
Crowdsourced Collective Entity Resolution with
Relational Match Propagation

Jiacheng Huang†, Wei Hu†∗, Zhifeng Bao‡ and Yuzhong Qu†
†State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

‡RMIT University, Melbourne, Australia

Email: jchuang.nju@gmail.com, whu@nju.edu.cn, zhifeng.bao@rmit.edu.au, yzqu@nju.edu.cn

Abstract—Knowledge bases (KBs) store rich yet heterogeneous
entities and facts. Entity resolution (ER) aims to identify entities
in KBs which refer to the same real-world object. Recent studies
have shown significant benefits of involving humans in the loop of
ER. They often resolve entities with pairwise similarity measures
over attribute values and resort to the crowds to label uncertain
ones. However, existing methods still suffer from high labor costs
and insufficient labeling to some extent. In this paper, we propose
a novel approach called crowdsourced collective ER, which
leverages the relationships between entities to infer matches
jointly rather than independently. Specifically, it iteratively asks
human workers to label picked entity pairs and propagates the
labeling information to their neighbors in distance. During this
process, we address the problems of candidate entity pruning,
probabilistic propagation, optimal question selection and error-
tolerant truth inference. Our experiments on real-world datasets
demonstrate that, compared with state-of-the-art methods, our
approach achieves superior accuracy with much less labeling.

I. INTRODUCTION

Knowledge bases (KBs) store rich yet heterogeneous entities

and facts about the real world, where each fact is structured as

a triple in the form of (entity, property, value). Entity reso-

lution (ER) aims at identifying entities referring to the same

real-world object, which is critical in cleansing and integration

of KBs. Existing approaches exploit diversified features of

KBs, such as attribute values and entity relationships, see

surveys [1], [2], [3], [4]. Recent studies have demonstrated

that crowdsourced ER, which recruits human workers to solve

micro-tasks (e.g., judging if a pair of entities is a match), can

improve the overall accuracy.

Current crowdsourced ER approaches mainly leverage tran-
sitivity [5], [6], [7] or monotonicity [8], [9], [10], [11], [12]

as their resolution basis. The transitivity-based approaches rely

on the observation that the match relation is usually an equiva-
lence relation. The monotonicity-based ones assume that each

pair of entities can be represented by a similarity vector of

attribute values, and the binary classification function, which

judges whether a similarity vector is a match, is monotonic in

terms of the partial order among the similarity vectors.

However, both kinds of approaches can hardly infer matches

across different types of entities. Let us see Figure 1 for

example. The figure shows a directed graph, called entity
resolution graph (ER graph), in which each vertex denotes a

pair of entities and each edge denotes a relationship between

∗Corresponding author

Fig. 1: An ER graph example between YAGO and DBpedia.

Entities in YAGO are prefixed by “y:”, and entities in DBpedia

are prefixed by “d:”. Joan, John and Tim are persons. Cradle
and Player are movies. NYC and Evanston are cities.

two entity pairs. Assume that (y:Joan, d:Joan) is labeled as

a match, the birth place pair (y:NYC, d:NYC) is expected to

be a match. Since these two pairs are in different equivalence

classes, the transitivity-based approaches are apparently unable

to take effect. As different relationships (like y:directedBy and

y:wasBornIn) make most similarity vectors of entities of dif-

ferent types incomparable, the monotonicity-based approaches

have to handle them separately.

In this paper, we propose a new approach called Remp

(Relational match propagation) to address the above problems.

The main idea is to leverage collective ER that resolves entities

connected by relationships jointly and distantly, based on a

small amount of labels provided by workers. Specifically,

Remp iteratively asks workers to label a few entity pairs and

propagates the labeling information to their neighboring entity

pairs in distance, which are then resolved jointly rather than

independently. There remain two challenges to achieve such a

crowdsourced collective ER.

The first challenge is how to conduct an effective relational

match propagation. Relationships like functional/inverse func-

tional properties in OWL [13] (e.g., y:wasBornIn) provide

a strong evidence, but these properties only account for a

small portion while the majority of relationships is multi-

valued (e.g., actedIn). Multi-valued relationships often connect

non-matches to matches (e.g., (y:John, d:Joan) is connected

to (y:Cradle, d:Cradle) in Figure 1). Therefore, we propose

a new relational match propagation model, to decide which

neighbors can be safely inferred as matches.

The second challenge is how to select good questions to

ask workers. For an ER graph involving two large KBs, the

number of vertices (i.e. candidate questions) can be quadratic.

We introduce an entity pair pruning algorithm to narrow the

search space of questions. Moreover, different questions have

37

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00011

different inference power. In order to maximize the expected

number of inferred matches, we propose a question selection

algorithm, which chooses possible entity matches scattered in

different parts of the ER graph to achieve the largest number

of inferred matches.

In summary, the main contributions of this paper are listed

as follows:

• We design a partial order based entity pruning algorithm,

which significantly reduces the size of an ER graph.

• We propose a relational match propagation model, which

can jointly infer the matches between different types of

entities in distance.

• We formulate the problem of optimal multiple questions

selection with cost constraint, and design an efficient

algorithm to obtain approximate solutions.

• We present an error-tolerant method to infer truths from

imperfect human labeling. Moreover, we train a classifier

to handle isolated entity pairs.

• We conduct real-world experiments and comparison with

state-of-the-art approaches to assess the performance

of our approach. The experimental results show that

our approach achieves superior accuracy with much fewer

labeling tasks.

Paper organization. Section II reviews the literature. Sec-

tion III defines the problem and sketches out the approach.

In Sections IV–VII, we describe the approach in detail. Sec-

tion VIII reports the experiments and results. Last, Section IX

concludes this paper.

II. RELATED WORK

A. Crowdsourced ER

Inference models. Based on the transitive relation of entity

matches, many approaches such as [5], [14] make use of prior

match probabilities to decide the order of questions. Firmani

et al. [7] proved that the optimal strategy is to ask questions

in descending order of entity cluster size. They formulated

the problem of crowdsourced ER with early termination and

put forward several question ordering strategies. Although

the transitive relation can infer matches within each cluster,

workers need to check all clusters.

On the other hand, Arasu et al. [8] investigated the mono-

tonicity property among the similarity vectors of entity pairs.

Given two similarity thresholds s1, s2 and s1 � s2, we have

Pr[u1 � u2 | s(u1, u2) � s1] ≥ Pr[u1 � u2 | s(u1, u2) � s2].
ALGPR [8] and ERLEARN [11] use the monotonicity prop-

erty to search new thresholds, and estimate the precision of

results. In particular, the partial order based approaches [15],

[16], [12] explore similarity thresholds among similarity vec-

tors. Furthermore, POWER [16] groups similarity vectors

to reduce the search space. Corleone [9] and Falcon [10]

learn random forest classifiers, where each decision tree is

equivalent to a similarity vector. However, these approaches

are designed for ER with single entity type. To leverage

monotonicity on ER between KBs with complex type informa-

tion, HIKE [12] uses hierarchical agglomerative clustering to

partition entities with similar attributes and relationships, and

uses the monotonicity techniques on each entity partition to

find matches. Although our approach also uses monotonicity,

it only uses monotonicity to prune candidate entity pairs.

In addition, our approach allows match inference between

different entity types (e.g., from persons to locations) to reduce

the labeling efforts.
Question interfaces. Pairwise and multi-item are two common

question interfaces. The pairwise interface asks workers to

judge whether a pair of entities is a match [7], [17]. Differently,

Marcus et al. [18] proposed a multi-item interface to save

questions, where each question contains multiple entities to

be grouped. Wang et al. [19] minimized the number of multi-

item questions on the given entity pair set such that each

question contains at most k entities. Waldo [20] is a recent

hybrid interface, which optimizes the trade-off between cost

and accuracy of the two question interfaces based on task

difficulty. The above approaches do not have the inference

power and they may generate a large amount of questions.
Quality control. To deal with errors produced by work-

ers, quality control techniques [6], [20], [21] leverage the

correlation between matches and workers to find inaccurate

labels, and improve the accuracy by asking more questions

about uncertain ones. These approaches gain improvement by

redundant labeling.

B. Collective ER
In addition to attribute values, collective ER [22], [23],

[24], [25] further takes the relationships between entities into

account. CMD [26] extends the probabilistic soft logic to learn

rules for ontology matching. LMT [27] learns soft logic rules

to resolve entities in a familial network. Because learning

a probabilistic distribution on large KBs is time-consuming,

PARIS [28] and SiGMa [29] implement message passing-

style algorithms that obtain seed matches created by hand

crafted rules and pass the match messages to their neighbors.

However, they do not leverage crowdsourcing to improve

the ER accuracy and may encounter the error accumulation

problem.

III. APPROACH OVERVIEW

In this section, we present necessary preliminaries to define

our problem, followed by a general workflow of our approach.

Frequently used notations are summarized in Table I.

A. Preliminaries & Problem Definition
KBs store rich, structured real-world facts. In a KB, each

fact is stated in a triple of the form (entity, property, value),
where property can be either an attribute or a relationship,

and value can be either a literal or another entity. The

sets of entities, literals, attributes, relationships and triples

are denoted by U,L,A,R and T , respectively. Therefore, a

KB is defined as a 5-tuple K = (U,L,A,R, T). Moreover,

attribute triples Tattr ⊆ U×A×L attach entities with literals,

e.g., (Leonardo da Vinci, birth date, “1452-4-15”), and rela-

tionship triples Trel ⊆ U×R×U link entities by relationships,

e.g., (Leonardo da Vinci,works,Mona Lisa).

38

TABLE I: Frequently used notations

Notations Descriptions

K, u a KB and an entity

r, a a relationship, and an attribute

Nr
u, N

a
u the value sets of r and a w.r.t. u

p, q an entity pair, and a question

mp,mq the event that p and q is a match

M a set of entity or attribute matches

C a set of candidate questions

Q a set of asked questions

H a set of labels Fig. 2: Workflow of the proposed approach

Entity Resolution (ER) aims to resolve entities in KBs denot-

ing the same real-world thing. Let u1, u2 denote two entities

in two different KBs. We call the entity pair p = (u1, u2)
a match and denote it by u1 � u2 or mp if u1, u2 refer to

the same. In contrast, we call p = (u1, u2) a non-match and

denote it by u1 �� u2 if u1, u2 refer to two different objects.

Both matches and non-matches are regarded as resolved entity

pairs, and other pairs are regarded as unresolved. Traditionally,

reference matches (i.e., gold standard) are used to evaluate the

quality of the ER results, and precision, recall and F1-score

are widely-used metrics.

Crowdsourced ER carries out ER with human helps. Usu-

ally, it executes several human-machine loops, and in each

loop, the machine picks one or several questions to ask

workers to label them and updates the ER results in terms

of the labels. Due to the monetary cost of human labors,

a crowdsourced ER algorithm is expected to ask limited

questions while obtaining as many results as possible.

Definition 1 (Crowdsourced Collective ER). Given two KBs
K1 and K2, and a budget, the crowdsourced collective ER
problem is to maximize recall with a precision restriction by
asking humans to label tasks while not exceeding the budget.

Specifically, we assume that both KBs contain “dense” re-

lationships and focus on using matches obtained from workers

to jointly infer matches with relationships.

B. A Workflow of Our Approach

Given two KBs as input, Figure 2 shows the workflow of

our approach to crowdsourced collective ER. After iterating

four processing stages, the approach returns a set of matches

between the two KBs.

1) ER graph construction aims to construct a small ER

graph by reducing the amount of vertices (i.e. entity

pairs). It first conducts a similarity measurement to filter

out some non-matches. At the same time, it uses some

matches obtained from exact matching [12], [29], [30]

to calculate the similarities between attributes and find

attribute matches. Then, based on the attribute matches,

it assembles the similarities between values to similarity

vectors, and leverages the natural partial order on the

vectors to prune more vertices.

2) Relational match propagation models how to use

matches to infer the match probabilities of unresolved

entity pairs in each connected component of the ER

graph. It first uses some matches and maximum likeli-

hood estimation to measure the consistency of relation-

ships. Then, based on the consistency of relationships

and the ER graph structure, it computes the conditional

match probabilities of unresolved entity pairs given the

matches. The conditional match probabilities derive a

probabilistic ER graph.

3) Multiple questions selection selects a set of unresolved

entity pairs in the probabilistic ER graph as questions

to ask workers. It models the discovery of inferred

match set for each question as the all-pairs shortest path

problem and uses a graph-based algorithm to solve it.

We prove that the multiple questions selection problem

is NP-hard and design a greedy algorithm to find the

best questions to ask.

4) Truth inference infers matches based on the results

labeled by workers. It first computes the posterior match

probabilities of the questions based on the quality of the

workers, and then leverages these posterior probabilities

to update the (probabilistic) ER graph. Also, for isolated

entity pairs, it builds a random forest classifier to avoid

asking the workers to check them one by one.

The approach stops asking more questions when there is no

unresolved entity pair that can be inferred by relational match

propagation.

IV. ER GRAPH CONSTRUCTION

A. ER Graph

Graph structures [31], [32] are widely used to model the

resolution states of entity pairs and the relationships between

them. For example, Dong et al. [31] proposed dependency

graph to model the dependency between similarities of entity

pairs. In this paper, we use the notion of ER graph to denote

this graph structure. Different from dependency graph, each

edge in the ER graph is labeled with a pair of relationships

from two KBs.

Definition 2 (ER Graph). Given two KBs K1 = (U1, L1, A1,
R1, T1) and K2 = (U2, L2, A2, R2, T2), an ER graph on
K1 and K2 is a directed, edge-labeled multigraph G =
(V,E, le), such that (1) V ⊆ U1 × U2; (2) for each vertex
pair (u1, u2), (u

′
1, u

′
2) ∈ V ,

(
(u1, u2), (u

′
1, u

′
2)
) ∈ G ∧

lv
(
(u1, u2), (u

′
1, u

′
2)
)
= (r1, r2) if and only if (u1, r1, u

′
1) ∈

T1 ∧ (u2, r2, u
′
2) ∈ T2.

39

Figure 1 illustrates an ER graph fragment built from DB-

pedia and YAGO. Note that, an entity can occur in multiple

vertices, and a relationship can appear in different edge labels.

A probabilistic ER graph is an ER graph where each edge(
(u1, u2), (u

′
1, u

′
2)
)

is labeled with a conditional probability

Pr(u′1 � u′2 |u1 � u2). The major challenge of constructing

an ER graph is how to significantly reduce the size of the

graph while preserving as many potential entity matches as

possible.

B. Candidate Entity Match Generation

We conduct a string matching on entity labels (e.g., the

values of rdfs:label) to generate candidate entity matches

and regard them as vertices in the ER graph. Specifically,

we first normalize entity labels via lowercasing, tokenization,

stemming, etc. Then, we leverage the Jaccard coefficient—

the size of the intersection divided by the size of the union of

two sets—as our similarity measure to compute similarities on

the normalized label token sets and follow the previous studies

[5], [16], [19] to prune the entity pairs whose similarities are

less than a predefined threshold (e.g., 0.3). Although the choice

of thresholds is dataset dependent, this process runs fast and

largely reduces the amount of non-matches, thus helping the

ER approaches scale up. Note that there are many choices

on the similarity metric, e.g., Jaccard, cosine, dice and

edit distance [33]; our approach can work with any of them

and we use Jaccard for illustration purpose only. The set of

candidate entity matches is denoted by Mc. Similar to [12],

we use the label similarities as prior match probabilities (i.e.,

Pr[mp]). More accurate estimation in [6], [7] can be achieved

by human labeling.

C. Attribute Matching

In Mc, we refer to the subset of its entities that has exactly

the same labels as initial entity matches. We leverage them as

a priori knowledge for attribute and relationship matching (see

Sections IV-C and V-A). Other features, e.g., owl:sameAs and

inverse functional properties [13], may also be used to infer

initial entity matches [34], [30]. Note that we do not directly

add initial entity matches in the final ER results, because they

may contain errors. The set of initial entity matches is denoted

by Min.

For such a set of initial entity matches Min between two

KBs K1 = (U1, L1, A1, R1, T1) and K2 = (U2, L2, A2, R2,
T2), we proceed to define the following attribute similarity to

find their attribute matches. For any two attributes a1 ∈ A1

and a2 ∈ A2, their similarity sim(a1, a2) is defined as the

average similarity of their values:

simA(a1, a2) =

∑
(u1,u2)∈Min

simL(N
a1
u1
, Na2

u2
)∣∣{(u1, u2) ∈Min : Na1

u1 ∪Na2
u2 �= ∅}

∣∣ , (1)

where Na1
u1

= {l1 : (u1, a1, l1) ∈ T1} and Na2
u2

is defined

analogously. simL represents an extended Jaccard similarity

measure for two sets of literals, which employs an internal

literal similarity measure and a threshold to determine two

literals being the same when their similarity is not lower than

the threshold [35]. For different types of literals, we use the

Jaccard coefficient for strings and the maximum percentage

difference for numbers (e.g., integers, floats and dates). The

threshold is set to 0.9 to guarantee high precision. We refer

interested readers to [36] for more information about attribute

matching.

For simplicity, every attribute in one KB is restricted to

match at most one attribute in the other KB. This global 1:1

matching constraint is widely used in ontology matching [37],

and facilitates our assembling of similarity vectors (later in

Section IV-D). The 1:1 attribute matching selection is modeled

as the bipartite graph matching problem and solved with the

Hungarian algorithm [38] in O((|A1|+ |A2|)2|A1||A2|) time.

The set of attribute matches is denoted by Mat.

D. Partial Order Based Pruning

Given the candidate entity match set Mc and the attribute

match set Mat, for each candidate (u1, u2) ∈ Mc, we create

a similarity vector s(u1, u2) = (s1, s2, . . . , s|Mat|), where si
is the literal similarity (simL) between u1 and u2 on the ith

attribute match (1 ≤ i ≤ |Mat|). As a consequence, a natural

partial order exists among the similarity vectors: s � s′ if

and only if ∀1 ≤ i ≤ |Mat|, si ≥ s′i. This partial order can

be used to determine whether an entity pair is a (non-)match

in two ways: (i) an entity pair (u1, u2) is a match if there

exists an entity pair (u′1, u
′
2) such that (u′1, u

′
2) is a match

and s(u1, u2) � s(u′1, u
′
2); and (ii) (u1, u2) is a non-match

if there exists (u′1, u
′
2) such that (u′1, u

′
2) is a non-match and

s(u′1, u
′
2) � s(u1, u2).

We incorporate this partial order into a k-nearest neighbor

search for further pruning the candidate entity match set Mc.

Let us assume that an entity u1 in one KB has a set of

candidate match counterparts {u1
2, u

2
2, . . . , u

J
2 } in another KB.

The similarity vectors are written as s(u1, u
1
2), s(u1, u

2
2), . . . ,

s(u1, u
J
2), and we want to determine the top-k in them. Since

the partial order is a weak ordering, we count the number of

vectors strictly larger than each pair (u1, u
j
2) (1 ≤ j ≤ J)

as its “rank”, i.e, the minimal rank in all possible refined

full orders. Note that the counterparts of entities in one entity

pair are both considered. So, the worst rank of an entity pair

(u1, u2), denoted by min rank(u1, u2), is

min rank(u1, u2) = max
i∈{1,2}

min ranki(u1, u2) ,

min rank1(u1, u2) =
∣∣{u′2 : s(u1, u

′
2)
 s(u1, u2)}

∣∣ ,
min rank2(u1, u2) =

∣∣{u′1 : s(u′1, u2)
 s(u1, u2)}
∣∣ ,

(2)

where all (u1, u2), (u1, u
′
2), (u

′
1, u2) ∈Mc.

By min rank, we design a modified k-nearest neighbor

algorithm on this partial order (see Algorithm 1). Because the

full order among candidate entity matches is unknown, instead

of finding the top-k matches directly, we prune the ones that

cannot be in top-k. Thus, each entity pair (u1, u2) ∈Mc such

that min rank(u1, u2) ≥ k needs to be pruned. Also, each

pair smaller than a pruned pair should be removed based on the

partial order to avoid redundant checking, because min rank

of these pairs must be greater than k. The set of retained entity

40

Algorithm 1: Partial order based pruning

Input: Candidate entity match set Mc, attribute match set Mat,
threshold k

Output: Retained entity match set Mrd

1 foreach (u1, u2) ∈Mc do pre-compute s(u1, u2);
2 Mrd ← PruningInOneWay(Mc, U1, k);
3 Mrd ← PruningInOneWay(Mrd, U2, k);
4 return Mrd;

5 Function PruningInOneWay(M,Ui, k)
6 D ← ∅;
7 foreach ui ∈ Ui do
8 B ← {

(u1, u2) ∈M : u1 = ui ∨ u2 = ui

}
;

9 if |B| ≤ k then continue; /* no need to prune */
10 foreach (u1, u2) ∈ B do
11 if min ranki(u1, u2) ≥ k then

/* (u′
1, u

′
2) cannot be pruned here */

12 B ← {
(u′

1, u
′
2) ∈ B : s(u1, u2) 	
 s(u′

1, u
′
2)
}

;

13 D ← D ∪B;

14 return D;

matches is denoted by Mrd, where each entity is involved in

nearly k candidate matches, due to the weak ordering of partial

order.
Algorithm 1 first partitions entity match set M into each

block B where all pairs contain the same entity (Line 8). Then,

it checks each entity pair (u1, u2) ∈ B, and prunes entity pairs

such that min rank ≥ k (Lines 10–12). Finally, the retained

pairs in B are added into the output match set.
Algorithm 1 first takes O(|Mc||Mat|) time to pre-compute

the similarity vectors. When processing Ui (i = 1, 2), the

pruning step (Lines 7–13) checks at most |Mc| pairs, and each

time it spends O(3|U3−i||Mat|) time to compute min ranki,

prune pairs in B and store the retained pairs in D. So, the

overall time complexity of Algorithm 1 is O
(|Mc||Mat|(|U1|+

|U2|)
)
. In practice, similarity vector construction is the most

time-consuming part, while the pruning step only needs to

check a small amount of entities in U1 or U2.

V. RELATIONAL MATCH PROPAGATION

Given an ER graph G = (V,E, lv, le) and an entity match

u1 � u2 in it, the relational match propagation infers how

likely each unresolved entity pair p ∈ V is a match based

on the structure of G, i.e. Pr[mp |u1 � u2]. In this section,

we first consider a basic case that unresolved entity pairs are

neighbors of a match in G. Then, we generalize it to the

case that unresolved pairs are reachable from several matches.

In the basic case, we resolve entity pairs between two value

sets of a relationship pair, and define the consistency between

relationships to measure the portion of values containing

matched counterparts in another value set. The consistency

and the prior match probabilities of entity pairs are further

combined to obtain “tight” posterior match probabilities. In

the general case, we propose a Markov model on paths from

matches to unresolved ones to find the match probability

bounds.

A. Consistency Between Relationships
Functional/inverse functional properties are ideal for match

propagation. For example, wasBornIn is a functional property,

and the born places of two persons in a match must be

identical. However, we cannot just rely on functional/inverse

functional properties, since many relationships are multi-

valued and only a part of the values may match. Thus, we

define the consistency between relationships as follows.

Let r1 and r2 be two relationships in two KBs . We assume

that, given the condition that u1 � u2 ∧ u′1 ∈ Nr1
u1

, the

probability of the event ∃u′2 :
(
u′2 ∈ Nr2

u2
∧ u′1 � u′2

)
is

subject to a binary distribution with parameter ε1. Symmetri-

cally, we define parameter ε2. We use ε1 and ε2 to represent

the consistency for two relationships r1 and r2, respectively:

ε1 = Pr[∃u′2 : u′2 ∈ Nr2
u2
∧ u′1 � u′2 |u1 � u2, u

′
1 ∈ Nr1

u1
],

ε2 = Pr[∃u′1 : u1 ∈ Nr1
u1
∧ u′2 � u′1 |u2 � u1, u

′
2 ∈ Nr2

u2
].

(3)

where Nr1
u1
, Nr2

u2
are the value sets of relationships r1, r2 w.r.t.

entities u1, u2, respectively.

To estimate ε1 and ε2, we use the value distribution on the

initial entity matches Min. For an entity pair (u1, u2) ∈Min,

we introduce a latent random variable Lr1,r2
u1,u2

= |Mr1,r2
u1,u2

|,
where Mr1,r2

u1,u2
denotes the set of entity matches in Nr1

u1
×Nr2

u2
.

Note that we omit r1, r2 in Lr1,r2
u1,u2

and Mr1,r2
u1,u2

to simplify

notations. Similar to [39], we make an assumption on the

entity sets: no duplicate entities exist in each entity set. Hence,

Lu1,u2
is also the number of entities in Nr1

u1
(or Nr2

u2
) which

appear in Mu1,u2
. Based on the latent variable Lu1,u2

, the

likelihood probability of (Nr1
u1
, Nr2

u2
, Lu1,u2

) is

Pr[Nr1
u1
, Nr2

u2
, Lu1,u2

] =
∏

i=1,2

(|Nri
ui
|

Lu1,u2

)
(εi
1−εi

)Lu1,u2 (1− εi)
|Nri

ui
|. (4)

Then, we use the maximum likelihood estimation to obtain

ε1 and ε2:

max
ε1,ε2,L·,·

∏
(u1,u2)∈Min

Pr[Nr1
u1
, Nr2

u2
, Lu1,u2]. (5)

Since each Lu1,u2 is an integer variable, the brute-force

optimization can cost exponential time. Next, we present an

optimization process. Let ζ = ε1ε2
(1−ε1)(1−ε2)

and ξ(ε1, ε2) =

(1− ε1)
b1(1− ε2)

b2 , where b1 =
∑ |Nr1

u1
|, b2 =

∑ |Nr2
u2
|. We

simplify (5) to maxε1,ε2 ξ(ε1, ε2)
∏

maxLu1,u2
cLu1,u2

ζLu1,u2 ,

where cLu1,u2
=

(|Nr1
u1
|

Lu1,u2

)(|Nr2
u2
|

Lu1,u2

)
. Notice that ciζ

i = cjζ
j has

only one solution for different integers i, j. Thus, the curves

cLu1,u2
ζLu1,u2 (0 ≤ Lu1,u2

≤ LM) can have at most
(
LM+1

2

)
common points, where LM = min{|Nr1

u1
|, |Nr2

u2
|}. Therefore,

maxLu1,u2
cLu1,u2

ζLu1,u2 is an O(L2
M)-piecewise continuous

function, and the product of these O(L2
M)-piecewise contin-

uous functions is an O(max{|Nr1
u1
|4, |Nr2

u2
|4})-piecewise con-

tinuous function. As a result, we can optimize (5) by solving

O(max{|Nr1
u1
|4, |Nr2

u2
|4}) continuous optimization problems

with two variables, which runs efficiently.

B. Match Propagation to Neighbors

A basic case is that the unresolved entity pairs are adjacent

to a match u1 � u2 in G. We consider the neighbors with the

same edge label, i.e. relationship pair (r1, r2), together. Then,

our goal is to identify matches between Nr1
u1

and Nr2
u2

.

41

Let Mu1,u2
⊆ Nr1

u1
× Nr2

u2
denote a set of entity matches.

We consider two factors about how likely Mu1,u2 can be

the correct match result of Nr1
u1
× Nr2

u2
: (1) the prior match

probabilities of matches without neighborhood information;

(2) the consistency of the relationships. The match probability

of Mu1,u2
given u1 � u2 is:

Pr[Mu1,u2
|u1 � u2] =

1

Z
f(Mu1,u2

|Nr1
u1
, Nr2

u2
)

× g(Mu1,u2
|Nr1

u1
) g(Mu1,u2

|Nr2
u2
), (6)

where Z is the normalization factor. f(Mu1,u2 |Nr1
u1
, Nr2

u2
) is

the prior match probability. g(Mu1,u2
|Nr1

u1
), g(Mu1,u2

|Nr2
u2
)

are the consistency of Mu1,u2
w.r.t. Nr1

u1
, Nr2

u2
, respectively.

Without considering neighborhood information, the prior

match probability f(Mu1,u2 |Nr1
u1
, Nr2

u2
) is defined as the

likelihood function of Mu1,u2
:

f(Mu1,u2
|Nr1

u1
, Nr2

u2
) =

∏
p∈Mu1,u2

Pr[mp]×
∏

p∈Nr1
u1
×N

r2
u2
\Mu1,u2

(1− Pr[mp]), (7)

where Pr[mp] denotes the prior probability of entity pair p
being a match, and 1 − Pr[mp] denotes the prior probability

of p being a non-match.

Let π1(Mu1,u2
) = {u′1 | (u′1, u′2) ∈ Mu1,u2

}. Note that

when u1 and u2 form a match, each entity u′1 ∈ π1(Mu1,u2
)

is a neighbor of u1 for relationship r1 such that ∃u′2 : u′2 ∈
Nr2

u2
∧u′2 � u′1. Based on ε1, the consistency of Mu1,u2 given

Nr1
u1

is defined as follows:

g(Mu1,u2
|Nr1

u1
) = ε

|π1(Mu1,u2
)|

1 (1− ε1)
|Nr1

u1
|−|π1(Mu1,u2

)|. (8)

π2(Mu1,u2
) and g(Mu1,u2

|Nr2
u2
) can be defined similarly.

Finally, we obtain the posterior match probability of u′1 �
u′2 by marginalizing Pr[u′1 � u′2,Mu1,u2

|u1 � u2]:

Pr[u′1 � u′2 |u1 � u2]

=
∑

Mu1,u2

Pr[u′1 � u′2,Mu1,u2
|u1 � u2] =

∑
Mu1,u2

: (u′
1,u

′
2)∈Mu1,u2

Pr[Mu1,u2
|u1 � u2],

(9)

where Mu1,u2
is selected over (Nr1

u1
×Nr2

u2
) ∩ V .

Example. Let (u1, u2) = (y:Tim, d:Tim), r1 and r2
denote the relationship directed, ε1 = ε2 = 0.9,

and Pr[mp] ≡ 0.5 (implying all pairs are viewed as

the same). From Figure 1, we can find that Nr1
u1

=
{y:Cradle, y:Player} and Nr2

u2
= {d:Cradle, d:Player}. Thus,

when Mu1,u2
= {(y:Cradle, d:Cradle), (y:Player, d:Player)},

Pr[Mu1,u2 |u1 � u2] = 0.53 × 0.954 ≈ 0.1; when M ′
u1,u2

=
{(y:Cradle, d:Player)}, Pr[M ′

u1,u2
|u1 � u2] = 0.53×0.952×

0.052 ≈ 0.0003. So, Mu1,u2
is more likely to be the match set

within Nr1
u1
× Nr2

u2
. Furthermore, Pr[y:Cradle � d:Cradle] ≈

0.99, whereas Pr[y:Cradle � d:Player] ≈ 0.01.

C. Distant Match Propagation

The above match propagation to neighbors only estimates

the match probabilities of direct neighbors of an entity match,

which lacks the capability of discovering entity matches far

away. In the following, we extend it to a more general case,

called distant match propagation, where a match reaches an

unresolved entity pair through a path.

Intuitively, given a match (u1, u2) and an unresolved pair

(u′1, u
′
2), the distant propagation process can be modeled as a

path consisting of the entity pairs from (u1, u2) to (u′1, u
′
2),

where each unresolved pair can be inferred as a match via

its precedent. Assume that there is a path (u0
1, u

0
2), (u

1
1, u

1
2),

. . . , (ul
1, u

l
2) in G, where (u0

1, u
0
2) = (u1, u2) and (ul

1, u
l
2) =

(u′1, u
′
2). According to the chain rule of conditional probabil-

ity, we have

Pr[ul
1 � ul

2 |u0
1 � u0

2]

≥ Pr[ul
1 � ul

2, u
2
1 � u2

2, . . . , u
l
1 � ul

2 |u0
1 � u0

2]

=
∏l

i=1
Pr[ui

1 � ui
2 |u0

1 � u0
2, . . . , u

i−1
1 � ui−1

2]

=
∏l

i=1
Pr[ui

1 � ui
2 |ui−1

1 � ui−1
2],

(10)

where the last “=” holds because we assume that this propa-

gation path satisfies the Markov property [22]. Inequation (10)

gives a lower bound for Pr[ul
1 � ul

2 |u0
1 � u0

2]. The largest

lower bound is selected to estimate Pr[u′1 � u′2 |u1 � u2].
We estimate Pr[u′1 � u′2 |u1 � u2] in Algorithm 2.

VI. MULTIPLE QUESTIONS SELECTION

Based on the relational match propagation, unresolved entity

pairs can be inferred by human-labeled matches. However,

different questions have different inference capabilities. In this

section, we first describe the definition of inferred match set

and the multiple questions selection problem. Then, we design

a graph-based algorithm to determine the inferred match set

for each question. Finally, we formulate the benefit of multiple

questions and design a greedy algorithm to select the best

questions.

A. Question Benefits

We follow the so-called pairwise question interface [5], [6],

[7], [12], [14], [17], where each question is whether an entity

pair is a match or not. Let Q be a set of pairwise questions.

Labeling Q can be defined as a binary function H : Q →
{0, 1}, where for each question q ∈ Q, H(Q) = 1 means that

q is labeled as a match, while H(q) = 0 indicates that q is

labeled as a non-match.

Given the labels H , we propagate the labeled matches in H
to unresolved pairs. The set of entity pairs that can be inferred

as matches by H is

inferred(H) =
⋃

q∈Q:H(q)=1
inferred(q), (11)

inferred(q) = {p ∈ C : Pr[mp |mq] ≥ τ}, (12)

where C is the unresolved entity pairs and τ is the precision

threshold for inferring high-quality matches. We evaluate

inferred(q) in Section VI-B.

Since non-matches are quadratically more than matches in

the ER problem [1], the labels to the ideal questions should

infer as many matches as possible. Thus, we define the benefit

42

function of Q as the expected number of matches can be

inferred by labels to Q, which is

benefit(Q) = E
[|inferred(H)| ∣∣Q]

. (13)

The ER algorithm can ask each question with the greatest

benefit iteratively; however, there is a latency caused by

waiting for workers to finish the question. Assigning multiple

questions to workers simultaneously in one human-machine

loop is a straightforward optimization to reduce the latency.

Since workers in crowdsourcing platforms are paid based on

the number of solved questions, the number of questions

should be smaller than a given budget. Thus, the optimal
multiple questions selection problem is to

maximize benefit(Q),

s.t. Q ⊆ C, |Q| ≤ μ,
(14)

where μ is the constraint on the number of questions asked.

B. Discovery of Inferred Match Set

In order to obtain the benefit for each question set Q,

we need to compute inferred(q) for each q ∈ Q. To

estimate Pr[mp |mq] in inferred(q), we define the length

of a directed edge (v, v′) in probabilistic ER graph F as

length(v, v′) = − log f(v, v′) = − log Pr[mv′ |mv]. Ac-

cording to the definition of Pr[mp |mq], Pr[mp |mq] =
edist(q,p), where dist(q, p) is the distance of the shortest path

from q to p. As a result, the condition Pr[mp |mq] ≥ τ can

be interpreted as dist(q, p) ≤ ζ = − log τ . Note that edge

(v, v′) can be removed when Pr[mv′ |mv] = 0 to avoid log 0.

The all-pairs shortest path algorithms can efficiently com-

pute inferred(q) for every q. Since most |inferred(q)|
should be smaller than |C|, we choose to apply binary trees

rather than an array of size |C| to maintain distances. We

depict our modified Floyd-Warshall algorithm in Algorithm 2.

In Lines 1–2, for every q, we create a binary tree bt(q) to

store the inferred pairs as well as their corresponding lengths,

and a binary tree bt−1(q) to store pairs inferring q as well

as their corresponding lengths. In Lines 3–5, the edge whose

length is not greater than ζ would be stored into binary trees.

In Lines 6–11, we modify the dynamic programming process

in the original Floyd–Warshall algorithm. Since the number of

pairs which can be inferred is significantly less than |C|, the

inner loop in Lines 9–11 iterate only over the set of distances

which are likely to be updated. Lines 13–14 extract the inferred

match sets from binary trees.

Since each binary tree contains at most |C| elements, |R| ≤
|bt(q).val| ≤ |C|. The loop in Lines 6–11 takes O(|C|3) time

in total. The time complexity of Algorithm 2 is O(|C|3).
C. Multiple Questions Selection

Since the match propagation works independently for each

label, the event that an entity pair p is inferred as a match by

labels H is equivalent to the event that p is inferred by q ∈ Q
such that H(q) = 1. When H is not labeled, p is resolved as

a match if and only if at least one question that can resolve

Algorithm 2: DP-based inferred match set discovery

Input: Probabilistic ER graph F , candidate question set C, distance
threshold ζ

Output: Set B of inferred match sets for all questions
1 foreach q ∈ C do
2 Initialize two empty binary trees bt(q), bt−1(q);

3 foreach (q, p) ∈ C × C do
4 if length(q, p) ≤ ζ then
5 bt(q)[p]← length(q, p); bt−1(p)[q]← length(p, q);

6 foreach q ∈ C do
7 foreach p ∈ bt(q).val do
8 R← {r ∈ bt−1(q).val : bt(q)[p] + bt−1(q)[r] ≤ ζ};
9 foreach r ∈ R do

10 d← bt(q)[p] + bt−1(q)[r];
11 bt(q)[r]← d; bt−1(r)[p]← d;

12 B ← ∅;
13 foreach q ∈ C do
14 inferred(q)← bt(q).val;B ← B ∪ {inferred(q)};
15 return B;

p as a match is labeled as a match. Given the question set Q,

the probability that p can be resolved as a match by labels is

Pr[p ∈ inferred(H) |Q] = 1−
∏

q∈Q:p∈inferred(q)
(1− Pr[mq]), (15)

where inferred(H) is defined in Eq. (11), representing the

matches that can be inferred after Q is labeled by workers.

The benefit of question set Q is formulated as the expected

size of the inferred matches by labels H:

benefit(Q) = E
[|inferred(H)| ∣∣Q]

=
∑
p∈C

Pr
[
p ∈ inferred(H) |Q

]
. (16)

Now, we want to select a set of questions that can maximize

the benefit. We first prove the hardness of the multiple ques-

tions selection problem. Then, we describe a greedy algorithm

to solve it.

Theorem 1. The problem of optimal multiple questions selec-
tion is NP-hard.

Proof. The optimization version of the set cover problem is

NP-hard. Given an element set U = {1, 2, . . . , n} and a

collection S of sets whose union equals U , the set cover

problem aims to find the minimum number of sets in S
whose union also equals U . This problem can be reduced to

our multiple questions selection problem in polynomial time.

Assume that the vertex set of an ER graph is {p1, p2, . . . ,
pn}∪{ps | s ∈ S}, the edge set is {(ps, pk) : k = 1, 2, . . . , n∧
s ∈ S ∧ k ∈ s}, all the prior match probabilities are 1, the

precision threshold is 1, Pr[pk | ps] = 1 and Pr[ps | pk] = 0,

for all k = 1, 2, . . . , n, s ∈ S satisfying k ∈ s. Because the

benefit is equal to the number of covered elements in U , the

optimal solution of the multiple questions selection problem is

also that of the set cover problem. Thus, the multiple questions

selection problem is NP-hard.

Theorem 2. benefit(Q) is an increasing submodular func-
tion.

43

Algorithm 3: Greedy multiple questions selection

Input: Probabilistic ER graph F , candidate question set C,
precision threshold τ , question number μ

Output: Selected question set Q
1 Q← ∅; PQ← {(q, benefit({q})) | q ∈ Q};
2 while |Q| < μ do
3 q,Δq ← PQ.pop(); q′,Δq′ ← PQ.top();
4 while Δq > 0 do
5 Δq ← benefit(Q ∪ {q})− benefit(Q);
6 if Δq ≥ Δq′ then Q← Q ∪ {q}; break;

7 else PQ.push
(
(q,Δq)

)
;

8 q,Δq ← PQ.pop(); q′,Δq′ ← PQ.top();

9 if Δq ≤ 0 then break;

10 return Q;

Proof. Let bp(Q) represent Pr[p ∈ inferred(H) |Q]. For

every p ∈ C and two disjoint subsets Q,Q′ ⊆ C, we have

bp(Q ∪Q′) = bp(Q) + bp(Q
′)− bp(Q)bp(Q

′) .

Thus, bp(Q∪Q′)−bp(Q) = bp(Q
′)
(
1−bp(Q′)

) ≥ 0. Since

benefit(Q) =
∑

p∈C bp(Q), it is an increasing function.

Also, for every p ∈ C,Q ⊆ C and q1, q2 ∈ C \Q such that

q1 �= q2, we have

bp(Q ∪ {q1, q2}) + bp(Q)− bp(Q ∪ {q1})− bp(Q ∪ {q2})
= bp({q2})

(
bp(Q)− bp(Q ∪ {q1})

) ≤ 0.

Thus, bp(Q ∪ {q1}) + bp(Q ∪ {q2}) ≥ bp(Q ∪ {q1, q2}) +
bp(Q). Since benefit(Q) =

∑
p∈C bp(Q), it is a submodular

function. Together, we prove that benefit(·) is an increasing

submodular function.

Since Eq. (16) is monotonic and submodular, the multiple

questions selection problem can be solved by using submod-

ular optimization. We design Algorithm 3, which gives a

(1− 1
e)-approximation guarantee. This algorithm selects ques-

tions greedily with the highest gain in benefits (i.e. Δq). We

also leverage the lazy evaluation of the submodular function

to improve the efficiency [40]. Specifically, we maintain a

priority queue PQ over each candidate question q ordered

by the gain in benefits Δq in descending order. Based on

the submodular property, when the gain in benefits Δq of the

picked question q is greater than that of the top question q′

in PQ, q is the question with the largest gain in benefits. We

use an array to store bp(Q), such that Δq can be obtained in

O(|C|) time. The overall time complexity of Algorithm 3 is

O(μ|C|2), where μ is the number of questions asked in each

loop and C is the set of unresolved entity pairs in the ER

graph.

VII. TRUTH INFERENCE

After the questions are labeled by workers, we design an

error-tolerant model to infer truths (i.e. matches and non-

matches) from the imperfect labeling, which facilitates updat-

ing the (probabilistic) ER graph and resolving isolated entities.

A. Error-Tolerant Inference
As the labels completed by the workers on crowdsourcing

platforms may contain errors, we assign one question to mul-

tiple workers and use their labels to infer the posterior match

probabilities. We leverage the worker probability model [41],

which uses a single real number to denote a worker w’s

quality λw ∈ (0, 1], i.e. the probability that w can correctly

label a question. Since crowdsourcing platforms, e.g., Amazon

MTurk1 offers a qualification test for their workers, we reuse

a worker’s precision in this test as her quality. The posterior

probability of question q being a match is

Pr[mq |WT ,WF]

=
Pr[mq] Pr[WT ,WF |mq]

Pr[mq] Pr[WT ,WF |mq] + Pr[mq] Pr[WT ,WF |mq]

=
Pr[mq]

Pr[mq] + Pr[mq]
∏

w∈WT

1−λw

λw

∏
w∈WF

λw

1−λw

, (17)

where WT denotes the set of workers labeling q as a match,

and WF denotes the set of workers labeling q as a non-match.
We assign two thresholds to filter matches and non-matches

based on consistent labels. Entity pairs with a high posterior

probability (e.g., ≥ 0.8) are regarded as matches, while

pairs with a low posterior probability (e.g., ≤ 0.2) are non-

matches. Others are considered as inconsistent and remain

unresolved. One possible reason for the inconsistency is that

these questions are too hard. For a hard question q, we set

Pr[mq] to Pr[mq |WT ,WF] for reducing its benefit, thereby it

is less possible to be asked more times. Next, we infer matches

based on the consistent labels and re-estimate the probability

of each edge in F using new matches and non-matches.

B. Inference for Isolated Entity Pairs
As an exception, there may exist a small amount of isolated

entity pairs which do not occur in any relationship triples. In

this case, the match propagation cannot infer their truths, and

the question selection algorithm has to ask these pairs one

by one. To avoid such an inefficient polling, we reuse the

similarity vectors and the partial order relations obtained in

Section IV to train a classifier for these isolated pairs.
Given an isolated entity pair p, let Ap denote the set

of its attribute matches. We define the set Np of retained

matches with similar attributes to p by Np = {p′ ∈ Mrd :
Jaccard(Ap, Ap′) ≥ ψ}, where Jaccard calculates the sim-

ilarity between two sets of attribute matches. ψ is a threshold,

and we set ψ = 0.9 for high precision. Since we only allow

matches to propagate in the ER graph, most obtained labels

are matches. Therefore, we treat all unresolved pairs in Np as

non-matches to balance the proportions of different labels.
Next, we use Np and the labels as training data, and scikit-

learn2 to train a random forest classifier with default parameter

to predict whether p is a match. The random forest finds the

unresolved pairs in Np whose similarity vectors are close to

known matches.

1https://www.mturk.com/
2https://scikit-learn.org

44

TABLE II: Statistics of the datasets

#Entities #Attributes #Relationships #Matches
IIMB 365 / 365 12 / 12 15 / 15 365
D-A 2.61K / 64.3K 3 / 3 1 / 1 5.35K
I-Y 15.1M / 3.04M 14 / 36 15 / 33 77K
D-Y 3.12M / 3.04M 684 / 36 688 / 33 1.31M

TABLE III: F1-score and number of questions with real

workers

Remp HIKE POWER Corleone
F1 #Q F1 #Q F1 #Q F1 #Q

IIMB 95.3% 10 84.4% 70 82.4% 70 94.7% 173
D-A 97.7% 60 93.3% 80 94.8% 70 94.5% 161
I-Y 70.9% 110 68.1% 270 69.3% 240 64.5% 402
D-Y 87.2% 130 86.4% 500 84.3% 500 76.3% 1166

VIII. EXPERIMENTS AND RESULTS

In this section, we conduct a thorough evaluation on the

effectiveness of our approach Remp, by comparing with state-

of-the-art methods followed by an in-depth investigation on

each part of Remp (as outlined in Section III-B).

Datasets. We use one benchmark dataset and three real-world

datasets widely used in previous work [12], [16], [28], [29].

Table II lists their statistics.

• IIMB is a small, synthetic benchmark dataset in OAEI3

containing two KBs with identical attributes and relation-

ships.

• DBLP-ACM (abbr. D-A)4 is a dataset about publications

and authors. The original version uses a text field to store

all authors of a publication. Here, we split it and create

authorship triples. In the case that an author has multiple

representations on the original dataset, we follow [42] to

extend the gold standard with author matches.

• IMDB-YAGO (abbr. I-Y) is a large dataset about movies

and actors. Following [29], we generate the gold standard

based on “external links” in Wikipedia pages.

• DBpedia-YAGO (abbr. D-Y) is a large dataset with het-

erogeneous attributes and relationships. We use the same

version as in [12], [28].

Competitors. We compare Remp with three state-of-the-art

crowdsourced ER approaches, namely, HIKE [12], POWER

[16] and Corleone [9]. We have introduced them in Section II.

Since POWER and Corleone are designed for tabular data,

we follow HIKE to partition entities into different clusters

and deploy POWER and Corleone on each entity cluster.

Specifically, IIMB, D-A and I-Y have clear type information,

which is directly used to partition entities; for D-Y which

does not have clear type information, we reuse the partitioning

algorithm presented in HIKE.

Setup. We implement Remp and all competing methods (as

their codes are not available) in Python 3 and C++, and strictly

follow each competitor’s reported parameters in the respective

paper. All our codes are open sourced5. All experiments are

conducted on a workstation with an Intel Xeon 3.3GHz CPU

and 128GB RAM. For Remp, we uniformly assign k = 4,

3http://islab.di.unimi.it/content/im oaei/2019/
4https://dbs.uni-leipzig.de/en/research/projects/object matching
5https://github.com/nju-websoft/Remp

τ = 0.9 and μ = 10, and use 0.3 as the label similarity

threshold. Similar to [9], [12], [16], we first prune out all

definite non-matches (outlined in Section IV), and all methods

take the same retained entity matches Mrd as input.

A. Remp vs. State of the Art

We set up two experiments, one is with real workers and

the other is with simulated workers. The evaluation metrics

are the F1-score and the number of questions (#Q).

Experiment with real workers. We publish the questions

selected by each approach on Amazon MTurk. Each question

is labeled by five workers to decide whether the two entities

refer to the same object in the real world. We leverage the

common worker qualifications to avoid spammers, i.e. we

only allow workers with an approval rate of at least 95%.

Furthermore, we reuse the label to each question for all

approaches. Thus, all approaches can receive the same label

to the same question. In total, 651 real workers labeled 3,484

questions.

The results are presented in Table III, and we have the

following findings – (1) Remp consistently achieves the best

F1-score with the fewest questions. (2) Remp improves the

F1-score moderately, and reduces the number of questions

significantly. (3) Specifically, compared with the second best

result, Remp reduces the average number of questions by

85.7%, 14.3%, 54.2% and 74.0% on IIMB, D-A, I-Y and D-Y,

respectively. To summarize, Remp achieves the best F1-score

and saves the number of questions, especially when the dataset

contains various relationships (e.g., D-Y).

Experiment with simulated workers. We also generate

simulated workers who give wrong labels to questions with

a fixed probability (called error rate). We follow HIKE to set

the error rate of simulated workers to 0.05, 0.15 and 0.25.

Figure 3 shows the comparison results and we make several

observations – (1) All approaches obtain stable F1-scores,

indicating their robustness in handling imperfect labeling. (2)

Remp consistently obtains the highest F1-score, and beats the

second best result by 0.4%, 3.0%, 1.6%, 8.0% on IIMB, D-

A, I-Y and D-Y, respectively. This is attributed to Remp’s

robustness in uncovering matches with low literal similar-

ities as compared to its competitors. For example, literal

information is insufficient on I-Y and D-Y, thereby causing

errors in the partial order of HIKE and POWER as well as

the rules of Corleone. (3) Remp needs considerably fewer

questions on IIMB, I-Y and D-Y. Compared with the second

best result, Remp reduces the average number of questions

by 79.9%, 26.7%, 62.5% and 71.4% on IIMB, D-A, I-Y and

D-Y, respectively. One reason is that there are many types

of entities on these datasets, and most matches are linked by

relationships of different domain/range types. However, HIKE,

POWER and Corleone cannot infer these matches efficiently.

(4) On the D-A dataset, Remp only reduces six more questions

than POWER, because in the ER graph there are many isolated

components but only one type of relationship, making Remp

have to check them all.

45

60

70

80

90

100

F
1

(%
)

IIMB

Remp
POWER

HIKE
Corleone

D-A

Remp
POWER

HIKE
Corleone

I-Y

Remp
POWER

HIKE
Corleone

D-Y

Remp
POWER

HIKE
Corleone

0.05 0.15 0.25
Error rate

100

101

102

103

104

#
Q

Remp
POWER

HIKE
Corleone

0.05 0.15 0.25
Error rate

Remp
POWER

HIKE
Corleone

0.05 0.15 0.25
Error rate

Remp
POWER

HIKE
Corleone

0.05 0.15 0.25
Error rate

Remp
POWER

HIKE
Corleone

Fig. 3: F1-score and number of questions w.r.t. simulated workers of varying error rates

TABLE IV: Effectiveness of attribute matching
#Ref. Remp Remp w/o 1:1 matching

matches Precision Recall F1 Precision Recall F1
I-Y 4 100% 100% 100% 40.0% 100% 57.1%
D-Y 19 90.9% 52.6% 66.7% 52.4% 57.9% 55.0%

B. Internal Evaluation of Remp

In this section, we evaluate how each major module of Remp

contributes to its overall performance.

Effectiveness of attribute matching. For the I-Y dataset, we

reuse the gold standard created by SiGMa [29]. For the D-Y

dataset, we follow the recommendation of YAGO and extract

19 attribute matches from the subPropertyOf links6 as the gold

standard. Note that it is not necessary to match attributes for

the other two datasets. We employ the conventional precision,

recall and F1-score as our evaluation metrics.

As depicted in Table IV, Remp performs perfectly on the

I-Y dataset but gains a relatively low recall on the D-Y

dataset, and the 1:1 matching constraint helps Remp improve

the precision. We observe that Remp fails to identify sev-

eral attribute matches when the attribute pairs rarely appear

in Min (i.e. entity pairs from exact string matching), or

when the values are dramatically different (e.g., the icd10
value for dbp:Trigeminal neuralgia is “G44.847”, but for

yago:Trigeminal neuralgia is “G-50.0”). We argue that our

attribute matches are sufficient to ER, since the first type

of missing matches only helps resolve a small portion of

entities but increases the running time of building similarity

vectors, while the second type requires extra value process-

ing/correction steps before computing the similarities.

Effectiveness of partial order based pruning. To test the

performance of the entity pair pruning module in Remp, we

employ two metrics: (i) the reduction ratio (RR), which is the

proportion of pruned candidates, and (ii) the pair completeness

(PC), which is the proportion of true matches preserved in

candidate/retained matches. We also use the error rate of

optimal monotone classifier defined in [15] to measure the

incorrectness of the partial order.

As shown in Table V, candidate matches contain most

true matches on IIMB, D-A and I-Y, but only 88.7% of

6http://webdam.inria.fr/paris/yd relations.zip

TABLE V: Effectiveness of partial order based pruning

k = 4
Candidate matches Retained matches
#Pairs PC #Pairs (RR) PC #Edges Error rate

IIMB 593 97.8% 516 (13.0%) 97.8% 1K 1.91%
D-A 24.2K 97.9% 12.4K (49.0%) 97.7% 7.6K 0.37%
I-Y 2.44B 98.0% 3.86M (99.6%) 97.4% 0.16M 0.65%
D-Y 2.70B 88.7% 13.1M (99.7%) 84.8% 5.34M 1.64%

1 4 7 10 13

k-nearest neighbors

82

86

90

94

98

P
C

(%
)

IIMB
D-A

I-Y
D-Y

Fig. 4: Pair completeness w.r.t. k-nearest neighbors

true matches on the D-Y dataset. This is because on this

dataset 8.4% of the entities in the true matches lack labels. On

IIMB and D-A, Remp has a relatively low RR, because the

true matches account for 61.6% and 22.1% of the candidate

matches, respectively. On I-Y and D-Y, the PC of retained

matches is close to that of candidate matches, but most

candidate matches are pruned. This indicates that the entity

pair pruning module is effective. We notice that the error rate

on each dataset is nearly perfect, but the other monotonicity-

based approaches (i.e., POWER and HIKE) achieve worse

accuracy (see Table III). The main reason is that our partial

order is restricted to neighbors of each entity pair, where errors

do not propagate to the whole candidate match set.

Furthermore, the pair completeness of retained matches

w.r.t. varying k is shown in Figure 4. The pair completeness

converges quickly on IIMB, D-A and I-Y but slowly on D-Y,

because many matches have only one or two shared attributes,

making the partial order work inefficiently.

Effectiveness of match propagation. We additionally com-

pare the match propagation module of Remp with two col-

lective, non-crowdsourcing ER approaches: PARIS [28] and

SiGMa [29]. More details about them have been given in

Section II. To assess the real propagation capability of Remp,

we ignore the classifier for handling isolated entity pairs. We

randomly sample different portions of entity matches as the

46

1 2 4 8 16

#Q

95

96

97

F
1

(%
)

IIMB

Remp
MaxPr

MaxInf

1 2 4 8 16 32 64 128 256 512

#Q

75

80

85

90

95

100

D-A

Remp
MaxPr

MaxInf

1 2 4 8 16 32 64 128 256 512

#Q

40

50

60

70

I-Y

Remp
MaxPr

MaxInf

1 2 4 8 16 32 64 128 256 512

#Q

50

59

69

78

88

D-Y

Remp
MaxPr

MaxInf

Fig. 5: F1-score of Remp, MaxInf and MaxPr w.r.t. varying numbers of questions

TABLE VI: F1-score w.r.t. varying portions of seed matches

% of matches
20 40 60 80

IIMB
Remp 97.5% 98.6% 99.7% 99.7%
PARIS 96.0% 96.5% 97.0% 97.4%
SiGMa 97.6% 98.6% 99.0% 99.6%

D-A
Remp 93.3% 97.2% 98.9% 99.7%
PARIS 71.3% 79.1% 86.2% 92.5%
SiGMa 92.7% 94.9% 96.7% 98.4%

I-Y
Remp 41.2% 63.4% 78.8% 90.6%
PARIS 34.8% 57.9% 75.4% 89.0%
SiGMa 34.0% 58.5% 76.1% 89.3%

D-Y
Remp 83.2% 91.4% 95.0% 99.7%
PARIS 82.2% 84.7% 87.2% 89.5%
SiGMa 33.6% 57.4% 75.3% 89.1%

seeds for Remp, PARIS and SiGMa. The experiments are

repeated five times and the F1-score is reported in Table VI.

We observe that Remp achieves the best F1-score on D-A, I-Y

and D-Y. On IIMB (20% of matches), the F1-score of Remp

is slightly worse than that of SiGMa, because SiGMa can

obtain matches between isolated entities based on their literal

similarities directly. Overall, Remp can achieve the highest

F1-score in most cases.

Effectiveness of question selection benefit. We implement

two alternative heuristics as baselines, namely MaxInf and

MaxPr, to evaluate the question selection benefit. We set

μ = 1 and use ground truths as labels. MaxInf selects the

questions with the maximal inference power. MaxPr chooses

the questions with the maximal match probability. Figure 5

depicts the result and each curve starts when the F1-score is

greater than 0. We find (1) Remp always achieves the best F1-

score with much less number of questions. (2) MaxPr obtains

the lowest F1-score except on the IIMB dataset, because it

does not consider how many matches can be inferred by the

new question. (3) MaxInf performs worse than Remp, as it

often chooses non-matches as the questions, making it find

fewer matches than Remp using the same number of questions.

This experiment demonstrates that our benefit function is the

most effective one.

Effectiveness of multiple questions selection. Table VII

depicts the F1-score, the number of questions (#Q) and the

number of loops (#L) of the multiple questions selection

module (with ground truth as labels), in term of different ques-

tion number thresholds per round (μ = 1, 5, 10, 20), and our

findings are as follows – (1) Remp achieves a stable F1-score

on all datasets. (2) The number of questions increases when

μ increases, especially when μ = 10, 20. This is probably

TABLE VII: F1-score and number of questions with different

question number thresholds per round
μ = 1 μ = 5 μ = 10 μ = 20

F1 #Q #L F1 #Q #L F1 #Q #L F1 #Q #L
IIMB 96.7% 8 8 96.7% 10 2 96.7% 20 2 96.9% 40 2
D-A 97.8% 52 52 97.8% 60 12 97.7% 60 6 97.3% 80 4
I-Y 71.4% 102 102 71.3% 105 21 71.3% 110 11 71.4% 120 6
D-Y 87.3% 127 127 87.2% 135 27 87.3% 140 14 87.2% 160 8

TABLE VIII: F1-score of inference on isolated entity pairs

Isolated matches Remp Random forest
IIMB 0.3% 95.3% 0.0%
D-A 0.4% 97.7% 13.7%
I-Y 28.1% 70.9% 66.3%
D-Y 60.4% 87.2% 84.5%

because Remp always asks μ questions in one human-machine

loop, and it has to ask an extra batch of questions when some

questions with large benefit are labeled as non-matches.

Although asking multiple questions in one loop increases the

monetary cost, it reduces 75%–94.1% number of loops when

μ = 20.

Effectiveness of inference on isolated entity pairs. We ex-

amine the performance of the random forest classifier in each

dataset in the experiments with real workers. As depicted in

Table VIII, the classifier achieves poor performance on IIMB

and D-A. Due to the tiny proportion of isolcated entity pairs

in these two datasets, this is probably caused by occasionality.

When the portions of isolated matches increase on I-Y and D-

Y, the classifier achieves comparable performance to Remp.

This demonstrates that Remp can infer enough matches for

resolving the entire dataset even if the ER graph does not

cover all candidate matches.

Efficiency Analysis. We run each algorithm three times to

record the running time on each of the four datasets. The

average running time of Algorithm 1 on four datasets is 1s,

8s, 3.9h and 3.6h, the average running time of Algorithm 2 is

0.476s, 6.7s, 109s and 1.07h, and the average running time of

Algorithm 3 is 0.128s, 1.27s, 78.5s and 1.25h. We follow the

analysis in [10] to evaluate the performance of Remp on 25%,

50%, 75% and 100% of candidate (retained) entity matches

Mc (Mrd) on the D-Y dataset. As depicted in Figure 6, the

running time of Algorithm 1 and Algorithm 2 increase linearly

as the number of entity pairs increases. The running time of

Algorithm 3 on 25% and 50% of retained entity matches are

close. This is probably because the sizes of some inferred

match sets do not increase significantly.

47

25 50 75 100

(%)

0.00

2.00

4.00

T
im

e
(h

)

Algorithm 1

25 50 75 100
0.00

0.50

1.00

Algorithm 2
Algorithm 3

Fig. 6: Running time w.r.t. different portion of entity pairs

IX. CONCLUSION

In this paper, we proposed a crowdsourced approach lever-

aging relationships to resolve entities in KBs collectively. Our

main contributions are a partial order based pruning algorithm,

a relational match propagation model, a constrained multiple

questions selection algorithm and an error-tolerant truth infer-

ence model. Compared with existing work, our experimental

results demonstrated superior ER accuracy and much less

number of questions. In future work, we plan to combine

transitive relation, partial order and match propagation together

as a hybrid ER approach.

ACKNOWLEDGMENTS

This work was partially supported by the National Key

R&D Program of China under Grant 2018YFB1004300, the

National Natural Science Foundation of China under Grants

61872172, 61772264 and 91646204, and the ARC under

Grants DP200102611 and DP180102050. Zhifeng Bao is the

recipient of Google Faculty Award.

REFERENCES

[1] L. Getoor and A. Machanavajjhala, “Entity resolution: Tutorial,” http:
//users.umiacs.umd.edu/∼getoor/Tutorials/ER VLDB2012.pdf, 2012.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record
detection: A survey,” IEEE TKDE, vol. 19, no. 1, pp. 1–16, 2007.

[3] K. Sun, Y. Zhu, and J. Song, “Progress and challenges on entity
alignment of geographic knowledge bases,” International Journal of
Geo-Information, vol. 8, no. 2, pp. 77–101, 2019.

[4] J. Bleiholder and F. Naumann, “Data fusion,” ACM Computing Surveys,
vol. 41, no. 1, pp. 1–41, 2009.

[5] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng, “Leveraging
transitive relations for crowdsourced joins,” in SIGMOD. ACM, 2013,
pp. 229–240.

[6] S. E. Whang, P. Lofgren, and H. Garcia-Molina, “Question selection for
crowd entity resolution,” Proc. of the VLDB Endowment, vol. 6, no. 6,
pp. 349–360, 2013.

[7] D. Firmani, B. Saha, and D. Srivastava, “Online entity resolution using
an oracle,” Proc. of the VLDB Endowment, vol. 9, no. 5, pp. 384–395,
2016.

[8] A. Arasu, M. Götz, and R. Kaushik, “On active learning of record
matching packages,” in SIGMOD. ACM, 2010, pp. 783–794.

[9] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik,
and X. Zhu, “Corleone: Hands-off crowdsourcing for entity matching,”
in SIGMOD. ACM, 2014, pp. 601–612.

[10] S. Das, P. S. GC, A. Doan, J. F. Naughton, G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, and Y. Park, “Falcon: Scaling up hands-
off crowdsourced entity matching to build cloud services,” in SIGMOD.
ACM, 2017, pp. 1431–1446.

[11] K. Qian, L. Popa, and P. Sen, “Active learning for large-scale entity
resolution,” in CIKM. ACM, 2017, pp. 1379–1388.

[12] Y. Zhuang, G. Li, Z. Zhong, and J. Feng, “Hike: A hybrid human-
machine method for entity alignment in large-scale knowledge bases,”
in CIKM. ACM, 2017, pp. 1917–1926.

[13] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, OWL Web ontology
language semantics and abstract syntax, W3C, 2004.

[14] N. Vesdapunt, K. Bellare, and N. Dalvi, “Crowdsourcing algorithms for
entity resolution,” Proc. of the VLDB Endowment, vol. 7, no. 12, pp.
1071–1082, 2014.

[15] Y. Tao, “Entity matching with active monotone classification,” in PODS.
ACM, 2018, pp. 49–62.

[16] C. Chai, G. Li, J. Li, D. Deng, and J. Feng, “A partial-order-based
framework for cost-effective crowdsourced entity resolution,” The VLDB
Journal, vol. 27, no. 6, pp. 745–770, 2018.

[17] V. Verroios and H. Garcia-Molina, “Entity resolution with crowd errors,”
in ICDE. IEEE, 2015, pp. 219–230.

[18] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller, “Human-
powered sorts and joins,” Proc. of the VLDB Endowment, vol. 5, no. 1,
pp. 13–24, 2011.

[19] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “CrowdER: Crowd-
sourcing entity resolution,” Proc. of the VLDB Endowment, vol. 5,
no. 11, pp. 1483–1494, 2012.

[20] V. Verroios, H. Garcia-Molina, and Y. Papakonstantinou, “Waldo: An
adaptive human interface for crowd entity resolution,” in SIGMOD.
ACM, 2017, pp. 1133–1148.

[21] S. Galhotra, D. Firmani, B. Saha, and D. Srivastava, “Robust entity
resolution using random graphs,” in SIGMOD. ACM, 2018, pp. 3–18.

[22] V. Rastogi, N. Dalvi, and M. Garofalakis, “Large-scale collective entity
matching,” Proc. of the VLDB Endowment, vol. 4, no. 4, pp. 208–218,
2011.

[23] C. Böhm, G. De Melo, F. Naumann, and G. Weikum, “Linda: distributed
web-of-data-scale entity matching,” in CIKM. ACM, 2012, pp. 2104–
2108.

[24] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra, “Progressive approach
to relational entity resolution,” Proc. of the VLDB Endowment, vol. 7,
no. 11, pp. 999–1010, 2014.

[25] V. Efthymiou, G. Papadakis, K. Stefanidis, and V. Christophides, “Mi-
noaner: Schema-agnostic, non-iterative, massively parallel resolution of
web entities,” in EDBT, 2019, pp. 373–384.

[26] A. Kimmig, A. Memory, R. J. Miller, and L. Getoor, “A collective,
probabilistic approach to schema mapping,” in ICDE. IEEE, 2017, pp.
921–932.

[27] P. Kouki, J. Pujara, C. Marcum, L. Koehly, and L. Getoor, “Collective
entity resolution in familial networks,” in ICDM. IEEE, 2017, pp.
227–236.

[28] F. M. Suchanek, S. Abiteboul, and P. Senellart, “PARIS: Probabilistic
alignment of relations, instances, and schema,” Proc. of the VLDB
Endowment, vol. 5, no. 3, pp. 157–168, 2011.

[29] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and
Z. Ghahramani, “SiGMa: Simple greedy matching for aligning large
knowledge bases,” in KDD. ACM, 2013, pp. 572–580.

[30] Y. Zhuang, G. Li, Z. Zhong, and J. Feng, “PBA: Partition and blocking
based alignment for large knowledge bases,” in DASFAA. Springer,
2016, pp. 415–431.

[31] X. Dong, A. Halevy, and J. Madhavan, “Reference reconciliation in
complex information spaces,” in SIGMOD. ACM, 2005, pp. 85–96.

[32] T. Papenbrock, A. Heise, and F. Naumann, “Progressive duplicate
detection,” IEEE TKDE, vol. 27, no. 5, pp. 1316–1329, 2015.

[33] J. Sun, Z. Shang, G. Li, Z. Bao, and D. Deng, “Balance-aware distributed
string similarity-based query processing system,” Proc. of the VLDB
Endowment, vol. 12, no. 9, pp. 961–974, 2019.

[34] W. Hu and C. Jia, “A bootstrapping approach to entity linkage on the
semantic web,” Journal of Web Semantics, vol. 34, pp. 1–12, 2015.

[35] F. Naumann and M. Herschel, An introduction to duplicate detection.
Morgan and Claypool Publishers, 2010.

[36] M. Cheatham and P. Hitzler, “The properties of property alignment,” in
ISWC Workshop on Ontology Matching. CEUR-WS, 2014.

[37] I. Megdiche, O. Teste, and C. Trojahn, “An extensible linear approach
for holistic ontology matching,” in ISWC, vol. LNCS 9981. Springer,
2016, pp. 393–410.

[38] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[39] D. Zhang, B. I. P. Rubinstein, and J. Gemmell, “Principled graph
matching algorithms for integrating multiple data sources,” IEEE TKDE,
vol. 27, no. 10, pp. 2784–2796, 2015.

[40] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and
A. Krause, “Lazier than lazy greedy,” in AAAI, 2015, pp. 1812–1818.

[41] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng, “Truth inference in
crowdsourcing: Is the problem solved?” Proc. of the VLDB Endowment,
vol. 10, no. 5, pp. 541–552, 2017.

[42] A. Thor and E. Rahm, “MOMA - A mapping-based object matching
system,” in CIDR 2007, 2007, pp. 247–258.

48

