
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

I/O Efficient Approximate Nearest Neighbour Search
based on Learned Functions

Mingjie Li§†, Ying Zhang§†*, Yifang Sun‡, Wei Wang‡, Ivor W. Tsang†, Xuemin Lin‡

§ Zhejiang Gongshang University, China
† CAI, School of Computer Science, University of Technology Sydney, Australia

‡ School of Computer Science and Engineering, University of New South Wales, Australia
Mingjie.Li@student.uts.edu.au, {Ying.Zhang, ivor.tsang}@uts.edu.au, {yifangs, weiw, lxue}@cse.unsw.edu.au

Abstract—Approximate nearest neighbour search (ANNS) in
high dimensional space is a fundamental problem in many
applications, such as multimedia database, computer vision
and information retrieval. Among many solutions, data-sensitive
hashing-based methods are effective to this problem, yet few of
them are designed for external storage scenarios and hence do
not optimized for I/O efficiency during the query processing.
In this paper, we introduce a novel data-sensitive indexing and
query processing framework for ANNS with an emphasis on
optimizing the I/O efficiency, especially, the sequential I/Os. The
proposed index consists of several lists of point IDs, ordered
by values that are obtained by learned hashing (i.e., mapping)
functions on each corresponding data point. The functions are
learned from the data and approximately preserve the order in
the high-dimensional space. We consider two instantiations of the
functions (linear and non-linear), both learned from the data with
novel objective functions. We also develop an I/O efficient ANNS
framework based on the index. Comprehensive experiments on
six benchmark datasets show that our proposed methods with
learned index structure perform much better than the state-of-
the-art external memory-based ANNS methods in terms of I/O
efficiency and accuracy.

I. INTRODUCTION

The problem of nearest neighbour search in high dimen-
sional space aims at finding an object which has the smallest
distance to a query under a specified distance measure in
a reference database. It has been a fundamental technique
in many applications, such as recommendation [5], feature
matching [31], and information retrieval [41]. However, finding
the exact nearest neighbor in high dimensional data is compu-
tationally expensive due to the curse of dimensionality [18].
To make a tradeoff between the efficiency and accuracy,
approximate nearest neighbor search (ANNS) is extensively
studied and showed more efficient in many practical problems,
thus attracting numerous interests of researchers.

Most of the existing approaches proposed in the literature
are main-memory algorithms which focus on engineering the
best trade-off between the CPU cost and the accuracy. How-
ever, increasing amount of applications are being produced
and operated on huge volume of the high dimensional data,
where external I/O storage and I/O-centric query processing
are needed. For instance, billions of objects (users and items)
are mapped to 160-dimensional points via a deep learning
model at Alibaba for user recommendation [36]. To handle
the large scale data, it is desirable to develop highly efficient
external-memory algorithms for better scalability, which is the
focus of this paper.

*Corresponding author

State-of-the-art In the past decades, massive approximate
algorithms for ANNS were proposed in the literature1, which
can be classified into three categories: hash-based, partition-
based and graph-based approaches. Due to the nature of
partition-based and graph-based approaches, it is difficult to
develop corresponding I/O efficient external memory-based
ANNS algorithms because it is infeasible to cluster nearby
objects in high dimensional space in the external memory.
Existing external memory-based ANNS algorithms are mainly
hash-based approaches, which can be further classified into
two categories.

1) Random hash based approaches: A number of I/O effi-
cient LSH-based ANNS methods were proposed, such as
LSH-forest [35], C2LSH [13], QALSH [19], which aim to
obtain a good trade-off between search accuracy and I/O
efficiency with theoretical guarantees. I-LSH [24] is the
state-of-the-art I/O efficient random hash based method,
which has a small I/O cost by using an incremental,
rather than exponentially expanding, search strategy. All
these approaches rely on the sorted-lists where each list
corresponds to the hashed values of the objects; that is,
the objects in the high dimensional space are mapped into
multiple sorted lists (i.e., a low-dimensional embedding
space) and each list is further divided into consecutive
buckets. The query processing consists of a set of sequen-
tial scans on these lists/buckets. These approaches are
I/O efficient in the sense that sequential I/Os are invoked
for the search of these lists/buckets. However, the search
quality of these methods is far from satisfactory2 because
they employ random projections, which are independent
of the actual data distribution.

2) Learning to hash (L2H) based approaches: These algo-
rithms significantly outperform the random hash based
methods [23], as they can learn data-sensitive hash func-
tions to generate high-quality low dimensional embed-
dings that preserve the locality in the expected sense
rather than in the worst-case sense. However, most of
these L2H methods are main-memory based, and do not
consider the query processing on external memory. To the
best of our knowledge, PQBF [25] and AOSKNN [17]
are the only two existing L2H methods that aim to
optimize the I/O performance where the objects and their
embeddings are located in external memory. However,
they still require excessive amount of random I/Os, which
are much more expensive than sequential I/Os. Moreover,
the hash functions learning in [25], [17], which is the key

1e.g., see a recent experiment paper [23].
2e.g., See Fig. 7 as well as [23].

Fig. 1: Illustration of our idea of index and query processing. Grey
points are embedding values of data points, orange points are
embedding values of the query point (i.e., q��1�, . . . ,q��M�).

to the performance of the methods, is independent to the
index structure, and hence there is no optimization for the
I/O efficiency in the learning of their hash functions.

Our Approach Motivated by the above analysis, in this
paper, we aim at designing external-memory based indexing
and query processing techniques for ANNS such that we can
(i) maximally use the inexpensive sequential I/Os during the
search; and (ii) conduct end-to-end learning of the hashing
functions, which are also aware of the I/O characteristics.

To address the first goal, after the learned hashing (i.e.,
mapping) function maps every point to its corresponding low
dimensional embedding, we build indexes as a set of M
sorted lists. Each entry of a list is of the form (ID, value)
which records the object ID and its embedding value on
a particular dimension; the list is sorted in ascending order
of values. By doing this, the objects in high dimensional
space are mapped into M sorted lists by learned mapping
functions. Our query processing procedure only makes bi-
directional sequential access to each list and hence fully exploit
the sequential I/Os (See Fig. 1 for an illustration).

To address the second goal, our idea is to leverage machine
learning methods to preserve locality of point objects in the
embedding space. This is done by designing novel loss func-
tion that is aware of the block-based I/O assess characteristics,
novel relaxation and optimization techniques. In addition, we
consider different models that learn linear hashing functions
and non-linear ones, respectively.

Contributions Our contributions are summarized as follows:

Y We develop an I/O efficient external-memory ANNS
framework, which consists of a set of sorted lists and
a querying processing algorithm.

Y We propose two hash learning methods for linear and non-
linear hash functions. Particularly, linear hashing method
learns the sorted lists separately by penalizing the order
mismatch. A fast training method based on stochastic
gradient descent (SGD) is developed for optimization.
Non-linear hashing method learns a neural network for
our framework. A training architecture based on a fully-
connected neural network is constructed for the optimiza-
tion of the loss function.

Y Comprehensive experiments on six large scale high di-
mensional datasets demonstrate that our proposed meth-
ods outperform the state-of-the-art ANNS techniques in
terms of I/O efficiency and search accuracy.

Roadmap The rest of the paper is organized as follows.
Section II introduces the problem definition and the related

TABLE I: Summary of Notations

Notation Definition
D The dataset represented in a d �N design matrix;

each column is a d-dimensional point (object)
Yx,yY The Euclidean distance between x and y

l A sorted list with entries of form (ID, value)
M The dimensionality of the embedding (also the

number of sorted lists)
H The (learned) mapping function to a lower

dimensional embedding space
W The parameters of the linear mapping functions
θ The parameters of the non-linear mapping functions

work. Our ANNS framework is presented in Section III.
Section IV and Section V present the details of our linear and
non-linear hashing methods, respectively. Some discussions are
presented in Section VI. Experimental results are reported in
Section VII. Finally, we summarize our proposed methods in
section VIII.

II. BACKGROUND

In this section, we first present the problem definition
of approximate nearest neighbour search (ANNS) in Sec-
tion II-A. Section II-B introduces related work for this
problem. Section II-C presents three state-of-the-art external-
memory ANNS algorithms.

A. Problem Definition

Notation We use bold lower case letters to denote (column)
vectors and bold upper case letters to denote matrices. We use
x�j� to denote the j-th dimension value of a vector x, and
W�j, i� to denote the value at j-th row and i-th column in
matrix W. The wi denotes a vector identified by an index i.
Other important notations in paper are given in Table I.

Approximate Nearest Neighbor Search We denote the
dataset of N d-dimensional points as a design matrix D >

R
d�N , where the i-th column is a d-dimensional data point

xi. We are particularly interested in the high dimensional
case with Euclidean distance, i.e., d is a large number (e.g.,
d C 100) and the Euclidean distance is defined as Yx,yY �¼
Pd

j �x�j� � y�j��2. Given a query q > R
d, approximate

nearest neighbor search (ANNS) aims at finding the objects
in D that are closest to q. Let the o be nearest neighbor in
D with respect to a query q, and let p be the ANNS result
returned by an algorithm, we can measure the quality of p by
the ratio of the distance to the query over the nearest neighbor
distance, i.e., Yp,qY

Yo,qY . It is easy to extend the definition to the
top-k version of ANNS.

B. Related Work

Approximate nearest neighbor search (ANNS) in high
dimensional space has been extensively investigated in the
literature and a large number of algorithms were proposed
for this problem. In terms of index storage, these methods
can be classified into two categories: main memory-based and
external memory-based approaches.

(1) Main Memory-based ANNS Methods

Algorithms in this type can be mainly classified into three
categories: Hashing-based, Partition-based and Graph-based.

Hashing-based methods attract many research efforts due
to its good advantages on ANNS problem and the ease of
implementation. Representatives are locality sensitive hashing
(LSH) [20] and learning to hash (See [38] for a comprehen-
sive survey). The key idea of LSH method is to map data
objects from high dimensional space into different buckets
by predefined hash functions such that the similar items
are projected into the same (or similar) buckets with higher
probability than dissimilar ones. LSH-based methods are data-
independent, the choice of hash function is crucial. Due to
the need of theoretical guarantee, LSH-based methods usually
leverage random linear projection as hash functions. By con-
trast, L2H methods are data-dependent, and have been shown
to outperform the LSH-based methods since it can make use
of the data distribution to learn specific hash functions. In
the past, L2H has been extensively studied and numerous
algorithms were proposed such as spectral hashing [40], PCA
hashing [15], optimized product quantization [14], and order
reserving hashing [37], [39]. Recently, deep learning to hash
methods, such as hashNet [3], stochastic generative hashing [4]
and unsupervised deep hashing [30], are proposed to apply
deep learning techniques to hashing for ANNS, and achieve
very promising experimental results with higher training cost.
However, their goal is to learn compact hash codes which
is efficient for nearest neighbor search in main memory but
cannot trivially be extended to support I/O efficient nearest
neighbor search in external memory.

Partition-based methods can be deemed as dividing the
entire high dimensional space into multiple disjoint regions.
The partition process often carries out in a recursive way, so a
tree or a forest are ultilized as the index of a partition-based,
where the ANNS can be executed. Representatives include
Random-Projection Tree [6], Optimized KD-Tree [31] and
FLANN [27].

Graph-based methods construct a proximity graph where
each point object corresponds to a node and edges connecting
some nodes define the neighbor relationship. The main idea of
these methods is that a neighbor’s neighbor is likely to also
be a neighbor. The search could be performed by iteratively
expanding neighbors’ neighbors in a best-first search strategy
following the edges. A number of algorithms in this category
were proposed, such as K-Graph [8], Small World Graph [26],
DPG [23] and Navigating Spreading-out Graph [12].

(2) External Memory-based ANNS Methods

A set of external memory-based approaches have been pro-
posed in the literature such as MEDRANK [10], LSB-
fortest [35], C2LSH [13], QALSH [19], I-LSH [24] and M-
tree [29]. The key idea of these hash-based methods is to
map the point objects into a set of M lists by M random
hash functions. The objects in each list are pre-ordered and
hence their indexes are database-friendly in that sequential I/Os
are applied during the search. M-tree [29] is a general data
structure for indexing data objects in high dimensional metric
space. It is constructed using a metric function and relies on the
triangle inequality for efficient approximate nearest neighbor
queries. Recently, two I/O efficient algorithms are proposed
in [25], [17], which leverage existing main memory-based
learning to hash methods for I/O efficient index construction.

The details of three state-of-the-art external-memory ANNS
algorithms are presented in Section II-C.

In addition to high dimensional point data, the problem of
nearest neighbor search has also been investigated on more
complicated data such as data series (e.g., [9], [2]), uncertain
data (e.g., [42]) and networks (e.g., [41]).

C. State-of-the-art.

In this subsection, we introduce three state-of-the-art ex-
ternal memory-based ANNS algorithms.

(1) I-LSH [24]. Very recently, Liu et al. [24] proposes I-LSH
to dramatically reduce the I/O cost of ANNS with theoretical
guarantee. Unlike the previous LSH methods [13], [19], which
expand the bucket width in an exponential way, I-LSH adopts
a more natural search strategy to incrementally access the hash
values of the objects, thus can greatly reduce I/O cost under
the same theoretical guarantee.

(2) PQBF [25]. Product Quantization (PQ) [21] is a widely
used method for ANNS, which decomposes the original vector
space into the Cartesian product of L lower dimensional
subspaces, and performs vector quantization [16] in each
subspace separately. A vector is then represented by a short
code composed of its subspace quantization indices (i.e., PQ
codes). Liu et al. [25] proposed the first I/O-efficient PQ-based
solution for ANNS. They design a linear order on the PQ codes
by employing the Z-order [34], where a lower bound for the
AQD distance (i.e., an approximation of original Euclidean
distance) can be achieved. Then they design an index called
PQB+-forest to support efficient similarity search on AQD.
Specifically, PQB+-forest first creates a number of partitions
of the PQ codes by a coarse quantizer and then builds a B+-
tree, called PQB+-tree, for each partition. The search process
is expedited by focusing on a few selected partitions that are
closest to the query, as well as by the pruning power of PQB+-
trees. Note that although the objects in PQB+-tree are indexed
by B+-tree, the random I/Os are invoked because it is unlikely
to ensure the nearby objects accessed during the search are
allocated at the adjacent pages in one order alone.

(3) AOSKNN [17]. Gu et al. proposed an external memory-
based ANNS algorithm, namely AOSKNN, in [17] based on
the “projection-filter-refinement” framework. Specifically, they
adopt PCA to embed the high-dimensional point objects into
a low-dimensional space. Then, a filter condition is inferred to
execute pruning over the projected data. As an R-tree-based
index is employed to organize the embedded objects in low
dimensional space, random I/Os are invoked during the search.

III. OUR ANNS FRAMEWORK

In this section, we present the details of our proposed
indexing and query processing methods for ANNS.

A. Our ANNS Solution

Overview Our idea is to use a mapping (i.e., hashing) func-
tion3 to map d-dimensional points to M -dimensional points,
where M P d. This is known as embedding in Machine
Learning. Specifically, if we denote the mapping function H �

3In this paper, we use mapping function and hashing function exchangeably
when the context is clear.

R
d
� R

M , then x�
� H�x� is the corresponding embedding

for x. We also slightly abuse the notation X�
�H�X� to obtain

the embeddings as a matrix in RM�N , where H is applied to
each column of the input design matrix.

We then index the values of the embedded vectors on each
dimension individually as a sorted list. We perform the same
embedding process for the query q and then use sequential
I/Os to get T candidates. Finally, we perform re-ranking on
the T candidates followed by verification to return the top-k
nearest points to the query in a progressive manner.

Obviously, our method has several advantages such as
leveraging sequential I/Os, and simple and flexible enough to
be implemented within a database system where the sorted
lists can be easily organized using B�-trees. The key to make
such simple method effective is the quality of the mapping
function. We will provide details on how to learn such data-
sensitive mapping functions, both linear and non-linear ones,
in Sections IV–V.

Indexing After applying the mapping function H, we obtain
the collection of embedded vectors x�

i (i > �1,N�). We then
index each dimension values in a sorted list, which results in
M sorted lists. The details of our indexing method can be seen
in Algorithm 1. Each entry in the list consists of only a point
ID and a dimension value, which is typically 8 bytes.

Nonetheless, we have the option to further reduce the index
size by almost 50% by exploiting the external memory access
characteristics. Since we consider external memory scenario,
the basic unit of access to the index is one page with page
size as b bytes. We only need to include the dimension value
of the first entry on each page, and omit the dimension values
of the rest of the entries on the same page. This is similar to
the optimization in a clustered index in database systems. In
this way, each page consists of a dimension value and
 b

4
� 1�

point IDs. We denote the page as (IDs, value).

Querying Processing We show the query processing al-
gorithm in Algorithm 2. The searching operation starts by
applying the function H to the query q to obtain its embedding
q�. Then, it locates the positions where each of the dimension
values of q� will be on the corresponding sorted lists. And
then we insert the pages closest to q� on each list into a
priority queue. We obtain the page with the highest priority,
and remove it from the queue. Then we insert the next page
closest to q� on the associated list into the priority queue.

We access and bookkeep the entries of the current page
in the ascending order of their rank positions on the list. We
define the rank position of a point xi with respect to the query
q on list lm as:

rm�q,xi� � N

Q
j�1

1SH�q��m��H�xi��m�SASH�q��m��H�xj��m�S � 1,

(1)

where the 1p is the indicator function which returns 1 if the
predicate p is true, and returns 0 otherwise. Intuitively, this is
1 plus how many other points (i.e., xj) has a smaller distance
to query on list lm than that of xi. The closest point will have
a rank position of 1. For simplicity, we abbreviate rm�q,xi�
as r�xi� henceforth.

If a point has been seen on all the M list, then we add
it to the candidate set C. When the size of the candidate set
exceeds a preset value T , the searching stops.

Algorithm 1: Indexing(D, H, M)
Input : D � The dataset as a design matrix in Rd�N ,

H � The learned mapping function,
M � The dimensionality of the embeddings

(also the number of sorted lists)
Output: L: The M sorted lists
D�
�H�D�;1

for m� 1 to M do2
Y, I� sort �D�,m� according to the m-th3

dimension; /* Y, I >RM�N, where Y
contains the dimension values and I
contains the associated IDs */;
lm � an empty list;4
for i� 1 to N do5

lm�i�� �Y�m, i�, I�m, i��;6

return L � � l1, l2, . . . , lM �;7

Algorithm 2: Querying(L, H, q, T)
Input : q � The query point in Rd,

L � The sorted lists � l1, l2, . . . , lM �,
H � The mapping function,
T � A parameter to control the size of the

candidate set (to be re-ranked and verified)
Output: The approximate nearest neighbour of q
C � g;1
hits� an empty hash table;2
queue� an empty priority queue;3
isTerminated� false;4
q�
�H�q�;5

for m� 1 to M do6
o� the page closest to q��m� in list lm;7
Insert �o,m� into queue with priority as8
-So.value � q��m�S;

while isTerminated � false and queue x g do9 �o,m�� the node with highest priority in queue;10
o� � the next page closest to q��m� in list lm;11
Remove �o,m� from queue and insert �o�,m� into12
queue with priority as -So�.value � q��m�S;
for each id in o.IDs do13

hits�id�� hits�id� � 1;14
if hits�id� �M then15

C � C 8 � id�;16
if SCS A� T then17

isTerminated� true;18
break;19

Re-rank the candidates in C and verify their distances to20
the query;
return The point that has the smallest distance to the21
query;

The last step is the re-ranking followed by the verification.
Although all the T candidates have all been seen on the M
lists, this only indicates that they are not too “faraway” from
the query in the original space. We would like to reorder
them according to some criteria that favor those who are
actually close to the query. Here, we adopt a simple re-ranking
method: we sum up the rank position of each candidates on

all the lists, and reorder all the candidates in ascending order
of this sum. Finally, we verify each candidate on the re-
ranked candidate list by calculating its distance to the query.
We also keep the candidate that has the minimum distance
during the verification. Note that this can be easily extended
to approximate k-nearest neighbour search (k-ANNS) with the
help of an extra priority queue.

B. Performance Analysis

In this subsection, we analyze the I/O complexity of the
indexing and querying processing of our ANNS framework.

Let b be the page size. The I/O complexity for the indexing
is O�Nd

b
�

NM
b

�, whereas the two terms correspond to the cost
of learning the data-sensitive mapping function H, and the cost
of creating the M sorted list. We estimate the mapping function
learning cost as O�Nd

b
� as most model learning (including the

two we will present in the paper) requires fixed number of
iterations over the data.

For the query processing algorithm, assume that we access
p pages on lists before we collected T candidates, then this
phase costs O�p� sequential I/Os, which is equivalent to
O�ε � p� (random) I/Os, where ε is typically in the range of�0.01,0.1�. Finally, the verification requires another O� rTd

b
�

I/Os, where r > �0,1�.

IV. LEARNING TO INDEX BY LINEAR HASHING

In this section, we present the first method to learn the
mapping function from the data. The idea is to preserve the
ordering information in the resulting embedding space. We
will formally present the objective function based on the order
preservation idea, followed by its optimization, involving the
relaxation and stochastic gradient descent (SGD) algorithm.

A. Linear Model and Its Objective Function

We first consider linear mapping functions, which encom-
pass linear projection function considered by learning-to-hash
methods [32], [39] and locality sensitive hashing functions [7]:

h�x� �w�x

where w >R
d is the parameter of the hash function. Using M

such hash functions with different parameters, we can obtain
the mapping function H as:

H�x� � �h1�x�, h2�x�, . . . , hM�x���
In order to learn these parameters wm (m > �1,M�) from

the data, we will prepare a set of training data, which consists
of uniform samples from the real query workload, or samples
from the data itself if the query workload is not available. Next,
we need to define the loss function such that we can learn the
wm values that achieve the minimum loss value.

Consider a given query, for any wm value, we can obtain
the order induced by rank position of all N data points based
on the function hm (denoted as lsm or simply ls if there is
no ambiguity). We can also easily compute the ground truth
ordering of all data points based on the distance to query in
the original space (denoted as lo). We would like to define
how much penalty to apply if the rank position ordering does
not completely agree with the ground truth ordering. Although

there exists measures, such as Kendall’s tau coefficient, that
defines the distance between two orderings, they are not
considering the page-based access characteristics during our
query processing, not differentiable and are costly to compute.
Instead, we design our own measure based on the idea of block
order.

We divide the two ordered lists into L parts, called blocks,
with each part containing the same number of objects (as-
suming N is a multiple of L). After the division, we have
lo � �lo1, lo2, . . . , loL�, and ls � �ls1, ls2, . . . , lsL�, where loi and lsi
are the subset of lo and ls, respectively. Then for each block, if
the objects in loi are not preserved in the corresponding lsi , this
incurs a penalty of 1, otherwise, the penalty is 0. Therefore,
given any ls induced by wm, we define the loss function as:

J��wm� � L

Q
i�1

Q
x̃>loi

1r�x̃�>�t��i�1�,t�i� (2)

t � N
L

is the length of the bucket, i.e., the number objects in
each partition loi �1 B i B L�. That is, we penalize points that
their ranking in the original space and the embedding space
are not in the same block. If we let the block size be the page
size, then this agrees with our page-based sequential access in
the query processing, as all point IDs will be accessed as long
as they are in the same page.

Therefore, our final loss function for all sorted lists can be
written as:

J��W� �QM

m�1
J��wm� � λ � YW�W � IYF , (3)

where YMYF � Pi,j M�i, j�2 is the Frobenius norm of a
matrix and is a common type of quadratic regularizer [28], λ is
the hyper-parameter that controls the degree of regularization,
and W is the concatenation of all wm (m > �1,M�). Note
that W�W � I forces all projection vectors to be orthogonal
to each other, such that our model is able to learn M different
hash functions.

B. Relaxation and Optimization

The loss function (3) is neither convex nor smooth due to
the indicator function. This means that it is hard to optimize
the function numerically. We adopt a common approach in
Machine Learning that relaxes the discrete function into a con-
tinuous and differentiable surrogate loss function and optimize
this surrogate instead.

Relaxation.

We utilize the fact that the sigmoid function (as shown in
Fig. 2(left)), σ�z� � 1

1�exp��z� , is a continuously differentiable
approximation to the indicator function 1p.

We first replace the absolute value function in Eq. (1) by
taking the square to both sides of the predicate. Afterwards,
we apply the sigmoid relaxation and obtain the approximate
rank position as:4

r̃�xi� � N

Q
j�1

σ��h�q� � h�xi��2 � �h�q� � h�xj��2� � 1 (4)

4We omit m and q in r̃m�q,xi� for simplicity.

Similarly, the loss functions in (2) and (3) are also relaxed as

J�wm� � L

Q
i�1

Q
x̃>loi

�σ�t � �i � 1� � r̃�x̃�� � σ�r̃�x̃� � t � i�� (5)

and

J�W� �QM

m�1
J�wm� � λ � YW�W � IYF . (6)

Progressive Stochastic Gradient Descent.

Stochastic Gradient Descent (SGD) is a fundamental and
popular numerical optimization method. To minimize a scalar
function with vector parameters, i.e., f�w�, the Gradient De-
scent (GD) algorithm starts with carefully initialized parameter
values, and updates it to the next value that maximally mini-
mizes the function value in a small neighborhood by following
the negative of the gradient (©f � � ∂f

∂w�1� , . . . ,
∂f

∂w�M� ��)
direction. SGD is its stochastic version, where the gradient
is estimated using a random sample of the training data. SGD
drastically reduces the gradient computation cost but may get
noisy gradients. In practice, a mini-batched SGD achieves the
balance between GD and SGD by estimating the gradient on
a mini-batch of B random samples, where B is a hyper-
parameter.

Consider our relaxed final loss function (6), it is still non-
convex. We cannot guarantee to obtain the optimal solution and
hence there are several strategies to learn a sufficiently good
solution. One strategy is to learn the entire set of parameters
W simultaneously, and another is to learn each function (i.e.,
the corresponding wm) one by one in an incremental manner.
We found that the latter approach typically leads to better
performance and hence we introduce its details below.

Assum that we have learned the first m � 1 linear hash
functions, i.e., �w1,w2, . . . ,wm�1 � are learned. We formulate
the optimization problem for the next function as

Jinc�wm� � J�wm� � µ � �w�

mwm � 1�2 � λ �m�1

Q
j�1

�w�

jwm�2
(7)

The last two items in (7) are: (i) The first is the additional
regularization that encourages wm to be an unit vector; (ii) The
second is the orthogonality regularization. The square is used
to guarantee that the last item (i.e., the sum) is always positive.

Next, we apply the SGD algorithm to minimize the
Jinc�wm�. Firstly, we need to obtain the gradient of the r̃�xi�
in (4) with respect to wm, which is:

©wm r̃�xi� � N

Q
j�1

σ��z�©wmz (8)

where

σ��z� � σ�z� � �1 � σ�z��
z � �h�q� � h�xi��2 � �h�q� � h�xj��2

©wmz � 2��h�q� � h�xi���q � xi� � �h�q� � h�xj���q � xj��

Algorithm 3: Optimized Incremental SGD(D̄, Q, M)
Input : D̄: The training dataset,

Q: The training query set,
M : The number of projection vectors

Output: The parameter of the linear mapping
functions W

Calculate the ground-truth lists lo for each query in Q1

with respect to D̄ in Rd ;
for m � 1 to M do2

if m � 1 then3
wm � a vector where each component is4
sampled from the Gaussian distribution N�0,1�;

else5
wm � a randomly sampled vector from the null6
space of �w1, . . . ,wm�1 �;

w � wº
w�w

; /* normalize */;7
for i� 1 to max iteration do8

Sample a batch of queries from Q and obtain9
their associated order lists from lo;
Calculate the gradient (Equation (9)) for this10
batch of queries;
Update the wm (Equation (10));11

return W � �w1, . . . ,wM �;12

Then the gradient of Jinc�wm� in (7) is:

©wmJinc�wm� � L

Q
i�1

Q
x̃>loi

�©wm r̃�x̃� � �σ��z1� � σ��z2���
� 4µ�w�

mwm � 1�wm � 2λ
m�1

Q
j�1

w�

jwmwj

(9)

where the z1 � r̃�x̃� � t � i and z2 � t � �i � 1� � r̃�x̃�.

Now consider using the SGD with a mini-batch of size B,
i.e., the mini-batch consists of B objects randomly sampled
from the training query set Q. The gradient descent updating
rule for wm is:

w�t�1�
m �w�t�

m � lr �
1

B

B

Q
j�1

©wmJinc�wm,qj� (10)

where lr is the learning rate and t is the iteration index, and
the�q1, . . . ,qB � is a random subset of Q. We give out the
complete mini-batch SGD algorithm for learning the data-
sensitive linear functions in Algorithm 3.

There is still a performance issue with the algorithm in
that one iteration over the mini-batch needs O�B � N2�,
which is unacceptable if N is large. We take the following
measure to mitigate the performance problem by sub-sampling.
Specifically, we can interpret the first item in the gradient
in (9) as the expectation over all x̃ in the dataset and then
approximate it using a set of random samples S:

Ex̃>D J©wm r̃�x̃� � �σ��z1� � σ��z2��K
�

1SS S Qx̃>S©wm r̃�x̃� � �σ��z1� � σ��z2��
In addition, instead of using the entire reference dataset, we use
a training dataset D̄ of size γN , which is randomly sampled

 0.5

 1

-6 -4 -2 0 2 4 6

Fig. 2: The Sigmoid Function (Left) and The Architecture of Our Non-Linear Hash Learning (Right)

from the reference dataset, to compute the rank position and
subsequently all the losses. So D̄, instead of D, is used to
invoke Algorithm 3. Therefore, with the above measures, we
can reduce the gradient computation cost to O�B � SS S � γN�.

V. LEARNING TO INDEX BY NEURAL NETWORK

In this section, we consider learning non-linear mapping
functions via Deep Neural Networks (DNN).

A. DNN Architecture

We choose to model non-linear mapping functions by a
DNN, due to its strong modelling power and its success in
numerous application areas. However, it is more natural to
train the M hash functions collectively, which essentially maps
the d-dimensional point x into a M -dimensional embedding
x�, or x�

� H�x;θ�, where H can deemed as a DNN and θ
represents all the parameters of the DNN.

We design the architecture of our DNN as shown in Fig-
ure 2(right). It consists of five fully-connected layers, denoted
as: I1-H2-H3-H4-O5. H1 is the input layer which receives the
input dataset features, and the number of input units is equal
to the dimensionality of the dataset. H2-H4 are three hidden
layers, each of which contains 512 units. ReLU is used as the
activation function for each hidden layers. O5 is the output
layer containing M units.

B. Objective Function

Our DNN-based model requires us to design a new loss
function rather than those presented in the previous section.
For example, the orthogonality constraints in our previous loss
function is inapplicable for DNN.

Nevertheless, we can still apply the same order-preserving
idea. We use the following smoothly differentiable surrogate
rank position function:

r̃�xi;θ� �QN

j�1
σ�YH�q;θ�,H�xi;θ�Y

� YH�q;θ�,H�xj ;θ�Y� � 1
(11)

This function is relaxed from the 1p function. We penalize
how far is the ranking of xi away from its groundtruth (in
the original space) instead of whether xi is preserved in
corresponding bucket.

Then, the loss function can be formulated as:

J�θ� �QN

i�1
βi log��r̃�xi;θ� � g�xi��2 � 1� (12)

where the g�xi� is the ranking of xi with respect to query q
in the original space Rd, βi is the weight computed for xi,
defined as

βi � exp�� Yq,xiY
max1BjBN Yq,xjY� (13)

log�1 � z� is used to encourage the model to pay more
attention to near-by points rather than faraway points.

Finally, we use the Adam optimizer [22] to train the
network in a mini-batch manner.

Note that the sub-sampling strategy introduced in the linear
model is also applied into our non-linear model to reduce the
training cost. Specifically, a training dataset D̄ of size γN
is used to calculate the rank function r̃�xi;θ� (11), and the
gradient of J�θ� (12) is computed over a random subset S of
D̄. Therefore, the training cost of our DNN-based model over
a mini-batch of size B is O�η �B � SS S � γN�, where the η is
due to the computation cost of the neural network.

Remark 1. We remark that the linear model is easier to be
optimized, thus, is faster in training than DNN-based model.
However, DNN-based model can learn complex non-linear
mapping functions, which makes it have a better performance
than linear model on many datasets (see Section VII-C).

VI. DISCUSSION

In this section, we discuss some issues related to our ANNS
framework and the learning to hash models.

For our query processing in Algorithm 2, there are two
points need to be discussed. Firstly, one could change the
candidate condition such that points that have been seen on
more than �α �M� lists are added to the candidate set, remi-
niscent of the strategy used in MEDRANK [10], C2LSH [13]
and QALSH [19]. However, we experimentally found that
α � 1 always achieves the best performance (see Fig. 4(b)).
Secondly, we access each list based on the closeness of the
pages to the embedded query instead of other choices such as
keeping distance lower or upper bounds as in the threshold
algorithm [11]. This is because (i) it is not always possible
to keep track of the lower/upper bounds (e.g., when H is
a non-linear mapping function), and (ii) due to the curse of
dimensionality, the lower/upper bounds on low dimensional
embedding spaces are very loose and do not help much in
early stopping the query processing in practice.

Another thing is that can our learning to hash models be
applied to other distance metrics and space? In this paper, we
focus on the ANNS in metric space Rd, taking the Euclidean
distance as distance metric. The key point of our methods is

to map original data points into sorted lists by learned func-
tions, followed by the sequential ANN search. The purpose
of our learned functions is to learn the similarity ordering
information from the original space. From this perspective,
our framework is independent to the actual distance metric.
In other words, our models can be easily applied to other
distance metrics, such as cosine distance and inner product,
by providing the corresponding original distance order (i.e.,
ground-truth). Nevertheless, it is unclear whether this will lead
to good performance for other distance metrics and spaces. We
will leave this as a future work.

VII. EVALUATION

In this section, we conduct comprehensive experiments to
verify the efficiency and effectiveness of our proposed meth-
ods, compared with the state-of-the-art I/O efficient ANNS
algorithms.

A. Experimental Settings

In this subsection, we introduce the settings of our exper-
iments.

Algorithms We compare the two proposed algorithms with
four external memory-based ANNS algorithms. Below are
algorithms evaluated in the experiments.

Y I-LSH. The random hash based incremental LSH algo-
rithm proposed in [24] (Section II-C).

Y PQBF. The ANNS algorithm proposed in [25] where
the product quantization technique is employed (Sec-
tion II-C).

Y AOSKNN. The PCA based ANNS algorithm proposed
in [17] where the R-tree is employed (Section II-C).

Y M-Tree. M-tree is a general tree-based data structure
that can support ANNS in Euclidean metric space [29]
(Section II-B).

Y OPFA and NeOPFA. Our proposed ANNS algorithms
where we learn linear and non-linear mapping functions
(Sections IV and V, respectively) using the relaxed, block-
based loss functions.

Datasets and query load Six widely-used large scale high-
dimensional datasets are used for experiments: Gist5, Deep6,
UQvideo7, Tiny8, Deep1B9, Sift1B10. Gist is is an image
dataset which contains about 1 million data points with 960
features. Deep contains deep neural codes of natural im-
ages, which contains about 1 million data points with 256
dimensions. UQvideo is a video dataset with each objects
being 256 dimensions. Tiny is also a image dataset which
consists of around 80 million images, each being a 384 feature
vector. Deep1B contains 1 billion of 96-dimensional DEEP
descriptors [1]. Sift1M consists of 1 billion 128-dimensional
SIFT feature vectors. For each dataset, after the deduplication,
we randomly select 1,000 data points and reserve them as the
query points. The details of each dataset are summarized in
Table II.

5http://corpus-texmex.irisa.fr/
6https://yadi.sk/d/I yaFVqchJmoc
7http://staff.itee.uq.edu.au/shenht/UQ VIDEO/
8http://horatio.cs.nyu.edu/mit/tiny/data
9http://sites.skoltech.ru/compvision/noimi/
10http://corpus-texmex.irisa.fr/

Training and Implementation For each dataset, we ran-
domly sample two different subsets as training dataset and
training query set (i.e., D̄ and Q in Algorithm 3, respectively).
Specifically, for Gist, Deep and UQvideo datasets, we sample
20k data points as training dataset and 10k data points as
training query set for each of them, respectively. For Tiny,
we sample 100k data points and 20k data points as training
dataset and training query set. For Deep1B and Sift1B, we
sample 1M data points and 0.2M data pints as training dataset
and training query set for each of them, respectively. After
sampling, the remaining part of each dataset is regarded test
datset for ANNS. The batch size B is set to be 200 and
100 for linear and non-linear learning methods, respectively,
for all datasets. The termination of two learning methods
depends on the convergence of training procedure, where the
max iteration of the linear method is set within �50,400� for
the datasets evaluated. When choosing the sub-sample S (See
the end of Section IV-B), we chose the following strategy: for
a given training query q and a training dataset, denote the k-
NN points of q as S�, and the rest of the points as S�. The
final S consists of the entire S� and a random sample in S�.

Note that, same as [25], we apply the K-means data
partition for all datasets in the experiment for better search
efficiency. Specifically, the K-means clustering method is
leveraged to partition the datasets, and then the learned func-
tions are used to index each partition separately. After that,
the partition (i.e., a subset of data points) closest to the query
point based on the Euclidean distance is selected for querying
processing. The partition number is set to be 10 for Gist, Deep
and UQvideo, and 64 for the other three datasets.

Evaluation Metrics We use 6 important metrics to evaluate
the performance of the algorithms: ratio, recall, I/O costs,
running time, pre-processing time and index size.

Y Ratio. This is the ratio between distances of the ap-
proximate kNN results to the query and those of the
actual kNN results, to measure the quality of ANN
results, which is widely used in the literatures [13], [33],
[19], [25]. Given a query q, let �p1,p2, . . . ,pk � be the
approximate kNN to q returned by an ANN method,
and �o1,o2, . . . ,ok � be the true kNN. Then the ratio
is defined as:

ratio �
1

k

k

Q
i�1

Yq,piYYq,oiY
Clearly, ratio close to 1.0 means the ANNS algorithm
returns better results and vice versa. The average ratio of
a set of queries is reported in the experiments.

Y Recall. Recall is the ratio between the number of true
kNNs found in the approximate kNN set and the value
of k. It measures how many true kNNs can be found by
ANNS methods.

Y I/O cost. The page size b is set to be 4096 for all
algorithms in the experiments. We assume the index and
dataset reside in the external memory before the query
is issued (i.e., cold startup). A unit I/O cost is a random
I/O and we set the cost of a sequential I/O as 0.01 for
the index accessing according to the profiling of our
hardware system running the experiments. During the
distance verification, we firstly sort the point IDs and then
sequentially access the data points in the external memory.
Thus, the cost of a sequential I/O for the verification is

TABLE II: Statistics of Datasets and Index Sizes of All Algorithms (in Megabytes)

Datasets Statistics Index Sizes (MB)
N d Data Type NeOPFA OPFA PQBF AOSKNN I-LSH M-Tree

Million
Scale

Gist 982,677 960 Image 102.5 98.4 84.6 144.2 849.7 21.6
Deep 1,000,000 256 Image 102.8 100.1 70.4 148.7 864.6 20.7
UQvideo 3,038,478 256 Video 306.9 304.2 210.6 443.9 2662.4 63.6
Tiny 79,302,017 384 Image 8092.5 8089.6 5836.8 - 39014.4 -

Billion
Scale

Deep1B 1,000,000,000 96 Image 102,402.4 102,400 75,673.6 - 491,929.6 -
Sift1B 1,000,000,000 128 Image 102,402.4 102,400 75,673.6 - 491,929.6 -

TABLE III: Parameter Settings of OPFA

Parameters Values
The number of sorted lists (M) 5,10,15,20, 25,30

The number of buckets (L) 5, 10,15,20,25
Orthogonality regularization factor (λ) 1, 20,40,60,80

Additional regularization factor (µ) 0.1,1, 2,4,6

set to be 0.1 according to the profiling of our hardware
system. The average I/O cost of a set of queries is used
in the experiments.

Y Search time. It is the wall clock time for running a query.
We report the average search time among the set of test
queries.

Y Preprocessing time. We report the preprocessing time
of the algorithms, including the training time (i.e., the
learning of hashing functions) and index construction
time (i.e., generate embeddings for every point and build
index).

Y Index size. We also report the size of the indexes used
by the algorithms.

Parameter Setting By default, the k value of k-ANNS is set
to be 20, which may vary from 10 to 100 in the experiments.
The parameters of the algorithms are set to default values as
suggested by the original authors unless otherwise specified.
Particularly, for PQBF [25], the number of PQB-trees K � is set
to be 64, the number of PQB-trees θ selected to perform ANNS
is set to be 4 and the ratio ε is set to be 0.4. In AOSKNN
algorithm [25], the dimensionality of PCA (m) is set to 6.
The precision ε and the relaxation factor λ is set to 0.9 and 2,
respectively. In I-LSH algorithm [24], the approximate ratio
c is set to be 2 for Tiny, Deep1b and Sift1B datasets and
1.7 for other datasets for a good overall performance. The
success possibility δ is set to be 1~2 � 1~e. The setting of the
candidate size T in our algorithm depends on the value k and
the corresponding dataset, which can be tuned by users for
satisfactory performance. Table III shows the possible values
of other four parameters in OPFA and their default values (in
bold fonts). The impact of these parameters will be evaluated
in Section VII-B, where we also evaluate the impact of the
number of lists M for NeOPFA.

Our two ANNS algorithms are implemented in standard
C++ and the source codes of PQBF [25], AOSKNN [17], I-
LSH [24] are provided by the original authors. The source code
of M-tree [29] is from GitHub (https://github.com/erdavila/
M-Tree). Note that we can only successfully setup the main-
memory version of M-tree, and we use it in the performance
evaluation. We count the number of nodes accessed during the
querying as the I/O costs, where we set the node size of M-
tree to be the page size (i.e., 4096 bytes). The algorithms are
compiled with G++ with -O3 in Linux. All experiments are

performed on a machine with Intel Xeon Gold 2.7GHz CPU
and Redhat Linux System, with 180G main memory.

 50

 100

 150

 200

 250

 300

 350

 400

1.03 1.05 1.07 1.09

Ratio

L=5
L=10
L=15
L=20
L=25

(a) Parameter L

 50

 100

 150

 200

 250

 300

 350

 400

1.03 1.05 1.07 1.09

Ratio

=1
=20
=40
=60
=80

(b) Parameter λ

 50

 100

 150

 200

 250

 300

 350

 400

1.03 1.05 1.07 1.09

Ratio

=0.1
=1
=2
=4
=6

(c) Parameter µ

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1.02 1.04 1.06 1.08 1.1

Ratio

M=5
M=10
M=15
M=20
M=25
M=30

(d) Parameter M

Fig. 3: The impact of parameters of OPFA on Deep

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1.02 1.04 1.06 1.08 1.1

Ratio

M=5
M=10
M=15
M=20
M=25
M=30

(a) Parameter M

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1.02 1.04 1.06 1.08 1.10

Ratio

=0.2
=0.4
=0.6
=0.8
=1.0

(b) Parameter α

Fig. 4: The impact of parameters of NeOPFA on Deep

B. Parameter Tuning

In this subsection, we investigate the impact of the pa-
rameters for our proposed methods, and decide the default
settings by tuning parameters on Deep datasets. Note that we
do not report the parameter tuning details of neural network in
NeOPFA algorithm since it is beyond the focus of this paper.

We first investigate the four parameters of OPFA. The first
three parameters are from the linear hash function, i.e., the
number of buckets L, the regularization factor λ and factor µ.
And the last one, i.e., the number of sorted lists M , is from
our ANNS framework. For the NeOPFA, we only need to tune
the number of lists M in the experiment given the setting of
neural network. We tune the candidate size T to plot the curve
of I/O cost w.r.t ratio for each parameter. When tuning one
parameter, the other parameters are set to be the default values
in Table III.

The impact of L on OPFA is plotted in Fig. 3(a) where
the trade-offs between I/O cost and ratio are reported with L
varying from 5 to 25. Smaller L leads to a larger mismatch,

but less training time. In addition, larger L makes the loss
function harder to be optimized. We observe that OPFA
achieves a trade-off for L � 10, which is used in the following
experiments. Recall that λ is orthogonality regularization and
µ is the additional regularization that encourages the learned
projection vectors to be unit vectors. The impacts of λ and µ
are plotted in Fig. 3(b)-(c). As expected, the larger λ leads to
a better ratio but incurs higher I/O cost, since the algorithm
needs to access more pages to find out the first candidate that
has been seen on all M sorted lists, and vice versa. Compared
with λ, µ is smaller such that the optimization focuses more
on the loss function and the orthogonality regularization. We
observe that OPFA achieves a good overall performance when
λ � 20 and µ � 2.

For the impact of M for OPFA and NeOPFA, the results
are plotted in Fig. 3(d) and Fig. 4(a). M has a significant
influence on the trade-off between I/O costs and accuracy
where a larger M leads to better accuracy, but higher I/O
cost. It is reported that both OPFA and NeOPFA reach a
good trade-off when M � 25, and lager M cannot distinctly
achieve a better performance.

We also investigate the situation discussed in Section VI.
That is, an object may become a candidate after �α �M� hits,
i.e., the object appears �α �M� times during the search with
0 @ α B 1. In Fig. 4(b), we report the trade-offs between
I/O costs and ratio for different α values given M � 25 on
Deep dataset for NeOPFA. It is shown that NeOPFA achieves
the best overall performance when α � 1. This confirms the
effectiveness of our search strategy in Algorithm 2.

C. Performance Comparison with the State-of-the-art Algo-
rithms

In this section, we present comprehensive experimental
results for the six algorithms on all datasets, in terms of the
six evaluation metrics. To evaluate the performance of the
algorithms on k-ANNS, k is set to be �10,20, . . . ,100�. Note
that the experimental results of AOSKNN and M-tree on Tiny,
Deep1B and Sift1B datasets are not available because they
failed to build up the indices under the current system settings.

I/O Cost Fig. 5(a)-(d) and Fig. 6(a)-(b) report the I/O costs
of six algorithms on six datasets where k varies from 10 to 100.
It is shown that OPFA and NeOPFA outperform the other four
ANNS techniques by a large margin. The IO cost of NeOPFA
is around 68%-89.3% of OPFA on most of the datasets.
Though they share the same ANNS framework, the non-linear
hash functions learnt by neural networks are more powerful
than the linear hash functions, with higher training cost (see
Fig. 9). Due to the use of random I/O, the overall performance
of PQBF, AOSKNN and M-tree are not competitive. It is
interesting that PQBF outperforms AOSKNN and M-tree,
which is because of the good performance of PQ method. M-
tree outperforms AOSKNN on most of datasets. Although I-
LSH can also take advantage of the sequential I/O, the poor
quality of the random hash leads to a larger number of lists to
be accessed for a decent search accuracy. Thus, the I/O cost
of I-LSH is larger than our proposed algorithms, especially on
the three very large datasets.

Ratio We evaluate the average ratio of k-ANN queries for
all algorithms on six datasets by varying k. The experimental
results are plotted in Fig. 5(e)-(h) and Fig. 6(c)-(d). In addition
to the superior performance in terms of I/O costs, We still

observe that NeOPFA and OPFA also outperform the other
four algorithms on the accuracy of the search results, thanks
to the high quality data-sensitive hashing functions and the
sequential I/O accesses. The large gap can be observed on
Deep, Tiny and Deep1B datasets. As expected, NeOPFA
performs better than OPFA, especially on Gist and Tiny.
This is because the new loss function used in NeOPFA can
better preserve order information in the high dimensional
space and the neural network can learn sophisticated non-
linear hash functions. Among six algorithms, I-LSH has the
worst performance on most of datasets because of the use
of data-independent random hash functions. Same as the I/O
cost, PQBF demonstrates better performance compared to
AOSKNN and M-tree.

Recall The experimental results of the recall with respect
to k for the six algorithms on four datasets are plotted in
Fig. 7. Consistent with the observations in Ratio, NeOPFA
and OPFA have the highest recall when compared with the
other ANNS methods. For example, given k � 100, the recalls
of NeOPFA and OPFA are 0.51 and 0.48, while the recalls
of PQBF, I-LSH, AOSKNN and M-tree are 0.40, 0.31, 0.33
and 0.17, respectively, on Deep. NeOPFA has a higher recall
than OPFA. PQBF performs better than AOSKNN, I-LSH
and M-tree on most of datasets.

Search Time Although the focus of this paper is the external-
memory algorithms, we also evaluate the running time of the
algorithms. Due to the space limitation, we just report the
results on two datasets, which can be seen in Fig. 8. It is
shown that both NeOPFA and OPFA outperform the state-
of-the-art algorithms due to their I/O efficiency. For other four
algorithms, PQBF is faster than I-LSH, AOSKNN and M-tree.

Index Size The index sizes of six methods on six datasets
are reported in Table II. We observe that the index size of
M-tree is the smallest on the three million-scale datasets,
since it just needs to store the object IDs and some distance
information for pruning. The index size of PQBF is the second
smallest, followed by our methods. The index size of OPFA is
67.3%�68.5% of AOSKNN, and 11.4%�20.8% of I-LSH. The
index size of NeOPFA is slightly larger than OPFA because
of the parameters of neural network kept.

Preprocessing Time We report the preprocessing time in
Fig. 9. Preprocessing time considers learning the mapping
function, generating the embeddings, and the index construc-
tion for our algorithms. I-LSH does not need to learn the
hash functions and the generation of random hash functions
is very efficient. Thus, it has the best performance in terms
of preprocessing time. PQBF ranks the second due to the
efficiency of PQ code generation. As expected, NeOPFA
spends more time on pre-processing than OPFA as the the
neural network learning takes substantial amount of time.

D. Summary

Based on the experimental results, we have the following
observations:

Y Among six algorithms, I-LSH is the only algorithm with
theoretical guarantee. It also enjoys the efficient sequen-
tial I/O accesses and the worst case performance theoreti-
cal guarantee. However, the overall performance of I-LSH
is far from satisfactory on six real-life datasets because
of the use of random hash functions. M-tree is a general

10
2

10
3

10
4

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(a) Deep

10
2

10
3

10
4

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(b) UQvideo

10
2

10
3

10
4

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(c) Gist

10
2

10
3

10
4

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(d) Tiny

1.01

1.03

1.05

1.07

1.09

1.11

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(e) Deep

1.01

1.02

1.03

1.04

1.05

1.06

1.07

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(f) UQvideo

1.01

1.03

1.05

1.07

1.09

1.11

1.13

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(g) Gist

1.03

1.06

1.09

1.12

1.15

1.18

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(h) Tiny

Fig. 5: I/O Cost and Ratio with respect to k on million-scale datasets

102

10
3

10
4

10
5

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(a) I/O cost, Deep1B

10
3

10
4

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(b) I/O cost, Sift1B

1.05

1.1

1.15

1.2

1.25

1.3

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(c) Ratio, Deep1B

1.05

1.10

1.15

1.20

1.25

1.30

1.35

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(d) Ratio, Sift1B

Fig. 6: I/O cost and Ratio with respect to k on billion-scale datasets

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(a) Deep

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(b) UQvideo

0.01

0.05

0.10

0.15

0.20

0.25

0.30

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(c) Deep1B

0.01

0.10

0.20

0.30

0.40

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(d) Sift1B

Fig. 7: Recall with respect to k

10-2

10
-1

10
0

101

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(a) Gist

10
0

10
1

10 20 30 40 50 60 70 80 90 100

k

NeOPFA
OPFA

PQBF
I-LSH

(b) Tiny

Fig. 8: Search Time with respect to k

indexing technique for metric space which can support
ANN search. But, as demonstrated in experiments, its
performance is not competitive due to the random I/Os
on the index.

Y By utilizing the existing learning to hash approaches (i.e.,
PQ and PCA), the hash values of PQBF and AOSKNN
are data-sensitive. However, the I/O efficiency is not con-
sidered in the learning of their hash functions. Moreover,
random I/Os are invoked in the search of the index. As
reported in the experiments, PQBF and AOSKNN are
outperformed by our proposed methods in terms of I/O
cost, accuracy and search time.

Y Our proposed leaning to hash techniques directly optimize
the hash functions against the index (i.e., the lists). Thus
the I/O efficiency is considered by the objective functions

10
1

102
10

3

10
4

10
5

106
10

7

Deep UQvideo Gist Tiny Deep1b Sift1b

NeOPFA
OPFA

PQBF
AOSKNN

M-tree
I-LSH

Fig. 9: Pre-processing Time on All Datasets

of the machine learning tasks. Moreover, sequential I/Os
are invoked during the search. These make two proposed
algorithms OPFA and NeOPFA achieve a good trade-off
between I/O cost (search time) and accuracy. As expected,
the non-linear hash functions learnt from sophisticated
neural network can enhance the performance, at the cost
of more training time.

VIII. CONCLUSION

In this paper, we develop two I/O efficient indexing and
query processing methods to achieve highly efficient I/O
performance for approximate nearest neighbor search (ANNS)

in high dimensional space. Our methods are based on a
framework that uses sequential I/Os for finding candidates
for a query based on indexes learned from the data. We
consider both linear and non-linear functions to construct the
learned index with novel objective functions. Comprehensive
experiments on six high-dimensional benchmarking datasets
with objects up to 1 billion, show that our proposed methods
outperform the state-of-the-art I/O-focused ANNS techniques
in terms of I/O efficiency, search accuracy.

ACKNOWLEDGMENT

Ying Zhang is supported by ARC FT170100128 and
DP180103096. Yifang Sun and Wei Wang are partially sup-
ported by ARC DPs 170103710 and 180103411, and D2DCRC
DC25002 and DC25003. Ivor W. Tsang is supported by ARC
grant LP150100671 and DP180100106. Xuemin Lin is sup-
ported by NSFC 61672235, DP170101628 and DP180103096.

REFERENCES

[1] A. Babenko and V. Lempitsky. Efficient indexing of billion-scale
datasets of deep descriptors. In CVPR, pages 2055–2063, 2016.

[2] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh.
Beyond one billion time series: indexing and mining very large time
series collections with isax2+. Knowledge and information systems,
39(1):123–151, 2014.

[3] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep learning to
hash by continuation. In ICCV, pages 5608–5617, 2017.

[4] B. Dai, R. Guo, S. Kumar, N. He, and L. Song. Stochastic generative
hashing. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 913–922. JMLR. org, 2017.

[5] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In WWW, pages
271–280. ACM, 2007.

[6] S. Dasgupta and Y. Freund. Random projection trees and low dimen-
sional manifolds. In STOC, volume 8, pages 537–546. Citeseer, 2008.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 253–
262. ACM, 2004.

[8] W. Dong, M. Charikar, and K. Li. Efficient k-nearest neighbor graph
construction for generic similarity measures. In WWW, 2011.

[9] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim. The ler-
naean hydra of data series similarity search: An experimental evaluation
of the state of the art. PVLDB, 12(2):112–127, 2018.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and
classification via rank aggregation. In SIGMOD, pages 301–312, 2003.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. Journal of computer and system sciences, 66(4):614–656,
2003.

[12] C. Fu, C. Xiang, C. Wang, and D. Cai. Fast approximate nearest
neighbor search with the navigating spreading-out graph. PVLDB,
12(5):461–474, 2019.

[13] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme
based on dynamic collision counting. In SIGMOD, pages 541–552.
ACM, 2012.

[14] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for
approximate nearest neighbor search. In CVPR, pages 2946–2953, 2013.

[15] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval. TPAMI, 35(12):2916–2929, 2013.

[16] R. M. Gray. Vector quantization. Readings in speech recognition,
1(2):75–100, 1990.

[17] Y. Gu, Y. Guo, Y. Song, X. Zhou, and G. Yu. Approximate order-
sensitive k-nn queries over correlated high-dimensional data. TKDE,
30(11):2037–2050, 2018.

[18] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor:
Towards removing the curse of dimensionality. Theory of computing,
8(1):321–350, 2012.

[19] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-aware
locality-sensitive hashing for approximate nearest neighbor search.
PVLDB, 9(1):1–12, 2015.

[20] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pages 604–613.
ACM, 1998.

[21] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest
neighbor search. TPAMI, 33(1):117–128, 2011.

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[23] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin.
Approximate nearest neighbor search on high dimensional data -
experiments, analyses, and improvement. TKDE, pages 1–1, 2019.

[24] W. Liu, H. Wang, Y. Zhang, W. Wang, and L. Qin. I-LSH: I/O efficient
c-approximate nearest neighbor search in high-dimensional space. In
ICDE, pages 1670–1673, 2019.

[25] Y. Liu, H. Cheng, and J. Cui. Pqbf: I/o-efficient approximate nearest
neighbor search by product quantization. In Proceedings of CIKM,
pages 667–676. ACM, 2017.

[26] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs.
Information Systems, 45:61–68, 2014.

[27] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for
high dimensional data. TPAMI., 36(11):2227–2240, 2014.

[28] J. Nocedal and S. Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[29] C. Paolo, P. Marco, and Z. Pavel. M-tree: An efficient access method
for similarity search in metric spaces. PVLDB, pages 426–435, 1997.

[30] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen. Unsupervised
deep hashing with similarity-adaptive and discrete optimization. TPAMI,
40(12):3034–3044, 2018.

[31] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image
descriptor matching. In CVPR, pages 1–8. IEEE, 2008.

[32] D. Song, W. Liu, R. Ji, D. A. Meyer, and J. R. Smith. Top rank
supervised binary coding for visual search. In ICCV, pages 1922–1930,
2015.

[33] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. Srs: solving c-
approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. PVLDB, 8(1):1–12, 2014.

[34] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in
high dimensional nearest neighbor search. In SIGMOD, pages 563–
576. ACM, 2009.

[35] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and accurate nearest
neighbor and closest pair search in high-dimensional space. TODS,
35(3):20, 2010.

[36] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee.
Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In Proceedings of the 24th ACM SIGKDD, pages 839–848.
ACM, 2018.

[37] J. Wang, J. Wang, N. Yu, and S. Li. Order preserving hashing for
approximate nearest neighbor search. In Proceedings of the 21st ACM
international conference on Multimedia, pages 133–142. ACM, 2013.

[38] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen. A survey on
learning to hash. TPAMI., 40(4):769–790, 2018.

[39] Q. Wang, Z. Zhang, and L. Si. Ranking preserving hashing for fast
similarity search. In IJCAI, 2015.

[40] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NeurIPS,
pages 1753–1760, 2009.

[41] J. Zhang, J. Tang, C. Ma, H. Tong, Y. Jing, J. Li, W. Luyten, and M.-
F. Moens. Fast and flexible top-k similarity search on large networks.
TOIS, 36(2):13, 2017.

[42] Y. Zhang, X. Lin, G. Zhu, W. Zhang, and Q. Lin. Efficient rank based
knn query processing over uncertain data. In ICDE, pages 28–39. IEEE,
2010.

	20xx IEEE
	16ba551e-1276-4c1e-ad51-da35e01672db

