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Abstract—Nearest Neighbor search has been well solved in
low-dimensional space, but is challenging in high-dimensional
space due to the curse of dimensionality. As a trade-off between
efficiency and result accuracy, a variety of c-approximate nearest
neighbor (c-ANN) algorithms have been proposed to return a
c-approximate NN with confident at least . We observe that
existing c-ANN search algorithms have some limitations on I/0
efficiency when their indexes are resided on the external memory,
which is critical for handling large scale high-dimensional data.

In this paper, we introduce an incremental search based c-
ANN search algorithm, named I-LSH. Unlike the previous LSH
methods, which expand the bucket width in an exponential way,
I-LSH adopts a more natural search strategy to incrementally
access the hash values of the objects. We provide rigorous
theoretical analysis to underpin our incremental search strategy.
Our comprehensive experiment results show that, compared with
state-of-the-art 1/0O efficient c-ANN techniques, our algorithm can
achieve much better I/O efficiency under the same theoretical
guarantee.

I. INTRODUCTION

Given a set of d-dimensional objects (points) and a query
object (point), Nearest Neighbor (NN) search finds the object
which has the smallest distance to a query object. Due to the
“curse of dimensionality” problem, c-ANN was proposed, and
has been applied in many domains such as database, computer
vision, multimedia, machine learning and recommendation
system.

In this paper, we aim to develop an I/O efficient c-ANN
search algorithm.

Motivation. Locality sensitive hashing (LSH) [1] is a widely
adopted method to support c-ANN search. In addition to
theoretical guarantee, it also enjoys great success in practice
due to its excellent performance and ease of implementation.
Most LSH algorithms are designed for external memory, such
as SRS [2] and QALSH [3], while both of them are not I/O
efficient.

C2LSH and QALSH adopt the bucket exponential expansion
strategy where the bucket widths must be a power of ¢ (i.e.,
bucket width grows exponentially), which may lead to some
counter-intuitive scenarios as shown in Fig. 1(a) and (b). In this
paper, we follow the framework of QALSH to enjoy the high
efficient sequential I/O brought by the B+ tree. In addition,
we provide rigorous analysis to show that we can conduct
the natural incremental search strategy as shown in Fig. 1(c)
on each projected dimension and identify c-ANN object with
desired confidence. By doing this, we show in Section IV
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Fig. 1. Motivation for I-LSH

that our proposed algorithm, namely I-LSH, can significantly
improve the performance by using approximate ratio ¢ in our
search algorithm, instead of +/c used in C2LSH and QALSH.
Our experiments on real-life datasets demonstrate that I-LSH
can achieve the same theoretical guarantee with much less I/O
costs.

Contributions. Our principal contributions are summarized as
follows.

« We propose a new c-approximate nearest neighbor search
algorithm, namely I-LSH, for high-dimensional data,
which uses a natural incremental search strategy on the
projected dimensions.

o We provide rigorous analysis to demonstrate the correct-
ness and efficiency of our proposed methods.

o We perform an extensive performance evaluation against
two state-of-the-art I/O efficient c-ANN algorithms re-
garding I/O costs and result accuracy. The results demon-
strate that our proposed methods can achieve the best I/O
performance under the same theoretical guarantee.

II. PRELIMINARIES

In this section, we present the problem definition and rele-
vant existing work. Some important notations used throughout
the paper are summarized below.

We use n to denote the number of data objects in the d-
dimensional dataset. ¢ denotes the query object. m is the
number of hash functions to project the original dataset.
|| 01,02 || denotes the Euclidean distance between two objects
01 and 02. 0, means the current found nearest neighbor to g.
hz (o) denotes the hash value of point o using the vector @ and
d;(0) denotes the projected distance w.r.t i-th hash function



with d;(0) = |h;(0) — hi(q)|- ¢ is the approximate ratio. w
is the initial bucket width. » and R = % denote the search
radius on projected dimensions and the radius of ball B(g, R)
in R¢ space regarding search radius r respectively.

A. Problem Definition

Given a dataset D with n points in a d-dimensional space,
denoted by Re, the coordinate value of each object o on the
115, dimension is denoted as o[i]. The c-approximate nearest
neighbor is defined as follows:

Definition 1. c-approximate nearest neighbor (c-ANN). For a
given query object q and a d-dimensional dataset D, suppose
o* is the nearest neighbor of q with distance R*, a c-
approximate nearest neighbor of q is a data object o € D

such that || 0,q ||< cR* where c is the approximate ratio.

Problem statement. In this paper, we aim to propose an effi-
cient algorithm to solve the c-ANN problem in d-dimensional
Euclidean space with theoretical guarantee; that is, given the
approximate ratio ¢ and the probabilistic threshold ¢, the
algorithm should return the c-approximate nearest neighbor
(c-ANN) with probability at least d.

B. Existing LSH approaches

Locality sensitive hashing (LSH) was first introduced by
Indyk et al. in 1998 [1] and was extended by Datar et al. [4]
to Euclidean space. A LSH function can maintain the distance
relationships between data objects, which means for two points
o1 and o9, if || 01,09 || is a small value, then || h(o1), h(02) ||
is likely to be a small value as well.

LSH was designed for (R, c)-NN queries, which is simply
a decision version of the c-ANN problem. To solve c-ANN
problem, virtual rehashing was proposed [5] [6] [3].

QALSH [6] first proposed a query-aware LSH functions,
which can be formally represented by Hz(o) = @ - 0. In our
algorithm, we use the same hash function to project the d-
dimensional dataset. It is based on a set of B-trees, which
is 1/O efficient. But QALSH is a c?-approximate algorithm,
which means it requires a large number of hash functions.
SRS uses a multi-dimensional index R+ tree to solve the
problem [2]. It can keep the theoretical guarantee with a tiny
size of index. However, due to the property of R+ tree, it
doesn’t work well when m > 5.

There are also some I/O efficient ANN search algorithms
proposed in the literature without theoretical guarantee. For
instance, Liu et al proposed SK-LSH [7] for approximate NN
problem as an improvement of LSB-tree, which used linear
order instead of Z-order for better I/O efficiency. In [8], I/O
efficient algorithm was proposed based on PQ method [9].

III. OUR APPROACH

In this section, we present our incremental LSH technique
which is I/O efficient with rigorous theoretical guarantee.
Section III-A describes our LSH algorithm for c-ANN problem
and Section III-B shows that our approach can be immediately
extended to support top k c-approximate nearest neighbor
search (c-k-ANN).

A. Incremental LSH

In this subsection, we describe our incremental LSH (I-
LSH) approach in details. Our technique consists of two parts:
indexing and query processing.

Indexing

The index part is similar to QALSH. For a given d-dimensional
data D with n objects, we use m 2-stable hash functions to
randomly project each object o into m hash values, denoted
by h;(o = @, - 0 for the i-th hash function. For the i-th random
projection, we use a B+ tree to keep the pair (I D(0), h;(0))
for each object, where ID(0) is the ID of the object o and
the hash value h;(0) is the search key.

Algorithm 1: Incremental LSH search(B, ¢)
Input

: B: m B+ tree indices for object IDs and hash values;
q: the query object;
w: the initial bucket width;
Output : o: the c-ANN object
1 Nean = 0; dmin :=0;
2 Apply m hash functions on g;
3 while n¢q, < fn do

4 o0 < next object with smallest projected distance;
5 1 <— the projection dimension o comes from;

6 | e lhilo) — hi(g)l:

7 | R+ %,

8 en(o) :=cn(o) + 1;

9 if cn(o) == am then

10 compute || o0, ¢ || and update omin;
11 Nean ‘= Nean + 1,

12 if Rmin < cR then
13 | break;

14 return o,,;n

Query processing.

In general, a query object q in the d-dimensional space will
be mapped into m projected dimensions, then the objects and
their hash values will be incrementally accessed according
to their projected distances in m projected dimensions. An
object becomes a candidate if am of its hash values have been
accessed. There are two termination conditions: C';: if there are
Bn candidate objects found by I-LSH, the algorithm will stop,
Cy: if the current nearest object 0,4, satisfies || omin, ¢ ||< ¢R
where R is the current radius, the algorithm will stop. Note
that o, 5 and w are pre-defined parameters, and their settings
will be discussed in Section IV.

Algorithm 1 presents the pseudo-code of our incremental
LSH technique. In each iteration, the algorithm chooses the
data point o with smallest projected distance to g as the current
point (line 4), and compute the corresponding radius R in
line 7. If o has been visited for am times, the algorithm
will compute its Euclidean distance to ¢ and add it to the
candidate set (line 9 to line 11). If either of the two termination
conditions is satisfied, the algorithm will return the current
nearest point as the c-ANN.

B. Extension for c-k-ANN problem

In many real-life applications, in addition to the nearest
neighbor, users are interested in the k nearest neighbors. In this
paper we also study the problem of c-approximate k& nearest
neighbor (c-k-ANN) search. We say an object o is a correct



result of of ¢-k-ANN search if | 0,q |< ¢ | o, q |, where o
is the k-th nearest neighbor of ¢ in the objects D.

Algorithm 1 can be easily extended to solve the c-k-ANN
problem by the following changes: (1) instead of 5n, we need
to access n + k — 1 candidate objects; (2) instead of 0,5,
we maintain the k-th closest candidate object o; and (3) the
k most closest candidate objects will be return as the result of
c-kANN search.

IV. THEORETICAL ANALYSIS

In this section, we show the correctness of our incremental
LSH method; that is, for any given query ¢, approximate ratio
¢ (¢ > 1) and success probability § (0 < ¢ < 1), our method
can return the c-ANN with probability at least 6.

A. Correctness of I-LSH

There are two steps to show the correctness of I-LSH: (1)
For the (R, ¢)-NN problem, our scheme holds the guarantee.
(2) The expanding of  won’t break the guarantee. Before the
formal proof, we stress some important notations frequently
used. By r, we denote the current search radius in the projected
dimensions, which corresponds to the anchored bucket with
width 2r and a ball B(g, R) in the high-dimensional space
R® where R = % and w is the initial bucket width.

(R, c)-NN correctness

Suppose there is a d-dimensional dataset D with n points and
a query point g, the radius is R. If the theoretical guarante
holds, we hope that,
o P1 :for data object o,if || 0,q || R, o can be found as a
candidate.
o P2 :the total number of false positives won’t be greater
than Sn, the false positive means that for a point o, if
Il 0,q || ¢cR but o is found as a candidate.
According to QALSH, if we set 6 = 1/2 — §’ (So when
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where p; < a < p, and m = [5—2— pln p2)2( + l:g)ﬂ, 1-
LSH can return a point o within B(g, cR) with a probability
which is at least 4.

c-ANN correctness

In this paper, our LSH function is query-aware because we
enforce that the bucket, namely anchored bucket, is always
centered at h(g), in the projected dimension. We say the
hash function h is (r1,r2,p1,p2)-sensitive with regarding to
the bucket width w if we have Pr(|h(o) — h(q)| < %) > m
given || 0,q |[< r1 and Pr(|h(o) — h(q)| < §) < p2 given
|| 0,q ||> r2. The following lemma shows that a (1,¢,p1,p2)-
sensitive hash function with bucket width w can become (€,
c€, p1, po)-sensitive if the bucket width is set to &w.

Lemma 1. Given a hash function h, if it is (1,¢,p1,p2)-sensitive
w.r.t the bucket width w, then it is (£, c&, pi1, p2) sensitive if
the bucket width is set to w for any real value & > 0.

Proof. According to the definition of (71, 72, p1, p2)-sensitive
hash function, for the bucket width w, we have

P1 =
/%

Then for the bucket width £w, we have
e.6w) = [ ola)de = [ o(w)ds = pr. n(et. u) =
f »ff P(z)dz = f w ¢(z)dz = po

Therefore, the functlon h is (&, c€, p1,p2)-sensitive with
bucket width £w for any € > 0. O

77(1 w) f_j% ¢(z)dr, and pa = n(c,w) =

According to Lemma 1, it is immediate that for any given
bucket width &w, it corresponds to a ball B(g, R) in RY
centered by ¢ with R = % space such that for any object
o € B(gq,R), h(o) will fall in the anchored bucket (i.e.,
[h(o) — h(q)] < g) with probability at least p;, while for any
object o ¢ B(q,cR), it will collide with g with probability
less than po.

Let r denote the current search radius in the projected
dimensions (i.e., the width of the corresponding anchored
bucket is 2r). As ¢ can be any non-negative real value in
Lemma 1, the search radius r can be any real value with
r > 0. And the hash function is (&, c&, p1, p2)-sensitive where
£- 2
B. Approximate ratio

Unlike the most of the existing LSH methods such as
QALSH and C2LSH, the approximate ratio of I-LSH is c but
not 2.

Lemma 2. Given a query point q, suppose the NN of q is
0%, o* ||= R*. If I-LSH stops at B(q, R), where r is the
corresponding projection radius, R < R* when both P, and

P, are satisfied.

Proof. Because P is satisfied, 0o* must can be found as a
candidate if all the data objects within B(g, R*) have been
checked. (1) If there are more than Sn candidates in B(q, R*),
then I-LSH will be terminated by Cy before R* has been
reached, so R < R*. (2) Otherwise, because || o*,q |=
R* < cR*, when o* is found as a candidate, I-LSH will be
terminated by C;. According to P;, we get R < R*.

O

Section IV-A has proved that I-LSH can return a c-
approximate result for (R,c¢)-NN problem. According to
lemma 2, I-LSH will stop before or at R* with a constant
possibility §. So the approximate ratio of I-LSH is c.

V. EVALUATION

In this section, we conduct comprehensive experiments to
demonstrate the I/O efficiency of our proposed algorithm,
compared with two state-of-the-art I/O efficient c-ANN algo-
rithms.

A. Experiment Setup

In this subsection, we present the experiment settings of our
performance evaluation.

I-LSH is a LSH approach with theoretical guarantee, so
we only compare with QALSH and SRS, two of the recent
LSH with theoretical guarantee as well. We evaluate the



performance on the c-k-ANN version of these algorithms in
the experiments where k varies from 1 to 100, with default
value 40.

Datasets.

e Tiny contains around 5 million GIST feature vectors
with dimensionality 384.

e Million Song is a collection of audio features and
meta-data for a million contemporary popular music
tracks with 420 dimensions.

Evaluation Metrics. We count the number of I/Os during
the computation for three algorithms, where each random 1/O
read counts one and each sequential I/O read contributes 0.1
considering the difference cost between random and sequential
I/0.

Parameter Setting. The default approximate ratio c is set to
4. Note that QALSH is c¢? approximate method and hence
need to set ¢ to v/4.0 = 2 to achieve the 4-approximation,
while both SRS and I-LSH are c-approximate methods. We
use the default settings of QALSH and SRS unless otherwise
specified. The parameter of I-LSH is given in section IV

The page size B is set to 8,192 bytes for all the datasets
and algorithms.

B. Evaluate 1/O cost

For a c-k-NN search, £ is varying from 1 to 100 in the
experiments. For 4-NN search, I-LSH has the best I/O per-
formance on all the four datasets. QALSH is not competitive
compared with SRS and [-LSH mainly because it has to set
¢ = 4/c to achieve the same approximate ratio with SRS and
I-LSH, which causes a much larger m. SRS has the smallest
index size, but because of the penalty of random I/O, SRS
requires more I/O costs to find enough candidates. On Tiny
and Million song datasets with dimensionality 384 and 420,
respectively, I-LSH outperforms SRS by a big margin.
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C. Effect of the approximate ratio c

A good c-ANN algorithm should support different ap-
proximate ratio, especially when c¢ is a small value. In the
experiments, ¢ is varying from 2.0 to 4.0. The results are
reported in Fig 8. For instance, when ¢ = 4, SRS and I-
LSH only use about 50% of I/O than QALSH, but the I/O
cost of SRS rises very fast, when ¢ = 2, it becomes 140%
of QALSH and about 7 times of I-LSH. As expected, the
performance of three algorithm degrades against the decrease
of the approximate ratio. It is shown that the performance of
SRS is most sensitive to the ratio. This is because the higher
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Fig. 3. I/O vs ¢

requirement of accuracy leads to larger m, and will seriously
hurt the performance of R-tree in SRS.

D. Summary

Based on the experimental results, we have the following

observations:

e Under the same theoretical guarantee, I/O performance
of I-LSH consistently outperforms QALSH and SRS
under all settings. This is because: (1) I-LSH adopts a
natural incremental search strategy, which can achieve
c-approximate estimation (unlike the c?-approximation
of QALSH); (2) I-LSH can take advantage of efficient
sequential I/O brought by the B+ tree.

e SRS has a good performance when ¢ = 4, but it cannot
comfortably support smaller ¢ (higher accuracy) because
of the curse of dimensionality for the exact NN on
multi-dimensional index including R-tree. Moreover, the
random I/O caused by R-tree is also a limit for SRS.
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