
Just in Time: Personal Temporal Insights for
Altering Model Decisions

Naama Boer
Tel Aviv University

naamaboer@mail.tau.ac.il

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Nave Frost
Tel Aviv University

navefrost@mail.tau.ac.il

Tova Milo
Tel Aviv University
milo@post.tau.ac.il

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICDE.2019.00221

Abstract—The interpretability of complex Machine Learning
models is coming to be a critical social concern, as they are
increasingly used in human-related decision-making processes
such as resume filtering or loan applications. Individuals re-
ceiving an undesired classification are likely to call for an
explanation - preferably one that specifies what they should do
in order to alter that decision when they reapply in the future.
Existing work focuses on a single ML model and a single point
in time, whereas in practice, both models and data evolve over
time: an explanation for an application rejection in 2018 may
be irrelevant in 2019 since in the meantime both the model
and the applicant’s data can change.

To this end, we propose a novel framework that provides
users with insights and plans for changing their classification
in particular future time points. The solution is based on
combining state-of-the-art algorithms for (single) model ex-
planations, ones for predicting future models, and database-
style querying of the obtained explanations. We propose to
demonstrate the usefulness of our solution in the context of
loan applications, and interactively engage the audience in
computing and viewing suggestions tailored for applicants based
on their unique characteristic.

I. INTRODUCTION

In recent years critical decision-making processes, such
as credit score assignment, resume filtering and loan ap-
provals are vastly supported by complex machine learn-
ing classifiers. A significant drawback to the utilization of
such complex models is their opaqueness, which leaves
two important questions unanswered: why did we get a
classification result, such as a loan request rejection? What
can we do to change it, e.g., what could an applicant do so
that his next loan request is approved?

To address this problem, much research has been de-
voted recently to the explainability of complex Machine
Learning models. For example, some solutions [1], [2] iden-
tify the most influential features in the input, and others
[3] produce approximated interpretable models. These ap-
proaches typically provide answers only as to why a decision
was made. However, they fall short of providing a practical
plan of action for changing the decision. This is in part
because they do not account for the temporal aspect of such
a plan, namely the evolution of both the user characteristics
and the classification models.

Example I.1. To illustrate, consider a bank that uses a
Machine Learning model to classify loan application based

the following features: Age, Household status, Annual In-
come, Monthly Debt, Job Seniority and the requested Loan
Amount. Further consider an applicant, John, 29 years old,
whose loan request is rejected.

John wants to come up with a plan for altering this
rejection. By employing a tool such as [1], he is advised to
increase his income by 20%. John works hard to get promoted
at work and achieves the desired income within two years. He
then reapplies, only to discover that the loan criteria have
changed, and his request is again rejected. This time the
explanation is that his debt is too high. He wasn’t aware that
for people over 30, income requirements are often relaxed
while debt requirements tend to become stricter. In hindsight,
John would rather focus on decreasing his debt over working
towards getting a raise.

The suggestions given to the user in this simple example
suffer from several deficiencies. They ignore the expected
changes in the user’s profile (e.g. age increases over time,
and often so does seniority), as well as potential changes in
the classifier, due to e.g varying data distributions, some of
which may be predicted based on past behavior. Further-
more, users differ in their preferences and limitations. For
example, one may not be able to increase salary beyond a
certain bound, or would rather decrease debt instead. In a
dynamic user-focused environment, a satisfactory solution
must guide the user in three fundamental aspects: Which
features to modify, how to modify them, and when to
(re)apply. Following are examples of questions related to
these aspects, which are likely to be raised by applicants:

1) No modification: What is the closest time point (if
any) at which reapplying without modifications will be
APPROVED?

2) Minimal features set: What is the smallest set of
features whose modification can lead to APPROVAL?
(when? and how should they be modified?).

3) Dominant feature: Is there a single feature whose
modification leads to APPROVAL in all future time
points? (and how should it be modified at each point?)

4) Minimal overall modification: What is the minimal
overall modification (by some distance measure) that
leads to APPROVAL, and when?

5) Maximal confidence: Which modifications (and at
which time point) would maximize chances of AP-

ar
X

iv
:2

00
7.

04
45

3v
1 

 [
cs

.D
B

] 
 8

 J
ul

 2
02

0

<http://tex.stackexchange.com>


PROVAL?
6) Turning point: Is there a time point after which,

with some modifications, the confidence of being AP-
PROVED always exceeds α?

We present JustInTime , a system enabling users to
obtain answers to such questions, thereby assisting them
in devising a practical plan of action for altering unde-
sired decisions. The system relies on past labeled data
with timestamps. An initial configuration is performed by
a system administrator through a dedicated admin UI.
The administrator sets parameters controlling the amount
and time intervals between future time points. According
to these parameters the Models Generator processes the
training data and trains a sequence of models, each des-
ignated for a specific future time span. In addition, the
administrator may define global Domain constraints derived
from the domain characteristics (such as database integrity
constraints), that will be imposed on all users.

User interactions use a dedicated UI and begin with
defining preferences and limitations in the form of con-
straints. The Candidates Generator components then gen-
erate a set of modifications candidates for each time point,
and store them in the system’s database. Each of these
candidates represents a potential applicable modification
to the user’s data profile, that is expected to alter the
corresponding model’s decision if applied. Users can then
query the database through a friendly dedicated interface,
consisting of canned questions of the type exemplified ear-
lier (translated to SQL queries)1, with the output presented
to the user in the form of verbal or graphic insights.

We will demonstrate the operation of
JustInTime through a loan application scenario, using
the Lending Club Loan Data public dataset containing
the details of approximately 1M loan applications from
the years 2007-2018 [4]. Specifically we will demonstrate
how applicants whose applications got rejected can
obtain actionable insights using a variety of queries. The
demonstration will interactively engage the audience who
will play the role of rejected applicants, showcasing the
system’s operation and its different facets.

II. TECHNICAL OVERVIEW

In this section, we formally define our framework com-
ponents and demonstrate their operation. We start by
providing the necessary preliminaries for the case of a single
decision-making model at the present time. Afterwards,
we introduce our temporal framework that consists of two
phases. In the first phase, a database of candidate proposals
is generated, and in the second phase the user interacts
with the data gathered in order to obtain insights for
achieving the desired classification.

A. Preliminaries

We start by recalling some basic notions required for the
generation of proposals. A key notion that we use is that of a

1Experts users may compose additional SQL queries

Fig. 1: System Architecture

Machine Learning model. For simplicity, we focus on binary
classification, but the framework can be easily generalized
to multi-class problems.

Definition II.1. Let d be the dimension of the input space, a
Machine Learning model M : Rd 7→ [0,1] is a function such
that ∀x ∈Rd , M(x) is the probability of the desired positive
classification of the vector x.

In our setting, the vector x represents the user’s attributes
(i.e. profile). For altering a decision, some of these attributes
should be modified. However, as observed in [5], in practical
settings not all modifications are viable. For example, a
person’s age can not be decreased, a user may prefer not
to change her address, etc. Thus, users may further define
a constraints function according to their preferences and
limitations.

Definition II.2. A Constraints Function C maps vectors in
Rd to a subset of Rd . For a given input x ∈Rd , the set C (x) ⊆
Rd denotes the valid modifications to x.

In JustInTime, constraints specified by the adminis-
trator and the user are joined to form a general constraints
function as defined above. Constraints may refer to a single
point in time or all of them, and may contain any number of
linear inequalities joined by conjunctions and disjunctions,
over any subset of attributes of the input vector. In addition
to user attributes, constraints can refer to three special
properties: distance from the input w.r.t. l2-norm (termed
’diff’), distance w.r.t. l0-norm (’gap’), and the overall model
score (’confidence’) of the given input.

Definition II.3. Given a model M, input x and constraints
C the set of Decision Altering Candidates is defined as:

A = {x ′ ∈Rd | x ′ ∈C (x) and M(x ′) > δ}.

Where δ is the model threshold, i.e. candidates with model
score greater then δ are classified positively.

We base our solution on an algorithm developed in [5]
by a subset of the present authors, for finding a candidate
x ′ ∈ A that aims to minimize the distance from the original



input point x. Obtaining an optimal candidate was shown
to be an NP-hard problem for e.g Random Forests and
Neural Networks, hence the iterative algorithm developed in
[5] applies model-dependent heuristics. While convergence
is not guaranteed in general, it was shown empirically that
the algorithm converges after a small number of iterations.
We adjusted the algorithm to our problem by incorporating
diverse objectives (confidence, gap and diff) when search-
ing for the candidates, as opposed to a single distance
measure. In addition, we output top-k candidates in each
iteration, as opposed to just one, using a beam search with
width k to prune the least promising candidates.

For reasons explained in the introduction, considering
only the modification that would alter the decision in
the present model is insufficient, thus in the following
subsection we suggest a generalized framework that takes
the temporal aspect into consideration.

(1)No
modification

SELECT Min(time)
FROM candidates
WHERE diff = 0

(2)Minimal
features set

SELECT *
FROM candidates
ORDER BY gap
LIMIT 1

(3)Dominant
feature

(income)

SELECT distinct time as t
FROM candidates
WHERE EXISTS

(SELECT *
FROM candidates as cnd
INNER JOIN temporal_inputs as ti

ON ti.time = cnd.time
WHERE cnd.time = t

AND ((gap = 0) OR (gap = 1
AND cnd.income != ti.income)))

(4)Minimal
overall

modifications

SELECT Min(diff)
FROM candidates

(5)Maximal
confidence

SELECT *
FROM candidates
ORDER BY p DESC
LIMIT 1

(6)Turning
time point

SELECT Min(time)
FROM candidates
WHERE time >= ALL

(SELECT time as t
FROM candidates
WHERE EXISTS (...))

Fig. 2: Sample of predefined queries

B. Temporal Candidates Generation

The temporal candidates generation phase is shown in
the bottom section of Figure 1. In order to provide users
with helpful insights regarding the future, the system has to
predict how future models are likely to operate. Generating
future models requires labeled training data with times-
tamps. Additionally, two parameters, T and ∆, determine
the time span handled by the system. T is the number
of time points considered and ∆ sets the length of the
interval between consecutive points. The models generator
then uses existing domain adaptation methods [6], in order
to create a sequence of pairs (Mt ,δt )T

t=0, where Mt is the
expected approximated model at future time t , and δt is its
threshold. The models generator uses the training data to

learn the time variations of the data distribution, using a
method from [6], that relies on two techniques: probability
distribution embedding into a reproducing kernel Hilbert
space, and vector-valued regression. Future models are then
trained based on the approximated future distributions.
Note that this part of the candidates generation process
is performed once and is independent of any specific user.

Recall that some of the attributes (features) are known
to change over time (e.g. age increases). Thus, every future
model operates on future representations of the features
vector, which is generated in our setting using a Temporal
Update Function.

Definition II.4. A Temporal Update Function receives a
vector x ∈ Rd . For features specified as “non temporal“ f
is the identity function. For every “temporal" feature v, the
value of v at time point t is given by f (x, t )[v].

Example II.5. To continue with our running example, ag e
is a temporal feature hence f (x,3)[ag e] = x[ag e]+3∆.

As previously mentioned, each user is represented by a
vector x ∈ Rd . The temporal update function operates on
x and outputs the future temporal representations of x,
namely { f (x, t )}T

t=0, denoted x0, . . . , xT , for simplicity. These
outputs are stored in a relational table called temporal
inputs. The input to the candidates generators is then:

• Temporal input vectors x0, . . . , xT in Rd .
• Sequence of model and threshold pairs (Mt ,δt )T

t=0.
• Constraints functions (Ct )T

t=o which are the conjunc-
tion of user and domain constraints.

The core of the temporal candidates generation phase is
a sequence of candidates generator components presented
in the previous subsection. Each generator is responsible
for outputting k decision-altering candidates fitted for the
corresponding time point t ∈ {0, . . . ,T }, that we denote
x ′

t1, . . . , x ′
tk . The generators are independent of each other,

and thus they can be executed in parallel. The results (set of
candidates per time point) are then stored in a candidates
table, ready to be queried by the user.

Since At , the set of decision altering candidates (Defi-
nition II.3) at time t , may be arbitrarily large, whereas we
are interested in a small, optimized and diverse subset per
each time point, we employ the aforementioned adaptation
of the algorithm in [5] to select a diverse set of top-k
candidates, using several useful predefined metrics. The
diversity ensures that limiting the number of candidates
does not lead to a degradation in the quality of the answers
to user queries.

C. Obtaining insights for Altering Model Decisions

The previous phase is concluded with the generation
of the candidates table. In this phase the user interacts
with the relational database in order to obtain personalized
insights. Experts may interact with the system directly
in SQL, while for non-experts we provide an expressive
and easy-to-use interface for formulating a broad range of



(a) Preferences and Queries Screens (b) Insights Screen

Fig. 3: User Interface Screen-shots

common questions (including those listed in the introduc-
tion), translated by the system into SQL queries. Figure 2
exemplifies several interesting questions along with their
corresponding SQL queries.

III. SYSTEM AND DEMONSTRATION OVERVIEW

The JustInTime backend is implemented in Python
3.6 and its frontend in JavaScript. It uses MySQL server for
storing and querying the generated database. The candi-
dates generator and the models generator components use
the H2O module for data modeling. The models generator
trains a random forest classifier for each time span.

The operation of the system is demonstrated w.r.t. the
Lending Club Loan Data containing details of approxi-
mately 1M loan applications from 2007 to 2018, published
in Kaggle [4]. We will demonstrate that JustInTime helps
loan applicants to obtain actionable insights on a variety of
questions. The demonstration will interactively engage the
audience, showcasing the different facets of the system.

We will start by demonstrating the functionality of the
system through a reenactment of five real-life loan applica-
tions that were denied. The interaction with the system is
performed in three steps, each in a designated screen. The
audience will suggest preferences and limitations on behalf
of the rejected applicants in the Personal Preferences screen.
In the Queries screen, we offer the audience a selection of
predefined queries, such as the ones listed in the introduc-
tion (bottom of Figure 3a). The Plans and Insights screen
presents insights with regard to these queries, subject to
conditions set in the preferences step (Figure 3b).

We will continue the demonstration prompting partic-
ipants to play the role of loan applicants. After setting
their features, they will be assigned a score by the present
classifier, and further interact with the system in order to

attain a plan that achieves their goals. Since the system was
designed for non-experts, it requires no prior skills.

To illustrate what happens behind the scenes, we will
invite the audience to observe the operation of different
stages in our solution. Starting with an excerpt of the raw
training data, and continuing with temporal representations
of input vectors and generated future models. Lastly, we will
examine the execution of a single candidates generator and
the candidates it generates.

Related work As the main focus of our work is to provide
explanations within a temporal framework, it relates to both
Interpretable Machine Learning and Domain Adaptation. A
significant part of the work on complex models explainabil-
ity focuses on explaining particular predictions, often in the
context of social accountability and transparency. Within
this class of works, the closest to ours are such that use
perturbations of the test point and draw conclusions based
on how the prediction changes [1], [5], [7]. These solutions
mostly promote understanding of a specific decision and
engender trust in the model performance, but they are not
well suited for attaining an actionable plan for altering the
classification, subject to personal and temporal constraints.

Our work also closely relates to the field of Domain Adap-
tation, specifically the task of predicting future classifiers
given past labeled data with timestamps [6], [8]. These are
complementary to our work, as we use such solutions as a
component of our framework.

ACKNOWLEDGMENT

This work has been partially funded by the Blavatnik Fund,

the Israeli Science Foundation, Intel, and the European Research

Council (ERC) under the Europe Unions Horizon 2020 research

and innovation programme (grant agreement No. 804302).



REFERENCES

[1] A. Datta, S. Sen, and Y. Zick, “Algorithmic transparency via quantitative
input influence: Theory and experiments with learning systems,” in
Symposium on Security and Privacy, 2016.

[2] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” arXiv, 2017.

[3] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:
Explaining the predictions of any classifier,” in SIGKDD, 2016.

[4] “Lending club loan data,” https://tinyurl.com/y7rwt59e, Kaggle.
[5] D. Deutch and N. Frost, “Constraints-based explanations of classifica-

tions,” in ICDE, 2019.
[6] C. H. Lampert, “Predicting the future behavior of a time-varying

probability distribution,” in CVPR, 2015.
[7] P. Adler, C. Falk, S. A. Friedler, T. Nix, G. Rybeck, C. Scheidegger,

B. Smith, and S. Venkatasubramanian, “Auditing black-box models for
indirect influence,” in Knowledge and Information Systems, 2018.

[8] A. Kumagai and T. Iwata, “Learning future classifiers without additional
data.” in AAAI, 2016.

https://tinyurl.com/y7rwt59e

