the front object
4 if τupp(oi) ≤ τ(o) then
5 break

6 b(oi)← ∅ ▷b(oi) is a temporal compressed bitset
7 Set the i-th bit of b(oi) as 1
8 for ∀p ∈ oi do
9 K ← the key of p for the large-grid

10 b ← badj(clK)− b(oi)
11 if |b| > 0 then
12 for ∀K′ in the set of K and its adjacent cell keys do
13 for ∀oj ∈ I(cl

K′) s.t. the j-th bit of b is 1 do
14 if ∃p′ ∈ I(cl

K′)[oj] s.t. dist(p, p′) ≤ r then
15 Set the j-th bit of b(oi) (b) as 1 (0)

16 if |b| = 0 then
17 break

18 Execute lines 16–17

19 τ(oi)← |b(oi)| − 1
20 if τ(oi) > τ(o) then
21 o← oi

22 o∗ ← o

23 return o∗

do not contribute to computing τupp(o) and/or τ(o). If we
know such points in advance, we can skip accessing them
in the processing of a given MIO query. In other words,
by providing each point p in O with a label that shows
whether p is necessary for obtaining τupp(o) and/or τ(o)
during the processing of a given MIO query, we can improve
the performance of future MIO queries.
Rationale. To implement the above idea, we have to know
when we face redundant computation. We describe such cases
below.
OBSERVATION 1. Consider that |badj(clK)| = 1 after execut-
ing line 9 of Algorithms 5. For this case, assume that only the
i-th bit is 1 and pji is mapped to clK . This case means that,
for all oi′ ∈ O\{oi}, ∄p ∈ oi′ such that dist(pji , p) ≤ r. That
is, even if we ignore pji , we can still obtain τupp(oi).

OBSERVATION 2. Notice that two objects may have multiple
pairs of points whose distances are within r. At line 10 of
Algorithm 5, b(oi) may not be varied, due to the above
observation. In this case, executing this line is not necessary.

OBSERVATION 3. For Algorithm 6, consider line 10. If |b| =
0, we can prune unnecessary cell accesses. However, it still
incurs a hash look-up and a bitwise operation.

If we can skip the above cases, the performances of Algorithms
5 and 6 are improved. Assume that we know points p with
at least one of Observations 1–3 w.r.t. an MIO query with
r. Assume further that we are given a new MIO query with
r′ where ⌈r⌉ = ⌈r′⌉. Since, given O, the large-grid is the
same for all r′ such that ⌈r⌉ = ⌈r′⌉, we can skip accessing p
in upper-bounding and/or verification. As noted in Section I,
analytical applications may issue queries by varying r, and r
is often fine-grained [14], [19]. This is the reason why ⌈r⌉ is
employed as the width of the large-grid.

Now we propose a labeling approach, and define the label.

DEFINITION 4 (LABEL). Consider an MIO query with r on
O. The label of each point p in O, label(p), consists of three
bits and is initialized at 111. Let clK be the large-grid cell into
which p is mapped.
• Labeling-1: If |badj(clK)| = 1, label(p) = 0 ∗ ∗, where “∗”

is 0 or 1.
• Labeling-2: If p encounters the case in Observation 2,

label(p) = 10∗.
• Labeling-3: If p encounters the case in Observation 3,

label(p) = 1 ∗ 0.

When to provide labels. As can be seen from Definition
4, Labeling-1, Labeling-2, and Labeling-3 are executed after
line 9 of Algorithm 5, line 10 of Algorithm 5, and line 10 of
Algorithm 6, respectively. In addition, labels are outputted in
post-processing. The space cost of the labels for MIO queries
with ⌈r⌉ is O(nm). Note that the number of MIO queries
issued cannot be bounded. For practical use, therefore, labels
should be resident in external memory. In this case, the I/O
cost of loading labels for a given MIO query is O(nmB), where
B is a block size7.

How to leverage labels. We verify that our solution is friendly
to use intermediate results of previous MIO queries. Given an
MIO query with r, we first check whether there are labels for
⌈r⌉. This can be done in O(1) time by using a hash table. If
no, we simply execute Algorithms 3–6. Otherwise, we leverage
the labels and elaborate how to do this below. Note that the
access order of objects and points has to be the same to keep
correctness.

GRID-MAPPING-WITH-LABEL(O, r). We first consider BI-
Grid building with labels. The basic operation is the same,
but we can ignore points p where label(p) = 0 ∗ ∗, due to the
following lemma.

LEMMA 3 (POINT PRUNING). Consider a point p ∈ oi, where
label(p) = 0 ∗ ∗. Even if we do not update the bitset of
its corresponding small-grid cell and do not map p to its
corresponding large-grid cell, τ low(oi), τupp(oi), and τ(oi)
can be obtained exactly.

PROOF. From Definitions 2, 3, and 4. □
LOWER-BOUNDING-WITH-LABEL(O, r). This step also does
the same operation as with the original one. A difference is
that we maintain b(oi) to utilize this in the verification step.

UPPER-BOUNDING-WITH-LABEL(O, r, τ lowmax). In this step,
we replace line 5 of Algorithm 5 with “∀pji ∈ oi such that
label(p) = 11∗.”

VERIFICATION-WITH-LABEL(Ocand, r). This step has three
differences from the original one. First, b(oi) is initialized at
the compressed bitset obtained in LOWER-BOUNDING-WITH-
LABEL(O, r). Because we do not need to do labeling, this
initialization does not lose correctness. Furthermore, we can
prune more cells, because we tend to have |b| = 0 at line 11
in an early iteration. Second, we replace line 8 of Algorithm 6

7Our experiments demonstrate that this I/O cost is dominated by the cost
of query processing.

with “∀p ∈ oi such that label(p) = 1∗1.” Last, it is important
to note that after the upper-bounding step, cells clK may not
obtain badj(clK), because we skip some points by labeling in
the upper-bounding step. At line 10 of Algorithm 6, therefore,
if badj(clK) has not been computed, we compute it first.

IV. PARALLEL MIO QUERY PROCESSING

We shift our interest to multi-core processing. We parallelize
Algorithms 3–6, and discuss how to achieve load balancing.

PARALLEL-GRID-MAPPING(O, r). There are two loops in
GRID-MAPPING(O, r): lines 1 and 2. Which line should we
parallelize? Our answer is to do line 2. The amortized time
for mapping all points of oi ∈ O is O(m), and each operation
in this loop is independent of the other points of oi. A
hash-partitioning approach therefore enables O(mt) time for
mapping them, where t is the number of available CPU cores.
On the other hand, parallelizing line 1 faces an NP-complete
problem. Each object may have a different sized point set. For
load balancing, we have to assign a subset of objects to each
core so that all cores have (almost) the same number of points.
We prove that this is hard.

THEOREM 3. Parallelizing line 1 of Algorithm 3 so that
the load difference between CPU cores is minimized is NP-
complete.

PROOF. To optimally assign objects in O to each core, we
have to solve the following problem. Consider a set of integers
{|P1|, |P2|, ..., |Pn|}. When we divide it into t disjoint subsets,
the sum of the integers in each subset, denoted by

∑
(ti) where

ti is the i-th core, is obtained. The problem is to minimize
maxt

∑
(ti)−mint

∑
(ti). This problem is called multi-way

number partitioning, which is NP-complete [24]. □
Theorem 3 suggests that parallelizing line 1 cannot provide
O(nmt) time.

PARALLEL-LOWER-BOUNDING(O, r). This lower-bounding
also has two options: parallelizing lines 2 and 4 of Algorithm
4. Theorem 3 implies that the first option has to tackle an NP-
complete problem. However, the second option is not a perfect
solution, and they have both advantages and disadvantages.

• Dividing O for parallel lower-bounding. Since optimally
dividing O is not practical, we employ a heuristic algorithm.
Let Ti be a subset of O, which is assigned to the i-th core ti
and initialized at ∅. We incrementally update Ti by a greedy
approach. Given o ∈ O, we obtain T = argmin

∑
Ti

|oj .L|
and insert o into T . This is done for all o ∈ O. Note that T
can be obtained in O(1) time by parallel processing, so this
algorithm takes O(n) time. After partitioning, each core runs
Algorithm 4.

• Dividing Pi for parallel lower-bounding. The second
approach is to divide Pi by a hash-partitioning. However, sim-
ple hash-partitioning suffers from synchronization at updating
b(oi) (see line 5). This degrades the performance of parallel
processing. To avoid this, we assign a local compressed bitset
to each core, and each core updates this bitset in the loop. The
final result is obtained by merging the local bitsets.

The disadvantage of the first approach is that optimal load
balancing is hard to obtain, although the greedy approach
provides a good partitioning in practice. The advantage is
that no synchronization is required to update the bitsets. On
the other hand, the advantage of the second approach is the
optimal load balancing. The disadvantage is that if |oi.L| is
small, parallel processing does not give much gain and the
merging can be bottleneck. Our empirical study verifies that
the first approach is better than the second one.
PARALLEL-UPPER-BOUNDING(O, r, τ lowmax). In this step, we
parallelize line 5 of Algorithm 5. Recall that if badj(clK) has
not been computed, we have to compute it at first. That is, the
cost of dealing with p ∈ oi becomes different if p encounters
the above case. To minimize the cost difference between each
core, we propose a cost-based heuristic partitioning for parallel
upper-bounding.

Assume that points in oi are grouped by their keys, which
can be done in building the large-grid. Let Pi,K be the set of
points of oi whose keys are K, and we have Pi,K ∩Pi,K′ = ∅.
The key-based point grouping provides a way to design a cost
of a point set, and we assign Pi,K to a core based on the
following cost model. Assuming that the cost of updating a
compressed bitset, cost(b), is a constant, the cost of Pi,K ,
C(Pi,K), is formalized as follows.

C(Pi,K) =

{
cost(b) + |Pi,K | (if |b(clK)| = 0)

27 · cost(b) + |Pi,K | (otherwise)
(3)

Note that |Pi,K | corresponds to the labeling cost for each
point in Pi,K . Using the above cost model, the same greedy
partitioning approach as in the parallel lower-bounding, and
local bitsets, we assign Pi,K to the core with the minimum
cumulative cost.

In this approach, only a single core independently computes
badj(clK) and the other cores do not access the bitset, since
points with the same keys are assigned to a single core. This is
an advantage of multi-core processing, since we do not need
any synchronization for the computation. When the labels are
utilized in this step, |Pi,K | in Equation (3) is omitted, since
we do not label points.
PARALLEL-VERIFICATION(Ocand, r). In this step, we paral-
lelize line 8 of Algorithm 6, and propose a heuristic partition-
ing approach. (After partitioning, each core runs the loop of
line 8.) Recall that we use the intermediate result b(oi) for
cell pruning. Due to this pruning, this step may be the most
difficult to be parallelized with load balancing. Our approaches
take into account this observation.
• Without label case. We use a local compressed bitset for
each core to avoid synchronization. (The bitsets are merged
after the loop of line 8.) That is, each core prunes unnecessary
cells by using the local bitset. To achieve load balancing, the
pruning rate and the number of distance computations of each
core should be similar. Because they are unknown in advance,
we propose a heuristic partition. The idea of this partition is
to assign points with different keys of the large-grid uniformly
to each core. Specifically, for each Pi,K , we partition it into

t disjoint subsets, each of which is assigned to a core. (If
|Pi,K | < t, each point is assigned to the cell with the minimum
sized point set.)
• With label case. Given pji ∈ oi, whose key for the large-
grid is K, badj(clK) might not be computed. Given oi, we
first compute the bitsets of such cells, which can be done in
parallel. Let blow(oi) be the compressed bitset obtained in
the lower-bounding step. We next prune unnecessary cells by
blow(oi), which is also done in parallel. During this, we store
the keys K of cells that have not been pruned in K. For all
Pi,K such that K ∈ K, we do the same partitioning as the
without label case.

V. EMPIRICAL STUDY

A. Setting

All experiments were conducted on a machine with a 12-
core Intel Xeon E5-2687W v4 processor (3.0GHz), 512GB
RAM and 1TB SSD with 4096B block size. (This external
memory is used only for labels, and a given dataset is
memory-resident, as mentioned in Section II-A). For multi-
threading, we used OpenMP. All evaluated algorithms were
implemented in C++. In the experiments, we measured query
processing time and memory usage. Note that we terminated
the experiments if query processing did not terminate within
8 hours.
Evaluated algorithms. In the experiments, we evaluated the
following algorithms.
• BIGrid: the algorithm proposed in Sections III-A–III-C.
• BIGrid-label8: the algorithm proposed in Section III-D.
• NL: the algorithm introduced in Section II-B9.
• SG: a simple grid algorithm. Given a distance threshold r,

SG first builds a spatial grid (the width of each cell is r)
while mapping each point into the corresponding cell. Then,
for each object o ∈ O, SG computes τ(o) by utilizing the
grid, similarly to BIGrid. SG corresponds to a state-of-the-
art main memory spatial-join algorithm TOUCH [5] (but is
optimized for our problem). This algorithm also builds an
index (a hierarchical tree) online and then compares points
that can be within a distance. Since SG computes distances
between points if they can be within r, such a hierarchical
index is not necessary and SG incurs less index access
overheads.

We do not compare our solutions with the theoretical algorithm
introduced in Section II-B, because its pre-processing spent
more than 8 hours.
Datasets. We used four real datasets, Neuron, Neuron-2, Bird,
and Bird-2, that have large numbers of points (i.e., nm)10.

8To function BIGrid-label, we made BIGrid output the labels of points for
each parameter setting.

9We also tested a variant of NL. This variant maintains the points of an ob-
ject by a kd-tree, so the time complexity of this algorithm is O(n2m logm).
However, this variant shows a similar performance to those of NL and cannot
beat our solutions. We therefore omit the result of this variant for conciseness.

10It is important to note that datasets with large nm are suitable for our
experiments, because the complexities of the evaluated algorithms are derived
from the number of points in O.

TABLE I
DATASET STATISTICS

Dataset n m nm Unit of r
Neuron 776 7,960 6,176,960 Micrometer

Neuron-2 5,493 848 4,657,696 Micrometer
Bird 143,042 50 7,152,100 Meter

Bird-2 29,247 100 2,924,700 Meter
Syn 851,519 52 44,266,671 -

Neuron and Neuron-2 are sets of rat neuron objects [4]. Bird
and Bird-2 are sets of bird trajectories [11]. We generated
these datasets by dividing long trajectories so that each tra-
jectory contains approximately m points [14]. In addition, we
generated a synthetic dataset, Syn, so that its score distribution
follows a power law, based on a human-brain network [25].
The statistics of these datasets are shown in TABLE I.

B. Result: Single core processing

Varying r. We study the impact of the distance threshold r,
and varied r from 4 to 10 based on [7]. Fig. 5 shows the
experimental results.

From Figs. 5(a)–5(d), we see that NL and SG have opposite
results. That is, NL decreases its processing time as r in-
creases, while SG increases its processing time as r increases.
The reason is as follows. As r increases, two objects tend
to have many pairs of points whose distances are within r.
Therefore, NL can find such pairs in an early iteration, thereby
reduces the number of pairwise distance computations. On the
other hand, w.r.t. SG, as r increases, the number of points in
a cell tends to increase, so SG needs more pairwise distance
computations for a point.

The second observation is that BIGrid clearly outperforms
NL and SG. When r = 4, for the datasets of Neuron, Neuron-
2, and Bird-2, BIGrid is 60 (3), 49 (67), and 711 (33) times
faster, respectively, than NL (SG). Also, for Bird and Syn,
BIGrid is 44 and 16 times faster, respectively, than SG, when
r = 4. Furthermore, BIGrid-label successfully accelerates
the query processing efficiency. To better understand, we
show run time of each operation of BIGrid and BIGrid-label
in TABLE II. We see that loading labels is not an over-
head for BIGrid-label. In addition, GRID-MAPPING-WITH-
LABEL(·, ·), LOWER-BOUNDING-WITH-LABEL(·, ·), UPPER-
BOUNDING-WITH-LABEL(·, ·, ·), and VERIFICATION-WITH-
LABEL(·, ·, ·) incur similar or (significantly) less time com-
pared with the corresponding ones in BIGrid. Lower- and
upper-bounding incur significantly less costs than computing
the exact score of an object. This can be seen by comparing
the lower- and upper-bounding times with the run time of SG.

The third observation is that, in Neuron-2, BIGrid does not
provide a consistent result. The upper-bound and exact score
distributions are affected by r. For some r, there are many
objects with higher upper-bound scores than τ(o∗), which
results in a longer run time.

Figs. 5(f)–5(j) show the memory usage of SG, BIGrid,
and BIGrid-label. (The memory cost of NL is dominated by
the memory usage for a given dataset, so is omitted.) As r
increases, their memory usages decrease, because their grids

4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

Threshold (Neuron)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(a) Run time (Neuron)

4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

Threshold (Neuron−2)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(b) Run time (Neuron-2)

4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

Threshold (Bird)

R
u
n
 t
im

e
 [
s
e
c
]

SG BIGrid BIGrid−label

(c) Run time (Bird)

4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

Threshold (Bird−2)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(d) Run time (Bird-2)

4 5 6 7 8 9 10
10

2

10
3

10
4

10
5

Threshold (Syn)

R
u
n
 t
im

e
 [
s
e
c
]

SG BIGrid BIGrid−label

(e) Run time (Syn)

4 5 6 7 8 9 10
0

1

2

3

4

5

Threshold (Neuron)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(f) Memory (Neuron)

4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Threshold (Neuron−2)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(g) Memory (Neuron-2)

4 5 6 7 8 9 10
0

2

4

6

8

Threshold (Bird)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(h) Memory (Bird)

4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Threshold (Bird−2)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(i) Memory (Bird-2)

4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Threshold (Syn)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(j) Memory (Syn)
Fig. 5. Impact of threshold (r)

TABLE II
DECOMPOSED TIME [SEC] WHEN r = 4

Dataset Neuron Neuron-2 Bird Bird-2 Syn
Algorithm BIGrid BIGrid-label BIGrid BIGrid-label BIGrid BIGrid-label BIGrid BIGrid-label BIGrid BIGrid-label

Label-Input - 0.401 - 0.325 - 0.775 - 0.240 - 4.959
Grid-Mapping 17.122 15.452 8.164 8.400 25.403 15.810 8.882 3.819 59.927 59.059

Lower-bounding 2.677 2.895 5.836 5.911 1.696 1.656 0.898 0.842 44.036 41.960
Upper-bounding 25.061 1.286 6.891 1.031 62.800 15.122 18.713 1.580 156.697 90.181

Verification 2.291 0.566 13.829 7.123 0.804 0.614 0.022 0.005 10.792 2.958

0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

Sampling rate (Neuron)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(a) Run time (Neuron)

0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

Sampling rate (Neuron−2)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(b) Run time (Neuron-2)

0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

10
5

Sampling rate (Bird)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(c) Run time (Bird)

0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Sampling rate (Bird−2)
R

u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(d) Run time (Bird-2)

0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

Sampling rate (Syn)

R
u
n
 t
im

e
 [
s
e
c
]

SG BIGrid BIGrid−label

(e) Run time (Syn)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Sampling rate (Neuron)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(f) Memory (Neuron)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Sampling rate (Neuron−2)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(g) Memory (Neuron-2)

0.2 0.4 0.6 0.8 1
0

2

4

6

8

Sampling rate (Bird)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(h) Memory (Bird)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Sampling rate (Bird−2)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(i) Memory (Bird-2)

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

Sampling rate (Syn)

M
e
m

o
ry

 [
G

B
]

SG BIGrid BIGrid−label

(j) Memory (Syn)
Fig. 6. Impact of sampling rate (s)

have less cells. Although the memory usage of BIGrid is
larger than that of SG, it is affordable for recent main-memory
systems. Besides, since BIGrid-label prunes points p where
label(p) = 0∗∗, its memory usage is less than that of BIGrid.
Fig. 5(j) shows an exception. Because Syn has less points p
such that label(p) = 0 ∗ ∗, the memory cost of the labels
becomes a little bit overhead.

Scalability test. We next investigate the scalability of NL,
SG, BIGrid, and BIGrid-label. For each dataset, we select
s × n objects, where s is a sampling rate. Fig. 6 shows the
experimental results. We see from Figs. 6(a)–6(e) that NL
and SG do not scale well, and the computational costs of
BIGrid and BIGrid-label are (much) better than those of NL
and SG. This is because the costs of GRID-MAPPING(·, ·),
LOWER-BOUNDING(·, ·), and UPPER-BOUNDING(·, ·, ·) are
almost linear and the pruning rate of score computation is
high. Figs. 6(f)–6(j) show that the memory costs of BIGrid
and BIGrid-label have linear scalability.

Varying k. In this section, we finally investigate the run time
of BIGrid for its top-k variant problem, which is shown in

Fig. 7. Recall that NL and SG compute the scores of all
objects, and their performances are independent on k. Figs.
7(a)–7(e) verify that our solution is still efficient for the top-k
case. As k increases, its threshold becomes smaller. The run
time therefore increases as k increases, but BIGrid effectively
prunes unnecessary score computations.

C. Result: Multi-core processing

Evaluation of partitioning approaches. We first evaluate the
efficiency of partitioning approaches for parallel lower- and
upper-bounding by using the real datasets. We use LB-greedy-
d and LB-hash-p to denote parallel lower-bounding by dividing
O and Pi, respectively. Also, we use UB-greedy-p to denote
parallel upper-bounding by the cost-based greedy Pi partition.
As a competitor for parallel upper-bounding, we employ an
approach that greedily partitions O based on |Pi|, which is
denoted by UB-greedy-d.

Fig. 8 shows the results of the experiments with varying
the number of available CPU cores. We see that LB-greedy-
d and UB-greedy-p scale well w.r.t. the number of cores,
demonstrating the effectiveness of our cost-based partitioning.

2 4 6 8 10 12 14 16
10

1

10
2

10
3

10
4

k (Neuron)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid

(a) Run time (Neuron)

2 4 6 8 10 12 14 16
10

1

10
2

10
3

10
4

k (Neuron−2)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid

(b) Run time (Neuron-2)

2 4 6 8 10 12 14 16
10

1

10
2

10
3

10
4

k (Bird)

R
u
n
 t
im

e
 [
s
e
c
]

SG BIGrid

(c) Run time (Bird)

2 4 6 8 10 12 14 16
10

1

10
2

10
3

10
4

10
5

k (Bird−2)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid

(d) Run time (Bird-2)

2 4 6 8 10 12 14 16
10

2

10
3

10
4

k (Syn)

R
u
n
 t
im

e
 [
s
e
c
]

SG BIGrid

(e) Run time (Syn)
Fig. 7. Impact of result size (k)

1 2 3 4 5 6 7 8 9 10 11 12
10

−1

10
0

10
1

10
2

Number of cores (Neuron)

R
u
n
 t
im

e
 [
s
e
c
]

LB−greedy−d LB−hash−p

UB−greedy−d UB−greedy−p

(a) Bounding time (Neuron)

1 2 3 4 5 6 7 8 9 10 11 12
10

−1

10
0

10
1

Number of cores (Neuron−2)

R
u
n
 t
im

e
 [
s
e
c
]

LB−greedy−d LB−hash−p

UB−greedy−d UB−greedy−p

(b) Bounding time (Neuron-2)

1 2 3 4 5 6 7 8 9 10 11 12
10

−1

10
0

10
1

10
2

Number of cores (Bird)

R
u
n
 t
im

e
 [
s
e
c
]

LB−greedy−d LB−hash−p

UB−greedy−d UB−greedy−p

(c) Bounding time (Bird)

1 2 3 4 5 6 7 8 9 10 11 12
10

−1

10
0

10
1

10
2

Number of cores (Bird−2)

R
u
n
 t
im

e
 [
s
e
c
]

LB−greedy−d LB−hash−p

UB−greedy−d UB−greedy−p

(d) Bounding time (Bird-2)
Fig. 8. Evaluation of partitioning approaches

1 2 3 4 5 6 7 8 9 10 11 12
10

0

10
1

10
2

10
3

10
4

Number of cores (Neuron)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(a) Run time (Neuron)

1 2 3 4 5 6 7 8 9 10 11 12
10

0

10
1

10
2

10
3

10
4

Number of cores (Neuron−2)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(b) Run time (Neuron-2)

1 2 3 4 5 6 7 8 9 10 11 12
10

1

10
2

10
3

10
4

Number of cores (Bird)
R

u
n
 t
im

e
 [
s
e
c
]

SG BIGrid BIGrid−label

(c) Run time (Bird)

1 2 3 4 5 6 7 8 9 10 11 12
10

0

10
1

10
2

10
3

10
4

10
5

Number of cores (Bird−2)

R
u
n
 t
im

e
 [
s
e
c
]

NL SG BIGrid BIGrid−label

(d) Run time (Bird-2)
Fig. 9. Impact of number of cores (t)

Meanwhile, the other approaches do not exploit the available
cores. LB-greedy-d works well in Neuron and Neuron-2 but
does not in the other datasets. Because the size of a key list,
|oi.L|, is small in the cases of Bird and Bird-2, LB-greedy-
d loses its advantage and the local bitset merging becomes
overhead. UB-greedy-d consistently shows poor performance,
because its partitioning approach does not consider the real
cost of dealing with a point.

Comparison with parallel NL and SG. We parallelize NL
and SG, to compare BIGrid with them. Fig. 9 shows the
experimental results on the real datasets.

Although NL parallelizes line 3 of Algorithm 1, NL is not
only computationally inefficient but also hard to achieve load
balancing. Algorithm 1 shows that there are three loops to
obtain τ(oi), but the cost of each loop is hard to estimate, since
the number of distance computations is unknown. Therefore,
NL cannot achieve much time reduction. SG has a similar
result. SG computes τ(oi) in parallel by hash-partitioning,
but its run time does not decrease so much. In general,
hash-partitioning functions only when each task has the same
cost. Due to the skewed distributions, the number of distance
computations for a point is usually different. SG therefore
does not achieve load balancing. On the other hand, BIGrid
and BIGrid-label reduce their run times with increasing of
the number of cores. This result demonstrates that, as well
as parallel lower- and upper-bounding, PARALLEL-GRID-
MAPPING(·, ·) and PARALLEL-VERIFICATION(·, ·) exploit the
available cores. TABLE III, which shows the speedup ratio
against single core version on Neuron and Bird, also confirms
this result. We can observe that, although the speedup depends
on datasets, which is derived from that fact that the compres-

TABLE III
SPEEDUP RATIO AGAINST SINGLE CORE VERSION WHEN r = 4

Dataset Neuron Bird
Algorithm BIGrid BIGrid-label BIGrid BIGrid-label
t = 2 1.648 1.789 1.763 1.584
t = 4 2.717 2.968 2.770 2.181
t = 6 3.585 4.036 3.313 2.492
t = 8 4.265 4.809 3.513 2.598
t = 10 4.750 5.251 3.708 2.626
t = 12 5.154 5.985 3.984 2.629

sion statuses of bitsets depend on the data distributions, larger
number of cores provides a shorter run time.

VI. RELATED WORK

Spatial query processing is used in many applications, such
as the location selection problem [26] and data mining [27]. In
this section, we review some spatial data processing techniques
that are related to our solutions.

Spatial query processing. Given a set of points and a distance
threshold, the problem of in-memory spatial join (self-join
case) is to retrieve all pairs of points whose distances are
within the threshold [28]. The time complexity of this problem
is essentially quadratic, thus to reduce execution time, many
approaches, which prune unnecessary distance computations
between points, have been proposed. Examples are a hierar-
chical grid-based algorithm [29], TOUCH [5], and a space-
partitioning algorithm [30], to name a few. [31] demonstrated
that TOUCH is effective for real and skewed datasets among
them. Our experiments have verified that spatial self-join based
approaches, like NL and SG, is not efficient for our problem.

The closest point pair computation problem retrieves the
pair of two points whose distance is the shortest among

all pairs in a given point set [32]. In Section II-B, we
discussed how to employ the technique of the closest point
pair computation and showed that it is not practical.

Hybrid index for spatial data. Recently, spatial objects have
often been associated with some attributes, e.g., keywords
[33] and social relationships [34]. To retrieve such objects,
spatio-textual and geo-social queries have been devised, along
with efficient retrieval algorithms. One representative index for
spatio-textual queries is IR-tree [35], which is an R-tree with
an inverted list for each node. The BIGrid structure is actually
inspired by IR-tree and its variants, but has a clear difference.
IR-tree aims at pruning objects that cannot be the top-k answer
in a batch w.r.t. a given query point with keywords. This
query considers that an object is a point, thereby MBR-based
hierarchical indexing functions. On the other hand, the BIGrid
is designed so that we can efficiently compute lower-bound,
upper-bound, and the exact scores of objects.

Leveraging previous query results. If applications require
quick data-to-insight time, building an index by costly pre-
processing is not tolerant. In this case, leaving some query
results for future queries is promising. Database cracking
[36], which incrementally updates indices as a side-effect
of query processing, has been proposed to achieve this.
Although database cracking techniques were focused on re-
lational databases [37], recent studies have proposed crack-
ing techniques for in-memory and external-memory spatial
datasets [21], [38]. Their techniques deal with spatial range
queries, and it is not trivial to apply them to MIO queries.

VII. CONCLUSION

This paper addressed the problem of identifying the most
interactive object in spatial datasets. To the best of our
knowledge, this paper is the first work of this problem.
We first showed that a nested-loop and a theoretical algo-
rithms do not scale. Motivated by this fact, we proposed
an efficient solution with a novel data structure BIGrid. The
BIGrid structure efficiently facilitates lower-bounding, upper-
bounding, and verification. Our solution is carefully designed
so that it can use intermediate results of previous MIO queries,
deal with the top-k variant, and be parallelized. Finally, our
experiments demonstrate that our solution is significantly
faster than competitors.

There may exist applications that want to find the most
interactive object in a high-dimensional space, although it is
beyond the scope of this paper. For such applications, our
solution can be still used but may not function well, as it
is well-known that grid structures are not effective for high-
dimensional data. We leave designing a robust index for high-
dimensional spaces for future work.

Acknowledgment. This research is partially supported by
JSPS Grant-in-Aid for Scientific Research (A) Grant Number
18H04095, JST CREST Grant Number J181401085, and ACT-
I, JST. We really thank Dr. Ken-ichi Kawarabayashi for his
great comments.

REFERENCES

[1] J. van Pelt and A. van Ooyen, “Estimating neuronal connectivity
from axonal and dendritic density fields,” Frontiers in computational
neuroscience, vol. 7, pp. 160:1–160:19, 2013.

[2] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for
3d object reconstruction from a single image,” in CVPR, vol. 2, no. 4,
2017, pp. 605–613.

[3] Q. Fan, D. Zhang, H. Wu, and K.-L. Tan, “A general and parallel
platform for mining co-movement patterns over large-scale trajectories,”
PVLDB, vol. 10, no. 4, pp. 313–324, 2016.

[4] http://neuromorpho.org/index.jsp.
[5] S. Nobari, F. Tauheed, T. Heinis, P. Karras, S. Bressan, and A. Ailamaki,

“Touch: in-memory spatial join by hierarchical data-oriented partition-
ing,” in SIGMOD, 2013, pp. 701–712.

[6] F. Tauheed, T. Heinis, and A. Ailamaki, “Thermal-join: A scalable
spatial join for dynamic workloads,” in SIGMOD, 2015, pp. 939–950.

[7] A. van Ooyen, A. Carnell, S. de Ridder, B. Tarigan, H. D. Mansvelder,
F. Bijma, M. de Gunst, and J. van Pelt, “Independently outgrowing
neurons and geometry-based synapse formation produce networks with
realistic synaptic connectivity,” PloS one, vol. 9, no. 1, p. e85858, 2014.

[8] R. Badhwar and G. Bagler, “A distance constrained synaptic plasticity
model of c. elegans neuronal network,” Physica A: Statistical Mechanics
and its Applications, vol. 469, pp. 313–322, 2017.

[9] S. Nigam, M. Shimono, S. Ito, F.-C. Yeh, N. Timme, M. Myroshny-
chenko, C. C. Lapish, Z. Tosi, P. Hottowy, W. C. Smith et al., “Rich-club
organization in effective connectivity among cortical neurons,” Journal
of Neuroscience, vol. 36, no. 3, pp. 670–684, 2016.

[10] P. Bonifazi, M. Goldin, M. A. Picardo, I. Jorquera, A. Cattani, G. Bian-
coni, A. Represa, Y. Ben-Ari, and R. Cossart, “Gabaergic hub neurons
orchestrate synchrony in developing hippocampal networks,” Science,
vol. 326, no. 5958, pp. 1419–1424, 2009.

[11] https://www.datarepository.movebank.org/.
[12] Z. Li, J. Han, M. Ji, L.-A. Tang, Y. Yu, B. Ding, J.-G. Lee, and

R. Kays, “Movemine: Mining moving object data for discovery of
animal movement patterns,” TIST, vol. 2, no. 4, pp. 37:1–37:32, 2011.

[13] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-
and-group framework,” in SIGMOD, 2007, pp. 593–604.

[14] Z. Shang, G. Li, and Z. Bao, “Dita: Distributed in-memory trajectory
analytics,” in SIGMOD, 2018, pp. 725–740.

[15] X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao, “Ultraman: a unified
platform for big trajectory data management and analytics,” PVLDB,
vol. 11, no. 7, pp. 787–799, 2018.

[16] P. Laube, M. van Kreveld, and S. Imfeld, “Finding remo - detecting
relative motion patterns in geospatial lifelines,” in Developments in
spatial data handling, 2005, pp. 201–215.

[17] M. Andersson, J. Gudmundsson, P. Laube, and T. Wolle, “Reporting
leaders and followers among trajectories of moving point objects,”
GeoInformatica, vol. 12, no. 4, pp. 497–528, 2008.

[18] N. Mavridis, N. Bellotto, K. Iliopoulos, and N. Van de Weghe, “Qtc3d:
Extending the qualitative trajectory calculus to three dimensions,” Infor-
mation Sciences, vol. 322, pp. 20–30, 2015.

[19] M. W. Reimann, J. G. King, E. B. Muller, S. Ramaswamy, and
H. Markram, “An algorithm to predict the connectome of neural mi-
crocircuits,” Frontiers in computational neuroscience, vol. 9, no. 120,
pp. 1–18, 2015.

[20] P. M. Vaidya, “An O(n logn) algorithm for the all-nearest-neighbors
problem,” Discrete & Computational Geometry, vol. 4, no. 2, pp. 101–
115, 1989.

[21] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki, “Quasii: Query-
aware spatial incremental index,” in EDBT, 2018, pp. 325–336.

[22] D. Lemire, O. Kaser, and K. Aouiche, “Sorting improves word-aligned
bitmap indexes,” Data & Knowledge Engineering, vol. 69, no. 1, pp.
3–28, 2010.

[23] O. Kaser and D. Lemire, “Compressed bitmap indexes: beyond unions
and intersections,” Software: Practice and Experience, vol. 46, no. 2,
pp. 167–198, 2016.

[24] R. E. Korf, “Multi-way number partitioning.” in IJCAI, 2009, pp. 538–
543.

[25] http://networkrepository.com/bn.php.
[26] D. Amagata and T. Hara, “Monitoring maxrs in spatial data streams.”

in EDBT, 2016, pp. 317–328.
[27] D.-W. Choi and C.-W. Chung, “Nearest neighborhood search in spatial

databases,” in ICDE, 2015, pp. 699–710.

[28] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke, “An
experimental analysis of iterated spatial joins in main memory,” PVLDB,
vol. 6, no. 14, pp. 1882–1893, 2013.

[29] N. Koudas and K. C. Sevcik, “Size separation spatial join,” in SIGMOD
Record, vol. 26, no. 2, 1997, pp. 324–335.

[30] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,” in
SIGMOD Record, vol. 25, no. 2, 1996, pp. 259–270.

[31] S. Nobari, Q. Qu, and C. S. Jensen, “In-memory spatial join: The data
matters!” in EDBT, 2017, pp. 462–465.

[32] M. I. Shamos and D. Hoey, “Closest-point problems,” in FOCS, 1975,
pp. 151–162.

[33] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query
processing: an experimental evaluation,” in PVLDB, vol. 6, no. 3, 2013,
pp. 217–228.

[34] K. Mouratidis, J. Li, Y. Tang, and N. Mamoulis, “Joint search by social
and spatial proximity,” TKDE, vol. 27, no. 3, pp. 781–793, 2015.

[35] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” PVLDB, vol. 2, no. 1, pp. 337–348, 2009.

[36] S. Idreos, M. L. Kersten, S. Manegold et al., “Database cracking.” in
CIDR, vol. 7, 2007, pp. 68–78.

[37] F. M. Schuhknecht, A. Jindal, and J. Dittrich, “An experimental evalu-
ation and analysis of database cracking,” The VLDB Journal, vol. 25,
no. 1, pp. 27–52, 2016.

[38] M. Pavlovic, E. T. Zacharatou, D. Sidlauskas, T. Heinis, and A. Ail-
amaki, “Space odyssey: efficient exploration of scientific data,” in
Exploratory Search in Databases and the Web, 2016, pp. 12–18.

APPENDIX

A. Analysis of offline BIGrid building

We demonstrate that offline BIGrid building does not pro-
vide any advantages over online approach.

First, we assume that BIGrid is build based on a certain
distance threshold r′. Given an MIO query with r, lower-
and upper-bounding become ineffective or incorrect. (i) If
r > r′, lower-bonding does not lose correctness (but lower-
bound scores become loose). However, upper-bounding loses
correctness if we do not provide any extension. Recall that,
in the original algorithm, for a point pji with key K for the
large-grid, we access clK and its neighbor cells (say clK′). To
obtain upper-bound score (i.e., to guarantee correctness) w.r.t.
an MIO query with r > r′, in addition to these cells, we have
to access at least their (clK′ ’s) neighbor cells. It is important
to note that this approach increases the number of access cells
exponetially. (ii) If r < r′, we see that small-grid does not
provide correct lower-bound scores, because points p and p′

in the same cell do not satisfy dist(p, p′) ≤ r.
Second, we can re-construct BIGrid (decompose/merge grid

cells) if we have r = α · r′ where α ̸= 0 (i.e., very limited
cases). Recall that we need to assign cell key for each point
in a given object set O and need to update compressed bitsets
if cells are updated. Therefore, decomposing/merging cells
incurs the same cost as that of the original approach. We see
that this approach does not provide any gain.

B. Incorporating a temporal dimension

If we consider a temporal dimension, we have to define an
object oi as oi = {⟨p1i , t1i ⟩, ..., ⟨p

|Pi|
i , t

|Pi|
i ⟩}, where tji is the

time when pji is generated. Then, Oi (see Equation (1)) is
defined as

Oi = {oj | oj ∈ O\{oi},∃⟨pi
′

i , t
i′

i ⟩ ∈ oi,∃⟨pj
′

j , t
j′

j ⟩ ∈ oj ,

dist(pi, pj) ≤ r, |ti
′

i − tj
′

j | ≤ δ},

where δ is a threshold for the temporal dimension. Without
loss of generality, let us assume that the temporal dimension
of a given dataset has a time domain [0, T]. Given an MIO
query with r and δ, we first decompose [0, T] into disjoint
sub-domains, [0, δ), [δ, 2δ), ..., [T − δ, T]. Then, for each sub-
domain, we build BIGrid based on the generation time of
points.

For lower-bounding, assume that we have ⟨pji , t
j
i ⟩ ∈ oi,

where tji = δ, and the key for small-grid of pji is K. Now the
small-grid on the sub-domain [δ, 2δ) has a compressed bitset
b(csK) whose i-th bit is 1. We see that, to obtain points p
certainly satisfying dist(pji , p) ≤ r and |tji − t| ≤ δ, we need
to access only csK on the sub-domain [δ, 2δ).

Upper-bounding approach is similar to the above one.
Assume that we have ⟨pji , t

j
i ⟩ ∈ oi, where tji = δ, and the

key for large-grid of pji is K. To obtain points p which may
satisfy dist(pji , p) ≤ r and |tji − t| ≤ δ, we need to access
clK and its neighbor cells on the sub-domains [0, δ), [δ, 2δ),
and [2δ, 3δ) (i.e., [δ, 2δ) and its neighbor sub-domains). The
verification also follows this upper-bounding approach.

Note that δ = 0 is a special case. In this case, we build
a BIGrid for each generation time of points in O. More
specifically, if we have ⟨pji , t

j
i ⟩ ∈ oi, a BIGrid with generation

time tji is built. Bitwise OR operations are conducted only on
the BIGrid with the same generation time.

