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Abstract—Many real-world networks such as Twitter and
YouTube are given as fully dynamic graph streams represented
as sequences of edge insertions and deletions. (e.g., users can
subscribe and unsubscribe to channels on YouTube). Existing
similarity estimation methods such as MinHash and OPH are
customized to static graphs. We observe that they are indeed
sampling methods and exhibit a sampling bias when applied to
fully dynamic graph streams, which results in large estimation
errors. To solve this challenge, we develop a fast and accurate
sketch method VOS. VOS processes each edge in the graph
stream of interest with small time complexity O(1) and uses
small memory space to build a compact sketch of the dynamic
graph stream over time. Based on the sketch built on-the-fly,
we develop a method to estimate user similarities over time.
We conduct extensive experiments and the experimental results
demonstrate the efficiency and efficacy of our method.

I. INTRODUCTION

Many real-world network systems such as online social net-
works (OSNs) and mobile phone networks are given as graph
streams represented as sequences of edges over time, where
entities are modeled as nodes and entity relations are modeled
as edges. Estimating the similarities of users in large graph
streams has been successfully used for applications such as
duplicate detection [1] and collaborative filtering [2]. However,
the graph streams studied in all these works only consist of
edge insertions. In practice, real-world networks contain not
only edge insertions but also deletions. For example, users on
OSNs such as Twitter and Pinterest can follow other users, and
can also unfollow users that they followed previously; users
on YouTube can subscribe to interested channels, and can also
unsubscribe from channels that they subscribed previously.

For similarity estimation, MinHash [3] is a popular sketch
method for approximately computing the Jaccard coefficient
similarity, which builds a sketch of k registers with k distinct
hash functions for each user and updates the minimum hash
values of its subscribed items for each register. To reduce the
memory usage of MinHash, [8], [9] develop methods b-bit
minwise hashing and odd sketch, and the basic idea behind
them is to use probabilistic methods such as sampling and
sketching to build a compact digest for each user’s MinHash
sketch. b-bit minwise hashing, odd sketch, and MinHash

*Pinghui Wang is the corresponding author.

update each item with a high time complexity O(k). To solve
this problem, Li et al. [4] further develop a method OPH and
use only one hash functions to reduce the time complexity
of updating each item from O(k) to O(1). Also there are
many other works based on OPH such as [5], [6], [7] to
improve its estimation accuracy. In detail, they fill empty
registers generated from OPH by “rotation” with the value
of the closest non-empty registers towards right [6], left or
right with probability 1

2 [5], or based on tailored 2-universal
hashing [7]. [10], [11], [12], [13] develop a fast method to
estimate the Jaccard coefficient between weighted vectors,
where the general Jaccard coefficient between two positive
real value vectors ~x=(x1, x2, . . . , xp) and ~y=(y1, y2, . . . , yp)

is defined as J(~x, ~y) =
∑

1≤j≤p min(xj ,yj)∑
1≤j≤p max(xj ,yj)

. Unfortunately, all
these methods indeed are sampling methods customized for
statistic datasets, but fail to uniformly sample edges from fully
dynamic graph streams including item-subscriptions and item-
unsubscriptions, which results in large estimation errors.

To solve the above challenges, we develop a fast and accu-
rate sketch method VOS (virtual odd sketch) for estimating the
similarities of users occurred in fully dynamic graph streams.
VOS processes each edge with small time complexity O(1)
and uses small memory space to build a compact sketch of the
graph stream over time. For each user, we build an odd sketch
of its subscribed items on the fly, which is a binary sketch of k
bits and embeds each subscribed item with xor (i.e., exclusive-
or) operations. In graph streams, it is wasteful to assign a large
k for each user to achieve reasonable estimation accuracy,
especially for users with few subscribed items. Thus instead
of directly keeping the odd sketch in memory, we store the
sketch in k bits randomly selected from a shared bit array to
reduce the memory usage. Based on the built virtual sketch, we
develop a novel method to accurately estimate user similarities,
and provide a theoretical proof for the estimation accuracy.
We conduct extensive experiments on a variety of real-world
graphs, and experimental results show that our method VOS
is more accurate than state-of-the-art methods.

II. PROBLEM FORMULATION

In this paper, we focus on bipartite graphs, while our
method can be easily extended to regular graphs. Let U
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and I denote the set of users and items respectively. Let
Π = e(1)e(2) · · · e(t) · · · denote the graph stream of interest,
where e(t) = (u(t), i(t), a(t)) is the element (or, edge) of Π
occurred at discrete time t > 0, u(t) ∈ U , i(t) ∈ I , and
a(t) ∈ {“ + ”, “ − ”} are the tth element’s user, item, and
action (i.e., subscription and unsubscription). Let S(t)

u be the
set of items subscribed by user u at the end of time t, S(0)

u = ∅.
Similar to [14], [15], we restrict attention to “feasible” fully
dynamic graph steams. In detail, if item i is in (resp. not in)
the item set S(t−1)

u of user u, then element (u, i, “ + ”) (resp.
element (u, i, “− ”)) cannot occur in stream Π at time t. Let
s

(t)
u,v denote the number of common items that users u and v

subscribe to at time t and is computed as s(t)
u,v= |S(t)

u ∩S(t)
v |=

J(S(t)
u ,S(t)

v )(|S(t)
u |+|S

(t)
v |)

J(S
(t)
u ,S

(t)
v )+1

, where |S| refers to the cardinality of
a set S. One can use a counter to easily keep tracking of the
number of items (i.e., |S(t)

u |) subscribed by each user u over
time t. Besides, another popular similarity measure the Jaccard
coefficient J(S

(t)
u , S

(t)
v )=

|S(t)
u ∩S

(t)
v |

|S(t)
u ∪S(t)

v |
=

s(t)u,v

|S(t)
u |+|S(t)

v |−s(t)u,v
can be

easily computed from s
(t)
u,v , and vice versa. In this paper, we

aim to develop a fast and accurate method to estimate s
(t)
u,v

and J(S
(t)
u , S

(t)
v ) for any two users u and v over time.

III. SHORTCOMINGS OF EXISTING METHODS

For any two sets S1 and S2, MinHash [3] applies k indepen-
dent hash functions h1, . . . , hk to obtain an accurate estimation
of J(S1, S2), where any hash function hj , 1 ≤ j ≤ k can
be described as a random permutation from I to I itself.
For a set S ⊂ I , let h∗j (S) denote the minimum hash
value of items in S with respect to hash function hj , i.e.,
h∗j (S)=mini∈S hj(i). Therefore, MinHash computes h∗1(S1),
. . ., h∗k(S1) and h∗1(S2), . . ., h∗k(S2), and then estimates

J(S1, S2) as J(S1, S2) =
∑k
j=1 1(h∗j (S1)=h∗j (S2))

k , where 1(P)
is an indicator function that equals 1 when predicate P is true
and 0 otherwise. Actually, the MinHash sketch of a set S can
be viewed as a vector of k items sampled with replacement
from S using k hash functions respectively. Denote by φj(S)
the item in S with the minimum hash value with respect
to hash function hj , i.e., φj(S) = arg mini∈S hj(i). Because
hash function hj maps items in I into distinct integers, i.e.,
hj(i1) 6= hj(i2) when i1 6= i2, the MinHash sketch of S can
be simply represented as a vector (φ1(S), . . . , φk(S)), where
each element φj(S) is randomly sampled with replacement
from S by function hj . For any two sets S1 and S2, we
easily find that h∗j (S1 ∪ S2) = min(h∗j (S1), h∗j (S2)), 1 ≤ j ≤
k. Therefore, the underlying MinHash sketch of the union
φj(S1 ∪ S2) = φj(S1) when hj(φj(S1)) ≤ hj(φj(S2)) and
φj(S2) otherwise. φj(S1∪S2) is an item in S1∩S2 if and only
if φj(S1) =φj(S2), and we can have P (φj(S1) =φj(S2)) =

P (φj(S1∪S2) ∈ (S1∩S2))= |S1∩S2|
|S1∪S2|=J(S1, S2). Moreover,

one can extend MinHash to handle each element (u, i, a)
arriving on fully dynamic stream Π as follows: case 1) when
a=“+”, update φj like a regular MinHash, i.e., set φj(Su)= i
if φj(Su) = ∅ or hj(i) < hj(φj(Su)) and keep φj(Su)
unchanged otherwise; case 2) when a=“− ” and φj(Su)= i,

set φj(Su) = ∅; case 3) when a = “ − ” and φj(Su) = ∅,
keep φj(Su)=∅. However, this extension of MinHash samples
an item not according to uniform distribution when item-
unsubscriptions occur. The sampling bias is not only related
with the number of user’s subscribed items but also the order
of item subscriptions and unsubscriptions occurred in stream
Π. It is challenging to model and remove the sampling bias
when a user has more than one unsubscriptions in stream Π.

To reduce the time cost, OPH [4] only uses one hash
function h to process each item, which is a random per-
mutation from I = {0, 1, . . . , p − 1} to I itself and p is
the maximum number of items. OPH equally divides I into
k bins: [p(j−1)

k , pjk ), 1 ≤ j ≤ k. For a set S ⊂ I ,
define S(h, j) = {i : i ∈ S ∧ h(i) ∈ [p(j−1)

k , pjk )}, and
then OPH computes a variable ophj(S) = h∗(S(h, j)) when
S(h, j) 6= ∅ and ∅ otherwise. At last, it estimates J(S1, S2)

as J(S1, S2) =
∑k
j=1 1(ophj(S1)=ophj(S2) 6=∅)∑k

j=1 1(ophj(S1) 6=∅∨ophj(S2)6=∅) , and the time

complexity of updating each item is O(1). Similarly, OPH can
also be treated as a sampling method and exhibits a sampling
bias when there exist item-unsubscriptions in Π.

Furthermore, there exist methods such as random pair-
ing (RP) [14] for uniformly sampling from dynamic graph
streams. One can extend RP to sample k items (φj(Su))1≤j≤k
(resp. (φj(Sv))1≤j≤k) from S

(t)
u (resp. S(t)

v ). In this case,
(φj(Su))1≤j≤k and (φj(Sv))1≤j≤k generated are indepen-
dent, i.e., φj(Su)=φj(Sv) happens with probability 1

|Su||Sv| ,
which significantly differs from the probabilistic model of
MinHash. Therefore, the number of common items can be
estimated as su,v= |Su||Sv|

∑k
j=1 1(φj(Su)=φj(Sv)).

IV. OUR SKETCH METHOD

Our sketch method VOS consists of a one-dimension bit
array A of length m, a hash function ψ that maps items
into integers in {1, . . . , k} at random, and k independent hash
functions f1, . . . fk that map users into integers in {1, . . . ,m}
at random. As shown in Figure 1,for each user u, we virtually
build an odd sketch O

(t)
u of set S(t)

u on the fly and embed
O

(t)
u into A. Formally, O(t)

u is a bit array of length k, where
each bit O(t)

u [j] is the parity of the number of items in S
(t)
u

of which hash value equals j with respect to function ψ,
i.e., O(t)

u [j] = ⊕
i∈S(t)

u
1(ψ(i) = j), 1 ≤ j ≤ k, where ⊕

is the xor operation. The above equation tells us that any
two elements (u, i, “ + ”) and (u, i, “ − ”) occurred before
and including time t offset to each other and they together
are irrelevant to the value of O(t)

u . Our method VOS differs
from the original odd sketch method [9] in two aspects: 1)
We directly build an odd sketch O

(t)
u of S(t)

u for each user
u rather than generate a MinHash sketch first; 2) We do not
directly store the odd sketch O

(t)
u in memory, but use hash

functions f1, . . . fk to randomly select k bits from a shared
bit array A to approximately store O(t)

u . In addition, for each
occurred user u, we use a counter nu to keep tracking of the
number of its subscribed items over time. We also update bit
array A and a counter β as A[fψ(i)(u)] ← A[fψ(i)(u)] ⊕ 1,



β ← β +
2[(A[fψ(i)(u)]⊕1)− 1

2 ]

m , where β is initialized to 0 and
used to keep tracking of the fraction of 1-bits in A over time,
Thus, the time complexity of updating each element is O(1).
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Figure 1. Overview of our method VOS. The red and bold bits are
contaminated.

At time t, for each bit O(t)
u [j], 1 ≤ j ≤ k, we randomly

select a bit from A using hashing function fj and xor the bit
with O(t)

u [j], i.e. A[fj(u)]← A[fj(u)]⊕O(t)
u [j]. We easily find

that the value of A at time t is irrelevant with the order of
occurred users and the order of the bits in their odd sketches
iterated in the above procedure. Therefore, we assume that
O

(t)
u [j] is the last bit hashed into A. Let β(t)

u,j is the fraction
of 1-bits in A before the event of hashing O

(t)
u [j] into A.

We easily obtain that O(t)
u [j] is hashed into a 1-bit in A with

probability β(t)
u,j . Hashing O(t)

u [j] into A changes at most one
bit in A, therefore we have |β(t)

u,j − β(t)| ≤ 1
m . In this paper,

we approximate β(t)
u,j as β(t) because m� 1000. Based on the

above observations, we model our method VOS as: we rebuild
each bit O(t)

u [j] at time t as Ô(t)
u [j] = A[fj(u)], which does not

equal O(t)
u [j] with probability P (Ô

(t)
u [j] 6= O

(t)
u [j]) = β(t).

To estimate the similarity s(t)
u,v of two users u and v, we first

compute a sketch Ô(t)
u,v by combining Ô(t)

u and Ô(t)
v using the

xor operation, i.e., Ô(t)
u,v[j]=Ô

(t)
u [j]⊕ Ô(t)

v [j]. Define α(t)
u,v as

the fraction of 1-bits in Ô(t)
u,v , α(t)

u,v =
∑k
j=1 Ô

(t)
u,v [j]

k , and n(t)
u∆v

as the cardinality of the symmetric difference of sets S(t)
u and

S
(t)
v , i.e., n(t)

u∆v= |S(t)
u ∆S

(t)
v |= |(S(t)

u −S(t)
v )∪ (S

(t)
v −S(t)

u )|.

From [9], we obtain P (O
(t)
u,v[j] = 1) = 1−(1−2/k)n

(t)
u∆v

2 . Since
P (Ô

(t)
u [j] 6= O

(t)
u [j]) = P (Ô

(t)
v [j] 6= O

(t)
v [j]) = β(t) we easily

obtain P (Ô
(t)
u,v[j] = 1) = ((β(t))2 + (1 − β(t))2)P (O

(t)
u,v[j] =

1) + 2β(t)(1−β(t))P (O
(t)
u,v[j]=0)= 1−(1−2β(t))2(1−2/k)n

(t)
u∆v

2 .
Then we have

E(α(t)
u,v) =

E
(∑k

j=1 1(Ô
(t)
u,v[j] = 1)

)
k

≈ 1− (1− 2β(t))2e−2n
(t)
u∆v/k

2
.

According to the above equation, we estimate n(t)
u∆v as

n̂
(t)
u∆v = −k(ln(1− 2α

(t)
u,v)− 2 ln(1− 2β(t)))

2
.

Since s(t)
u,v =

n(t)
u +n(t)

v −n
(t)
u∆v

2 , then we estimate s(t)
u,v as

ŝ(t)
u,v =

n
(t)
u + n

(t)
v

2
+
k(ln(|1− 2α

(t)
u,v|)− 2 ln(|1− 2β(t)|))

4
.

We easily find that the time complexity of computing ŝ
(t)
u,v

is O(k). Moreover, the Jaccard coefficient Ĵ(S
(t)
u , S

(t)
v ) can

be estimated as Ĵ(S
(t)
u , S

(t)
v ) =

ŝ(t)u,v

nu+nv−ŝ(t)u,v
. Furthermore, the

expectation and variance of its estimate ŝ(t)
u,v are computed as

E(ŝ(t)
u,v) ≈ s(t)

u,v +
1

8
− kβ(t)e2n

(t)
u∆v/k

(1− 2β(t))2
− e4n

(t)
u∆v/k

8(1− 2β(t))4
,

Var(ŝ(t)
u,v) ≈ −

k

16
+
k2β(t)e2n

(t)
u∆v/k

2(1− 2β(t))2
+

ke4n
(t)
u∆v/k

16(1− 2β(t))4
.

V. EVALUATION

We perform our experiments on several publicly available
real-world datasets YouTube, Flickr, Orkut and LiveJour-
nal [16]. To generate fully dynamic graph streams includ-
ing item-subscriptions and item-unsubscriptions, we follow
the experiment settings in [15] and set the parameters as
q = 2, 000, 000−1 and d = 0.5, which means there is a
massive deletion of expected 50% edges every 2, 000, 000
edges in each graph dataset. Specially, we mainly focus
on similarity estimation for users with a large number of
subscribed items, which requires extremely large memory and
computational resources for similarity estimation. Therefore,
in our experiments, we first select 5, 000 users with largest
cardinalities to generate user pairs of any two users in each
graph dataset, and then retain the set of user pairs that have
at least one common item to keep tracking of over time.

We employ three baselines MinHash, OPH and RP as
described in Section II and III to compare with our method
VOS for estimating similarities over time. Here we use the
metrics average absolute percentage error (AAPE) to measure
the accuracy of estimating the number of common items
ŝ

(t)
u,v , and average root mean square error (ARMSE) to eval-

uate the performance of estimating the Jaccard coefficient
similarity Ĵ(S

(t)
u , S

(t)
v ) over time. Formally, the metrics are

defined respectively as AAPE(t) = 1
|P |
∑

(u,v)∈P |
s(t)u,v−ŝ

(t)
u,v

s
(t)
u,v

|

and ARMSE(t) =

√∑
(u,v)∈P (Ĵ(S

(t)
u ,S

(t)
v )−J(S

(t)
u ,S

(t)
v ))2

|P | . In our
experiments, we compare the performance of all these methods
under the same memory size m = 32k|U | bits, where the
memory size of each value of the k registers in its generated
sketch for each user u ∈ U is set as 32 bits. As for the
parameter k for the size of virtual odd sketch of our method
VOS, we can enumerate all possible values from 1 to max-
cardinality to find an optimal value for each graph dataset,
which minimizes either AAPE(t) or ARMSE(t) of selected
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Figure 2. Runtime of our method VOS in comparison with MinHash, OPH,
and RP for different memory space m (bits).
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Figure 3. Accuracy of our method VOS in comparison with MinHash, OPH,
and RP for different memory space m (bits) when k = 100.

user pairs at any time t. Also we can directly set it as λ times
(i.e., λ = 2, 3, . . .) larger than the memory space used by each
sketch of MinHash, OPH and RP. In the later experiments, we
set λ = 2.

Figure 2 (a) shows the runtime of our method VOS in
comparison with other three baselines in the dataset YouTube
when the sketch size k varies from 1 to 105, and Figure 2
(b) shows the runtime of all methods when k = 105. In
our experiments, we measure the runtime during which we
implement all four methods respectively to update the sketch
for each user. We can see that our method VOS and OPH
are faster than MinHash and RP, and only require the time
complexity O(1). Meanwhile, we fix the sketch size k = 100
and then compare the estimation accuracy of all four methods.
The experimental results are shown in Figure 3. Figures 3 (a)
and (c) show the accuracy of estimating ŝ(t)

u,v and Ĵ(S
(t)
u , S

(t)
v )

in dataset YouTube over time respectively, and Figures 3 (b)
and (d) show the accuracy in all datasets at time t when
all elements in graph streams arrive. We observe that our
method VOS are more accurate than other three methods
and significantly reduce the estimation bias for fully dynamic
graph streams.

VI. CONCLUSIONS

In this paper, we observe that state-of-the-art similarity
estimation methods MinHash and OPH are indeed sampling
methods for graph streams consisting of only item insertions,
and exhibit a sampling bias for fully dynamic graph streams.
To solve this problem, we develop a sampling method VOS.
VOS uniformly samples at most k connected items for each
user. It fast processes each edge in the graph stream with small
time complexity O(1). Based on two users’ sampled items,
we propose a fast method to estimate not only the Jaccard
coefficient between their connected items but also the number
of their common connected items. We perform experiments on
a variety of publicly available graphs, and experimental results
demonstrate that our method VOS significantly outperforms
the state-of-the-art methods.
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