
Kaskade: Graph Views for Efficient Graph Analytics
Joana M. F. da Trindade∗, Konstantinos Karanasos†, Carlo Curino†, Samuel Madden∗, Julian Shun∗

∗MIT CSAIL {jmf, jshun, madden}@csail.mit.edu, †Microsoft {ccurino, kokarana}@microsoft.com

Abstract—Graphs are an increasingly popular way to model
real-world entities and relationships between them, ranging from
social networks to data lineage graphs and biological datasets.
Queries over these large graphs often involve expensive sub-
graph traversals and complex analytical computations. These
real-world graphs are often substantially more structured than
a generic vertex-and-edge model would suggest, but this insight
has remained mostly unexplored by existing graph engines for
graph query optimization purposes. Therefore, in this work,
we focus on leveraging structural properties of graphs and
queries to automatically derive materialized graph views that can
dramatically speed up query evaluation.

We present KASKADE, the first graph query optimization
framework to exploit materialized graph views for query op-
timization purposes. KASKADE employs a novel constraint-based
view enumeration technique that mines constraints from query
workloads and graph schemas, and injects them during view
enumeration to significantly reduce the search space of views to
be considered. Moreover, it introduces a graph view size estimator
to pick the most beneficial views to materialize given a query
set and to select the best query evaluation plan given a set of
materialized views. We evaluate its performance over real-world
graphs, including the provenance graph that we maintain at
Microsoft to enable auditing, service analytics, and advanced sys-
tem optimizations. Our results show that KASKADE substantially
reduces the effective graph size and yields significant performance
speedups (up to 50X), in some cases making otherwise intractable
queries possible.

I. INTRODUCTION

Many real-world applications can be naturally modeled as
graphs, including social networks [1], [2], workflow, and
dependency graphs as the ones in job scheduling and task ex-
ecution systems [3], [4], knowledge graphs [5], [6], biological
datasets, and road networks [7]. An increasingly relevant type
of workload over these graphs involves analytics computations
that mix traversals and computation, e.g., finding subgraphs
with specific connectivity properties or computing various
metrics over sub-graphs. This has resulted in a large number of
systems being designed to handle complex queries over such
graphs [8], [9].

In these scenarios, graph analytics queries require response
times on the order of a few seconds to minutes, because
they are either exploratory queries run by users (e.g., recom-
mendation or similarity search queries) or they power sys-
tems making online operational decisions (e.g., data valuation
queries to control replication, or job similarity queries to drive
caching decisions). However, many of these queries involve the
enumeration of large subgraphs of the input graph, which can
easily take minutes to hours to compute over large graphs on
modern graph systems. To achieve our target response times
over large graphs, new techniques are needed.

Job1

File1

File2

Job2

Job1’s impact

Fig. 1: Running example of query over a heterogeneous network: the
“blast radius” impact for a given job in a data lineage graph (blue
circles correspond to jobs; gray squares to files).

We observe that the graphs in many of these applications
have an inherent structure: their vertices and edges have spe-
cific types, following well-defined schemas and connectivity
properties. For instance, social network data might include
users, pages, and events, which can be connected only in
specific ways (e.g., a page cannot “like” a user), or workload
management systems might involve files and jobs, with all
files being created or consumed by some job. As we discuss in
§ I-A, the provenance graph that we maintain at Microsoft has
similar structural constraints. However, most existing graph
query engines do not take advantage of this structure to
improve query evaluation time.

At the same time, we notice that similar queries are
often run repeatedly over the same graph. Such queries can
be identified and materialized as views to avoid significant
computation cost during their evaluation. The aforementioned
structural regularity of these graphs can be exploited to
efficiently and automatically derive these materialized views.
Like their relational counterparts, such graph views allow us
to answer queries by operating on much smaller amounts
of data, hiding/amortizing computational costs and ultimately
delivering substantial query performance improvements of up
to 50X in our experiments on real-world graphs. As we show,
the benefits of using graph views are more pronounced in
heterogeneous graphs1 that include a large number of vertex
and edge types with connectivity constraints between them.

A. Motivating example
At Microsoft, we operate one of the largest data lakes
worldwide, storing several exabytes of data and processing
them with hundreds of thousands of jobs, spawning billions
of tasks daily [10]. Operating such a massive infrastructure
requires us to handle data governance and legal compliance
(e.g., GDPR [11]), optimize our systems based on our query
workloads, and support metadata management and enterprise
search for the entire company, similar to the scenarios in [3],
[4]. A natural way to represent this data and track datasets
and computations at various levels of granularity is to build a
provenance graph that captures data dependencies among jobs,

1By heterogeneous, we refer to graphs that have more than one vertex types, as opposed
to homogeneous with a single vertex type.

ar
X

iv
:1

90
6.

05
16

2v
1

 [
cs

.D
B

]
 1

2
Ju

n
20

19

tasks, files, file blocks, and users in the lake. As discussed
above, only specific relationships among vertices are allowed,
e.g., a user can submit a job, and a job can read or write files.

To enable these applications over the provenance graph, we
need support for a wide range of structural queries. Finding
files that contain data from a particular user or created by a
particular job is an anchored graph traversal that computes
the reachability graph from a set of source vertices, whereas
detecting overlapping query sub-plans across jobs to avoid
unnecessary computations can be achieved by searching for
jobs with the same set of input data. Other queries include
label propagation (i.e., marking privileged derivative data
products), data valuation (i.e., quantifying the value of a
dataset in terms of its “centrality” to jobs or users accessing
them), copy detection (i.e., finding files that are stored multiple
times by following copy jobs that have the same input dataset),
and data recommendation (i.e., finding files accessed by other
users who have accessed the same set of files that a user has).

We highlight the optimization opportunities in these types
of queries through a running example: the job blast radius.
Consider the following query operating on the provenance
graph: “For every job j, quantify the cost of failing it, in
terms of the sum of CPU-hours of (affected) downstream
consumers, i.e., jobs that directly or indirectly depend on j’s
execution.” This query, visualized in Fig. 1, traverses the graph
by following read/write relationships among jobs and files,
and computes an aggregate along the traversals. Answering
this query is necessary for cluster operators and analysts to
quantify the impact of job failures—this may affect scheduling
and operational decisions.

By analyzing the query patterns and the graph structure,
we can optimize the job blast radius query in the following
ways. First, observe that the graph has structural connectivity
constraints: jobs produce and consume files, but there are no
file-file or job-job edges. Second, not all vertices and edges in
the graph are relevant to the query, e.g., it does not use vertices
representing tasks. Hence, we can prune large amounts of data
by storing as a view only vertices and edges of types that are
required by the query. Third, while the query traverses job-
file-job dependencies, it only uses metadata from jobs. Thus,
a view storing only jobs and their (2-hop) relationships to other
jobs further reduces the data we need to operate on and the
number of path traversals to perform. A key contribution of
our work is that these views of the graph can be used to answer
queries, and if materialized, query answers can be computed
much more quickly than if computed over the entire graph.

B. Contributions
Motivated by the above scenarios, we have built KASKADE, a
graph query optimization framework that employs graph views
and materialization techniques to efficiently evaluate queries
over graphs. Our contributions are as follows:

Query optimization using graph views. We identify a class
of graph views that can capture the graph use cases we
discussed above. We then provide algorithms to perform view
selection (i.e., choose which views to materialize given a query

set) and view-based query rewriting (i.e., evaluate a query
given a set of already materialized views). To the best of our
knowledge, this is the first work that employs graph views in
graph query optimization.

Constraint-based view enumeration. Efficiently enumerating
candidate views is crucial for the performance of view-based
query optimization algorithms. To this end, we introduce a
novel technique that mines constraints from the graph schema
and queries. It then leverages view templates expressed as in-
ference rules to generate candidate views, injecting the mined
constraints at runtime to reduce the search space of views to
consider. The number of views our technique enumerates is
further lowered when using the query constraints.

Cost model for graph views. Given the importance of path
traversals in graph queries, we introduce techniques to estimate
the size of views involving such operations and to compute
their creation cost. Our cost model is crucial for determining
which views are the most beneficial to materialize. Our ex-
periments reveal that by leveraging graph schema constraints
and associated degree distributions, we can estimate the size
of various path views in a number of real-world graphs
reasonably well.

Results over real-world graphs. We have incorporated all
of the above techniques in our system, KASKADE, and have
evaluated its efficiency using a variety of graph queries over
both heterogeneous and homogeneous graphs. KASKADE is
capable of choosing views that, when materialized, speed up
query evaluation by up to 50X on heterogeneous graphs.

The remainder of this paper is organized as follows. § II pro-
vides an overview of KASKADE. § III describes our graph data
model and query language, and introduces the notion of graph
views in KASKADE. § IV presents KASKADE’s constraint-
based approach of enumerating graph views, whereas § V
discusses our graph view cost model and our algorithms for
view selection and view-based query rewriting. § VI gives
more details on graph views (definitions and examples). § VII
presents our experimental evaluation. Finally, § VIII gives an
overview of related work, and § IX provides our concluding
remarks.

II. OVERVIEW

KASKADE is a graph query optimization framework that
materializes graph views to enable efficient query evalua-
tion. As noted in § I, it is designed to support complex
enumeration queries over large subgraphs, often involving
reporting-oriented applications that repeatedly compute filters
and aggregates, and apply various analytics over graphs.

KASKADE’s architecture is depicted in Figure 2. Users
submit queries in a language that includes graph pattern
constructs expressed in Cypher [12], [13] and relational con-
structs expressed in SQL. They use the former to express
path traversals, and the latter for filtering and aggregation
operations. This query language, described in § III, is capable
of capturing many of the applications described above.

query
workload

Workload
Analyzer

Query
Rewriter

Execution
Engine

view
creation

View
Enumerator

constraint
rules

view
templates

query

query
evaluation

raw
graph v1 v2 v3

graph views

view selection view-based
query rewriting

graph engine (e.g., Neo4J)

Constraint
Miner

graph
schema

inference engine (e.g., SWI-Prolog)

Fig. 2: Architecture of KASKADE.

KASKADE supports two main view-based operations:
(i) view selection, i.e., given a set of queries, identify the
most useful views to materialize for speeding up query
evaluation, accounting for a space budget and various cost
components; and (ii) view-based query rewriting, i.e., given
a submitted query, determine how it can be rewritten given
the currently materialized views in the system to improve
the query’s execution time by leveraging the views. These
operations are detailed in § V. The workload analyzer drives
view selection, whereas the query rewriter is responsible for
the view-based query rewriting.

An essential component in both of these operations is
the view enumerator, which takes as input a query and a
graph schema, and produces candidate views for that query. A
subset of these candidates will be selected for materialization
during view selection and for rewriting a query during view-
based query rewriting. As we show in § IV, KASKADE
follows a novel constraint-based view enumeration approach.
In particular, KASKADE’s constraint miner extracts (explicit)
constraints directly present in the schema and queries, and uses
constraint mining rules to derive further (implicit) constraints.
KASKADE employs an inference engine (we use Prolog in
our implementation) to perform the actual view enumeration,
using a set of view templates it expresses as inference rules.
Further, it injects the mined constraints during enumeration,
leading to a significant reduction in the space of candidate
views. Moreover, this approach allows us to easily include new
view templates, extending the capabilities of the system, and
alleviates the need for writing complicated code to perform
the enumeration.

KASKADE uses an execution engine component to create
the views that are output by the workload analyzer, and to
evaluate the rewritten query output by the query rewriter.
In this work, we use Neo4j’s execution engine [14] for the
storage of materialized views, and to execute graph pattern
matching queries. However, our query rewriting techniques can
be applied to other graph query execution engines, so long as
their query language supports graph pattern matching clauses.

III. PRELIMINARIES

A. Graph Data Model
We adopt property graphs as our data model [15], in which
both vertices and edges are typed and may have properties in
the form of key-value pairs. This schema captures constraints
such as domain and range of edge types. In our provenance
graph example of § I-A, an edge of type “read” only connects
vertices of type “job” to vertices of type “file” (and thus never
connects two vertices of type “file”). As we show later, such
schema constraints play an essential role in view enumeration
(§ IV). Most mainstream graph engines [14], [16], [17], [18],
[19], [20], [21] provide support for this data model (including
the use of schema constraints).

B. Query Language
To address our query language requirements discussed in
§ II, KASKADE combines regular path queries with relational
constructs in its query language. In particular, it leverages
the graph pattern specification from Neo4j’s Cypher query
language [12] and combines it with relational constructs for
filters and aggregates. This hybrid query language resembles
that of recent industry offerings for graph-structured data
analytics, such as those from AgensGraph DB [21], SQL
Server [19], and Oracle’s PGQL [22].

As an example, consider the job blast radius use case
introduced in § I (Fig. 1). Lst. 1 illustrates a query that
combines OLAP and anchored path constructs to rank jobs
in its blast radius based on average CPU consumption.
Listing 1 Job blast radius query over raw graph.
SELECT A.pipelineName, AVG(T_CPU) FROM (

SELECT A, SUM(B.CPU) AS T_CPU FROM (
MATCH (q_j1:Job)-[:WRITES_TO]->(q_f1:File)
(q_f1:File)-[r*0..8]->(q_f2:File)
(q_f2:File)-[:IS_READ_BY]->(q_j2:Job)
RETURN q_j1 as A, q_j2 as B

) GROUP BY A, B
) GROUP BY A.pipelineName

Specifically, the query in Lst. 1 ranks jobs up to 10 hops
away in the downstream of a job (q_j1). In the example
query, this is accomplished in Cypher syntax by using a vari-
able length path construct of up to 8 hops (-[r*0..8]->)
between two file vertices (q_f1 and q_f2), where the two
files are endpoints of the first and last edge on the complete
path, respectively.

Although we use the Cypher syntax for our graph queries,
our techniques can be coupled with any query language, as
long as it can express graph pattern matching and schema
constructs.

C. Graph Views
We define a graph view over a graph G as the graph query Q to
be executed against G. This definition is similar to the one first
introduced by Zhuge and Garcia-Molina [23], but extended to
allow the results of Q to also contain new vertices and edges in
addition to those in G. A materialized graph view is a physical
data object containing the results of executing Q over G.

KASKADE can support a wide range of graph views through
the use of view templates, which are essentially inference rules,
as we show in § IV. Among all possible views, we identify

two classes, namely connectors and summarizers, which are
sufficient to capture most of the use cases that we have
discussed so far. Intuitively, connectors result from operations
over paths (i.e., path contractions), whereas summarizers are
obtained via summarization operations (filters or aggregates)
that reduce the number of edges and/or vertices in the original
graph.

j1 f1 j2

f2 j3

(b) augmented with 2-hop connector edges of different schemas

j1 f1 j2

f2 j3

(a) input graph

j1 j2

j3
(c) 2-hop connector (job-to-job)

f3

f4

f3

f4

f1 f3

f4f2

(d) 2-hop connector (file-to-file)

w
w

r

r

w

w

w
w

r

r

w

w
j-to-j

j-to-j f-to-f

f-to-f

j-to-j

j-to-j

f-to-f

f-to-f

Fig. 3: Construction of different 2-hop connector graph views over
a heterogeneous network (namely, a data lineage graph) with two
vertex types (N = 2) and two edge types (M = 2).

As an example, Fig. 3 shows the construction of 2-hop
same-vertex-type connector views over a data lineage graph
(similar to the graph of Fig. 1). In Fig. 3(a), the input graph
contains two types of vertices, namely jobs (vertex labels with
a j prefix) and files (vertex labels with an f prefix), as well
as two types of edges, namely w (a job writes to a file) and
r (a file is read by a job). Fig. 3(b) shows two different types
of connector edges: the first contracts 2-hop paths between
pairs of job vertices (depicted as blue dashed edges); the
second contracts 2-hop paths between pairs of file vertices
(depicted as red dashed edges). Finally, Fig. 3(c) shows the
two resulting connector graph views: one containing only the
job-to-job connector edges (left), and one with only the file-
to-file connector edges (right).

We defer the formal definition and more examples of
connectors and summarizers to § VI, given that we consider
their definition as a means to an end rather than a fundamental
contribution of this work. Here and in Sections IV and V, we
only provide sufficient information over graph views for the
reader to follow our techniques. As path operations tend to be
the most expensive operations in graphs, our description will
pivot mostly around connectors. Materializing such expensive
operations can lead to significant performance improvements
at query evaluation time. Moreover, the semantics of connec-
tors is less straightforward than that of summarizers, which
resemble their relational counterparts (filters and aggregates).
Note, however, that the techniques described here are generic
and apply to any graph views that can are expressible as view
templates.

IV. CONSTRAINT-BASED VIEW ENUMERATION

Having introduced a preliminary set of graph view types in
§ III-C (see also § VI for more examples), we now describe
KASKADE’s view enumeration process, which generates can-

Query &
Schema Fact

Extraction

Inference-
Based View
Enumeration

Constraint
Mining Rules

Explicit
Constraints

View
Templates

View
Candidates

Query

Graph
schema

Inference-based view enumeration (in Prolog)

Constraint mining

Fig. 4: Constraint-based view enumeration in KASKADE.

didate views for the graph expressions of a query. As discussed
in § II, view enumeration is central to KASKADE (see Fig. 2),
as it is used in both view selection and query rewriting,
which are described in § V. Given that the space of view
candidates can be considerable, and that view enumeration is
on the critical path of view selection and query rewriting, its
efficiency is crucial.

In KASKADE we use a novel approach, which we call
constraint-based view enumeration. This approach mines con-
straints from the query and the graph schema and injects them
at view enumeration time to drastically reduce the search
space of graph view candidates. Fig. 4 depicts an overview
of our approach. Our view enumeration takes as input a
query, a graph schema and a set of declarative view templates,
and searches for instantiations of the view templates that
apply to the query. KASKADE expresses view templates as
inference rules, and employs an inference engine (namely,
Prolog)2 to perform view enumeration through rule evaluation.
Importantly, KASKADE generates both explicit constraints,
extracted directly from the query and schema, and implicit
ones, generated via constraint mining rules. This constraint
mining process identifies structural properties from the schema
and query that allow it to significantly prune the search
space for view enumeration, discarding infeasible candidates
(e.g., job-to-job edges or 3-hop connectors in our provenance
example).

Apart from effectively pruning the search space of candidate
views, KASKADE’s view enumeration provides the added
benefit of not requiring the implementation of complex trans-
formations and search algorithms—the search is performed by
the inference engine automatically via our view templates and
efficiently via the constraints that we mine. Moreover, view
templates are readily extensible to modify the supported set
of views. In our current implementation, we employ SWI-
PL’s inference engine [24], which gives us the flexibility to
seamlessly add new view templates and constraint mining
rules via Prolog rules. On the contrary, existing techniques for
view enumeration in the relational setting typically decompose
a query through a set of application-specific transformation
rules [25] or by using the query optimizer [26], and then
implement search strategies to navigate through the candidate

2While a subset of KASKADE’s constraint mining rules are expressible in Datalog,
Prolog provides native support (i.e., without extensions) for aggregation and negation,
and we use both in summarizer view templates. KASKADE also relies on higher-order
predicates (e.g., setof, findall) in constraint mining rules, which Datalog does not
support.

views. Compared to our constraint-based view enumeration,
these approaches require higher implementation effort and are
inflexible when it comes to adding or modifying complex
transformation rules.

We detail the two main parts of our constraint-based view
enumeration, namely the constraint mining and the inference-
based view enumeration, in Sections IV-A and IV-B, respec-
tively.
A. Mining Structural Graph Constraints
KASKADE exploits information from the graph’s schema and
the given query in the form of constraints to prune the set of
candidate views to be considered during view enumeration. It
mines two types of constraints:
• Explicit constraints (§ IV-A1) are first-order logic state-

ments (facts) extracted from the schema and query (e.g.,
that files do not write files, only jobs);

• Implicit constraints (§ IV-A2) are not present in the
schema or query, but are derived by combining the ex-
plicit constraint facts with constraint mining rules. These
constraints are essential in KASKADE, as they capture
structural properties that otherwise cannot be inferred by
simply looking at the input query or schema properties.

1) Extracting explicit constraints
The first step in our constraint-based view enumeration is to
extract explicit constraints (facts) from the query and schema.

Transforming the query to facts. Our view enumeration
algorithm goes over the query’s MATCH clause, i.e., its graph
pattern matching clause, and for each vertex and edge in the
graph pattern, KASKADE’s constraint miner emits a set of
Prolog facts. In our running example of the job “blast radius”
query (Lst. 1), KASKADE extracts the following facts from the
query:
queryVertex(q_f1). queryVertex(q_f2).
queryVertex(q_j1). queryVertex(q_j2).
queryVertexType(q_f1, 'File').
queryVertexType(q_f2, 'File').
queryVertexType(q_j1, 'Job').
queryVertexType(q_j2, 'Job').
queryEdge(q_j1, q_f1). queryEdge(q_f2, q_j2).
queryEdgeType(q_j1, q_f1, 'WRITES_TO').
queryEdgeType(q_f2, q_j2, 'IS_READ_BY').
queryVariableLengthPath(q_f1, q_f2, 0, 8).

The above set of facts contains all named vertices
and edges in the query’s graph pattern, along with their
types, and any variable-length regular path expression
(queryVariableLengthPath(X,Y,L,U) corresponds
to a path between nodes X and Y of length between L and
U). In Lst. 1, a variable-length regular path of up to 8 hops
is specified between query vertices q_f1 and q_f2.

Transforming the schema to facts. Similar to the extraction
of query facts, our view enumeration algorithm goes over the
provided graph schema and emits the corresponding Prolog
rules. For our running example of the data lineage graph, there
are two types of vertices (files and jobs) and two types of edges
representing the producer-consumer data lineage relationship
between them. Hence, the set of facts extracted about this
schema is:

schemaVertex('Job'). schemaVertex('File').
schemaEdge('Job', 'File', 'WRITES_TO').
schemaEdge('File', 'Job', 'IS_READ_BY').

2) Mining implicit constraints
Although the explicit query and schema constraints that we
introduced so far restrict the view enumeration to consider only
views with meaningful vertices and edges (i.e., that appear in
the query and schema), they still allow many infeasible views
to be considered. For example, if we were to enumerate k-
hop connectors between two files to match the variable-length
path in the query of Lst. 1, all values of k ≥ 2 would have to
be considered. However, given the example schema, we know
that only even values of k are feasible views. Similarly, since
the query specifies an upper limit u = 8 in the number hops in
the variable-length path, we should not be enumerating k-hop
connectors with k ≥ 8.

To derive such implicit schema and query constraints that
will allow us to significantly prune the search space of
views to consider, KASKADE uses a library of constraint
mining rules3 for the schema and query. Lst. 2 shows an
example of such a constraint mining rule for the schema.
Rule schemaKHopPath, expressed in Prolog in the list-
ing, infers all valid k-hop paths given the input schema.
Note that the rule takes advantage of the explicit schema
constraint schemaEdge to derive this more complex con-
straint from the schema, and it considers two instances of
schemaKHopPath different if and only if all values in
the resulting unification tuple are different. For example,
a schemaKHopPath(X=‘Job’,Y=‘Job’,K=2) unifica-
tion, i.e., a job-to-job 2-hop connector is different from a
schemaKHopPath(X=‘File’,Y=‘File’,K=2), i.e., a
file-to-file 2-hop connector. For completeness, we also provide
a procedural version of this constraint mining rule in Lst. A
(Alg. 1). When contrasted with the Prolog rule, the procedural
version is not only more complex, but it also explores a
larger search space. This is because the procedural function
cannot be injected at view enumeration time as an additional
rule together with other inference rules that further bound the
search space (see § IV-B).
Listing 2 Example of constraint mining rule for the graph
schema.
% Determine whether acyclic directed k-length paths
% between two nodes X and Y are feasible over the input
% graph schema. schemaEdge are explicit constraints
% extracted from the schema.
schemaKHopPath(X,Y,K) :-
schemaKHopPath(X,Y,K,[]).

schemaKHopPath(X,Y,1,_) :-
schemaEdge(X,Y,_).

schemaKHopPath(X,Y,K,Trail) :-
schemaEdge(X,Z,_), not(member(Z,Trail)),
schemaKHopPath(Z,Y,K1,[X|Trail]), K is K1 + 1.

Similar constraint mining rules can be defined for the query.
Lst. A (Lst. 6) shows examples of such rules, e.g., to bound
the length of considered k-hop connectors (in case such limits
are present in the query’s graph pattern), or to ensure that a
node is the source or sink in a connector.

3The collection of constraint mining rules KASKADE provides is readily extensible,
and users can supply additional constraint mining rules if desired.

Listing 3 Example view template definitions for connectors.
% k-hop connector between nodes X and Y.
kHopConnector(X, Y, XTYPE, YTYPE, K) :-
% query constraints
queryVertexType(X, XTYPE),
queryVertexType(Y, YTYPE),
queryKHopPath(X, Y, K),
% schema constraints
schemaKHopPath(XTYPE, TYPE, K).

% k-hop connector where all vertices are of the same type.
kHopConnectorSameVertexType(X, Y, VTYPE, K) :-
kHopConnector(X, Y, VTYPE, VTYPE, K).

% Variable-length connector where all vertices are of
% the same type.
connectorSameVertexType(X, Y, VTYPE) :-
% query constraints
queryVertexType(X, VTYPE),
queryVertexType(Y, VTYPE),
queryPath(X, Y),
% schema constraints
schemaPath(X, Y).

% Source-to-sink variable-length connector.
sourceToSinkConnector(X, Y) :-
% query constraints
queryVertexSource(X),
queryVertexSink(Y),
queryPath(X, Y),
% schema constraints
schemaPath(X, Y).

These constraints play a crucial role in limiting the search
space for valid views. As we show in § IV-B, by injecting such
rules at view enumeration time, KASKADE can automatically
derive implicit knowledge from the schema and query to
significantly reduce the search space of considered views.
Interestingly, KASKADE can derive this knowledge only on
demand, in that the constraint mining rules get fired only when
required and do not blindly derive all possible facts from the
query and schema.

Importantly, the combination of both schema and query
constraints is what makes it possible for our view enumeration
approach to reducing the search space of possible rewritings.
As an example, consider the process of enumerating valid
k-hop connector views. Without any query constraints, the
number of such views equals the number of k-length paths
over the schema graph, which has M schema edges. While
there exists no closed formula for this combination, when
the schema graph has one or more cycles (e.g., a schema
edge that connects a schema vertex to itself), at least Mk

k-hop schema paths can be enumerated. This space is what
the schemaKHopPath schema constraint mining rule would
search over, were it not used in conjunction with query con-
straint mining rules on view template definitions. KASKADE’s
constraint-based view inference algorithm enumerates a sig-
nificantly smaller number of views for input queries, as the
additional constraints enable its inference engine to efficiently
search by early-stopping on branches that do not yield feasible
rewritings.

B. Inference-based View Enumeration
As shown in Fig. 4, KASKADE’s view enumeration takes

as input (i) a query, (ii) a graph schema, and (iii) a set of
view templates. As described in § IV-A, the query and schema
are used to mine explicit and implicit constraints. Both the

view templates and the mined constraints are rules that are
passed to an inference engine to generate candidate views via
rule evaluation. Hence, we call this process inference-based
view enumeration. The view templates drive the search for
candidate views, whereas the constraints restrict the search
space of considered views. This process outputs a collection
of instantiated candidate view templates, which are later used
either by the workload analyzer module (see Fig. 2) when
determining which views to materialize during view selection
(§ V-B), or by the query rewriter to rewrite the query using the
materialized view (§ V-C) that will lead to its most efficient
evaluation.

Lst. 3 shows examples of template definitions for
connector views. Each view template is defined as a Prolog
rule and corresponds to a type of connector view. For
instance, kHopConnector(X,Y,XTYPE,YTYPE,K)
corresponds to a connector of length K between
nodes X and Y, with types XTYPE and YTYPE,
respectively. An example instantiation of this template
is kHopConnector(X,Y,‘Job’,‘Job’,2), which
corresponds to a concrete job-to-job 2-hop connector view.
This view can be translated to an equivalent Cypher query,
which will be used either to materialize the view or to
rewrite the query using this view, as we explain in § V.
Other templates in the listing are used to produce connectors
between nodes of the same type or source-to-sink connectors.
Additional view templates can be defined in a similar fashion,
such as the ones for summarizer views that we provide in
Appendix A (Lst. 5).

Note that the body of the view template is defined using
the query and schema constraints, either the explicit ones
(e.g., queryVertexType) coming directly from the
query or schema, or via the constraint mining rules (e.g.,
queryKHopPath, schemaKHopPath), as discussed in
§ IV-A. For example, kHopConnector’s body includes
two explicit constraints to check the type of the two nodes
participating in the connector, a query constraint mining rule
that will check whether there is a valid k-hop path between
the two nodes in the query, and a schema constraint mining
rule that will do the same check on the schema.

Having gathered all query and schema facts, KASKADE’s
view enumeration algorithm performs the actual view can-
didate generation. In particular, it calls the inference en-
gine for every view template. As an example, assuming
an upper bound of k = 10 — in Lst. 1 we have a
variable-length path of at most 8 hops between 2 File ver-
tices, and each of these two vertices is an endpoint for
another edge — the following are valid instantiations of the
kHopConnector(X,Y,XTYPE,YTYPE,K) view template
for query vertices q_j1 and q_j2 (the only vertices projected
out of the MATCH clause):

(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=2)
(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=4)
(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=6)
(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=8)
(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=10)

Or, in other words, the unification (X=‘q_j1’,
Y=‘q_j2’, XTYPE=‘Job’, XTYPE=‘Job’, K=2)
for the view template kHopConnector(X,Y,XTYPE,-
YTYPE,K) implies that a view where each edge contracts
a path of length k = 2 between two nodes of type Job is
feasible for the query in Lst. 1.

Similarly, KASKADE generates candidates for the remaining
templates of Listings 3 and 5. For each candidate it generates,
KASKADE’s inference engine also outputs a rewriting of the
given query that uses this candidate view, which is crucial for
the view-based query rewriting, as we show in § V-C. Finally,
each candidate view incurs different costs (see § V-A), and not
every view is necessarily materialized or chosen for a rewrite.

V. VIEW OPERATIONS

In this section, we present the main two operations that
KASKADE supports: selecting views for materialization given
a set of queries (§ V-B) and view-based rewriting of a query
given a set of pre-materialized views (§ V-C). To do this,
KASKADE uses a cost model to estimate the size and cost
of views, which we describe next (§ V-A).

A. View Size Estimation and Cost Model
While some techniques for relational cost-based query op-
timization may at times target filters and aggregates, most
efforts in this area have primarily focused on join cardinality
estimation [27]. This is in part because joins tend to dominate
query costs, but also because estimating join cardinalities is a
harder problem than, e.g., estimating the cardinality of filters.
Furthermore, KASKADE can leverage existing techniques for
cardinality estimation of filters and aggregates in relational
query optimization for summarizers.

Therefore, here we detail our cost model contribution as it
relates to connector views, which can be seen as the graph
counterpart of relational joins. We first describe how we
estimate the size of connector views, which we then use to
define our cost model.

Graph data properties During initial data loading and subse-
quent data updates, KASKADE maintains the following graph
properties: (i) vertex cardinality for each vertex type of the
raw graph; and (ii) coarse-grained out-degree distribution
summary statistics, i.e., the 50th, 90th, and 95th out-degree
for each vertex type of the raw graph. KASKADE uses these
properties to estimate the size of a view.

View size estimation. Estimating the size of a view is essential
for the KASKADE’s view operations. First, it allows us to
determine if a view will fit in a space budget during view
selection. Moreover, our cost components (see below) use view
size estimates to assess the benefit of a view both in view
selection and view-based query rewriting.

In KASKADE, we estimate the size of a view as the number
of edges that it has when materialized since the number of
edges usually dominates the number of vertices in real-world
graphs. Next, we observe that the number of edges in a
k-hop connector over a graph G equals the number of k-
length simple paths in G. We considered using the following

estimator for Erdos-Renyi random graphs [28], where edges
are generated uniformly at random, and the expected number
of k-length simple paths can be computed as:

Ê(G, k) =

(
n

k + 1

)
·
[
m(
n
2

)]k (1)

where n = |V | is the number of vertices in G, and m =
|E| is the number of edges in G. However, we found that
for real-world graphs, the independence assumption does not
hold for vertex connectivity, as the degree distributions are
not necessarily uniform and edges are usually correlated. As a
result, this formula significantly underestimates — by several
orders of magnitude — the number of directed k-length paths
in real-world graphs. Therefore, for a directed graph G that is
homogeneous (i.e., has only one type of vertex, and one type
of edge), we define the following estimator for its number of
k-length paths:

Ê(G, k, α) = n · degkα (2)

where n = |V | is the number of vertices in G, and degα is the
α-th percentile out-degree of vertices in G (0 < α ≤ 100).

For a directed graph G that is heterogeneous (i.e., has more
than one type of vertex and/or more than one type of edge),
an estimator for its number of k-length paths is as follows:

Ê(G, k, α) =
∑
t∈TG

nt · (degα(ni))k (3)

where TG is the set of types of vertices in G that are edge
sources (i.e., are the domain of at least one type of edge), nt
is the number of vertices of type t ∈ TG, and degα(nt) is the
maximum out-degree of vertices of type t ∈ TG.

Observe that if α = 100, then degα is the maximum out-
degree and the estimators above are upper bounds on the
number of k-length paths in the graph. This is because there
are n possible starting vertices, each vertex in the path has
at most deg100 (or deg100(ni)) neighbors to choose from for
its successor vertex in the path, and such a choice has to
be made k times in a k-length path. In practice, we found
that α = 100 gives a very loose upper bound, whereas
50 ≤ α ≤ 95 gives a much more accurate estimate depending
on the degree distribution of the graph. We present experiments
on the accuracy of our estimator in § VII.

View creation cost. The creation cost of a graph view refers to
any computational and I/O costs incurred when computing and
materializing the views’ results. Since the primitives required
for computing and materializing the results of the graph views
that we are interested in are relatively simple, the I/O cost
dominates computational costs, and thus the latter is omitted
from our cost model. Hence, the view creation cost is directly
proportional to Ê(G, k, α).

Query evaluation cost. The cost of evaluating a query q,
denoted EvalCost(q), is required both in the view selection
and the query rewriting process. KASKADE relies on an

existing cost model for graph database queries as a proxy
for the cost to compute a given query using the raw graph.
In particular, it leverages Neo4j’s [14] cost-based optimizer,
which establishes a reasonable ordering between all vertex
scans without indexes, scans from indexes, and range scans.
As part of our future work, we plan to incorporate our findings
from graph view size estimation to further improve the query
evaluation cost model.

B. View Selection
Given a query workload, KASKADE’s view selection process
determines the most effective views to materialize for an-
swering the workload under the space budget that KASKADE
allocates for materializing views. This operation is performed
by the workload analyzer component, in conjunction with the
view enumerator (see § IV). The goal of KASKADE’s view
selection algorithm is to select the views that lead to the
most significant performance gains relative to their cost, while
respecting the space budget.

To this end, we formulate the view selection algorithm
as a 0-1 knapsack problem, where the size of the knapsack
is the space budget dedicated to view materialization.4 The
items that we want to fit in the knapsack are the candidate
views generated by the view enumerator (§ IV). The weight
of each item is the view’s estimated size (see § V-A), while the
value of each item is the performance improvement achieved
by using that view divided by the view’s creation cost (to
penalize views that are expensive to materialize). We define
the performance improvement of a view v for a query q
in the query workload Q as q’s evaluation cost divided by
the cost of evaluating the rewritten version of q that uses v.
The performance improvement of v for Q is the sum of v’s
improvement for each query in Q (which is zero for the queries
for which v is not applicable). Note that we can extend the
above formulation by adding weights to the value of each
query to reflect its relative importance (e.g., based on the
query’s frequency to prioritize more frequent queries, or on the
query’s estimated execution time to prioritize more expensive
queries).

The views that the above process selects for materialization
are instantiations of Prolog view templates output by the
view enumeration (see § IV). KASKADE’s workload analyzer
translates those views to Cypher and executes them against the
graph to perform the actual materialization. As a byproduct of
this process, each combination of query q and materialized
view v is accompanied by a rewriting of q using v, which is
crucial in the view-based query rewriting, described next. The
rewriter component converts the rewriting in Prolog to Cypher,
so that KASKADE can run it on its graph execution engine.

C. View-Based Query Rewriting
Given a query and a set of materialized views, view-based
rewriting is the process of finding the rewriting of the query
that leads to the highest reduction of its evaluation cost by

4The space budget is typically a percentage of the machine’s main memory size,
given that we are using a main memory execution engine. Our formulation can be easily
extended to support multiple levels of memory hierarchy.

TABLE I: Connectors in KASKADE

Type Description

Same-vertex-type
connector

Target vertices are all pairs of vertices with a specific
vertex type.

k-hop connector Target vertices are all vertex pairs that are connected
through k-length paths.

Same-edge-type con-
nector

Target vertices are all pairs of vertices that are connected
with a path consisting of edges with a specific edge type

Source-to-sink
connector

Target vertices are (source, sink) pairs, where sources are
the vertices with no incoming edges and sinks are vertices
with no outgoing edges.

using (a subset of) the views. In KASKADE, the query rewriter
module (see Fig. 2) performs this operation.

When a query q arrives in the system, the query rewriter
invokes the view enumerator, which generates the possible
view candidates for q, pruning those that it has not materi-
alized. Among the views that are output by the enumerator,
the query rewriter selects the one that, when used to rewrite
q, leads to the smallest evaluation cost for q. As discussed
in § IV, the view enumerator outputs the rewriting of each
query based on the candidate views for that query. If this
information is saved from the view selection step (which is
true in our implementation), we can leverage it to choose
the most efficient view-based rewriting of the query without
having to invoke the view enumeration again for that query. As
we mentioned in § IV, KASKADE currently supports rewritings
that rely on a single view. Combining multiple views in a
single rewriting is left as future work.

Lst. 4 shows the rewritten version of our example query of
Lst. 1 that uses a 2-hop connector (“job-to-job”) graph view.
Listing 4 Job blast radius query rewritten over a 2-hop
connector (job-to-job) graph view.
SELECT A.pipelineName, AVG(T_CPU) FROM (

SELECT A, SUM(B.CPU) AS T_CPU FROM (
MATCH (q_j1:Job)-[:2_HOP-JOB_TO_JOB*1..4]->(q_j2:Job)
RETURN q_j1 as A, q_j2 as B

) GROUP BY A, B
) GROUP BY A.pipelineName

VI. VIEW DEFINITIONS AND EXAMPLES
Next we provide formal definitions of the two main classes of
views supported in KASKADE, namely connectors and sum-
marizers, which were briefly described in § III-C. Moreover,
we give various examples of the views from each category that
are currently present in KASKADE’s view template library.

While the examples below are general enough to capture
many different types of graph structures, they are by no means
an exhaustive list of graph view templates that are possible in
KASKADE; as we mention in § IV, KASKADE’s library of view
templates and constraint mining rules is readily extensible.
A. Connectors
A connector of a graph G = (V,E) is a graph G′ such that ev-
ery edge e′ = (u, v) ∈ E(G′) is obtained via contraction of a
single directed path between two target vertices u, v ∈ V (G).
The vertex set V (G′) of the connector view is the union of all
target vertices with V (G′) ⊆ V (G). Based on this definition,
a number of specialized connector views can be defined, each
of which differs in the target vertices that it considers. Table I
lists examples currently supported in KASKADE.

TABLE II: Summarizers in KASKADE

Type Description

Vertex-removal sum-
marizer

Removes vertices and connected edges that satisfy a given
predicate, e.g., vertex type or vertex property.

Edge-removal
summarizer

Removes edges that satisfy a given predicate.

Vertex-inclusion sum-
marizer

Includes vertices that satisfy the predicate, and edges
where both the source and target vertices satisfy the
predicate.

Edge-inclusion sum-
marizer

Includes only edges that satisfy a given predicate.

Vertex-aggregator
summarizer

Groups vertices that satisfy a given predicate, and com-
bines them using the provided aggregate function.

Edge-aggregator sum-
marizer

Groups edges that satisfy a given predicate, and combines
them using the provided aggregate function. If the result-
ing edges do not have the same source and destination
vertices, it also performs a vertex aggregation operation.

Subgraph-aggregator
summarizer

Groups both edges and vertices that satisfy a given pred-
icate, and combines them using the provided aggregate
function.

Additionally, it is easy to compose the definition of k-
hop connectors with the other connector definitions, leading
to more connector types. As an example, the k-hop same-
vertex-type connector is a same-vertex-type connector with
the additional requirement that the target vertices should be
connected through k-hop paths.

Finally, connectors are useful in contexts where a query’s
graph pattern contains relatively long paths that can be con-
tracted without loss of generality, or when only the endpoints
of the graph pattern are projected in subsequent clauses in the
query.

B. Summarizers
A summarizer of a graph G = (V,E) is a graph G′ such
that V (G′) ⊆ V (G), E(G′) ⊆ E(G), and at least one of
the following conditions are true: (i) |V (G′)| < |V (G)|, or
(ii) |E(G′)| < |E(G)|. The summarizer view operations that
KASKADE currently provides are filters that specify the type
of vertices or edges that we want to preserve (inclusion filters)
or remove (exclusion filters) from the original graph.5 Also,
it provides aggregator summarizers that either group a set of
vertices into a supervertex, a group of edges into a superedge,
or a subgraph into a supervertex. Finally, aggregator summa-
rizers require an aggregate function for each type of property
present in the domain of the aggregator operation. Examples
of summarizer graph views currently supported are given in
Table II. KASKADE’s library of template views currently does
not support aggregation of vertices of different types. The
library is readily extensible, however, and aggregations for
vertices or edges with different types are expressible using a
higher-order aggregate function to resolve conflicts between
properties with the same name, or to specify the resulting
aggregate type.

Lastly, summarizers can be useful when subsets of data
(e.g., entire classes of vertices and edges) can be removed from
the graph without incurring any side-effects (in the case of

5Summarizer views can also include predicates on vertex/edge properties in their
definitions. Using such predicates would further reduce the size of these views, but
given they are straightforward, here we focus more on predicates for vertex/edge types.

filters), or when queries refer to logical entities that correspond
to groupings of one or more entity at a finer granularity (in
the case of aggregators).

VII. EXPERIMENTAL EVALUATION

In this section, we experimentally confirm that by leveraging
graph views (e.g., summarizers and connectors) we can: (i) ac-
curately estimate graph view sizes—§ VII-D; (ii) effectively
reduce the graph size our queries operate on—§ VII-E; and
(iii) improve query performance—§ VII-F. We start by provid-
ing details on KASKADE’s current implementation, and follow
by introducing our datasets and query workload.
A. Implementation
We have implemented KASKADE’s components (see Fig. 2)
as follows. The view enumerator component (§ IV) uses
SWI-Prolog [24] as its inference engine. We wrote all con-
straint mining rules, query constraint mining rules, and view
templates using SWI-Prolog syntax, which is close to ISO-
Prolog [29]. We wrote the knapsack problem formulation
(§ V-B) in Python 2.7, using the branch-and-bound knapsack
solver from Google OR tools combinatory optimization li-
brary [30]. As shown in Fig. 2, KASKADE uses Neo4J (version
3.2.2) for storage of raw graphs, materialized graph views, and
query execution of graph pattern matching queries. All other
components — including the constraint miner — were written
in Java.

For the experimental results below, KASKADE extracted
schema constraints only once for each workload, as these do
not change throughout the workload. Furthermore, KASKADE
extracted query constraints as part of view inference only the
first time we entered the query into the system. This process
introduces a few milliseconds to the total query runtime —
as the number of query facts combined with schema facts is
small, and in the experiments below we focus on one type of
view template — and is amortized for multiple runs of the
same query.
B. Datasets
In our evaluation of different aspects of KASKADE, we use a
combination of publicly-available heterogeneous and homoge-
neous networks and a large provenance graph from Microsoft
(heterogeneous network). Table III lists the datasets and their
raw sizes. We also provide their degree distributions in Alg. A.
TABLE III: Networks used for evaluation: prov and dblp are
heterogeneous, while roadnet-usa and soc-livejournal are
homogeneous and have one edge type.

Short Name Type |V | |E|

prov (raw) Data lineage 3.2B 16.4B
prov (summarized) Data lineage 7M 34M
dblp-net Publications [31] 5.1M 24.7M
soc-livejournal Social network [32] 4.8M 68.9M
roadnet-usa Road network [7] 23.9M 28.8M

For our size reduction evaluation in Section VII-E, we
focus on gains provided by different graph views over the two
heterogeneous networks: dblp-net and a data lineage graph
from Microsoft. The dblp-net graph, which is publicly
available at [31], contains 5.1M vertices (authors, articles,
and venues) with 24.7M with 2.2G on-disk footprint. For

the second heterogeneous network, we captured a provenance
graph modeling one of Microsoft’s large production clusters
for a week. This raw graph contains 3.2B vertices modeling
jobs, files, machines, and tasks, and 16.4B edges representing
relationships among these entities, such as job-read-file, or
task-to-task data transfers. The on-disk footprint of this data
is in the order of 10+ TBs.

After showing size reduction achieved by summarizers and
connectors in Section VII-E, for our query runtime experi-
ments (§ VII-F), we consider already summarized versions of
our heterogeneous networks, i.e., of dblp-net and prove-
nance graph. The summarized graph over dblp-net contains
only authors and publications (“article”, “publication”, and
“in-proc” vertex types), totaling 3.2M vertices and 19.3M
edges, which requires 1.3G on disk. The summarized graph
over the raw provenance graph contains only jobs and files
and their relationships, which make up its 7M vertices and
34M edges. The on-disk footprint of this data is 4.8 GBs.
This allows us to compare runtimes of our queries on the
Neo4j 3.2.2 graph engine, running on a 128 GB of RAM and
28 Intel Xeon 2.40GHz cores, 4 x 1TB SSD Ubuntu box.
We chose to use Neo4j for storage of materialized views and
query execution because it is the most widely used graph
database engine as of writing, but our techniques are graph
query engine-agnostic.

C. Queries
Table IV lists the queries that we use in our evaluation of query
runtimes. Queries Q1 through Q3 are motivated by telemetry
use cases at Microsoft, and are defined as follows. The first
query retrieves the job blast radius, up to 8 hops away, of
all job vertices in the graph, together with their average CPU
consumption property. Query Q2 retrieves the ancestors of a
job (i.e., all vertices in its backward data lineage) up to 4
hops away, for all job vertices in the graph. Conversely, Q3
does the equivalent operation for forward data lineage for all
vertices in the graph, also capped at 4 hops from the source
vertex. Both Q2 and Q3 are also adapted for the other 3 graph
datasets: on dblp, the source vertex type is “author” instead
of “job”, and on homogeneous networks roadnet-usa and
soc-livejournal all vertices are included.

TABLE IV: Query workload.
Query Operation Result

Q1: Job Blast Radius Retrieval Subgraph
Q2: Ancestors Retrieval Set of vertices
Q3: Descendants Retrieval Set of vertices
Q4: Path lengths Retrieval Bag of scalars
Q5: Edge Count Retrieval Single scalar
Q6: Vertex Count Retrieval Single scalar
Q7: Community Detection Update N/A
Q8: Largest Community Retrieval Subgraph

Next, queries Q4 through Q7 capture graph operation prim-
itives which are commonly required for tasks in dependency
driven analytics [4]. The first, query Q4 (“path lengths”),
computes a weighted distance from a source vertex to all other
vertices in its forward k-hop neighborhood, limited to 4 hops.
It does so by first retrieving all vertices in a given vertex’s
4-hop neighborhood, and then for each vertex in this result

set, it performs an aggregation operation (max) over a data
property (edge timestamp) of all edges in the path. Queries
Q5 and Q6 both measure the overall size of the graph (edge
count and vertex count, respectively).

Finally, Q7 (“community detection”) and Q8 (“largest com-
munity”) are representative of common graph analytics tasks.
The former runs a 25 passes iterative version of community de-
tection algorithm via label-propagation, updating a community
property on all vertices and edges in the graph, while Q8 uses
the community label produced by Q7 to retrieve the largest
community in terms of graph size as measured by number
of “job” vertices in each community. The label propagation
algorithm used by Q7 is part of the APOC collection of graph
algorithm UDFs for Neo4j [33].

For query runtimes experiments in § VII-F, we use the
equivalent rewriting of each of these queries over a 2-hop con-
nector. Specifically, queries Q1 through Q4 go over half of the
original number of hops, and queries Q7 and Q8 run around
half as many iterations of label propagation. These rewritings
are equivalent and produce the same results as queries Q1
through Q4 over the original graph, and similar groupings
of “job” nodes in the resulting communities. Queries Q5 and
Q6 need not be modified, as they only count the number of
elements in the dataset (edges and vertices, respectively).
D. View Size Estimation
In this section, we evaluate the accuracy of KASKADE’s view
size estimators (§ V-A). Fig. 5 shows our results for different
heuristics estimators on the size of a 2-hop connector view
materialized over the first n edges of each public graph dataset.
We focus on size estimates for 2-hop connectors since, similar
to cardinality estimation for joins, the larger the k, the less
accurate our estimator. We do not report results for view
size estimates for summarizers, as for these KASKADE can
leverage traditional cardinality estimation based on predicate
selectivity for filters, as well as multi-dimensional histograms
for predicate selectivity of group-by operators [27].

We found that k-hop connectors in homogeneous networks
are usually larger than the original graph in real-world net-
works. This is because k-length paths can exist between any
two vertices in this type of a graph, as opposed to only between
specific types of vertices in heterogeneous networks, such as
Microsoft’s provenance graph. Note that the α = 50 line does
a good job of approximating the size of the graph as the
number of edges grows. Also, for networks with a degree dis-
tribution close to a power-law, such as soc-livejournal,
the estimator that relies on 95th percentile out-degree (α = 95)
provides an upper bound, while the one that uses the median
out-degree (α = 50) of the network provides a lower bound.
On other networks that do not have a power-law degree
distribution, such as road-net-usa, the median out-degree
estimator better approximates an upper bound on the size of
the k-hop connector.

In practice, KASKADE relies on the estimator parameterized
with α = 95 as it provides an upper bound for most real-world
graphs that we have observed. Also note that the estimator with
α = 95 for prov decreases when the original graph increases

104 105 106 107

Graph Edges

104

106

108

1010

C
on

ne
ct

or
 E

dg
es

prov
= 50
= 95

|E|
actual

104 105 106 107

Graph Edges

104

106

108

1010 dblp
= 50
= 95

|E|
actual

104 105 106 107

Graph Edges

104

106

108

1010 roadnet-usa
= 50
= 95

|E|
actual

104 105 106 107

Graph Edges

104

106

108

1010 soc-livejournal
= 50
= 95

|E|
actual

Fig. 5: Estimated, actual, and original graph sizes for 2-hop connector views over different datasets. Here we show estimates for two upper
bound variations derived from summary statistics over the graph’s degree distribution detailed in § V-A. We also plot the original graph size
(x-axis, and dashed |E| series). Plots are in log-log scale.

in size from 100K to 1M edges, increasing again at 10M
edges. This is due to a decrease in the percentage of “job”
vertices with a large out-degree, shifting the 95th percentile
to a lower value. This percentile remains the same at 10M
edges, while the 95th out-degree for “file” vertices increases
at both 1M and 10M edges.

E. Size Reduction
This experiment shows how by applying summarizers and
connectors over heterogeneous graphs we can reduce the ef-
fective graph size for one or more queries. Figure 6 shows that
for co-authorship queries over the dblp, and query Q1 over
the provenance graph, the schema-level summarizer yields
up to three orders of magnitude reduction. The connector
yields another two orders of magnitude data reduction by
summarizing the job-file-job paths in the provenance graph,
and one order of magnitude by summarizing the author-
publication-author paths in the dblp graph.

Besides the expected performance advantage since queries
operate on less data, such a drastic data reduction allows us
to benefit from single-machine in-memory technologies (such
as Neo4j) instead of slower distributed on-disk alternatives for
query evaluation, in the case of the provenance graph. While
this is practically very relevant, we do not claim this as part
of our performance advantage, and all experiments are shown
as relative speed-ups against a baseline on this provenance
reduced graph, with all experiments on the same underlying
graph engine.

raw filter connector
0

100

101
102
103
104
105
106

Si
ze

 (m
ill

io
ns

)

prov
vertices edges

raw filter connector
0

100

101

102 dblp
vertices edges

Fig. 6: Effective graph size reduction when using summarizer and 2-
hop connector views over prov and dblp heterogeneous networks
(y-axis is in log scale).

F. Query Runtimes
This experiment measures the difference in total query runtime
for queries when executed from scratch over the filtered graph
versus over an equivalent connector view on the filtered graph.
Figure 7 shows our results, with runtimes averaged over 10
runs, plotted in log scale on the y-axis. Because the amount of

data required to answer the rewritten query is up to orders of
magnitude smaller (§ VII-E) in the heterogeneous networks,
virtually every query over the prov and dblp graphs benefit
from executing over the connector view. Specifically, Q2
and Q3 have the least performance gains (less than 2 times
faster), while Q4 and Q8 obtain the largest runtime speedups
(13 and 50 times faster, respectively). This is expected: Q2
(“ancestors”) and Q3 (“descendants”) explore a k-hop ego-
centric neighborhood in both the filtered graph and in the
connector view that is of the same order of magnitude. Q4
(“path lengths”) and Q8 (“community detection”), on the other
hand, are queries that directly benefit from the significant size
reduction of the input graph. In particular, the maximum num-
ber of paths in a graph can be exponential on the number of
vertices and edges, which affects both the count of path lengths
that Q4 performs, as well as the label-propagation updates that
Q8 requires. Finally, we also observe that because KASKADE
creates connector views through graph transformations that
are engine-agnostic, these gains should be available in other
systems as well.

For the homogeneous networks, we look at the total query
runtimes over the raw graph and over a vertex-to-vertex
materialized 2-hop connector, which may be up to orders
of magnitude larger than the raw graph (§ VII-D), as these
networks have only one type of edge. Despite these differences
in total sizes, a non-intuitive result is that the total query
runtime is still linearly correlated with the order of magnitude
increase in size for the network with a power-law degree
distribution (soc-livejournal), while it decreases for
path-related queries in the case of roadnet-usa. This is
due to a combination of factors, including the larger fraction
of long paths in roadnet-usa. Lastly, while the decision on
which views to materialize heavily depends on the estimated
view size (e.g., size budget constraints, and proxy for view
creation cost), we note that these 2-hop connector views are
unlikely to be materialized for the two homogeneous networks,
due to the large view sizes predicted by our cost model, as
shown in Figure 5.

VIII. RELATED WORK

Views and language. Materialized views have been widely
used in the relational setting to improve query runtime by
amortizing and hiding computation costs [34]. This inspires
our work, but the topological nature of graph views makes

q1 q2 q3 q4 q5 q6 q7 q8
Query

10 1

100

101

102

103

104

To
ta

l R
un

tim
e

(s
)

prov
filter connector

q2 q3 q4 q5 q6 q7 q8
Query

10 1

100

101

102

103

104 dblp
filter connector

q2 q3 q4 q5 q6 q7 q8
Query

10 1

100

101

102

103

104 roadnet-usa
raw connector

q2 q3 q4 q5 q6 q7 q8
Query

10 1

100

101

102

103

104 soc-livejournal
raw connector

Fig. 7: Total query execution runtimes over the graph after applying a summarizer view, and rewritten over a 2-hop connector view. Connectors
are job-to-job (prov), author-to-author (dblp), and vertex-to-vertex for homogeneous networks roadnet-usa and soc-livejournal
(y-axis is in log scale).

them new and different. The notion of graph views and
algorithms for their maintenance was first introduced in[23]
by Zhuge and Garcia-Molina in 1998, but since then there has
been little attention in this area. With KASKADE, we aim at
providing a practical approach that can be used to deal with
large-scale graphs. In particular, KASKADE addresses various
problems related to graph views, including view enumeration,
selection, as well as view-based query rewriting. In this paper,
we focus on extracting views for the graph traversal portion of
our queries, since these are the most crucial for performance.
An interesting avenue for future work is to address a combined
analysis of the relational and graph query fragments, related
to what [35] proposes for a more restricted set of query types
or [36] does for OLAP on graphs scenarios. The challenge
is to identify and overcome the limits of relational query
containment and view rewriting techniques for our hybrid
query language.

Fan et al. [37] provide algorithms to generate views for
speeding up fixed-sized subgraph queries, whereas KASKADE
targets traversal-type queries that can contain an arbitrary
number of vertices/edges. They do not provide a system
for selecting the best views to generate based on a budget
constraint. Le et al. [38] present algorithms for rewriting
queries on SPARQL views, but do not have a system for
selecting views. Katsifodimos et al. [39] present techniques for
view selection to the improve performance of XML queries,
which are limited to trees due to the structure of XML.

Graph engines. KASKADE is a graph query optimization
framework that proposes a novel constraint-based view in-
ference technique for materialized view selection and query
rewriting. Although it is not a graph engine itself, in its current
design it ultimately acts as one. We believe, however, that
existing graph query execution engines may be able to lever-
age KASKADE for query optimization. Therefore, we group
existing graph data management approaches based on their
main focus: specialized databases for graph queries, including
single-machine solutions, such as Neo4j [14] and Tinker-
Pop [40], and distributed approaches, such as Datastax Graph
Engine [41], TitanDB [17], CosmosDB [42]; large scale graph
analytics, including Pregel [43], GraphLab [44], GraphX [16],
Ligra [45], and EmptyHeaded [46] (see [8], [9] for surveys
of graph processing systems); relational engines with graph
support, such as SQLServer 2017 [19], Oracle [20], Spark
GraphFrames [47], Agensgraph [21]; and graph algorithm

libraries, such as NetworkX [48]. Our approach is mostly
independent of the underlying graph engine, and while we run
our experiments on Neo4J, KASKADE is directly applicable to
any engine supporting Cypher [12] (or SQL+Cypher).

RDF and XML. The Semantic Web literature has explored
the storage and inference retrieval of RDF and OWL data
extensively [49]. While most efforts focused on indexing and
storage of RDF triples, there has also been work on mainte-
nance algorithms for aggregate queries over RDF data [50].
While relevant, this approach ignores the view selection and
rewriting problems we consider here, and it has limited appli-
cability outside RDF. RDFViewS [51] addresses the problem
of view selection in RDF databases. However, the considered
query and view language support pattern matching (which
are translatable to relational queries) and not arbitrary path
traversals, which are crucial in the graph applications we
consider. Similar caveats are present in prior work on XML
rewriting [52], [53], including lack of a cost model for view
selection.

Graph summarization and compression. Graph summariza-
tion is the task of finding a smaller graph that is representative
of the original graph to speed up graph algorithms or queries,
for graph visualization, or to remove noise [54]. Most related
to our work is the literature on using summarization to speed
up graph computations for certain queries, where the answers
can either be lossless or lossy [55], [56], [57], [58], [59]. As
far as we know, prior work in this area has not explored the
use of connectors and summarizers as part of a general system
to speed up graph queries.

Rudolf et al. [60] describe several summarization templates
in SAP HANA, which can be used to produce what we call
graph views. However, their paper does not have a system that
determines which views to materialize, and does not use the
views to speed up graph queries.

There has been significant work on lossless graph compres-
sion to reduce space usage or improve performance of graph
algorithms (see, e.g., [61], [62], [63]). This is complementary
to our work on graph views, and compression could be applied
to reduce the memory footprint of our views.

IX. CONCLUSIONS

We presented KASKADE, a graph query optimization
framework that employs materialization to efficiently evaluate
queries over graphs. Motivated by the fact that many

application repeatedly run similar queries over the same
graph, and that many production graphs have structural
properties that restrict the types of vertices and edges that
appear in graphs, KASKADE automatically derives graph
views, using a new constraint-based view enumeration
technique and a novel cost model that accurately estimates
the size of graph views. We show in our experiments that
queries rewritten over some of these views can provide up
to 50 times faster query response times. Finally, the query
rewriting techniques we have proposed are engine-agnostic
(i.e., they only rely on fundamental graph transformations
that typically yield smaller graphs, such as path contractions)
and thus are applicable to other graph processing systems.

REFERENCES
[1] A. Ching et al., “One trillion edges: Graph processing at facebook-scale,” in

PVLDB, 2015, pp. 1804–1815.
[2] “Twitter.” https://twitter.com
[3] A. Halevy et al., “Goods: Organizing google’s datasets,” in SIGMOD, 2016.
[4] R. Mavlyutov et al., “Dependency-driven analytics: A compass for uncharted data

oceans,” in CIDR 2017.
[5] “DBpedia.” https://wiki.dbpedia.org
[6] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowl-

edge,” in WWW, 2007, pp. 697–706.
[7] “Network repository.” http://networkrepository.com
[8] D. Yan et al., “Big graph analytics platforms,” Foundations and Trends in

Databases, vol. 7, pp. 1–195, 2017.
[9] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex: A survey

of vertex-centric frameworks for large-scale distributed graph processing,” ACM
Comput. Surv., vol. 48, pp. 25:1–25:39, Oct. 2015.

[10] C. Curino et al., “Hydra: a federated resource manager for data-center scale
analytics,” in NSDI, 2019.

[11] “The EU general data protection regulation (GDPR).” https://www.eugdpr.org
[12] “Cypher graph query language.” https://www.opencypher.org/
[13] N. Francis et al., “Cypher: An evolving query language for property graphs,” in

SIGMOD 2018, pp. 1433–1445.
[14] “Neo4j graph database.” http://neo4j.org
[15] “Property graphs.” https://www.w3.org/2013/socialweb/papers/Property Graphs.

pdf
[16] J. E. Gonzalez et al., “Graphx: Graph processing in a distributed dataflow

framework,” in OSDI, 2014, pp. 599–613.
[17] “Titan distributed graph database.” http://thinkaurelius.github.io/titan
[18] “Gremlin.” http://github.com/tinkerpop/gremlin/wiki
[19] “Graph processing with SQL Server.” https://docs.microsoft.com/en-us/sql/

relational-databases/graphs/sql-graph-overview
[20] “Oracle parallel graph analytics (PGX).” http://www.oracle.com/technetwork/

oracle-labs/parallel-graph-analytics
[21] “AgensGraph Hybrid Graph Database.” http://www.bitnine.net
[22] O. van Rest et al., “Pgql: A property graph query language,” in GRADES, 2016,

pp. 7:1–7:6.
[23] Y. Zhuge and H. Garcia-Molina, “Graph structured views and their incremental

maintenance,” in ICDE, 1998, pp. 116–125.
[24] “SWI-Prolog engine.” http://www.swi-prolog.org
[25] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst., vol. 13,

pp. 23–52, 1988.
[26] P. Roy et al., “Efficient and extensible algorithms for multi query optimization,”

in SIGMOD 2000, pp. 249–260.
[27] A. Deshpande, Z. Ives, and V. Raman, “Adaptive query processing,” Foundations

and Trends in Databases, pp. 1–140, 2007.
[28] B. Bollobas, Random Graphs. Cambridge University Press, 2001.
[29] “SWI-Prolog syntax.” http://www.swi-prolog.org/man/syntax.html
[30] “Google or tools - knapsacks.” https://developers.google.com/optimization/bin/

knapsack
[31] “Graphdblp.” https://github.com/fabiomercorio/GraphDBLP
[32] “Snap livejournal dataset.” http://snap.stanford.edu/data/soc-LiveJournal1.html
[33] “APOC graph algorithm udfs for neo4j.” https://neo4j-contrib.github.io/

neo4j-apoc-procedures/#algorithms
[34] A. Gupta and I. S. Mumick, in Materialized Views, 1999, ch. Maintenance of

Materialized Views: Problems, Techniques, and Applications, pp. 145–157.
[35] C. Lin et al., “Fast in-memory SQL analytics on typed graphs,” in VLDB 2016,

pp. 265–276.
[36] C. Chen et al., “Graph olap: Towards online analytical processing on graphs,” in

ICDM, 2008, pp. 103–112.
[37] W. Fan, X. Wang, and Y. Wu, “Answering pattern queries using views,” IEEE

Transactions on Knowledge and Data Engineering, vol. 28, pp. 326–341, Feb 2016.
[38] W. Le et al., “Rewriting queries on SPARQL views,” in International Conference

on World Wide Web (WWW), 2011, pp. 655–664.

[39] A. Katsifodimos, I. Manolescu, and V. Vassalos, “Materialized view selection for
xquery workloads,” in ACM SIGMOD International Conference on Management
of Data, 2012, pp. 565–576.

[40] “Apache TinkerPop.” https://tinkerpop.apache.org/
[41] “DataStax DSE graph engine.” https://www.datastax.com
[42] R. Reagan, “Cosmos DB (chapter),” in Web Applications on Azure. Springer,

2018, pp. 187–255.
[43] G. Malewicz et al., “Pregel: A system for large-scale graph processing,” in

SIGMOD 2010, pp. 135–146.
[44] Y. Low et al., “GraphLab: A new framework for parallel machine learning,” in

UAI 2010, pp. 340–349.
[45] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework for

shared memory,” in PPoPP 2013, pp. 135–146.
[46] C. R. Aberger et al., “Emptyheaded: A relational engine for graph processing,”

ACM Trans. Database Syst., vol. 42, pp. 20:1–20:44, Oct. 2017.
[47] A. Dave et al., “GraphFrames: an integrated api for mixing graph and relational

queries,” in GRADES, 2016.
[48] “NetworkX python package for network data analysis.” https://networkx.github.io/
[49] G. Antoniou and F. Van Harmelen, A semantic web primer. MIT press, 2004.
[50] E. Hung, Y. Deng, and V. S. Subrahmanian, “Rdf aggregate queries and views,” in

ICDE 2005, 2005.
[51] F. Goasdoué et al., “View selection in semantic web databases,” in PVLDB, 2011,

pp. 97–108.
[52] N. Onose et al., “Rewriting nested xml queries using nested views,” in SIGMOD

2006, pp. 443–454.
[53] W. Fan et al., “Rewriting regular xpath queries on xml views,” in ICDE 2007, pp.

666–675.
[54] Y. Liu et al., “Graph summarization methods and applications: A survey,” ACM

Comput. Surv., vol. 51, pp. 62:1–62:34, Jun. 2018.
[55] W. Fan et al., “Query preserving graph compression,” in SIGMOD 2012, pp. 157–

168.
[56] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summarization with bounded

error,” in SIGMOD 2008, pp. 419–432.
[57] K. Xirogiannopoulos and A. Deshpande, “Extracting and analyzing hidden graphs

from relational databases,” in SIGMOD 2017, pp. 897–912.
[58] N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From big bang to

big crunch,” in SIGMOD 2016, pp. 1481–1496.
[59] C. Chen et al., “Mining graph patterns efficiently via randomized summaries,” in

VLDB 2009, pp. 742–753.
[60] M. Rudolf et al., “Synopsys: Large graph analytics in the sap hana database through

summarization,” in GRADES 2013, pp. 16:1–16:6.
[61] P. Boldi and S. Vigna, “The webgraph framework I: compression techniques,” in

WWW 2004, pp. 595–602.
[62] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Parallel processing

of compressed graphs with Ligra+,” in DCC 2015, pp. 403–412.
[63] A. Maccioni and D. J. Abadi, “Scalable pattern matching over compressed graphs

via dedensification,” in KDD 2016, pp. 1755–1764.

APPENDIX

In § IV, we presented view templates in Prolog for connector
views. Similarly, in Lst. 5, we provide example view templates
for summarizer views.
Listing 5 Example view template definitions for summarizers.
% summarizers: filter vertices and edges by type
summarizerRemoveEdges(X, Y, ETYPE_REMOVE, ETYPE_KEPT) :-
queryEdge(X, Y), not(queryEdgeType(X, Y, ETYPE_REMOVE)),
queryEdgeType(X, Y, ETYPE_KEPT).

summarizerRemoveVertices(X, VTYPE_REMOVE, VTYPE_KEPT) :-
queryVertex(X), not(queryVertexType(X, VTYPE_REMOVE)),
queryVertexType(X, VTYPE_KEPT).

% Example aggr function for higher-order functions such
% as aggregator graph view templates.
sum(X, Y, R) :- R is X + Y.

% Ego-centric k-hop neighborhood (undirected).
queryVertexKHopNbors(K, X, LIST) :- queryVertex(X),
findall(SRC, queryKHopPath(SRC, X, K), INLIST),
findall(DST, queryKHopPath(X, DST, K), OUTLIST),
append(INLIST, OUTLIST, TMPLIST), sort(TMPLIST, LIST).

% Example aggregator using k-hop neighborhood, e.g.,
% aggregate all 1-hop neighbors as sum of their
% bytes: "kHopNborsAggregator(1, j2, 'bytes', sum, R)."
kHopNborsAggregator(K, X, P, AGGR, RESULT) :-
queryVertexKHopNbors(K, X, NBORS),
convlist(property(P), NBORS, OUTLIST),
foldl(AGGR, OUTLIST, 0, RESULT).

https://twitter.com
https://wiki.dbpedia.org
http://networkrepository.com
https://www.eugdpr.org
https://www.opencypher.org/
http://neo4j.org
https://www.w3.org/2013/socialweb/papers/Property_Graphs.pdf
https://www.w3.org/2013/socialweb/papers/Property_Graphs.pdf
http://thinkaurelius.github.io/titan
http://github.com/tinkerpop/gremlin/wiki
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics
http://www.bitnine.net
http://www.swi-prolog.org
http://www.swi-prolog.org/man/syntax.html
https://developers.google.com/optimization/bin/knapsack
https://developers.google.com/optimization/bin/knapsack
https://github.com/fabiomercorio/GraphDBLP
http://snap.stanford.edu/data/soc-LiveJournal1.html
https://neo4j-contrib.github.io/neo4j-apoc-procedures/#algorithms
https://neo4j-contrib.github.io/neo4j-apoc-procedures/#algorithms
https://tinkerpop.apache.org/
https://www.datastax.com
https://networkx.github.io/

As discussed in § IV, KASKADE uses a set of constraint
mining rules to extract implicit constraints from both schema
and query graphs. In Lst. 6, we provide the Prolog definitions
for some query constraint mining rules (for an example schema
constraint mining rule, see § IV) used in KASKADE, such
as path constraints over query graphs. In addition, Alg. 1
provides a procedural version of the schemaKHopPath
example schema constraint mining rule of Lst. 2.

Listing 6 Example query constraint mining rules.
% Query k-hop variable length paths
queryKHopVariableLengthPath(X, Y, K) :-
queryVariableLengthPath(X, Y, LOWER, UPPER),
between(LOWER, UPPER, K).

% Query k-hop paths
queryKHopPath(X, Y, 1) :- queryEdge(X, Y).
queryKHopPath(X, Y, K) :-
queryKHopVariableLengthPath(X, Y, K).

queryKHopPath(X, Y, K) :- queryEdge(X, Z),
queryKHopPath(Z, Y, K1), K is K1 + 1.

queryKHopPath(X, Y, K) :-
queryKHopVariableLengthPath(X, Z, K2),
queryKHopPath(Z, Y, K1), K is K1 + K2.

% Query paths
queryPath(X, Y) :- queryEdge(X, Y).
queryPath(X, Y) :- queryKHopPath(X, Y, _).
queryPath(X, Y) :- queryEdge(X, Z), queryPath(Z, Y).

% Query vertex source/sink
queryVertexSource(X) :- queryVertexInDegree(X, 0).
queryVertexSink(X) :- queryVertexOutDegree(X, 0).

% Query vertex in/out degress
queryIncomingVertices(X, INLIST) :- queryVertex(X),
findall(SRC, queryEdge(SRC, X), INLIST).

queryOutgoingVertices(X, OUTLIST) :- queryVertex(X),
findall(DST, queryEdge(X, DST), OUTLIST).

queryVertexInDegree(X, D) :-
queryIncomingVertices(X, INLIST), length(INLIST, D).

queryVertexOutDegree(X, D) :-
queryOutgoingVertices(X, OUTLIST), length(OUTLIST, D).

Algorithm 1 Procedural version of schemaKHopPaths
constraint mining Prolog rule

1: // Procedural version of one the declarative constraint mining
2: // programs that bound the search space for valid candidate
3: // views (Lst. 2 and § IV-A)
4: function K HOP SCHEMA PATHS(schema edges, paths, k, curr k)
5: if curr k == 0 then return [p for p ∈ paths if len(p) == k]
6: if k == curr k then
7: new paths ← [[e] for e ∈ schema edges]
8: return k hop schema paths(schema edges, new paths, k, k-1)
9: new paths ← []

10: for {i, path} ∈ paths do
11: src, dst ← path[0][0], path[-1][1]
12: for {j, edge} ∈ schema edges do
13: // Add edge to the end of the path.
14: if dst == edge[0] then new paths.append(path + [edge])
15: // Add edge to the front of the path.
16: if src == edge[1] then new paths.append([edge] + path)
17: // Step omitted: duplicate paths removal.
18: // Fix-point: only include paths that grew this round.
19: paths ← [p for p ∈ new paths if len(p) == (k-curr k+1)]
20: return K HOP SCHEMA PATHS(schema edges, paths, k, curr k-1)

Fig. 8 shows the degree distributions of the different graphs
used in our evaluation. As expected, vertex degrees in all but
the road network dataset are roughly modeled by a power-law
distribution, as evidenced by a goodness-of-linear-fit on log-

log plot of the complementary cumulative distribution function
(CCDF).

0100 101 102 103 104 105

Degree

0
100

101
102
103
104
105
106
107

Fr
eq

. d
eg

. >
 x

prov

0 100 101 102 103 104

Degree

0
100

101
102
103
104
105
106
107

Fr
eq

. d
eg

. >
 x

dblp

0 100 101

Degree

0
100

101
102
103
104
105
106
107

Fr
eq

. d
eg

. >
 x

roadnet-usa

0100 101 102 103 104 105

Degree

0
100

101
102
103
104
105
106

Fr
eq

. d
eg

. >
 x

soc-livejournal

Fig. 8: Degree distribution log-log CCDF plots, together with the
best-fit power-law exponent (linear on log-log scale) for all vertices
in each dataset.

	I Introduction
	I-A Motivating example
	I-B Contributions

	II Overview
	III Preliminaries
	III-A Graph Data Model
	III-B Query Language
	III-C Graph Views

	IV Constraint-Based View Enumeration
	IV-A Mining Structural Graph Constraints
	IV-A1 Extracting explicit constraints
	IV-A2 Mining implicit constraints

	IV-B Inference-based View Enumeration

	V View Operations
	V-A View Size Estimation and Cost Model
	V-B View Selection
	V-C View-Based Query Rewriting

	VI View Definitions and Examples
	VI-A Connectors
	VI-B Summarizers

	VII Experimental Evaluation
	VII-A Implementation
	VII-B Datasets
	VII-C Queries
	VII-D View Size Estimation
	VII-E Size Reduction
	VII-F Query Runtimes

	VIII Related Work
	IX Conclusions
	References
	Appendix

