
COBRA: Compression via Abstraction

of Provenance for Hypothetical Reasoning

Daniel Deutch
Tel Aviv University

Yuval Moskovitch
Tel Aviv University

Noam Rinetzky
Tel Aviv University

Abstract

Data analytics often involves hypothetical reasoning: repeatedly modifying the
data and observing the induced effect on the computation result of a data-centric
application. Recent work has proposed to leverage ideas from data provenance
tracking towards supporting efficient hypothetical reasoning: instead of a costly
re-execution of the underlying application, one may assign values to a pre-
computed provenance expression. A prime challenge in leveraging this approach
for large-scale data and complex applications lies in the size of the provenance.
To this end, we present a framework that allows to reduce provenance size. Our
approach is based on reducing the provenance granularity using abstraction.
We propose a demonstration of COBRA, a system that allows examine the effect
of the provenance compression on the anticipated analysis results. We will
demonstrate the usefulness of COBRA in the context of business data analysis.

1 Introduction

Hypothetical reasoning involves examining the effect on a query/application
result of modifying its input. It is a particular type of data analytics that is of
great importance to analysts aiming at achieving a better understanding of the
data and applications in hand, thereby optimizing either or both.

Recent work [3] has proposed to leverage ideas from data provenance track-
ing towards supporting efficient hypothetical reasoning. The high level idea is
to instrument the data with symbolic variables, either at the cell or tuple level.
Then, existing provenance models such as [5] or [2] define how these variables
propagate through query evaluation, to form provenance polynomials, which
may be regarded as a symbolic representation of the query result. The polyno-
mial construction has the property that it commutes with variable valuations [2],
i.e., that the result of applying valuations directly to the computed polynomials
is guaranteed to yield the same result as that of replacing the variables with the
corresponding values in the input and then re-executing the query. Importantly,
the former (applying valuations to the polynomial) is typically much faster than

1

ar
X

iv
:2

00
7.

05
38

9v
1

 [
cs

.D
B

]
 1

0
Ju

l 2
02

0

the latter (re-running the query), and so the commutativity property serves as
a correctness guarantee for the reasoning process.

A prime challenge in leveraging this approach for large-scale data and com-
plex applications lies in the provenance size. The instrumentation process de-
scribed above often results in very large provenance polynomials. While for
the purpose of generating the provenance, it is reasonable to expect a rather
powerful hardware, e.g., a cluster or a cloud; this assumption cannot be made
for the actual interaction with the provenance expressions as applying valuation
may be performed by multiple analysts, possibly using weaker hardware. Thus,
requiring each such analyst to store and manipulate large polynomials may be
infeasible.

In a paper that is to appear in SIGMOD ’19 [4], we presented a framework
for the reduction of provenance size for hypothetical reasoning. The framework
is based on the notion of abstraction; the main idea is that instead of assigning
a distinct variable per cell/tuple, we can often group variables together, forming
an abstract “meta-variable”. By doing so, we decrease the degree of freedom for
hypotheticals (because now we are forced to assign a single value to all grouped
variables), but we also gain in provenance size: distinct monomials may become
identical, in which case they are compactly represented by a single monomial
(by summing their coefficients). Whether or not it makes sense to group vari-
ables together depends on their semantics; to enable meaningful abstraction we
introduced in [4] the notion of abstraction trees, which resemble ontologies over
the provenance variables to guide and restrict the allowed groupings.

We propose to demonstrate our solution, which we implemented in a sys-
tem called COBRA (for “COmpression using aBstRAction trees”). The system
allows examining the effect of the provenance compression on the anticipated
analysis results. The framework is based on the algorithm presented in [4],
and designed to assist the meta-analysis determine the desired bound over the
compressed provenance size and the construction of the abstraction tree. This
is done by presenting the changes in the analysis query results using valuation
of the compressed provenance with respect to valuation of the full provenance.
In more detail, COBRA gets as input provenance polynomials, generated by any
provenance engine. The meta-analyst provides to the system a valuation for
the provenance variables, an abstraction tree and a bound over the compressed
provenance size. Once the abstraction tree and bound are set, COBRA computes
an abstraction over the variables. The abstraction meta-variables are then pre-
sented to the user, and she may assign values, or use default values (average of
the original values) set by the system. Finally, the system illustrates the effect
of the compression on the analysis results by presenting the user with the query
result using the full provenance compared with the result using the compressed
provenance, the resulting provenance size, and the speedup in the assignment
time.

We will demonstrate COBRA in the context of business data analysis, using
the synthetic telephony company database, described below, as well as data
generated by the TPC Benchmark H. We will walk the audience through the
process of building the abstraction trees, and let the them interactively examine

2

Cust

ID Plan Zip

1 A 10001
2 F1 10001
3 SB1 10002
4 Y1 10001
5 V 10001
6 E 10002
7 SB2 10002
.

Calls

CID Mo Dur

1 1 522
2 1 364
3 1 779
4 1 253
5 1 168
6 1 1044
7 1 697
.

CID Mo Dur

1 3 480
2 3 327
3 3 805
4 3 290
5 3 121
6 3 1130
7 3 671
.

Plans

Plan Mo Price

Plan A 1 0.4
Family1 (F1) 1 0.35
Youth1 (Y1) 1 0.3
Veterans (V) 1 0.25
Small Business1 (SB1) 1 0.1
Small Business2 (SB2) 1 0.1
Enterprise (E) 1 0.05
.

Plan Mo Price

A 3 0.5
F1 3 0.35
Y1 3 0.25
V 3 0.2
SB1 3 0.1
SB2 3 0.15
E 3 0.05
.

Figure 1: Example database

the effect of the bound on the query results, provenance size and assignment
time.

Related Work Provenance summarization was studied in multiple contexts,
e.g., for probability computation [7] or explanations [6]. The main novel as-
pects of the present work are: (i) the problem setting which includes the use of
abstraction trees that both restrict and guide the summarization, and (ii) our
novel compression algorithms and analysis that leverage the presence of such
trees. Indeed, the way that we use these trees to define our optimization prob-
lem is geared towards hypothetical reasoning, where one wishes to optimize the
remaining degrees of freedom for hypotheticals, and is aware of the scenarios
intended to be examined.

2 Technical Background

We (informally) introduce the model underlying COBRA, through a running ex-
ample. The model and the example, as well as most of the text in this section
are taken verbatim or in a shortened form from [4]; they appear here for com-
pleteness.

Example 1 (Running example) Our running example concerns a telephony
company, whose database is illustrated in Figure 1. It includes a Cust table
with information about the customers (ID, calling plan and zip code); a Calls

table including the duration in minutes, totaled by month for each customer;
and the Plans table including the price per minute (ppm) of every plan, where

3

the ppm may vary from month to month. The company offers several calling
plans: Small business plans (SB1, SB2), enterprises plan (E), plans for youth
(Y 1, Y 2, Y 3) for families (F1, F2) and for veterans (V), as well as standard
plans (A, B). Each customer is subscribed to one calling plan.

Our example query computes the revenues of the company by summing the
per-customer-revenue, computed by multiplying the duration of calls by the ppm
of the customer’s plan, and aggregating the result per zip code:

SELECT Zip , SUM(Calls.Dur * Plans.Price)

FROM Calls , Cust , Plans

WHERE Cust.Plan = Plans.Plan

AND Cust.ID = Calls.CID

AND Calls.Mo = Plans.Mo

GROUP BY Cust.Zip

An analyst working for the company may be interested in the effect of possible
changes to the call prices on the company revenues. For example, what if the
price per minute (ppm) of all plans are decreased by 20% on March? Or what
if the ppm in the business calling plans are increased by 10%?

Provenance Polynomials COBRA gets as input provenance polynomials. Given
a set of indeterminates X we use the standard notion of a polynomial over X as
a sum of monomials, where each of which is a product of indeterminates and/or
rational numbers referred to as coefficients. An indeterminate may appear more
than once in a monomial, in which case this number of occurrences is called its
exponent. We assume that we are given a multiset of such polynomials, intu-
itively including all polynomials that appear in the provenance-aware result of
query evaluation.

Example 2 To support the hypothetical scenarios given in Example 1, we can
parameterize the (multiplicative) change in price, assigning, e.g., a distinct pa-
rameter mi to capture the change in month i. Similarly, the variables p1, f1,
y1, v, b1, b2 and e are used to parameterize the plans prices based on the plan’s
type: p1 is used to control the changes in the price of plan A, f1 for plan F1, y1
for Y 1, and v for the veterans plan. In this example we would then get as an-
swer to the above query, instead of a single aggregate value, symbolic provenance
expressions of the form

P1 = 208.8 · p1 ·m1 + 240 · p1 ·m3 + 127.4 · f1 ·m1+

114.45 · f1 ·m3 + 75.9 · y1 ·m1 + 72.5 · y1 ·m3+

42 · v ·m1 + 24.2 · v ·m3

P2 = 77.9 · b1 ·m1 + 80.5 · b1 ·m3 + 52.2 · e ·m1+

56.5 · e ·m3 + 69.7 · b2 ·m1 + 100.65 · b2 ·m3

Abstraction Trees COBRA reduces the provenance polynomial size so that
its number of monomials is below a given threshold, while supporting maximal

4

Plans

Standard

p2p1

Special

vY

y3y2y1

F

f2f1

Business

eSB

b2b1

Figure 2: An abstraction tree of the plans variables

granularity for hypothetical reasoning. To this end, we allow the user to define
abstraction trees over the variables, intuitively defining groups of variables which
will be assigned the same values. The notion of abstraction trees is critical
because determining which grouping “makes sense” is based on their semantics.
The abstraction trees may be obtained by leveraging existing ontologies on the
annotated data, in turn capturing the semantics of variables. The user may also
manually construct/augment the trees based on the expected use of provenance,
namely, form the trees so that variables that, based on the user experience, are
expected to be assigned the same value will be located in proximity to each
other in the tree.

An abstraction is then represented by a cut in the tree separating the root
from all leaves. The idea is that for every node in the chosen cut, all of its
descendant leaves are replaced by a single metavariable. Intuitively, such choice
means that for the subsequent hypothetical reasoning scenarios, all variables
below each chosen node must be assigned the same value.

Example 3 In Example 1, the plans variables may be abstracted based on their
type, e.g., plans for small businesses SB1 and SB2, or further abstracting all
Business plans, small businesses and enterprises. Abstracting the family plans
using a single variable F , and youth plans using the variable Y . We may also
consider using a coarse abstraction that combines all special plans (families,
youth and veterans) into a single variable. Figure 2 depicts the resulting ab-
straction tree.

Optimization Problem The problem we have studied in [4] is as follows:
Given a provenance polynomial and abstraction tree over (subsets of) its vari-
ables, find a choice of abstraction that reduces the provenance size, while max-
imizing the expressiveness of the abstraction; we next explain both measures.
First, the provenance size is measured by the number of monomials in the result-
ing provenance polynomial. The number of monomials is indeed the dominant
factor in the provenance size since each monomial is bounded by a typically small
constant, independent from the database size (it may depend on the query or

5

the number of hypothetical scenarios). As for the expressiveness of the abstrac-
tion, we aim at maximizing the degrees of freedom left for hypothetical analysis;
naturally, every grouping limits the possible scenarios in the sense that it forces
multiple variables to be assigned the same value. Consequently, we measure the
expressiveness of the abstraction by the number of distinct variable names it de-
fines. Our goal is to reduce the number of distinct monomials in the provenance,
while maximizing the number of distinct variables.

Example 4 Consider the abstraction tree presented in Figure 2. The following
cuts are possible abstractions:

S1 = {Business, Special, Standard}
S2 = {SB, e, f1, f2, Y, v, Standard}
S3 = {b1, b2, e, Special, Standard}
S4 = {SB, e, F, Y, v, p1, p2}
S5 = {Plans}

Each choice of abstraction may entail a “loss” in terms of the granularity of
hypothetical reasoning, in exchange for a reduction in the size of the polynomial:
consider the polynomial P1 for the revenues shown in Example 2, using the
abstraction S1 we obtain the polynomial (we use St and Sp as shorthand for
Standard and Special respectively) 208.8 ·St ·m1 +240 ·St ·m3 +245.3 ·Sp ·m1 +
211.15 ·Sp ·m3, with four different variables and four monomials, whereas using
the abstraction S5 the obtained polynomial 466.1·Plans·m1+451.15·Plans·m3,
consist of two monomials and three variables.

In this demonstration, we consider the case of a single abstraction tree (even
in this case, a monomial may still consist of multiple variables, but the ab-
straction may apply to at most one of them); note that there may still be
exponentially many cuts in the tree. In this case the optimization problem is
solvable in polynomial time complexity. In a nutshell, the algorithm traverses
the abstraction tree in a bottom-up fashion, and using dynamic programming,
computes an abstraction for the sub-tree rooted by each one of the inner nodes
(see [4] for full details).

3 System Overview

COBRA’s back-end side is implemented in Python 3. Its front-end is written in
Angular JS framework using Bootstrap toolkit. It runs on Windows 10. The
system architecture is depicted in Figure 4, and the user interface is shown in
Figure 3. We next briefly explain the components of the system.

Back-end As mentioned earlier, the input to COBRA is set of provenance poly-
nomials (generated by any provenance engine), default assignment to the prove-
nance variables, a bound over the provenance size and abstraction tree (given by
the user). The system then computes an optimal abstraction over the polyno-
mials, namely, an abstraction that reduces the provenance size below the given

6

Figure 3: User Interface

bound while maximizing the number of variables. This is done using the algo-
rithm presented in [4]. Once the abstraction is generated, the user may input
valuation to the compressed polynomials’ variables, and the system generates
the query results under the scenario given by the assignment, and presents the
results to the user.

Front-end The interaction with COBRA is done via a dedicated interface shown
in Figure 3. The user is presented with the query result under a default assign-
ment to the input provenance variables. She can then construct the abstraction
tree, and set the bound over the provenance size. Once the abstracted poly-
nomials are generated, the system presents the user the abstraction variables
as shown in Figure 5. Each meta-variable in the abstraction is presented with
the list of abstracted variables, each with its value in the original assignment,
and a default value (average over the abstracted variables’ values). The user
can then modify the assigned values of the meta-variables, and COBRA presents
the the query result under the given assignment, showing the changes from the
initial result. In addition, the system provides the user with information about
the resulting provenance size and the assignment speedup using the compressed
polynomials.

4 Demonstration Scenario

We will demonstrate the usefulness of COBRA using both synthetic and real
datasets. In the first phase, we will discuss the dataset. We will use the prove-
nance generated for the query from our running example, where the plans price

7

COBRA

Provenance Polynomials

Bound,
Abstraction Trees Provenance

Compression
Abstracted

Polynomials

Abstracted
Variables Assignment

Results

Assignment
Provenance

Engine

Figure 4: System Architecture

Figure 5: Meta-variables Assignment Screen

was parametrized by month and plan. In addition, we will demonstrate COBRA

in the context of TPC Benchmark H (TPC-H) [1], which consists of a suite of
business oriented queries. To this end, we will use the data generated by the
benchmark and present a subset of its queries.

We will walk the audience through the process of building the abstraction
trees, by presenting the underlying database and the query used to generate
provenance. There are multiple reasonable abstractions for each query. For
instance, in our running example, if the analyst knows that the prices are usually
changed uniformly during each quarter, a natural abstraction tree would consist
of quarter meta-variables q1 . . . , q4, that can be used to group the monthly
variables, i.e., the variables m1, . . . ,m3 are the children of q1, m4, . . . ,m6 of q2
etc. The abstraction tree given in Figure 2 is another plausible example. We
will use predefined trees for each one of the datasets.

In the second phase, we will let the audience interactively examine the effect
of the bound on the query results, provenance size and assignment time. As
explained in Section 2, given the provenance polynomials, abstraction tree and
bound, the system computes an abstraction. Once the abstraction is computed,
COBRA presents the user the abstraction variables with default assignment as
shown in Figure 5. We will let the user select valuations to the abstraction
variables and observe the results: the changes in the analysis query results
using the compressed provenance.

Moreover, the system provides the user information about the resulting
provenance size and the assignment speedup. For example, the provenance size
of the polynomials generated by our running example using a database of one

8

million customers parameterized using month variables and the leaves of the ab-
straction trees in Figures 2 is 139, 260. If we set the bound over the provenance
size to 94, 600 the compressed provenance expression obtained is of size 88, 620
and the assignment speedup is 47%, while setting the bound to 38, 600 results
in provenance polynomials of size 37, 980 and assignment speedup of 79%.

Finally, we will allow the audience to look “under the hood”. In particular,
we will show the audience the part of the provenance polynomials, intermedi-
ate results of the algorithm and the computational sequence that lead to the
resulting abstraction.

Acknowledgements

This research has been funded by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 804302), the Israeli Ministry of Science, Technology and Space,
Len Blavatnik and the Blavatnik Family foundation, Blavatnik Interdisciplinary
Cyber Research Center at Tel Aviv University, and the Pazy Foundation. The
contribution of Yuval Moskovitch is part of Ph.D. thesis research conducted at
Tel Aviv University.

References

[1] Tpc benchmark. http://www.tpc.org/tpch/.

[2] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate
queries. In PODS, 2011.

[3] D. Deutch, Z. G. Ives, T. Milo, and V. Tannen. Caravan: Provisioning for
what-if analysis. In CIDR, 2013.

[4] D. Deutch, Y. Moskovitch, and N. Rinetzky. Hypothetical reasoning via
provenance abstraction. to appear in SIGMOD 2019.

[5] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In
PODS, 2007.

[6] S. Lee, X. Niu, B. Ludäscher, and B. Glavic. Integrating approximate sum-
marization with provenance capture. In TaPP, 2017.

[7] C. Ré and D. Suciu. Approximate lineage for probabilistic databases.
PVLDB, 1(1), 2008.

9

http://www.tpc.org/tpch/

	1 Introduction
	2 Technical Background
	3 System Overview
	4 Demonstration Scenario

