
Scalable Frequent Sequence Mining
With Flexible Subsequence Constraints

Alexander Renz-Wieland
Technische Universität Berlin

alexander.renz-wieland@tu-berlin.de

Matthias Bertsch
Universität Mannheim

mabertsc@mail.uni-mannheim.de

Rainer Gemulla
Universität Mannheim

rgemulla@uni-mannheim.de

Abstract—We study scalable algorithms for frequent sequence
mining under flexible subsequence constraints. Such constraints
enable applications to specify concisely which patterns are of
interest and which are not. We focus on the bulk synchronous
parallel model with one round of communication; this model
is suitable for platforms such as MapReduce or Spark. We
derive a general framework for frequent sequence mining under
this model and propose the D-SEQ and D-CAND algorithms
within this framework. The algorithms differ in what data are
communicated and how computation is split up among workers.
To the best of our knowledge, D-SEQ and D-CAND are the
first scalable algorithms for frequent sequence mining with
flexible constraints. We conducted an experimental study on
multiple real-world datasets that suggests that our algorithms
scale nearly linearly, outperform common baselines, and offer
acceptable generalization overhead over existing, less general
mining algorithms.

I. INTRODUCTION

Frequent sequence mining (FSM) is a data mining task that

finds frequent subsequences in a sequence database. FSM is

ubiquitous in applications, including natural language process-

ing [19], information extraction [12], web usage mining [29],

market-basket analysis [28], and computational biology [9].

Fig. 1 gives an overview of prior FSM algorithms, cat-

egorized along the dimensions of flexibility and scalability.

Roughly speaking, more flexible algorithms aim to support

a wider range of applications, whereas scalable algorithms

can handle very large datasets with hundreds of millions

of sequences. Prior work on FSM focused mostly on one

of the dimensions. More specifically, a number of scalable

FSM algorithms has been proposed [6], [8], [15], [16], [21],

[22], [35]. These algorithms are inflexible, however, in that

they cannot be tailored to a particular application. They often

produce a multitude of frequent subsequences, among only

few may be interesting to applications [27]. One approach to

improve flexibility is the use of subsequence constraints, which

specify conditions under which a subsequence is potentially

interesting to the particular application. Ordered by increasing

flexibility, common types of subsequence constraints include

length constraints [28], [34], gap and duration constraints [14],

[28], [34], hierarchy constraints [28], “output filter” regular ex-

pression constraints [2], [3], [13], [31], and regular expression

constraints with capture groups and hierarchies [5], [7]. The

latter type subsumes the remaining ones, and we subsequently

refer to it as flexible constraints.

Flexibility (supported subsequence constraints)

S
ca

la
b
il

it
y

Maximum length, gaps Regular expressions

(includes max. length)

Flexible constraints

(includes max. length, gaps)

S
eq

u
en

ti
al

S
ca

la
b
le

Apriori [1]

SPADE [36]

PrefixSpan [24]

MAPB/-D [32]

cSPADE [34]

GSP [28]

SPIRIT [13]

SMA [31]

RE-Hackle [2]

DESQ [5]

pSPADE [35]

Suffix-σ [8]

MLlib [21]

MG-FSM [22]

LASH [6]
(this paper)

D-CAND

D-SEQ

Fig. 1: Selected FSM algorithms, arranged by scalability and

flexibility in terms of supported subsequence constraints.

Consider for example the task of mining frequent

relational phrases between entities from large text corpora

as in [12], [23]; e.g., the phrase make a deal with may be

frequent between persons and/or organizations. An FSM

algorithm that does not support flexible constraints cannot

solve such a task: it cannot be tailored to consider only

relational phrases, thereby producing many uninteresting

(i.e., non-relational) patterns, and it does not support

context constraints, thereby producing spurious patterns

(i.e., patterns that do not connect entities). In contrast,

FSM algorithms that support flexible constraints can

express this task—e.g., using a constraint such as

ENTITY (VERB+ DET? NOUN+? PREP?) ENTITY [12]

in the pattern language of DESQ [5], [7]—but they cannot

handle very large datasets. Other examples involving flexible

constraints include the construction of the well-known Google

n-gram corpus [30] and mining of protein sequences that

exhibit a given motif [31].

In this paper, we study FSM algorithms that are both flexible

and scalable. We focus on the bulk synchronous parallel

model with one round of communication, which is suitable

for platforms such as MapReduce or Spark. We propose the

D-SEQ and D-CAND algorithms, which differ in how work is

distributed and what data are communicated among workers.

More specifically, we make the following contributions:

• We generalize existing approaches for distributed FSM

with one round of communication to a general framework

that supports flexible subsequence constraints (Sec. III).

• We propose D-SEQ (Sec. V), an FSM algorithm that

communicates rewritten input sequences [6], [22] among

workers. The algorithm provides robust performance

across a wide range of subsequence constraints.

1490

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00134

T1: a1cdcb

T2: eea1ea1eb

T3: cdcb

T4: a2db

T5: a1a1b

(a) Sequence db.

A

a1 a2

b

c d e

(b) Item hierarchy

w f(w,Dex)

b 5
A 4
d 3
a1 3
c 2
e 1
a2 1

(c) Item freq.

Fig. 2: Running example. Sequence database Dex, item hier-

archy, and item frequencies f(w,Dex).

• We propose D-CAND (Sec. VI), an FSM algorithm

that communicates candidates (in compressed form). The

algorithm is tailored to more selective constraints and it

mines such constraints more efficiently than D-SEQ.

• We report results of an experimental study (Sec. VII)

that examines the relative performance of D-SEQ and D-

CAND and compares them to baseline and state-of-the-art

(specialized) methods on real-world datasets.

We found that our algorithms scaled nearly linearly with the

number of sequences in the sequence database. They also

had acceptable generalization overhead (between 0.9x and

4.3x) over existing specialized methods, which cannot handle

flexible constraints.

II. PRELIMINARIES

We start with introducing basic concepts and a formal

definition of the FSM problem that we consider in this paper.

Sequence database. A sequence database is a set1 of

sequences, denoted D =
{
T1, T2, . . . , T|D|

}
. Each sequence

T = t1t2 . . . t|T | is a list of items from a vocabulary Σ ={
w1, w2, . . . , w|Σ|

}
. We denote by ε the empty sequence, by

|T | the length of sequence T , by Σ∗ the set of all sequences

that can be constructed from items in Σ. Fig. 2a shows an

example sequence database Dex with 5 sequences.

Item hierarchy. The items in Σ are arranged in an item
hierarchy, i. e., a directed acyclic graph that expresses how

items can be generalized (or that they cannot be generalized).

With item hierarchies, analysts can succinctly express con-

straints or find patterns involving general concepts that may

not occur directly in the data (e.g., make may generalize

to V ERB). Fig. 2b shows an example hierarchy in which,

for example, item a1 generalizes to item A. We say that an

item u generalizes directly to an item v, denoted u ⇒ v,

if u is a child of v. We further denote by ⇒∗ the reflexive

transitive closure of ⇒. For each item w ∈ Σ, we denote

by anc(w) = {w′ | w ⇒∗ w′ } the set of ancestors of w
(including w) and by desc(w) = {w′ | w′ ⇒∗ w } the set of

descendants of w (again, including w). In our running exam-

ple, we have anc(a1) = { a1, A } and desc(A) = {A, a1, a2 }.
Subsequence. Let S = s1s2 . . . s|S| and T = t1t2 . . . t|T |

be two sequences composed of items from Σ. We say that S is

a subsequence of T , denoted S � T , if S can be obtained by

deleting and/or generalizing items in T . More formally, S � T

1To simplify exposition, we assume that input sequences are distinct.

TABLE I: Selected pattern expressions. Pattern expression E
matches any item t ∈ inE and outputs any element of outE(t).

E inE outE(t) Description

. t ∈ Σ { ε } Match any item, empty output

(.↑) t ∈ Σ anc(t) Match any item, output ancestors
(w) t ∈ desc(w) { t } Match any desc. of w, output matched item

if and only if there exist integers 1 ≤ i1 < i2 < · · · < i|S| ≤
|T | such that tij ⇒∗ sj for 1 ≤ j ≤ |S|. Continuing our

example, we have a1a1b � T5 and Ab � T5, but a1e �� T5.

Subsequence constraints. We follow [5], [7] and express

subsequence constraints using subsequence predicates of form

π : Σ∗ × Σ∗ → { 0, 1 }. We say that S is a π-subsequence of

T , denoted S �π T , if S � T and π(S, T) = 1. We then also

say that T π-generates S. Denote by

Gπ(T) = {S | S �π T }
the set of subsequences π-generated by T . The subsequences

in Gπ(T) constitute candidate subsequences for FSM. For the

example of Fig. 2, a subsequence predicate πex may specify

that we are interested in only the subsequences that begin with

A or one of its descendants and end with b. Adopting the the

language of [5], [7] (see below), we can express this constraint

using pattern expression

πex = .∗(A)[(.↑).∗]∗(b).∗

We have Gπex
(T5) = { a1a1b, a1Ab, a1b } . Note that, for

example, b � T5 but b ��πex
T5. Fig. 3 depicts the candidate

subsequences for all T ∈ Dex.

Pattern expression language. The pattern expression lan-

guage is defined inductively: (1) For each item w ∈ Σ, the

expressions w, w=, w↑, and w↑
= are pattern expressions. (2) .

and .↑ are pattern expressions. (3) If E is a pattern expression,

so are (E), [E], [E]∗, [E]+, [E]?, and for all n,m ∈ N with

n ≤ m, [E]{n}, [E]{n, }, and [E]{n,m}. (4) If E1 and E2

are pattern expressions, so are [E1E2] and [E1|E2].
Pattern expressions are based on regular expressions, but

additionally include capture groups (in parentheses), hierar-

chies (by omitting =), and generalizations (using ↑ and ↑
=).

Intuitively, pattern expressions work like regular expressions:

when they match, they output what is captured and may gener-

alize along the hierarchy (optionally via ↑, always via ↑
=). The

language makes use of the usual precedence rules for regular

expressions to suppress square brackets (but not parentheses);

operators that appear earlier in the above definition have higher

precedence. Tab. I shows the input and output of selected

pattern expressions. For example, Aa1b ��πex
T5, because

pattern expression (A) does not allow to generalize matched

items, i.e., out(A)(a1) = { a1 }.
Tab. III (page 9) gives examples of application pattern

expressions. A more detailed description of the syntax and

semantics of pattern expressions can be found in [7].

Support. The support of a subsequence S in a sequence

database D is the set of input sequences that π-generate S:

Supπ(S,D) = {T ∈ D | S ∈ Gπ(T) } .

1491

Algorithm 1: Distributed FSM in MapReduce

Data: Database D , constraint π, threshold σ
1 Function Map(T) // process input sequence T
2 K(T)← keys of partitions for which T is relevant
3 foreach k ∈ K(T) do
4 ρk(T)← representation to send to partition Pk

5 Emit 〈k, ρk(T)〉
6 Function Reduce(k, Pk) // process partition Pk

7 Fk(Pk)← candidate subsequences with partition key k
along with their frequencies

8 foreach (S, f) ∈ Fk(Pk) do
9 if f ≥ σ then

10 Emit 〈S, f〉

Denote by fπ(S,D) = |Supπ(S,D)| the frequency of S in D .

Given a minimum support threshold σ > 0, a subsequence S
is frequent if fπ(S,D) ≥ σ.

We sometimes omit π to refer to the unconstrained sup-

port or frequency. For example, f(w,D) refers to the item
frequency of w in D ; see Fig. 2c. The set of all frequent
items along with their frequency is called the f-list. We assume

throughout that the f-list is known.

Problem statement. Given a sequence database D , a sub-

sequence predicate π, and a minimum support threshold σ,

output each frequent subsequence (w.r.t. π and σ) along with

its frequency.

For πex and σ = 2 in Dex, we find frequent subsequences

a1a1b and a1Ab with frequency 2 and a1b with frequency 3.

III. OVERVIEW

We first discuss a framework for distributed FSM with

flexible constraints and one round of communication. The

framework generalizes prior distributed algorithms [6], [22].

We assume throughout that the sequence database is dis-

tributed across a set of machines, each holding a subset of

the input sequences. We focus on algorithms that operate in

three phases: (1) process each input sequence independently

(map), (2) construct a set of partitions (shuffle), and (3) mine

each resulting partition independently (reduce). We require for

correctness that each frequent subsequence is output exactly

once and with its correct frequency (and no other subsequences

are output). Parallel computation is performed in the map

and reduce phases, communication in the shuffle phase. Such

algorithms fit the bulk synchronous parallel model (with one

round of communication) and are suitable for platforms such

as MapReduce [11] or Spark [33]. Alg. 1 shows a basic

MapReduce implementation that any such algorithm follows.

As each frequent subsequence needs to be output exactly

once, Alg. 1 implicitly partitions the space of subsequences:

each subsequence S is associated with exactly one of the

partitions (the one that ultimately outputs S in case it is

frequent). To model this property, we associate with each

partition Pk a unique partition key k—which we write as

subscript—and with each sequence S the key κ(S) of the

Sequence

representation

(Sec. V)

Input sequences T ∈ Dex (left) and

candidate subsequences Gπex
(T) (right)

Candidate

representation

(Sec. VI)

PcPc

PbPb

Pa1Pa1

PAPA

PdPd

PePe

Pa2Pa2

a1cdcbT1: a1cdcb, a1cdb, a1cb,
a1dcb, a1ccb

a1db, a1b

a1ea1ebT2: ee a1a1b, a1Ab, a1b

a1eb, a1eeb, a1a1eb,
a1Aeb, a1ea1b, a1eAb,
a1ea1eb, a1eAeb

cdcbT3: ∅
a2dbT4: a2db, a2b

a1a1bT5: a1a1b, a1Ab, a1b

Fig. 3: Item-based partitioning for the running example (σ =
2). Pivot items are underlined. Candidate subsequences that

contain infrequent items and partitions of infrequent items are

crossed out.

partition associated with S. Partition Pk then outputs S if and

only if κ(S) = k and S is frequent.

Every input sequence T carries information that may be

relevant for some of the partitions. Roughly speaking, if T
contains a candidate subsequence S—i.e., S ∈ Gπ(T)—
then T is potentially relevant for partition Pκ(S). Likewise,

if T does not contain any subsequence associated with some

partition Pk, T is not relevant for Pk. When processing T ,

Alg. 1 (line 2) first determines the set K(T) of (the keys

of) the partitions which “need to know” about T . For each

such partition Pk, Alg. 1 (line 4) constructs a representation
ρk(T) that contains the required information for partition Pk,

potentially in compressed form. Partition Pk then collects

the representations obtained from all input sequences and

determines the subset Fk(Pk) of all frequent subsequences

S with κ(S) = k in a local mining phase (line 7).

Different distributed FSM algorithms differ in the defini-

tion of K(T), ρk(T), and Fk(Pk). The key challenge is to

simultaneously ensure correctness, efficiency, and scalability.

A. Subsequence-Based Partitioning

A NAÏVE approach to distributed FSM is to generate

all candidate subsequences and subsequently count their fre-

quency (similar to word count). This approach corresponds to

a subsequence-based partitioning. In our notation, NAÏVE sets

κsp(S) = S (and, consequently, K(T) = Gπ(T)), ρk(T) = 1,

and Fk(Pk) = { (k, |Pk|) }.
This naı̈ve approach is simple. It is also efficient if Gπ(T)

is small on average—that is, if each input sequence generates

few candidates. For subsequence predicates that generate many

candidates, NAÏVE is often infeasible: in the worst case, the

number of candidate subsequences for a given input sequence

is exponential in the sequence length. Another issue with

NAÏVE is that partition sizes may not be balanced: partitions

corresponding to frequent subsequences are significantly larger

than those corresponding to infrequent ones.

A restricted form of support antimonotonicity holds in the

context of subsequence predicates [5], [7]: for all w ∈ S and

1492

for all π, f(w,D) ≥ fπ(S,D). Consequently, no frequent

subsequence can contain an infrequent item. Denote by

Gσ
π(T) = {S �π T | ∀w ∈ S : f(w,D) ≥ σ }

the set of candidate subsequences that consist only of frequent

items. SEMI-NAÏVE, an improved version of NAÏVE, sets

K(T) = Gσ
π(T) (and is otherwise equivalent to NAÏVE),

thereby constructing partitions only for candidate subse-

quences that consist entirely of frequent items. When there

are many infrequent items, the SEMI-NAÏVE algorithm can

be significantly more efficient than the NAÏVE algorithm; the

worst-case behavior remains unaffected.

B. Item-Based Partitioning

Item-based partitioning [6], [10], [17], [22] prevents the

exponential number of partitions that can arise in subsequence-

based partitioning. Each partition Pk is responsible for a single

item k ∈ Σ. Consequently, there are at most |Σ| partitions.

Subsequence S is associated with partition

κip(S) = max {w ∈ S } ,
where the maximum is taken w.r.t. some total order < on the

items in the vocabulary. Following [22], we subsequently refer

to the partitioning key in item-based partitioning κip(S) as the

pivot item of S (similarly, to k as the pivot item of Pk), and

to a subsequence S with k = κip(S) as a pivot sequence for

pivot item k. Thus, partition Pk is responsible for mining all

frequent subsequences that contain k but no item larger than

k or, equivalently, all frequent pivot sequences for k.

The total order < has a large impact on the balance of

partition sizes. A common approach is to define < such that

w1 < w2 if f(w1,D) > f(w2,D). Then the pivot item of a

sequence is its least frequent item. For example, Fig. 2c shows

items w ∈ Dex in such an order: b < A < · · · < a2. The

reasoning behind this approach is that frequent items occur

in many input sequences, but their partitions are responsible

for few distinct subsequences. For example, for the most

frequent item b, partition Pb outputs only sequences of form

b, bb, bbb, and so on. Beedkar and Gemulla [4] show that

when the representation ρk(T) is constructed appropriately

(see below), little information needs to be sent to partitions

corresponding to frequent items, which tends to lead to well-

balanced partition sizes.

Sequence representation. The key questions in item-based

partitioning are how to split up work and how to minimize

communication via suitable representations. One option, to

which we refer as sequence representation and which D-SEQ

uses, is to send input sequence T (or an equivalent rewritten

variant T ′) to the partitions for which T is relevant. We set

K ip(T) = { k | S ∈ Gσ
π(T), κ

ip(S) = k } (1)

and ρk(T) = T (or T ′). Then, for each subsequence S with

κip(S) = k, partition Pk contains all the input sequences

that generate S and can thus compute S’s frequency exactly.

To determine Fk(Pk), we could run any sequential FSM

algorithm and filter out all non-pivot sequences afterwards.

Fig. 3 depicts item-based partitioning for our running ex-

ample with σ = 2. The center column of the figure shows the

input sequences T ∈ Dex (left) along with their candidate sub-

sequences Gπex
(T) (right). Pivot items are underlined and can-

didate subsequences that contain infrequent items are crossed

out. The left column illustrates item-based partitioning with

sequence representation. For example, K ip(T1) = { a1, c }.
Consequently, we send T1 to partitions Pa1

and Pc.

The key idea of [6], [22] is to set ρk(T) = T ′, where

T ′ is a “rewritten” variant of T such that T ′ is shorter than

T but Gσ
π(T) and Gσ

π(T
′) nevertheless agree on the set of

pivot sequences for k (but may otherwise be different). This

approach is effective in reducing communication costs and

it speeds up local mining because partitions are smaller. A

second significant performance improvement is to make the

local miner Fk aware of the fact that only pivot sequences

need to be output [6]. The aforementioned methods have

outperformed alternative methods in the experiments of [6],

[22]. Their main drawback, however, is that they are suitable

for length and gap constraints only. In Sec. V, we discuss how

and to what extent these ideas can be lifted to support more

powerful subsequence constraints.

Candidate representation. An alternative communication

strategy is to send each candidate subsequence to its respective

partition. Specifically, we use K ip(T) as defined above and set

ρk(T) = {S | S ∈ Gσ
π(T), κ

ip(S) = k }. Then, Pk contains

as many “copies” of each pivot sequence S as there are

sequences in D that generate S. In other words, we can obtain

Fk(Pk) by simply counting the number of occurrences of

each sequence in Pk. Thus, the approach is closely related to

SEMI-NAÏVE (the same amount of data is communicated) and

suffers from similar drawbacks. Our D-CAND algorithm al-

leviates these drawbacks via suitable compression techniques.

In Sec. VI, we study how far candidate representation can be

pushed and how it compares to sequence representation.

The right column of Fig. 3 depicts the use of candidate

representation for our running example. For instance, we split

G2
πex

(T1) into two parts ρa1
(T1) and ρc(T1), which contain the

candidate subsequences with pivot item a1 and c, respectively,

and are sent to the corresponding partitions.

Discussion. Generally, we expect candidate representation

to reduce communication cost if few candidates are generated

(or can be well compressed) and input sequences are long

(and cannot be well compressed). Sequence representation is

beneficial if short sequences generate many candidates (as in

our running example) that cannot be well compressed. In the

remainder of this paper, we derive efficient algorithms based

on sequence representation (Sec. V) and candidate represen-

tation (Sec. VI) and discuss and evaluate their performance.

IV. DESQ SUBSEQUENCE CONSTRAINTS

To develop efficient parallel mining algorithms, we need

to be able to peek into the subsequence predicate π. For

example, a naı̈ve approach to determine the set of partitioning

keys K ip(T) in item-based partitioning is to first compute

and then iterate over Gπ(T). As Gπ(T) can be exponential

1493

q0 q1 q2

.

(A)

.

(.↑)

(b)

.
δ0

δ1

δ2

δ3

δ4

δ5

Fig. 4: FST for subsequence predicate πex.

in the length of T , such an approach is often inefficient.

In the remainder of this paper, we adopt the computational

model of DESQ [5], [7] for subsequence predicates: it allows

to model flexible subsequence constraints (see Fig. 1), yet

imposes enough structure to enable efficient mining. In what

follows, we summarize relevant concepts of DESQ.

DESQ describes a subsequence predicate π via a com-

pressed finite state transducer (FST), which “translates” an

input sequence T to its candidate subsequences Gπ(T). We

define an FST as a 6-tuple (Q, qS , QF ,Σ, 2
Σ ∪ {ε},Δ), con-

sisting of a set of states Q, an initial state qS ∈ Q, a set of final

states QF ⊆ Q, input alphabet Σ, output alphabet 2Σ∪{ε}, and

a transition relation Δ ⊆ Q×2Σ×(Σ→ 2Σ∪{ε})×Q. Fig. 4

depicts an FST corresponding to subsequence predicate πex.

A transition δ ∈ Δ is a tuple (qfrom, inδ, outδ, qto), where

qfrom and qto refer to the source and the target state, inδ ⊆ Σ to

the set of acceptable input items, and outδ : Σ→ 2Σ∪{ε} to a

function that computes a set of output items for one accepted

input item. Intuitively, transition δ matches an input item t if

t ∈ inδ and then (conceptually) non-deterministically produces

one of the output items in outδ(t). We require throughout

that outδ(t) ⊆ anc(t) ∪ {ε}, i.e., when a transition outputs

an item, it is guaranteed to be an ancestor of its input (which

includes the input itself). We use pattern expressions to specify

combinations of inδ and outδ compactly, see Tab. I (page 2)

for some of the supported ones. For example, transition δ1 in

Fig. 4 (labeled (A)) matches any descendant of A and outputs

the input item that was matched.

We simulate an FST on an input sequence T to find

accepting runs. Let T = t1t2 . . . tn. A run for T is a sequence

r = δ1–δ2–· · · –δn of transitions δi = (qi, inδi , outδi , q
′
i) such

that q1 = qS , qi+1 = q′i for 1 ≤ i < n, and ti ∈ inδi for

1 ≤ i ≤ n. A run is an accepting run if q′n ∈ QF . We denote

the set of accepting runs for an input sequence T as R(T). For

T5 of Dex, a (non-accepting) run is δ1–δ3–δ2. The accepting

runs are r1 = δ0–δ1–δ4, r2 = δ1–δ2–δ4, and r3 = δ1–δ3–δ4.

The accepting runs for T generate the candidate subse-

quences Gπ(T). Each accepting run r ∈ R(T) produces

a sequence of output sets (sets of output items) outδ1(t1)–
outδ2(t2) –· · · –outδn(tn). For example, run r3 (described

above) produces { a1 }–{ a1, A }–{ b }. We associate each run

r with a set Gπ(r) of candidate subsequences by taking

the Cartesian product of the output sets (and concatenating

each resulting tuple). For instance, Gπex
(r3) = { a1 } ×

{ a1, A }×{ b } = { a1a1b, a1Ab }. The complete set of candi-

date subsequences is then given by Gπ(T) =
⋃

r∈R(T) Gπ(r).
In our example, Gπex(r1) = Gπex(r2) = { a1b } so that

Gπex(T5) = { a1b, a1a1b, a1Ab }, as desired.

V. SEQUENCE REPRESENTATION

In this section, we describe D-SEQ, an algorithm based

on sequence representation, i.e., it communicates (potentially

rewritten) input sequences to partitions. D-SEQ is aimed

at subsequence constraints that produce large numbers of

candidate subsequences. We describe efficient methods to find

pivot items (Sec. V-A), rewrite the input sequence (Sec. V-B),

and mine each partition locally (Sec. V-C).

In what follows, we consider an arbitrary subsequence

predicate π, represented by FST (Q, qS , QF ,Σ, 2
Σ ∪ {ε},Δ).

For brevity, we write κ(S) for κip(S) and K(T) for K ip(T).

A. Pivot Search

For each input sequence T , we aim to determine K(T)—
the set of pivot items of partitions for which T is relevant (see

Eq. (1))—efficiently (line 2 in Alg. 1). For example, for T1,

we aim to determine K(T1) = { a1, c }.
Naı̈vely, one can generate all candidate subsequences

Gπ(T) and determine the pivot item of each candidate subse-

quence in the set. However, this approach is often infeasible

due to the exponential number of candidate subsequences.

In the DESQ model, there are two sources for the exponen-

tial number of candidate subsequences: (1) the Cartesian prod-

uct can produce exponentially many candidate subsequences

for one accepting run and (2) there can be exponentially many

accepting runs. In the following, we address both of these

causes. We propose an algorithm that, for a given FST, is

linear in the length |T | of the input sequence T .

Pivot items of a run. We define K(r) ⊆ K(T) as the pivot

items of a run r:

K(r) = { k | S ∈ Gπ(r), κ(S) = k } .
From DESQ’s computational model, it follows K(T) =
∪r∈R(T)K(r). Consequently, we can determine K(r) for each

accepting run separately and merge the results.

When is an item in a run a pivot item? First, consider an

example run r4 for a subsequence constraint π′ �= πex with

output sets { b, c }–{A }–{ d, a1 }. Recall that b < A < d <
a1 < c. We have Gπ′(r4) =

{
bAd, bAa1, cAd, cAa1

}
and,

thus, pivots K(r4) = { c, d, a1 }. Now consider a general run r
with output sets outδ1(t1)–outδ2(t2)–· · · –outδn(tn). An item

w ∈ outδi(ti) is a pivot item if it is the maximum item of at

least one of the candidate subsequences Gπ(r). The Cartesian

product for r produces such a candidate subsequence if there

is at least one item w′ ≤ w in every other output set.

In the following, we propose a method to “merge” output

sets in linear time. To do so, we investigate further in which

cases an item is a pivot item. In a run of length 1 (i.e., with 1

output set), all items are pivot items. For example, r′4: { b, c }
produces Gπ′(r′4) = { b, c }. In a run of length 2, an item

of one set is a pivot item if it is greater than or equal to the

minimum item of the other set. For example, r′′4 : { b, c }–{A }
produces Gπ′(r′′4) = { bA, cA } (pivots A and c). We have

A ≥ min { b, c } and c ≥ min {A }, but b < min {A }. In

general, we make use of a commutative and associative “pivot

1494

merge” function ⊕ to determine the pivot items of two output

sets U and Q (with ε < w for w ∈ Σ):

U⊕Q = {ω ∈ U | ω ≥ min(Q) }∪{ω ∈ Q | ω ≥ min(U) } .
As we have to check for minimum items in every other set,

we apply ⊕ repeatedly, see Th. 1. For example, we find the

pivot items of r4 as K(r4) = { b, c } ⊕ {A } ⊕ { d, a1 }.
Theorem 1: The pivot items K(r) of run r with output sets

outδ1(t1)–outδ2(t2)–· · · – outδ|T |(t|T |) can be computed by

K(r) = outδ1(t1)⊕ outδ2(t2)⊕ · · · ⊕ outδ|T |(t|T |).

As there are at most |Σ| items in each output set, we can

compute ⊕ in time O(Σ) using appropriate data structures.

For a run of length |T |, total computation time reduces from

O(|Σ||T |) via computation of Gπ(r) to O(|T ||Σ|) using Th. 1.

Repeated computation. The number of accepting runs can

be exponential in the length |T | of the input sequence: an FST

with |Δ| transitions can have O(|Δ||T |) accepting runs. Thus,

naı̈vely iterating all runs can be infeasible. Fig. 5a shows all

accepting runs for T2 of our running example, depicted as a

trie. Note that there are many more non-accepting runs. Edges

are labeled by the number of the FST transition; for example,

the uppermost run is δ0–δ0–δ0–δ0–δ1–δ2–δ4.

As remedy, we propose a dynamic programming approach

that is based on the key observation that a position–state pair
(i, q) of the last-read position i in the input sequence and the

current FST state q fully determines the subsequent simulation

(from position i + 1 to the end of the input sequence).

Consequently, we store the result of this subsequent simulation

and reuse it when the simulation revisits (i, q). For example,

simulation for T2 visits (5, q1) multiple times (marked blue

in Fig. 5a). Simulation starting in (5, q1) consistently leads to

two accepting runs: · · · –δ2–δ4 and · · · –δ3–δ4.

To exploit this property, we interpret FST simulation in a

2-dimensional position–state grid. Fig. 5b shows such a grid

for T2. We construct this grid during FST simulation. When

first visiting a coordinate pair (i, q), we store the result of

the FST simulation starting from (i, q). If the simulation finds

accepting runs starting from (i, q), we add the taken transitions

into the grid between the corresponding coordinates, labeling

them with the number of the taken transition. If the simulation

finds no accepting runs starting from (i, q), we mark (i, q) as

a dead end (red crosses in Fig. 5b).

In Fig. 5b, we label edges by the produced output set and,

as subscript, the transition number. For example, the edge

leaving (6, q1) corresponds to FST transition δ4 and produces

outδ4(b) = { b }, so we label it { b }4.

We find the pivot items K(T) from the accepting runs, i.e.,

runs ending in position–state pairs (|T |, q) with q ∈ QF . For

each position–state pair, we define as R(i, q) a set of partial
runs: the first i transitions of the accepting runs whose ith
transition ends in q. More formally: R(i, q) = { δ1– · · · –δi |
δ1– · · · –δi– · · · –δ|T | ∈ R(T), δi ends in q }. For example,

R(4, q1) = { δ0–δ0–δ1–δ2, δ0–δ0–δ1–δ3 }. We further define

as K(i, q) the pivot items of these partial runs: K(i, q) =
∪r∈R(i,q)K(r). For instance, we have K(4, q1) = { a1, e }

: (5, q1)

0 0 0 0 1 2 4
3 41

2 2 2 4
3 43
2 4
3 4

3

2 2 4
3 43
2 4
3 4

(a) As trie. Edges are labeled by the transition number.

Pivot items K(i, q) = : { ε } : { a1 } : { a1, e }

{ε}0 {ε}0 {ε}0 {ε}0

{a1}1{a1}1 {ε}2

{e}3

{ε}2

{a1, A}3

{ε}2

{e}3
{b}4

last-read position
0 1 2 3 4 5 6 7

T2: e e a1 e a1 e b

F
S

T
st

at
e

q0

q1

q2

(b) As position–state grid. Edges are labeled by the produced output
set and, as subscript, the transition number.

Fig. 5: Accepting runs for T2.

(the partial outputs of (4, q1) are subsequences a1 and a1e).

In Fig. 5b, we give the set K(i, q) for each coordinate that is

part of an accepting run. We get K(T) = ∪q∈QF
K(|T |, q).

Only q2 is a final state, so K(T2) = { a1, e } in our example.

We compute all K(i, q) efficiently in one forward pass

over the grid after FST simulation has finished. Denote as

inc(i,q) the incoming transitions of coordinate (i, q), com-

prising tuples of source state and transition. We compute

K(i, q) = ∪(q′,δ)∈inc(i,q)K(i − 1, q′) ⊕ outδ(ti). Intuitively,

for each incoming transition, we take the pivots of the partial

runs up to i − 1 and combine them with the output set

produced by the incoming transition. For example, we have

inc(4,q1) = { (q1, δ2), (q1, δ3) } and compute K(4, q1) =
({ a1 } ⊕ { ε }) ∪ ({ a1 } ⊕ {e}) = { a1 } ∪ { e }.

In our implementation, we exclude infrequent items (which

cannot be pivot items) early on—that is, we do not add any

item w with f(w,D) < σ to any set K(i, q). In the example,

with σ = 2, we exclude e.

Using the grid bounds run time polynomially. Directly

processing the output sets of O(|Δ||T |) accepting runs takes

O(|T ||Δ||T |) time. Using the grid, we process each coordinate

at most once and, since there are at most |Δ| outgoing

transitions per coordinate, obtain a lower computational cost

of O(|T ||Q||Δ|).

B. Representation

Previous work [6], [22] introduced ideas to send (shorter)

rewritten variants of an input sequence T to partitions. This

can reduce communication cost and speed up local mining.

However, existing ideas focus on and are limited to length

and gap constraints. In this section, we lift these ideas to the

general case of flexible subsequence constraints.

When constructing ρk(T), we aim to drop positions of T
that are irrelevant for a partition. A position is irrelevant for a

partition Pk if T and the variant of T without the item at this

position agree on the set of pivot subsequences for pivot k. For

example, all positions with e’s of T2 are irrelevant for pivot

1495

Prefix

Prefix (frequent)

Prefix (not expanded)

Expansion

Projected database

ε a1

a1A a1Ab

a1a1 a1a1b

a1a1ea1b

a1c

a1d

a1e

T1, 0, q0
T2, 0, q0
T5, 0, q0

T1, 1, q1
T2, 3, q1
T5, 1, q1

T2, 5, q1
T5, 2, q1

T2, 7, q2
T5, 3, q2

T2, 5, q1
T5, 2, q1

T2, 7, q2
T5, 3, q2

T1, 5, q2
T2, 7, q2
T5, 3, q2 T1, 2, q1

Fig. 6: Search tree for the local mining of partition Pa1
with

σ = 2. Final state q2 is underlined.

a1, because G2
πex

(a1a1b) and G2
πex

(T2) agree on the pivot

sequences for pivot a1: { a1a1b, a1Ab, a1b } (see also Fig. 3).

Naı̈vely, we can check relevancy by simulating the FST for

T and its variant and subsequently compare the set of pivot

sequences. However, doing so for all positions and all pivot

items is inefficient.

We thus focus on a subset of irrelevant positions that we can

identify efficiently: leading and trailing irrelevant positions.

That is, we identify the first relevant position and the last

relevant position for each pivot item k. We then omit the

positions outside this range from ρk(T). This ensures that

dropping positions does not introduce additional accepting

runs (and, thus, additional pivot sequences). The first (last)

relevant position is the first (last) position (starting at the

beginning of T) that either (1) produces output for a pivot

sequence or (2) causes the FST simulation to change to another

state of the FST in any accepting run for pivot k. We can

identify these positions efficiently in the forward pass over

the grid. In our example, for pivot a1, we find the two

irrelevant positions at the beginning of T2 and, thus, send

ρa1
(T2) = a1ea1eb to partition Pa1

.

This sufficient condition worked well in our experiments.

We experimented with more sophisticated tests, but they took

more time to compute irrelevant positions than they saved

in communication and mining. In fact, when patterns occur

locally in the input sequence (as is often the case), our

sufficient condition already identifies most irrelevant positions.

C. Local Mining

In the following, we discuss how to mine efficiently for

frequent subsequences with pivot item k in a partition Pk

(line 7 in Alg. 1). In principle, we can run any FSM algorithm

that supports flexible subsequence constraints and discard

frequent subsequences S with κ(S) �= k. However, in doing

so, we may spend a significant amount of time to mine

such non-pivot frequent subsequences. Instead, we adapt the

DESQ-DFS algorithm, a pattern-growth approach, to mine

only pivot sequences. DESQ-DFS was shown to outperform

other approaches [5].

Mining starts with the empty sequence and expands this

prefix recursively by one item at a time, creating a search tree.

Fig. 6 shows this tree for partition Pa1
of our example. Each

node in the tree is associated with a projected database, which

{a1} {c} {b}
{a1} {c} {c} {b}
{a1} {c} {d} {b}
{a1} {c} {d} {c} {b}
{a1} {d} {c} {b}

(a) Uncompressed (21 vertices, 20 edges).

{b}

{a1}
{c}

{c} {b}

{d}
{b}
{c} {b}{d}

{c} {b}

(b) Trie (13 vertices, 12 edges).

{c}

{a1} {c}
{d}

{d}
{c}

{b}{c}
{b}

{b}

(c) Minimized (7 vertices, 10 edges).

Fig. 7: NFAs for ρc(T1). D-CAND communicates minimized

NFAs as shown in (c).

stores a list of 3-tuples (T, i, q) that can produce this prefix—

comprising an input sequence T , the last-read position i of T ,

and the current state q in FST simulation.

At partition Pk, frequent subsequences cannot contain any

items w > k: such sequences have pivot item κ(S) > k.

Consequently, we do not expand nodes in the search tree with

items w > k. For example, at partition Pa1
, we do not expand

the prefix with items c or e, because e > c > a1.

Early stopping. This approach may still produce sequences

that consist solely of items w < k and, consequently, have

pivot “smaller” than k. In our example, this is not the case for

Pa1
. In Pc, however, mining yields frequent sequence a1b,

although κ(a1b) = a1 < c. We employ a heuristic to prevent

some branches of the search tree that produce such frequent

subsequences: for each input sequence T , we determine the

last position of T that can potentially produce the pivot item.

We then do not use T to expand a prefix that does not contain

the pivot item beyond this position.

VI. CANDIDATE REPRESENTATION

The D-CAND algorithm is based on candidate represen-

tation. It is targeted at subsequence constraints that produce

small numbers of candidate subsequences. We describe ef-

ficient methods to determine pivot items and to construct a

compressed representation simultaneously (Sec. VI-A) and to

mine directly on this representation (Sec. VI-B).

A. Pivot Search and Representation

In candidate representation, we send to partition Pk the

set of candidate subsequences of T that have pivot item k.

Naı̈vely, we can send a list of these. For instance, for T1, we

can send ρc(T1) = { a1cdcb, a1cdb, a1cb, a1dcb, a1ccb } to Pc

and ρa1(T1) = { a1db, a1b } to Pa1 . However, this approach

suffers from similar drawbacks as NAÏVE and SEMI-NAÏVE.

1496

q0 q1

q2

q3
{a1}

{a1, A} {b}

{b}

Fig. 8: NFA for ρa1(T5).

Instead, we propose to send a compressed representation and

mine on this representation directly. Compression is effective

when the candidate subsequences have shared structure. E.g.,

in ρc(T1), all subsequences start with a1 and end with b.
We use nondeterministic finite automata (NFAs) to com-

press sets of candidate subsequences. We interpret a set ρk(T)
as a finite language and construct an NFA for it. That is,

this NFA accepts precisely the subsequences in ρk(T). For

example, Fig. 7a shows such an NFA for ρc(T1). One NFA

edge corresponds to an output set outδi(ti). We can compress

an NFA in any way, given that the compressed version also

accepts precisely the candidate subsequences in ρk(T).
We aim to construct a representation that minimizes shuffle

size. Thus, ideally, we want to minimize the NFA. In general,

NFA minimization is PSPACE-complete [18]. Tries, however,

are acyclic, so they can be minimized in linear time [25]. We

construct tries and subsequently minimize the tries.

Construction. To construct the NFAs for input sequence T ,

we simulate the FST to find accepting runs and maintain

one trie for each found pivot item k ∈ K(T). When the

simulation finds an accepting run r ∈ R(T), we insert this

run into the tries for k ∈ K(r). We drop all items w > k
from the output sets of the run, because these items produce

candidate subsequences with κ(S) > k. After FST simulation,

we minimize the constructed tries. In our example, for T1,

we construct two NFAs: one for ρc(T1) (Fig. 7b shows the

trie, Fig. 7c the minimized NFA) and one for ρa1
(T1). We

do not use a position–state grid to construct NFAs, because

we found that the subsequence constraints that D-CAND is

aimed at (i.e., constraints that produce only few candidate

subsequences) do not benefit significantly from using a grid.

Serialization. We serialize an NFA by writing out informa-

tion about each of its transitions. Naı̈vely, for each transition,

we write its source state, its label (an output set), and its

target state. Additionally, we note which states are final (F).

Consider the example NFA for ρa1(T5), depicted in Fig. 8.

We write 0 a1 1 | 1 a1A 2 | 2 b 3 | 1 b 3 | F : 3.

To decrease serialization size, we use the following com-

pression: (1) if no source state is given for a transition, the

transition starts in the target state of the previous transition

and (2) if no target state is given, it ends in a new one.

To obtain the compressed representation, we run depth-
first search on the NFA and serialize the transitions in the

visit order. We write out the label for every transition and

additionally (1) the source state if the state was visited before,

(2) the target state if the target state was visited before, and

(3) a “final” marker if the target state is final and was not

visited before. For example, for the NFA for ρa1
(T5) and a

DFS order q0 → q1, q1 → q2, q2 → q3, q1 → q3, we serialize

a1 | a1A | bF | 1 b 3.

TABLE II: Dataset and hierarchy characteristics.

NYT AMZN AMZN-F CW50

Total sequences (M) 50 21 21 567
Total items (M) 1 130 83 83 10 774
Unique itemsa (M) 8 10 10 23
Max. sequence length 21 000 44 557 44 557 20 993
Mean sequence length 22.8 3.9 3.9 19.0

Hierarchy items 9 874 089 9 903 422 9 894 624 22 642 566
Max. ancestors 3 282 10 1
Mean ancestors 2.8 5.1 3.5 1.0

We experimented with different serialization schemes and

found this one to be the most efficient—considering time for

serialization, communication, and deserialization.

Aggregation. We found that different input sequences often

send identical NFAs, especially to partitions of frequent items.

Therefore, we use a MapReduce combine function to aggregate

identical NFAs into a single NFA weighted by its frequency.

B. Local Mining

In D-CAND, the most time-consuming computations—that

is, simulating the FST on the input sequences—are run in

the map phase. Local mining merely counts the number of

occurrences of each candidate subsequence in the set of

received (weighted) NFAs. To count occurrences efficiently,

we operate directly on the compressed NFAs and employ a

pattern-growth approach [24].

VII. EXPERIMENTS

We studied the performance of D-SEQ and D-CAND using

multiple real-world datasets and a variety of subsequence

constraints. We compared the presented algorithms with each

other and to the state-of-the-art w.r.t. performance and scala-

bility. We further compared sequence and candidate represen-

tation, and we investigated the benefits of specific components

of D-SEQ and D-CAND. Our major insights are:

• Both sequence and candidate representation can reduce

communication cost significantly (up to 100x).

• Both D-SEQ and D-CAND scaled nearly linearly with

the size of the sequence database.

• D-CAND was up to 5x faster than D-SEQ on selective

subsequence constraints (i.e., constraints that select only

few candidate subsequences per input sequence). D-SEQ

was more robust for less selective constraints.

• D-SEQ and D-CAND exhibited acceptable generaliza-

tion overhead over existing, specialized methods (usually

within 0.9x and 4.3x).

A. Setup

Implementation and cluster. We implemented our algo-

rithms in Java (JDK 1.8) and Scala (version 2.11.8) for Apache

Spark (version 2.0.1). Our source code is available online.2 We

2At https://github.com/rgemulla/desq/tree/distributed.

1497

TABLE III: Example subsequence constraints with examples for found frequent sequences. Adapted from [5].

Notation Subsequence constraint and pattern expression Example frequent sequences (with support)

Text Mining
N1(σ) Rel. phr. betw. entities: ENTITY (VERB+ NOUN+? PREP?) ENTITY NYT: lives in (4 322), graduated from (3 693), is survived by (1 749)

N2(σ) Typed rel. phr.: (ENTITY↑ VERB+ NOUN+? PREP? ENTITY↑) NYT: ORG is offering ENTITY (2 239), PER was born in LOC (11 581)

N3(σ) Copular rel. for an entity: (ENTITY↑ be↑=) DET? (ADV? ADJ? NOUN) NYT: PER be professor (1 582), LOC be great place (99)

N4(σ) Generalized 3-grams before a noun: (.↑){3} NOUN NYT: NOUN PREP DET (8 163 372), DET ADV ADJ (760 714)

N5(σ) 3-grams, one item generalized: ([.↑. .]|[. .↑.]|[. . .↑]) NYT: who VERB also (22 223), human rights NOUN (21 883)

Recommendation
A1(σ) Max. 5 electronic items, max. gap 2: (Electr↑)[.{0, 2}(Electr↑)]{1, 4} AMZN: ‘MP3 Players’ ‘Headph.’ (11 761), ‘Mice’ ‘Keyb.’ ‘Accessib.’ (875)
A2(σ) Sequences of books: (Book)[.{0, 2}(Book)]{1, 4} AMZN: ‘A Storm of Swords’ ‘A Feast for Crows’ (153)

A3(σ) Gen. items after a digital camera: DigitalCamera[.{0, 3}(.↑)]{1, 4} AMZN: ‘Lenses’ ‘Tripods’ (158), ‘Batteries’ ‘SD&SDHC Cards’ (149)

A4(σ) Musical instruments: (MusicInstr↑)[.{0, 2}(MusicInstr↑)]{1, 4} AMZN: ‘MusicInstr’ ‘Bags&Cases’ (2 158)

Traditional constraints
T1(σ, λ) PrefixSpan: max. length λ: (.)

[
.∗(.)

]{, λ-1} AMZN [λ=5]: ‘Kindle Fire’ ‘Folio Case’ (715), ‘Subw. Surf.’ ‘Flappy W.’ (579)

T2(σ, γ, λ) MG-FSM: max. length λ, max. gap γ: (.)
[
.{0, γ}(.)]{1, λ-1} NYT [γ=1,λ=5]: most of the (115 243), spoke on cond. anon. (9 995)

T3(σ, γ, λ) LASH: max. length λ, max. gap γ, hierarchy: (.↑)
[
.{0, γ}(.↑)]{1, λ-1} AMZN-F [γ=1,λ=5]: ‘Pop CD’ ‘Pop CD’ ‘Pop CD’ (49 139)

used the authors’ implementations of LASH3 and DESQ4 and

PrefixSpan of Spark 2.0.1. We used a local cluster of 8+1 Dell

PowerEdge R720 computers, running CentOS Linux 7.3.1611

and connected with 10 GBit Ethernet. Each of the 8 worker

nodes was equipped with two Intel Xeon E5-2640 v2 8-core

CPUs, 128 GB of main memory, and four 2 TB NL-SAS

7200 RPM hard disks, the master node had 1 such CPU and

64 GB of memory. The algorithms read input sequences from

HDFS (Hadoop 2.5.0) and stored found frequent sequences

to HDFS. We ran 1 executor with 8 virtual CPU cores and

64 GB of memory per worker node.

Measures. We report end-to-end run times as measured

by Apache Spark. We report Spark’s shuffleWriteBytes
metric for the map stage as shuffle size. All reported measure-

ments are the mean of three independent runs that we ran with

no other applications running on the cluster.

Datasets. Tab. II depicts statistics about the used datasets. In

the New York Times Annotated Corpus (NYT) words generalize

to their lemma and to their part-of-speech tag. Named entities

generalize to their type and to ENTITY. We interpreted one

sentence as one input sequence.

The AMZN dataset comprises product reviews of Amazon

customers [20]. We interpreted the products reviewed by one

customer as one input sequence. Items generalize to broader

categories and to departments, according to the Amazon prod-

uct hierarchy. We constructed AMZN-F, a variant of AMZN,

for algorithms that support only hierarchies of forest form

(i.e., each item can generalize to at most one other item):

for an item that generalizes to more than one other item, we

retained only the generalization to the most frequent parent

item. Subsequently, we removed hierarchy items that have only

one child when this child has identical item frequency.

The dataset CW50 is a 50% sample of the ClueWeb09-T09B

subset of ClueWeb. We interpreted one sentence as one input

sequence. We used no hierarchy for this dataset.

3From https://github.com/uma-pi1/lash. LASH is not available for Spark, so
we used the authors’ Hadoop implementation. Thus, we compare two systems.
We argue that a comparison is meaningful nevertheless, as the compared
algorithms are compute-bound and run only one round of communication.

4From https://github.com/rgemulla/desq/tree/master.

Preprocessing—that is, computing item frequencies and

converting the dataset to a frequency-based encoding—took

approximately 2 minutes and 10 seconds for both NYT and

AMZN and roughly 9 minutes for CW50. As the preprocessing

has to be run only once per dataset, we do not include

preprocessing times in our experiments.

Subsequence constraints. Tab. III depicts the constraints

we used in our experiments and example frequent sequences

for each constraint. N1–N5 are text mining applications,

based on [12], [23], [30]. They exploit the NYT hierarchy to

specify item constraints. A1–A4 are examples for order-aware

recommendation tasks. T1, T2, and T3 model the constraint

types of existing scalable algorithms. The examples in Tab. III

show that flexible constraints allow analysts to increase the

usefulness of frequent sequences, e.g., contrast T2 with N2.

B. D-SEQ and D-CAND

We found that (1) D-SEQ and D-CAND outperformed

naı̈ve methods by up to 50x, (2) both sending rewritten input

sequences and sending NFA-encoded candidate subsequences

lead to compact representations, (3) D-CAND mined flexible

subsequence constraints up to 5x faster than D-SEQ, and

(4) proposed enhancements to D-SEQ and D-CAND improve

performance with minimal overhead.

D-SEQ and D-CAND outperformed naı̈ve methods by up

to 50x, see Fig. 9a and Fig. 9b. Existing scalable methods do

not support these subsequence constraints.

CSPI. The differences in relative performance stem mostly

from the number of candidate subsequences per input se-
quence (CSPI) that a subsequence constraint generates. Tab. IV

depicts CSPI statistics. We refer to constraints with low

CSPI as selective and ones with high CSPI as loose. The

main problem of the naı̈ve methods is that they generate

and communicate all candidate subsequences. Consequently,

for selective constraints (e.g., N1(10) or N2(100)), naı̈ve

approaches worked relatively well. For greater CSPI (e.g.

N5(1k) or A1(500)), D-SEQ and D-CAND outperformed

naı̈ve methods clearly. For loose constraints (with still greater

CSPI, e.g., T3(10, 1, 5) or T1(400, 5)), naı̈ve methods ran out

1498

N1(10) N2(100) N3(10) N4(1k) N5(1k)

Subsequence constraint

T
o
ta

l
ti

m
e

(i
n
 s

ec
o
n
d
s)

1
1
0

1
0
0

1
0
0
0

Naïve

SemiNaïve

D−SEQ

D−CAND

(a) On NYT

A1(500) A2(100) A3(100) A4(100)

Subsequence constraint

T
o
ta

l
ti

m
e

(i
n
 s

ec
o
n
d
s)

1
1
0

1
0
0

1
0
0
0

n
/
a
 (

O
O

M
)

n
/
a
 (

O
O

M
)

(b) On AMZN

A1(500) A4(100)

Subsequence constraint

S
h
u
ff

le
 s

iz
e

(i
n
 M

B
)

1
1
0

1
0
0

1
0
0
0
0

n
/
a
 (

O
O

M
)

(c) Shuffle size (AMZN)

Fig. 9: Performance for flexible subsequence constraints. Both D-SEQ and D-CAND offer efficient representations and

outperform baselines by up to 50x. None of the existing scalable FSM algorithms support these constraints.

TABLE IV: Statistics on candidate subsequences.

Constraint, dataset matched # cand. seqs. CSPI
seqs. (%)a (in million) mean med.

N1(10), NYT 3.8 2 1.0 1
N2(100), NYT 3.8 16 8.5 9
N3(10), NYT 0.9 1 2.9 3
N4(1k), NYT 88.5 5 052 115.1 99
N5(1k), NYT 98.1 6 335 130.2 119

A1(500), AMZN 5.4 5 050 4 394.4 30
A2(100), AMZN 5.1 42 38.5 1
A3(100), AMZN 0.6 3 216 25 716.9 989
A4(100), AMZN 0.3 205 3 787.6 25

T3(100,1,5), AMZN-F 47.8 242 309 23 953.1 69
T3(10,1,5), AMZN-F 48.2 392 492 38 458.2 107

T1(6400,5), AMZN 5.8 2.5 2.1
T1(1600,5), AMZN 17.4 1 830 494.1

T1(400, 5), AMZNb 37.6 3 235 364 406 146.6

a % of sequences that produce at least one candidate subsequence
b Estimated from a 0.1% random sample of the sequences

A1(500) N5(1k) T3(100,1,6) T3(100k,8,5)

Subsequence constraint

T
o
ta

l
ti

m
e

(i
n
 s

ec
o
n
d
s)

0
1
0
0
0

3
0
0
0

D−SEQ, no stop., no rewrites, no grid

D−SEQ, no stop., no rewrites

D−SEQ, no stop.

D−SEQ

(a) In D-SEQ: grid, rewrites, and ...
early stopping.

A1(500) N4(1k) T3(100,1,6)

Subsequence constraint

T
o
ta

l
ti

m
e

(i
n
 s

ec
o
n
d
s)

0
4
0
0

8
0
0

1
2
0
0

D−CAND, tries, no agg

D−CAND, tries

D−CAND

(b) In D-CAND: aggregating
and minimizing NFAs.

Fig. 10: Detailed analysis. Each algorithm component acceler-

ates some constraints drastically with little overhead for others.

Horizontal lines within bars mark the start of the mine stage.

of memory, because Spark failed to spill accrued shuffle to

disk before it exceeded the YARN container memory limit.

Representations. Both sending rewritten input sequences

(in D-SEQ) and sending NFA-compressed candidate subse-

quences (in D-CAND) lead to compact representations. Fig. 9c

shows shuffle sizes for two constraints. Both D-SEQ and D-

CAND shuffled up to 100 times less data than the naı̈ve

methods. In particular, it is notable that the NFA representation

in D-CAND is almost as concise as the one of D-SEQ.

Detailed analysis. In D-SEQ, we studied individually the

effects of using the position–state grid, rewriting input se-

quences, and stopping early, see Fig. 10a. In D-CAND, we

studied the effects of aggregating and minimizing NFAs, see

Fig. 10b. The effects vary among subsequence constraints.

In general, all these enhancements improved performance for

some subsequence constraints drastically and added no or only

little overhead for the remaining constraints. A horizontal line

inside a bar in a figure marks the start of the mine stage.

C. Scalability

We found that our methods scaled nearly linearly with

the number of input sequences, achieved significant speed-

ups over sequential execution, and were able to mine large

datasets, for which sequential execution ran out of memory.

Weak, strong, and data scalability. We observed near-

linear scaling of D-SEQ and D-CAND for several subsequence

constraints. We report the results for constraint T3(100, 1, 5).
Apart from a constant worker setup time (for creating tasks

and broadcasting the dictionary), both map and mine time

increased linearly as we increased dataset size (Fig. 11a), de-

creased linearly as we used more executors (Fig. 11b), and re-

mained roughly constant as we increased both simultaneously

(Fig. 11c). To vary dataset size, we created random samples of

the AMZN-F dataset with 25%, 50%, and 75% of the original

sequences. We adapted σ to the number of sequences in the

samples, such that the shuffle size increases proportionally

and the number of frequent sequences increases slightly with

increasing dataset size. Specifically, for T3(σ, 1, 5), we set σ
to 25, 50, 75, and 100, respectively.

Speed-up over sequential execution. Tab. V depicts run

times for DESQ-DFS [5], D-SEQ, and D-CAND. DESQ-DFS

is a suitable sequential baseline as it, according to [5], outper-

forms alternative methods. We ran DESQ-DFS on one machine

of our cluster with 124 GB of maximum heap memory. We

ran our methods using standard settings (i.e., 65 CPU cores

in total, including 1 core for the driver). The speed-ups are

not perfect as our methods run additional computation to

separate the work into independent parts and communicate

over network. Distributed execution leads to better speed-ups

for longer-running tasks due to constant worker setup time. D-

CAND achieves a (high) 58x speed-up for N4(1k) because it

aggregates the many identical NFAs that N4 produces. DESQ-

DFS ran out of memory (OOM) for both CW50 tasks with

both 124 GB and 204 GB (using swap) heap space.

1499

25 50 75 100

% of Data

T
o
ta

l
ti

m
e

(i
n
 m

in
u
te

s)

0
1

2
3

4
5

6
7

D−SEQ

D−CAND

(a) Data scalability (8 executors)

2 4 8

Executors

T
o
ta

l
ti

m
e

(i
n
 m

in
u
te

s)

0
5

1
0

2
0

(b) Strong scalability (100% of data)

2(25) 4(50) 6(75) 8(100)

Number of executors (% of Data)

T
o
ta

l
ti

m
e

(i
n
 m

in
u
te

s)

0
2

4
6

(c) Weak scalability

Fig. 11: Scalability. D-SEQ and D-CAND scale nearly linearly. Depicted: T3(100,1,5) on dataset AMZN-F.

TABLE V: Speed-up over sequential execution. DESQ-DFS

runs on 1 CPU core, D-SEQ and D-CAND on 65.

Run time in minutes (speed-up)

Constraint Dataset DESQ-DFS D-SEQ D-CAND

N4(1k) NYT 99.37 8.44 (12×) 1.70 (58×)
N5(1k) NYT 67.46 7.18 (9×) 4.23 (16×)
T3(10,1,5) AMZN-F 280.63 13.43 (21×) 14.05 (20×)
T3(10k,1,5) AMZN-F 15.56 2.39 (7×) 2.81 (6×)
T3(100,3,5) AMZN-F 676.70 38.19 (18×) 49.11 (14×)
T2(100,0,5) CW50 (OOM) 48.73 (n/a) 24.24 (n/a)
T2(1k,0,5) CW50 (OOM) 45.62 (n/a) 22.13 (n/a)

D. Existing Methods

Comparing to existing scalable FSM algorithms, we found

that D-SEQ, D-CAND, and even naı̈ve methods can mine tasks

that existing methods cannot mine efficiently, and that D-SEQ

and D-CAND were competitive to existing methods even in

their specialist settings. D-CAND can run out of memory for

very loose constraints.

Our algorithms support more general and more flexible sub-

sequence constraints than existing scalable FSM algorithms.

This allows for more useful output and mining can focus on

relevant patterns early on. Existing methods [6], [8], [21], [22]

support only a subset of typical constraints and are therefore

of limited use for many applications. For example, existing

methods cannot mine constraints such as N1-N5 or A1-A4.

In this section, we investigate how our general algorithms

perform in the special settings of existing algorithms.

LASH setting. In the setting LASH is optimized for

(max. gap and max. length constraints and item hierarchies),

D-SEQ and D-CAND were within 0.9x and 2.8x the run times

of LASH, see Fig. 12a and Fig. 12b. For LASH, the horizontal

line within a bar depicts the end of the last map task. We argue

that both D-SEQ (within 1.3x and 2.5x) and D-CAND (within

0.9x and 2.8x) offer acceptable generalization overhead over

LASH. As LASH, D-SEQ sends rewritten input sequences to

the partitions. In the LASH setting, D-SEQ is slower than

LASH because LASH employs rewrite and mining techniques

that are specific for its setting and not directly applicable

to the more general setting of D-SEQ. To have comparable

computational resources for LASH, which is implemented for

Apache Hadoop, we ran LASH with 8 map and 8 reduce tasks

per worker node and 8 GB of main memory per task.

MLlib setting. D-SEQ outperformed MLlib in its special-

ized setting (max. length constraint, no item hierarchies, and

T3(100,1,5) T3(10,1,5) T3(100,2,5) T3(100,1,6)

Subsequence constraint

T
o
ta

l
ti

m
e

(i
n
 m

in
u
te

s)

0

5

10

15

20 LASH

D−SEQ

D−CAND

(a) AMZN-F

T2(100,0,5) T2(1k,0,5)

Subsequence constraint

T
o
ta

l
ti

m
e

(i
n
 m

in
u
te

s)

0

10

20

30

40

50

(b) CW50

Fig. 12: LASH setting. D-SEQ and D-CAND offer acceptable

generalization overhead over the specialized LASH algorithm.

6400 1600 400 100 25

Minimum support (σ)

T
o
ta

l
ti

m
e

(i
n
 s

ec
o
n
d
s)

1
1
0

1
0
0
0

1
0
0
0
0
0

MLlib

LASH

D−SEQ

D−CAND

>24h

n
/
a
 (

O
O

M
)

n
/
a
 (

O
O

M
)

n
/
a
 (

O
O

M
)

n
/
a
 (

O
O

M
)

Fig. 13: MLlib setting (T1(σ, 5) on AMZN without hierarchy).

D-SEQ is competitive to LASH and outperforms MLlib.

arbitrary gaps). D-CAND ran out of memory for these very

loose constraints, see Fig. 13. LASH can mine this setting,

so we included it for reference. We assume that D-SEQ was

slightly faster than LASH for short (<50s) tasks because

task scheduling takes longer in Hadoop than in Spark, and

because Hadoop writes shuffle data to disk between the map

and the reduce stage. For longer-running tasks, this difference

is negligible. D-CAND ran out of memory while constructing

NFAs, as Spark again failed to spill to disk in time. Note

however that that the MLlib setting (with arbitrary gaps and

no hierarchy) is the worst possible subsequence constraint for

D-CAND: the gaps allow for the maximum theoretical number

of accepting runs. We argue that the MLlib setting is too loose

for most applications.

We omit a separate comparison to MG-FSM and Suffix-σ,

as LASH strictly outperformed MG-FSM [6] and MG-FSM

outperformed Suffix-σ [4] in other studies.

VIII. RELATED WORK

Due to space constraints, we focus our discussion on meth-

ods that handle flexible constraints and on distributed methods.

1500

Subsequence constraints. There exist many approaches

for constraining which subsequences should be considered

for mining. GSP [28] introduced minimum and maximum

gap constraints as well as sliding windows for time-annotated

sequences. cSpade [34] supports length, gap, and item con-

straints. Wu et al. [32] studied periodic wild card gaps. Regular

expressions as “output filter” were proposed in the SPIRIT

family of algorithms [13], RE-Hackle [2], and SMA algo-

rithms [31]. Such filters are evaluated on only the subsequence,

but not the input sequence, so that context constraints cannot

be specified. DESQ [5], [7] extends regular expressions with

contextual constraints by considering both input sequence and

subsequence as input for evaluating constraints. Our methods

use the DESQ framework to specify and evaluate constraints.

However, DESQ is a sequential algorithm and, consequently,

does not scale to large datasets.
Scalable mining. To mine large datasets efficiently, parallel

algorithms have been developed for shared [35] and distributed

memory architectures [15], [16], but without support for

constraints or hierarchies. Apache Spark’s MLlib library [21]

features a distributed version of PrefixSpan [24] for distributed

FSM with sequences of itemsets, but without support for

hierarchies or subsequence constraints other than maximum

subsequence length. It uses prefix-based partitioning; that is,

it recursively partitions sequences by their first items. Thus,

it runs multiple rounds of communication. In the context of

itemset mining, Savasare et al. [26] proposed to partition inputs

(instead of outputs). Their approach has the drawback that all

candidates need to be communicated to all workers.
Most closely related to our work is a group of distributed

sequential pattern mining algorithms targeted towards the

MapReduce programming model: Suffix-σ [8], MG-FSM [4],

[22], and LASH [6]. Suffix-σ mines subsequences of consec-

utive items in one MapReduce step with suffix-partitioning.

However, it does not support gaps. MG-FSM and LASH are

distributed FSM algorithms with maximum gap and maximum

length constraints. They use item-based partitioning and se-

quence representation with specialized rewrite techniques. The

methods are inspired by item-based partitioning for parallel

itemset mining [10], [16]. LASH extends MG-FSM with item

hierarchies and introduces a technique to focus local mining

on pivot sequences. According to [6], LASH outperforms MG-

FSM. MG-FSM and LASH inspired D-SEQ, which is more

general. D-SEQ supports many more types of subsequence

constraints, including the ones of MG-FSM and LASH.

IX. CONCLUSION

We described D-SEQ and D-CAND, the first two FSM

algorithms that are scalable and support flexible subsequence

constraints. We demonstrated that they can mine varied types

of subsequence constraints efficiently, scale nearly linearly,

and offer acceptable generalization overhead over existing,

specialized methods.

ACKNOWLEDGMENT

This work was supported by a Software Campus grant of

the German Ministry of Education and Research (01IS17052).

REFERENCES

[1] R. Agrawal and R. Srikant. Mining sequential patterns. ICDE ’95.
[2] H. Albert-Lorincz and J. Boulicaut. Mining frequent sequential patterns

under regular expressions: a highly adaptative strategy for pushing
constraints. SDM ’03.

[3] C. Antunes and A. Oliveira. Inference of sequential association rules
guided by context-free grammars. ICGI ’02.

[4] K. Beedkar, K. Berberich, R. Gemulla, and I. Miliaraki. Closing the
gap: Sequence mining at scale. TODS, 40(2):8:1–8:44, 2015.

[5] K. Beedkar and R. Gemulla. DESQ: Frequent sequence mining with
subsequence constraints. ICDM ’16.

[6] K. Beedkar and R. Gemulla. LASH: Large-scale sequence mining with
hierarchies. SIGMOD ’15.

[7] K. Beedkar, R. Gemulla, and W. Martens. A unified framework for
frequent sequence mining with subsequence constraints. To appear in
TODS.

[8] K. Berberich and S. Bedathur. Computing N-gram statistics in MapRe-
duce. EDBT ’13.

[9] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Pattern discovery in
biosequences. ICGI ’98.

[10] G. Buehrer et al. Toward terabyte pattern mining: An architecture-
conscious solution. PPoPP ’07.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. OSDI ’04.

[12] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open
information extraction. EMNLP ’11.

[13] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern
mining with regular expression constraints. VLDB ’99.

[14] F. Giannotti, M. Nanni, and D. Pedreschi. Efficient mining of temporally
annotated sequences. SDM ’06.

[15] V. Guralnik, N. Garg, and G. Karypis. Parallel tree projection algorithm
for sequence mining. Euro-Par ’96.

[16] V. Guralnik and G. Karypis. Parallel tree-projection-based sequence
mining algorithms. Parallel Computing, 30(4):443–472, 2004.

[17] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. SIGMOD ’00.

[18] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM
Journal on Computing, 22(6):1117–1141, 1993.

[19] A. Lopez. Statistical machine translation. ACM Computing Surveys,
40(3):8:1–8:49, 2008.

[20] J. McAuley, R. Pandey, and J. Leskovec. Inferring networks of
substitutable and complementary products. KDD ’15.

[21] X. Meng et al. MLlib: Machine learning in Apache Spark. The Journal
of Machine Learning Research, 17(1):1235–1241, 2016.

[22] I. Miliaraki et al. Mind the gap: Large-scale frequent sequence mining.
SIGMOD ’13.

[23] N. Nakashole, G. Weikum, and F. Suchanek. PATTY: A taxonomy of
relational patterns with semantic types. EMNLP-CoNLL ’12.

[24] J. Pei et al. PrefixSpan: Mining sequential patterns efficiently by prefix-
projected pattern growth. ICDE ’01.

[25] Dominique Revuz. Minimisation of acyclic deterministic automata in
linear time. Theoretical Computer Science, 92(1):181–189, 1992.

[26] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large databases. VLDB ’95.

[27] K. Smets and J. Vreeken. Slim: Directly mining descriptive patterns.
SDM ’12.

[28] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations
and performance improvements. EDBT ’96.

[29] J. Srivastava et al. Web usage mining: Discovery and applications of
usage patterns from web data. SIGKDD Explorations, 1(2):12–23, 2000.

[30] Google Ngram Viewer Team. Google Books Ngram Viewer. https:
//books.google.com/ngrams/info, 2013. Accessed: 2018-10-10.

[31] R. Trasarti, F. Bonchi, and B. Goethals. Sequence mining automata: A
new technique for mining frequent sequences under regular expressions.
ICDM ’08.

[32] Y. Wu et al. Mining sequential patterns with periodic wildcard gaps.
Applied Intelligence, 41(1):99–116, 2014.

[33] M. Zaharia et al. Spark : Cluster computing with working sets. HotCloud
’10.

[34] M. Zaki. Sequence mining in categorical domains: incorporating
constraints. CIKM ’00.

[35] M. Zaki. Parallel sequence mining on shared-memory machines. Journal
of Parallel and Distributed Computing, 61(3):401–426, 2001.

[36] M. Zaki. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning, 42(1-2):31–60, 2001.

1501

