
Kaleido: An Efficient Out-of-core Graph Mining System on
A Single Machine

Cheng Zhao
ICT, CAS

zhaocheng@ict.ac.cn

Zhibin Zhang
ICT, CAS

zhangzhibin@ict.ac.cn

Peng Xu
ICT, CAS

xupeng@ict.ac.cn
Tianqi Zheng

ICT, CAS
zhengtianqi@ict.ac.cn

Xueqi Cheng
ICT, CAS

cxq@ict.ac.cn

ABSTRACT
Graph mining is one of the most important categories of
graph algorithms. However, exploring the subgraphs of an
input graph produces a huge amount of intermediate data.
The “think like a vertex” programming paradigm, pioneered
by Pregel, cannot readily formulate mining problems, which
is designed to produce graph computation problems like
PageRank. Existing mining systems like Arabesque and
RStream need large amounts of computing and memory re-
sources.

In this paper, we present Kaleido, an efficient single ma-
chine, out-of-core graph mining system which treats disks as
an extension of memory. Kaleido treats intermediate data
in graph mining tasks as a tensor and adopts a succinct
data structure for the intermediate data. Kaleido utilizes
the eigenvalue of the adjacency matrix of a subgraph to ef-
ficiently solve the subgraph isomorphism problems with an
acceptable constraint that the vertex number of a subgraph
is less than 9. Kaleido implements half-memory-half-disk
storage for storing large intermediate data, which treats the
disk as an extension of the memory. Comparing with two
state-of-the-art mining systems, Arabesque and RStream,
Kaleido outperforms them by a GeoMean 12.3× and 40.0×
respectively.

PVLDB Reference Format:
Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng, Xueqi Cheng.
Kaleido: An Efficient Out-of-core Graph Mining System on A
Single Machine. PVLDB, 11 (13): xxxx-yyyy, 2018.
DOI: https://doi.org/TBD

1. INTRODUCTION
Graphs data is ubiquitous in a broad range of fields such

as social networks, web networks, financial networks, bio-
logical networks, and the analysis of graphs is becoming
increasingly important. Generally, we divide graph anal-
ysis problems into two major types, graph computation and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 13
Copyright 2018 VLDB Endowment 2150-8097/18/9.
DOI: https://doi.org/TBD

graph mining. Graph computation aims to compute some
meaningful values of vertices in a graph. For example, we
calculate the PageRank [23] value of a web graph to obtain
the top-k valuable web pages; give two vertices in an input
graph, we calculate the shortest path between them. While
graph mining aims to discover structural patterns to meet
the user’s interest criteria. For example, we mine frequent
subgraphs in the biological data to discover highest gene
expression [16]; we extract the frequency distribution of all
motifs that occur in PPI network [25]; we discover cliques
in financial networks to detect frauds[10].

1.1 Problem statement
Graph computation problems can be represented through

linear algebra over an adjacency matrix based representation
of the graph. Many practical solutions, like PowerGraph
[13], Ligra [32], GraphX [14], Chaos [28], Gemini [36], etc.,
follow a simple “think like a vertex (TLV)” programming
paradigm pioneered by Pregel [21], which is a perfect match
for linear algebra problems.

However, the TLV programming paradigm cannot readily
formulate graph mining problems. Given an input graph,
graph mining problems often require exploring a very large
number of subgraphs and finding patterns that match some
interesting criteria desired by the user. In this paper, we use
pattern and embedding to denote two types of subgraphs in
an input graph. A pattern is a template, while an embed-
ding is an instance. We denote k-embedding for an em-
bedding contains k vertices. Embeddings are isomorphic
if they contain different vertices and edges but they have
the same pattern. Figure 1 illustrates an example of pat-
tern matching, which is also a step of the frequent subgraph
mining. To identify which pattern is frequent in an input
graph, we should explore all embeddings, then patternize
each embedding and statistic all patterns. The exploration
of subgraphs can be executed as vertex-induced and edge-
induced. A vertex-induced exploration expands one vertex
to an embedding in each iteration, while an edge-induced
exploration expands one edge.

The first challenge in graph mining applications is how
to build a compact data structure for the intermediate data
(embeddings) and process them efficiently. In querying a k-
vertex-pattern in a graph with N distinct vertices, the time
complexity is O(N ·d̄k−1), in which d̄ is the average degree of
the graph [2]. Generally, we have up to O(N · d̄k−1) different
embeddings of size k in this graph. For example, the explo-

1

ar
X

iv
:1

90
5.

09
57

2v
1

 [
cs

.D
C

]
 2

3
M

ay
 2

01
9

1

2 5

3 4

Input Graph Pattern Embeddings

1

2 5
(a)

2 5

3
(b)

2 5

3

(c)(p)

Figure 1: An example of pattern matching. Num-
bers denote vertex ids; colors represent labels. Pat-
tern p is a template graph. Graph a, b and c are
instances of pattern p in the input graph. These in-
stances are called embeddings. Isomorphic embed-
dings a and b have same pattern p. Same embedding
b and c also are called automorphic.

ration of 4-embeddings over Patent (3.8 M vertices, 16.5 M
edges) [20] produces 13.5 billion embeddings. The second
challenge is how to efficiently test embedding isomorphism
in computing patterns. The graph isomorphism problem
(GI) is an NP hard problem and no polynomial time algo-
rithm is known [31]. The fastest proven running time for GI

has stood at eO(
√
n logn) [5].

1.2 Limitations of State-of-the-Art Systems
Recent graph mining systems use declarative models to

solve mining problems. Arabesque [33] proposes a natural
programming paradigm, “think like an embedding (TLE)”,
which is also called subgraph-centric model. RStream[34]
employs a GRAS programming model that uses a combina-
tion of “gather-apply-scatter” (GAS) and relational algebra
to support mining algorithms.

Arabesque is a Giraph-based distributed graph mining
system. Arabesque designs a prefix-tree-liked embeddings
data structure. It stores k arrays for k-embeddings, in which
the ith array contains the ids of all vertices in the ith position
in any embedding. Vertex v in the ith array is connected to
vertex u in the (i + 1)th array if there exists at least one
canonical embedding with v and u in position i and i + 1
respectively in the original set. However, in the pattern ag-
gregation phase, an extra canonically checking for each em-
bedding is inevitable. For the experiment of Arabesque, the
extra checking still accounts for around 5% of the run-time
in mining applications.

RStream is a single-machine graph mining system based
on X-Stream[29]. It only supports the edge-induced embed-
ding exploration. When solving some vertex-based appli-
cations, like the motif counting and the clique discovery, it
needs more iterations and more disk I/O. For example, to
find 4-motifs in an input graph, RStream iterates 6 times to
explore all kinds of 4-motifs (

(
4
2

)
= 6). To explore all possi-

ble embeddings, RStream executes the operation of all-join
in the relational algebra, which produces a huge amount of
intermediate data. For example, running the 4-motifs count-
ing on RStream over MiCo (100 K vertices, 1.1 M edges)
[11] produces around 1.64 TB intermediate data, while the
amount of 4-motifs in MiCo is around 11 billion.

Both Arabesque and RStream use a graph library, bliss[18],
which is an open source tool for computing graph isomor-
phism problems. Bliss builds a search tree and calculates
a hash value for each pattern. If two patterns contain the
same hash value, they are automorphic. However, build-
ing the search tree brings frequently memory allocating and

n

n

(a) Adjacency matrix

n

n

n

Extract the
Embedding

x
y

z

(x,y,z)

(b) 3-Embedding cube

Figure 2: Adjacency matrix and the 3-embedding
cube. The black blocks in Figure 2a indicate edges
in the graph. Figure 2b indicates a cube (tensor)
of 3-embeddings and an operation of extracting an
arbitrary embedding.

deallocating which slow down the processing of hashing pat-
terns and consumes a huge amount of memory. For example,
the overhead of allocation and deallocation are more then
53% in running 3-FSM over Patent graph (37 labels) with
support 1 and it consumes 16.1 GB memory for total 25,083
patterns.

1.3 Our Approaches
To address the limitations of existing systems, we propose

Kaleido, a single-machine, out-of-core graph mining sys-
tem. Inspired by Arabesque, Kaleido adopts the embedding-
centric computation model and presents a general program-
ming API which fits most of graph mining applications. In-
tuitively, the set of 1-embeddings is the vertex set of the
input graph; the set of 2-embeddings is the edge set without
duplicated edges of the input graph, which can be repre-
sented by an adjacency matrix (see Figure 2a); the set of
3-embeddings is the set of 3-chains and triangles, which can
be represented by a cube (see Figure 2b). In other words,
each vertex-induced expanding of embeddings is equivalent
to ascending a dimension for the intermediate data. Thus
Kaleido treats the intermediate data of the ith exploration
as an i-dimension tensor. Inspired by compressed sparse
column (CSC) for sparse matrices [30], we design a level-by-
level succinct data structure of intermediate embeddings,
which is called compressed sparse embedding (CSE). Each
iteration of the exploration ascends a dimension for the in-
termediate data and expands a level in CSE.

Calculating large embeddings of graph mining problems is
hard to implement because of the exponential growth of the
intermediate data in graph mining problems. For example,
the sizes of embeddings in 7 iterations of the embedding ex-
plorations over a small graph CiteSeer (3.3 K vertices, 4.7 K
edges) are 3.3 K, 4.5 K, 24.5 K, 352.2 K, 7.7 M, 168.2 M, 3.5
G respectively. Kaleido focuses on efficiently solving the GI
problems in small embeddings (less than 9 vertices). From
the property of isomorphism, we explain that isomorphic
embeddings have the same eigenvalues. Harary et at. [15]
proved that the smallest non-isomorphic unlabeled graphs
contain 6 vertices with the same eigenvalues and the smallest
non-isomorphic unlabeled graphs with the same eigenvalues
and the same vertex degrees contain 9 vertices. To solve
the labeled graph isomorphism problem, Kaleido combines
the label information and the degree information of vertices
in each pattern and eigenvalues of the adjacency matrix to
check isomorphism over embeddings.

2

To store more intermediate data when the scale of the in-
put graph or the exploration depth increases, we design a
hybrid storage for the intermediate embedding. According
to the level-by-level structure of CSE, when the memory is
insufficient to afford the whole intermediate data, the hy-
brid storage stores large levels of CSE on disk. To balance
the work load in processing the intermediate data on disk,
Kaleido predicts the capacity of embeddings candidate in
the next iteration, then divides the exploring tasks to each
thread evenly according to the prediction. When process-
ing the intermediate data on disk, Kaleido adopts a slide-
window strategy to guarantee the performance of parallel
computation and hide the overhead of I/O.

To summarize, we make the following contributions:

• We introduce the computation model of Kaleido in
Section 3. We propose a novel succinct embeddings
data structure, compressed sparse embedding, which
treats embeddings as a sparse tensor.

• We propose a lightweight graph isomorphism checking
algorithm in using eigenvalues of the adjacency matrix
of each pattern (Section 3).

• We implement a hybrid storage for the large interme-
diate data, which treats disks as an extension of the
memory and hides the overhead of I/O by the compu-
tation of the embedding exploration and pattern ag-
gregation (Section 4).

• We design an API for popular graph mining applica-
tions, which enables embedding exploration and pat-
tern aggregation to be expressed effectively. We present
four popular graph mining applications which are ex-
pressed in Kaleido API (Section 5).

• We compare Kaleido with Arabesque and RStream in
four graph mining applications. We compare the per-
formance of GI problems in Kaleido with bliss. We
demonstrate the scalability of Kaleido in different ap-
plications. We demonstrate the I/O performance in
the hybrid storage (Section 6).

The rest of paper are organized as follows. Section 2 for-
malizes the problem. Section 3 presents the computation
model of Kaleido, the design of CSE and the eigenvalue-
based isomorphism checking algorithm. Section 4 presents
the storage strategy of the large intermediate data. Section
5 introduce the API of Kaleido and the implementations of
popular graph mining applications. Section 6 presents the
experimental evaluation. Section 7 surveys related works
and Section 8 concludes.

2. PRELIMINARIES
A graph G = (V,E, L) consists of a set of vertices V , a set

of edges E and a labeling function L that assigns labels to
vertices and edges. A graph G′ = (V ′, E′, L′) is a subgraph
of graph G = (V,E, L), i.e., V ′ ⊆ V , E′ ⊆ E and L′(v) =
L(v), ∀v ∈ V ′. A pattern is a template graph, while an
embedding is an instance. In this paper, the vertex-induced
embedding is noted as e = 〈v1, ..., vk〉. If an embedding
contains k vertices, we say that the size of embedding e is
k. The edge-induced embedding is analogous.

Definition 1. We say that a subgraph Ga = (Va, Ea, La)
of graphG is isomorphic to another subgraphGb = (Vb, Eb, Lb)
of G if and only if there exists a bijection fab between Ga
and Gb, such that (i) La(v) = Lb(fab(v)),∀v ∈ Va, and
(ii) (fab(u), fab(v)) ∈ Eb and La(u, v) = Lb(fab(u), fab(v)),
∀(u, v) ∈ Ea.

In Figure 1, both subgraphs a = (Va, Ea, La) and b =
(Vb, Eb, Lb) have pattern p. There exists a bijection f be-
tween subgraphs a and b, fa↔b : {1 ↔ 3, 2 ↔ 2, 5 ↔ 5},
which satisfies constraining of subgraphs isomorphism. Thus
subgraph a is isomorphic to subgraph b. Two subgraphs are
automorphic if and only if they contain the same edges and
vertices. As shown by Figure 1, subgraphs b and c contain
the same edges and vertices, thus they are automorphic.

Definition 2. We say an embedding e = 〈v1, ..., vn〉 of
graph G = (V,E) is canonical if (i) ∀i > 1 it holds vi > v1;
(ii) ∀i > 1, ∃j < i satisfies that (vj , vi) ∈ E; (iii) ∀va, vb, vc if
a < b < c, (va, vc) ∈ E and @d < a satisfies that (vd, vc) ∈ E,
it holds vb < vc.

In other words, if an embedding is canonical, it should
hold the following three properties. (i) The id of the first
vertex in the embedding is the minimum value. (ii) Each
vertex in the embedding must be a neighbor of the vertex
which is indexed a smaller id, except the first vertex. (iii)
There exists an edge in the embedding, (va, vc), a < c and all
of vertices before va are not neighbor of vc, therefore if any
vertex exists between va and vc, it must holds that vb < vc.

3. COMPUTATION MODEL
In this section, we describe the computation model of

Kaleido and the design of data structure of intermediate
data and patterns. The procedure of graph mining appli-
cations in Kaleido are mainly divided into two phases, the
embedding exploration phase and the pattern aggregation
phase.

3.1 Embedding Exploration
In the phase of embedding generation, given the size of

embedding, our goal is to generate all of the possible and
unique embeddings. Then according to the user’s criteria,
we eliminate embeddings which are ineligible. We introduce
the canonical filter which guarantees that embeddings are
complete and unique.

We follow Arabesque’s idea of checking embedding canon-
icality for each candidate. From Definition 2, an embedding
e is canonical if and only if its vertices were visited in the
following order: start by visiting the vertex with the small-
est id and then recursively add the neighbor of e with the
smallest id that has not been visited yet.

Figure 3 illustrates the process of a series of vertex-based
explorations to 3-embeddings. Without loss of generality,
consider an exploration of a 2-embedding s8 = 〈2, 3〉. First,
neighbors or candidates of s8 in G are {1, 4, 5}, thus possi-
ble 3-embeddings generated by s8 are 〈2, 3, 1〉, 〈2, 3, 4〉 and
〈2, 3, 5〉. This step guarantees completeness of this explo-
ration. Next, according to Definition 2, 〈2, 3, 1〉 does not
satisfies property (i) of canonical embedding, for 1 < 2 and
2 is the first vertex of s8, while both 〈2, 3, 4〉 and 〈2, 3, 5〉 are
canonical. Therefore s17 and s18 are generated.

3

1

2 5

3 4

Input Graph 1-Embeddings 2-Embeddings

1

2

5

3

4

s1

s2

s3

s4

s5

1 2

1 5

2 5

2 3

3 4

3 5

4 5

s6

s7

s8

s9

s10

s11

s12

3-Embeddings

1 2 3

2 51

1 5 3

1 5 4

2 3 4

3 52

2 5 4

4 53

s13

s14

s15

s16

s17

s18

s19

s20

Figure 3: Procedure of vertex-based generating
canonical 3-embeddings. 2-embeddings and 3-
embeddings in the figure are arrays of vertices ids,
and the order of each embedding is immutable; the
dotted lines between two embeddings, like a dotted
line between s7 and s8, which means s6 and s7 are
generated by s1 and s8 and s9 are generated by s2;
note that the dotted lines between vertices do not
really exist in the embedding array, instead they
only represent there exist an edge in input graph
between these two vertices.

3.1.1 Embeddings Data Structure
The goal of storing embeddings is divided into two parts:

(i) minimizing memory usage and (ii) obtaining an arbitrary
embedding as fast as possible. Like an adjacency matrix
form of a graph, a k-embedding set can be treated as an adja-
cency k-dimension tensor (see Figure 2). Kaleido stores the
graph structure in compressed sparse column (CSC), which
is equivalent to the sparse adjacency matrix of the graph.
Inspired by CSC, we design a succinct data structure for
embeddings, which is called compressed sparse embedding
(CSE). If a k-embedding set is stored in CSE, we call it
k-CSE.

Off_2 74 60 72

Vert_2 553 52 65

Vert_1 1 2 3 4 5

(a) 2-Embeddings

Off_2 74 60 72

Vert_2 553 52 45

Off_3 8884 60 72

Vert_3 5453 43 45

(b) 3-Embeddings

Figure 4: The structure of compressed sparse em-
bedding (CSE). This figure shows a 2-CSE and a 3-
CSE of 2-embeddings and 3-embeddings illustrated
in Figure 3 respectively. The gray array vert1 does
not really store in Kaleido; it indicates the relation-
ship between vertex array and offset array. The dot-
ted lines divide CSE into different levels.

As illustrated in Figure 4, Kaleido stores embeddings level-
by-level. In each level, the structure of embeddings is stored
in two arrays. Vertex array (vertl) indicates the last vertex
of each embedding in level l. Offset array (offl) indicates
the start offset offl(i) and end offset offl(i + 1) in vertex
array of level l. A slice of vertex array,

[
offl(i), offl(i+1)

)
,

indicates that these vertices possesses same embedding pre-
fix. For example, in Figure 4a, the first two elements of
offset array are 0 and 2 which indicates a slice of vertex ar-
ray {vert2(i)|i ≥ 0, i < 2} = {2, 5}. It correspond to s6

and s7 illustrated in Figure 3, which possess the same em-
bedding prefix {1}. Therefore each vertex in vertex array
corresponds to a unique embedding in current level and an
embedding prefix of next level. Therefore the length of ver-
tex array in level i is equal to the length of offset array in
level i + 1 minus 1 (to compute conveniently, last element
indicate the length of verti).

Now given an arbitrary offset of vertex array in level k,
we can obtain the k-embedding corresponding to this offset.
For example, given offset 5 of vertex array in level 3 in Figure
4b, the goal is to find the corresponded 3-embedding. First,
we note the last element of this embedding is vert3(5) = 5,
〈·, ·, 5〉. Then we find that offset 5 is greater than off3(2) =
4 and less than off3(3) = 6, thus the coordinate of offset 5
in offset array in level 3 is 2. Next, we do this processing
again in level 2, and the offset of the vertex array is 2. At
last, we obtain the 3-embedding 〈2, 3, 5〉, which corresponds
to s18 in Figure 3.

Complexity: Each iteration of the embedding explo-
ration extends O(d̄) space (d̄ is the average of vertex degree
and d̄ ∝ |E|/|V |). Thus the space complexity of k-CSE is
O(|E|k−1/|V |k−2). Given an arbitrary offset of vertex array
in level k, the time complexity of obtain the corresponding
embedding is O(k log d̄) = O(log(|E|/|V |)).

3.2 Pattern Aggregation
After k iterations of the embedding exploration, Kaleido

collects all possible canonical embeddings in the input graph,
whose size is no more than k. Then int the pattern ag-
greation phase, Kaleido calculates the pattern of each em-
bedding and aggregates them. The challenge of the aggre-
gation is how to efficiently test embedding isomorphism and
obtain the pattern. As it is well studied, GI is known as
an NP-hard problem [31]. The state-of-art algorithm is to

solve the problem has run-time eO(
√
n logn) for graphs with

n vertices [5]. Existing algorithms or libraries build search
tree for each pattern to solve the GI problem, like Bliss.

In Kaleido, patterns are stored in a simple compact data
structure, as illustrated in Figure 5. The data structure
contains each pattern’s label information and structural in-
formation. Generally, we use an adjacency matrix to indi-
cate the structural information of this pattern and a label
array to indicate vertex labels. The order of labels matches
with an adjacency matrix. Kaleido stores the up-triangle
part of adjacency matrix (gray area in Figure 5b) in form
of 1-dimension array and stores it as a bitmap. Obviously,
storing an k-pattern in this data structure needs a label ar-
ray whose size is k, and a bitmap whose size is 1

2
(k(k− 1)).

In pattern aggregation phase, Kaleido directly transforms
each embedding to this pattern data structure. Then Kaleido
should identify non-isomorphic patterns and automorphic
patterns. Note that the relationship between the pattern
and the data structure is 1 to n. One data structure repre-
sents a unique pattern but one pattern can be represented
in different data structures. These different data structures
represent automorphic patterns. In Kaleido, the GI problem
is solved by utilizing the relationship between the adjacency
matrix of the pattern and its eigenvalues.

Theorem 1. Let Ga and Gb be two k-subgraphs of an
undirected graph G, A and B be adjacency matrices of Ga
and Gb respectively, Λa = {λa1, ..., λan} and Λb = {λb1, ..., λbn}
be eigenvalues of A and B respectively. If Ga is isomorphic
to Gb, it holds that Λa = Λb.

4

1

2 5

3 4

(a) Input Graph

-1 1 11

11

1

10

-

0

0

1

-

1

0

0

-

1

1

-

1

0

1

(b) Adj. Matrix

Label list

Adj. matrix 11111011001

10b

5B

(c) Pattern Structure

Figure 5: Pattern structure. Figure 5a indicates an
undirected graph. Figure 5b is adjacency matrix
of the graph. Figure 5c consists 2 parts of pattern
structure. Colors in label list indicate different la-
bels in the graph. Adjacency matrix is stored in
form of bitmap.

λ6 − 7λ4 − 4λ3 + 7λ2 + 4λ− 1λ6 − 7λ4 − 4λ3 + 7λ2 + 4λ− 1 λ9 − 8λ7 + 19λ5 − 14λ3 + 2λλ9 − 8λ7 + 19λ5 − 14λ3 + 2λ

Figure 6: The smallest counterexamples and corre-
sponding characteristic polynomials.

Proof. Let Gpa and Gpb be patterns of Ga and Gb re-
spectively. A and B are also adjacency matrices of Gpa and
Gpb respectively. According to Definition 1, if Ga is isomor-
phic to Gb, Gpa is automorphic to Gpb. It leads that A can
be transformed to B by a similarity transformation. Thus
there exists an invertible n-by-n matrix P , such that

B = P−1AP

Thus A and B are similar. Similar matrices have the same
eigenvalues and their algebraic multiplicities are the same.

According to Theorem 1, if eigenvalues of two patterns are
different, it holds that these patterns are non-isomorphic.
Unfortunately, not all graphs that have the same eigenvalues
1 are necessarily isomorphic. However, Harary et at. [15]
proved that the smallest non-isomorphic graphs with the
same eigenvalues contain 6 vertices and the smallest non-
isomorphic graphs with the same eigenvalues and the same
vertex degrees contain 9 vertices (see Figure 6). Thus we
get a corollary.

Corollary 1. If two k-embeddings (k < 6) have the
same eigenvalues, they are isomorphic. Further, if two k-
embeddings (k < 9) have the same vertex degrees and the
same eigenvalues, they are isomorphic.

When vertices of the input graph have different labels,
the GI problem becomes a little complex. Algorithm 1 il-
lustrates the solution of the GI problem in Kaleido where
the size of embedding is less than 9. Kaleido maintains the
vertex label array L in an ascending order (lines 30-31) and
the degrees (D) of the same label vertices in an ascending
order as well (lines 32-33). Note that Swap function also
maintains the adjacency matrix A, so that the vertex order
in A is consisting with L and D. Then Kaleido builds a

1In this paper, if graphs have the same eigenvalues, their
algebraic multiplicities are the same as well.

Algorithm 1: Kaleido’s graph isomorphic check

Input: Embedding e = 〈v1, ..., vk〉
Output: Hash value hash value of Embedding e

1 Func Init(e):
2 Label array L← {li = label(vi)|vi ∈ e,∀i ∈ [1, k]}
3 Adjacency matrix A← {ai,j =

CheckLink(vi, vj)|vi, vj ∈ e, i < j,∀i, j ∈ [1, k]}
4 Degree array D ← {di = deg(vi)|vi ∈ e,∀i ∈ [1, k]}
5 return L,A, D

6 Func Swap(i, j):
7 Swap li and lj
8 for 1 ≤ t ≤ k do
9 Swap ai,t and aj,t

10 Swap at,i and at,j

11 Swap di and dj

12 Func WeightedAdjMatrix(L,A):
13 M← {mi,j = 0|∀i, j ∈ [1, k]}
14 for 1 ≤ i < j ≤ n do
15 if ai,j = 1 then
16 mi,j ← li|lj
17 mj,i ← li|lj
18 return M

19 Func CharPloynomical(M):
20 Characteristic polynomial P ← {pi = 0|∀i ∈ [1, k]}
21 C←M
22 for 1 ≤ i ≤ k do
23 if i > 1 then
24 C←M · (C + pk−i+1Ik)

25 pi−k = − tr(C)
k

26 return P

27 Func EigenHash(e):
28 L,A, D ← Init(e)
29 for 1 ≤ i < j ≤ n do
30 if li > lj then
31 Swap(i, j)
32 else if li = lj and di > dj then
33 Swap(i, j)

34 M← WeightedAdjMatrix(L,A)
35 P ← CharPloynomical(M)
36 hash value← hash(L)⊕ hash(D)⊕ hash(P)
37 return hash value

weighted adjacency matrix M (line 34, lines 12-18) whose
edge weights is a concatenation of two vertex labels (lines
16-17). Note that label li is no more than label lj after the
sorting in lines 29-33; Next, Kaleido calculates the eigenval-
ues of the matrix M . However, the calculation of the ac-
curate eigenvalues is redundant, while Kaleido calculate the
characteristic polynomial of the matrix M by the Faddeev-
LeVerrier algorithm (line35, lines 19-26). Finally, Kaleido
calculates the hash value of each embedding by combining
the hash value of the label array L, the degree arrary D and
the characteristic polynomial P in XOR (⊕).

Theorem 2. Let e1 and e2 be two k-embeddings of an
undirected graph G, k < 9. Let h1 and h2 be hash values of
e1 and e2, which are calculated by Algorithm 1. Embedding
e1 is isomorphic to embedding e2 if and only if h1 = h2.

Proof. For embeddings e1 and e2, hash values h1 = h2

is equivalent to that label arrays L1 = L2, degree arrays
D1 = D2 and characteristic polynomials P1 = P2. From
Definition 1, the isomorphism leads to L1 = L2 and D1 =

5

part of Vert_k y3 …… ……x…5 …

Off_(k+1)

Vert_(k+1)

Thread

q0 …… ……p…4 …part of Off_k

Writing Queue

…

…0 …2

1 … …5 …

3 …5

0 …4Off_k

Vert_k

Thread_1 (Part_1) Thread_t (Part_t)

…s …t

z … …… …

x …y

p …qOff_k

Vert_k

Disk

Vert_(k+1)

Off_(k+1)
Part_1

Vert_(k+1)

Off_(k+1)
Part_t

…

Figure 7: Exploration on Hybrid CSE. The first k
levels are stored in memory. The (k + 1)th level is
stored on disk in t parts (in this example, t equals
to the thread number).

D2. Theorem 1 satisfies P1 = P2. The necessity is proved.
Note M1,M2 as the weighted adjacency matrix of e1 and
e2 respectively. Note ε1 as a graph which is no vertex la-
bel but the adjacency matrix is weighted and equals to M1.
Note ε2 symmetrically. From Corollary 1, D1 = D2 and
P1 = P2 guarantee that ε1 and ε2 are isomorphic. Thus,
there exists a bijection f(u) = v,∀u ∈ Vε1 , ∀v ∈ Vε2 be-
tween Vε1 and Vε2 , such that (f(u), f(v)) ∈ Eε and L(u, v) =
L(f(u), f(v)), ∀(u, v) ∈ Eε1 . Then combining L1 = L2 and
D1 = D2, it leads to that L(u) = L(f(u)), ∀u ∈ Ve1 . The
sufficiency is proved.

4. IMPLEMENTATION
In this section, we introduce the storage strategy of larger

intermediate data in Kaleido. Then we introduce the load-
balance strategy of Kaleido in facing the insufficient RAM.

4.1 Embedding Hybrid Storage
According to the space complexity of CSE, exploring (k+

1)-embeddings from k-CSE needs extraO(|E|k/|V |k−1) space.
The memory would be insufficient when the exploration
depth increases. Thanks to the level-by-level structure of
CSE, Kaleido stores large levels of CSE on disk intuitively.
We call this half-memory-half-disk storage the hybrid stor-
age.

First, Kaleido partitions vertk into several parts contin-
uously and evenly and assigns to each thread. Then each
thread calculates the (k+1)th elements of each k-embedding
and records the offset when all canonical candidates of an
k-embedding are enumerated. Finally, each thread appends
their part of vertk+1 to the writing queue and the writing
queue flushes these parts to disk (see Figure 7). If mem-
ory is sufficient, Kaleido merges t parts of offk+1 in mem-
ory, otherwise appends each part of offk+1 to the writing
queue. When Kaleido explores (k+ 2)-embeddings and con-
structs the (k+ 2)th level of embeddings, load the first part
of vertk+1 and offk+1 (if exists) on disk. Then Kaleido
executes the former process again and stores vertk+2 and
offk+2 to disk part by part, until it finishes the last part of
vertk+1.

To explore deeper embeddings or process embeddings in
the hybrid storage, Kaleido adopts the sliding window strat-
egy to hide the overhead of I/O. When processing the hy-
brid storage embeddings, Kaleido maintains h windows for
h levels stored on disk. Each window respectively loads two

Off_2 9996 80 94

Vert_2 55456 72 35

Off_3 80 114 …129 9 11

Vert_3 6 35 43 76 …7

Vert_1 761 2 3 4 5

7653

2 54

Candidate

7654

1

2 5

3 4

6

7 1

2 5

3

6

7

5

3 4

2

Figure 8: An example of the prediction of the candi-
date size of embedding 〈1, 2, 3〉. Candidates of 〈1, 2, 3〉
is the union of the neighbor set of 〈1, 2〉 and the
neighbor set of 〈3〉.

parts of a level of CSE, which are produced by t threads as
shown in Figure 7. When all the first parts (main part) of
h windows are loaded, Kaleido processes all embeddings in
current windows in parallel, while the h windows load the
second parts (candidate part) in its corresponding level. If
the main part of a window is processed, Kaleido slides this
window to the next position (swaps the main part and the
candidate part, then abandons the candidate part). Repeat
this procedure until all parts on disk are processed.

4.2 Load-balance of Hybrid Storage
In each iteration of the embedding exploration, Kaleido

expands a neighbor vertex or edge for each embedding. Sim-
ilar to the definition of the vertex degree, We say an embed-
ding degree is the neighbors’ number of the embedding. One
of the hallmark properties of natural graphs is their skewed
power-law degree distribution [12]. The degree distribution
of embeddings is also skewed power-law distribution. When
the RAM can afford the embeddings data, Kaleido utilizes
a work-steal strategy to deal with the load-balance problem
in the exploration. However, when the RAM is insufficient,
Kaleido stores the high level embeddings on disk in several
parts. The unbalanced partition strategy of the embedding
exploration would produce huge parts which cannot load to
the memory once. The work-steal strategy can only balance
the execution of the exploration but cannot balance the size
of each part.

To balance the work load in the exploration of the (k +
1)th level, Kaleido predicts the size of vertk+1. Figure 8
illustrates an example of the prediction. According to the
structure of CSE, the neighbor set of the embedding 〈1, 2, 3〉
is the union of the neighbor set of 〈1, 2〉 and the neighbor
set of 〈3〉. From offset arrays in CSE, we easily obtain the
degree of 〈1, 2〉 and 3. Kaleido predicts the candidate size
accurately by merging the two sources of the candidate. The
time complexity of the merging is O(d̄). According to the
prediction, Kaleido partitions the exploration tasks evenly
to each threads.

5. KALEIDO API
In this section, we demonstrate the API for graph mining

problems in Kaleido. Finally, we introduce implementations
of popular graph mining applications in Kaleido.

The API of Kaleido is illustrated in Listing 1. Embedding-
Filter and PatternFilter are two optional filters in the
embedding exploration phase and the pattern aggregation
phase respectively, which will return true in default. For
the vertex-induced embedding exploration, EmbeddingFil-
ter works in exploring (k+1)-embeddings from k-embeddings:
the Embedding e is a k-embedding and the Vertex v is a

6

candidate vertex which is a neighbor of e normally. It is
analogous to edge-induced embedding exploration, in which
the candidate of each embedding is an Edge <u,v>. Actu-
ally, we eliminate a default embedding filter, the canonical
embedding filter. The vertex v could be appended to Em-

bedding e if and only if they satisfy constraints of both
user-defined filter and the default canonical filter. Pattern

Filter works in the aggregation of patterns, in order to
prune ineligible patterns. AggregatingMapper and Aggre-

gatingReducer (Mapper and Reducer in short) must be im-
plemented by customized applications. Mapper is an opera-
tor for calculating the pattern of an embedding e and adding
the pattern to PatternMap. Mapper is calculated in Result-

Aggregator concurrently. Reducer aggregates PatternMaps
returned by Mapper, and prunes patterns which are incom-
patible of PatternFilter, then returns results in form of
PatternMap.

Listing 1: Kaleido API
// Optional user defined filter functions
bool EmbeddingFilter(Embedding e, Vertex v)
bool EmbeddingFilter(Embedding e, Edge <u,v>)
bool PatternFilter(Pattern p)

// 2 functions of aggregation phases
PatternMap AggregatingMapper(Embedding e)
PatternMap AggregatingReducer(List<PatternMap>

pMaps, PatternFilter pFilter)

// Main processing function in applications
List<Embedding> Init(Graph g, int depth)
List<Embedding> EmbeddingsExplorer(Graph g,

List<Embedding>, EmbFilter eFilter)
PatternMap ResultAggregator(AggregatingMapper

mapper, AggregatingReducer reducer)

The processes of graph mining application in Kaleido are
described as follows. Initially, in the vertex-induced appli-
cations, Init treats the vertex set of the input graph G as
1-embeddings or the edge set as 2-embeddings. The user
should determine a terminated condition of EmbeddingEx-

plorer. While in the edge-induced application, Init treats
the whole edge set of Graph G as the set of 1-embeddings.
Generally, the user gives the maximum number k of different
vertices in each embedding. Then EmbeddingExplorer iter-
ates k−1 times to explore all possible k-embeddings with re-
striction of EmbeddingFilter. If embeddings are larger than
memory, Kaleido stores them to disks intermediately. Next
PatternComputer calculates patterns of each k-embedding
and aggregates patterns with restriction of PatternFilter.
Finally, Kaleido returns results in the form of PatternMap.

5.1 Popular Mining Applications in Kaleido
Frequent Subgraph Mining. To early prune infrequent

patterns, we use the minimum image-based (MNI) support
[6] as the frequency of each pattern, which counting the
minimum number of distinct mappings for any vertex in the
pattern. The support measure is anti-monotonic. We im-
plement an edge-induced version of FSM in Kaleido. Given
an input graph, edges number of the query pattern k and
a threshold of the support, it returns frequent k-patterns
whose support is beyond the threshold. To prune infre-
quent patterns, we loop Mapper and Reducer in each iter-
ation. Initially, Init calculates the MNI support for each
edge (1-embedding) and eliminates infrequent edges accord-
ing to the threshold. In each iteration of embedding ex-

ploration, EmbeddingExplorer expands each embedding by
adding a frequent edge. EmbeddingFilter(e,<u,v>) checks
if the candidate edge <u,v> is frequent. Then Mapper patt-
ernizes each embedding, calculates the MNI support for each
pattern. Next, Reducer prunes infrequent patterns and its
corresponding embeddings. Pattern Filter eliminates in-
frequent patterns. Finally, in the last iteration, Reducer

statistics frequent patterns and returns the results.
Motif Counting. This application counts the frequency

of each k-motif in the given graph. The EmbeddingFil-

ter and PatternFilter can be set as default. As we know
exactly each shape of k-motifs like (2 kinds of 3-motifs, 6
kinds of 4-motifs and 21 kinds of 5-motifs, etc.), we stop
embeddings generating if (k− 1)-embeddings are generated.
Then Mapper explores all canonical k-embeddings from each
(k − 1)-embedding, then calculates the hash value of each
k-embedding. Finally Reducer aggregates k-motifs. For ex-
ample, consider counting 3-motifs over graph in Figure 3.
After the embedding exploration phase, EmbeddingExplorer
returns 2-embeddings of the graph. In the pattern aggrega-
tion phase, considering embedding s6 without loss of gener-
ality. The Mapper explores two 3-embeddings, s13 and s14,
for s6. The Mapper obtains a 3-chain and a triangle. Finally
Reducer aggregates results: 5 3-chains and 3 triangles.

1

2 5

3 4

Input Graph Embeddings 3-cliques

2 51

3 52

4 53

1 2 3

2 51

1 5 3

1 5 4

2 3 4

3 52

2 5 4

4 53

Figure 9: Example of 3-Clique Discovery. The dot-
ted lines between vertices do not really exist in the
embedding array. Gray embeddings indicates that
they are eliminated by clique checking filter.

Clique Discovery. This application discoveries all k-
cliques in the input graph. EmbeddingFilter(e,v) checks if
the candidate vertex v is neighbor of each vertex in embed-
ding e. Therefore generating cases like embedding 〈1, 2〉 and
candidate 3 will be eliminated, cause vertex 3 is not neighbor
of vertex 1. After Init, EmbeddingExplorer prunes illegal
embeddings and explores all k-cliques after k − 1 iterations
and returns them. In this example, Mapper is unnecessary to
calculate pattern of each embedding, cause all embeddings
have a same pattern. Finally, Reducer return k-cliques.

Triangle Counting. This application counts the num-
ber of triangles in the input graph. Initially, Init generates
2-embeddings from the edge set of the input graph. Then
Mapper counts the number of common neighbors of two ver-
tices in each 2-embedding canonically. Finally, Reducer ag-
gregates counting results. For embedding s6 = 〈1, 2〉 il-
lustrated in Figure 3, vertex 5 satisfies former restrictions.
Analogously, cases like vertex 5 over s8 and s10 satisfy the
restrictions. The answer of triangle counting over graph in
Figure 3 are 3.

6. EVALUATION
In this section, we evaluate Kaleido. First we compare

Kaleido with the state-of-art graph mining systems, Arabesque

7

and RStream. Then we compare the graph isomorphic check-
ing algorithm in Kaleido with bliss. Next, we test the scal-
ability of Kaleido in different applications. Finally, we test
the I/O performance in the hybrid storage. Our experiments
are evaluated on a single machine with Intel(R) Xeon(R)
Gold 5117 CPU, 128GB memory, and 1 SSD with 480GB
disk space. The operating system is CentOS 7.

6.1 Experimental Setup

Table 1: Dataset used in evaluation
Dataset Vertices Edges Labels Avg. Degree

CiteSeer 3,312 4,536 6 3
MiCo 100,000 1,080,298 29 22
Patent 3,774,768 16,518,948 37 9

Youtube 7,065,219 59,811,883 29 17

Datasets: We use 5 datasets as showed in Table 1. Cite-
Seer [11] has publications as vertices, with their Computer
Science area as a label, and citations as edges. MiCo [11]
models the Microsoft co-authorship and consists of an undi-
rected graph whose nodes represent authors and are labeled
with the author’s field. Patents [20] includes all citations
made by US Patents granted between 1975 and 1999; the
year the patent was granted is considered to be the label.
Youtube [8] lists crawled video ids and related videos for
each video posted from February 2007 to July 2008. The
label is the category of each video.

Applications: We test 4 mining applications discussed
in Section 5, FSM, Motif Counting, Clique Discovery and
Triangle Counting. For k-FSM, we mine the frequent sub-
graphs which k − 1 edges and at most k vertices. In our
experiments, we run 3-, 4-, 5-FSM over several datasets.
Motif Counting executions are run with subgraphs whose
number of vertices is 3, 4 or 5. Clique Discovery executions
are run with subgraphs whose number of vertices is 3, 4 or
5. Triangle Counting counts the number of triangles in the
input graph.

6.2 Comparisons with Mining Systems
We compared Kaleido with two state-of-the-art systems,

Arabesque [33] and RStream [34]. We ran all these test-
ing cases in a single node server. In testing Arabesque,
we deployed the Hadoop 2.7.7 in the experimental envi-
ronment and put datasets on the local hdfs system, then
Arabesque reads input graphs from the hdfs system. In test-
ing RStream, the partition number of each algorithm was set
to 10, 20, 50, 100 respectively, then chose the fastest result.
We ran algorithms mentioned in Section 6.1 over labeled
graphs, CiteSeer, MiCo, Patent and Youtube on Kaleido,
Arabesque and RStream.

Table 2 reports the running time of the three systems and
Figure 10 reports the memory consumptions. Note that in
this set of experiments, Kaleido and Arabesque run all ap-
plications in memory, while RStream writes its intermedi-
ate data to disk. Kaleido outperforms both Arabesque and
RStream in all cases. Excluding the small graph CiteSeer,
Kaleido outperforms Arabesque by an overall (GeoMean)
of 12.3× and outperforms RStream by an overall of 40.0×;
the memory consumption of Kaleido is reduced by 7.2× over
Arabesque and 9.9× over RStream.

Arabesque is a Giraph-based system and implemented by
Java. Each iteration of Arabesque is mapped to a superstep
of Giraph [4]. Arabesque needs extra time to boost the
system and fit the basic Giraph API. Therefore, for the small
graph, CiteSeer, Arabesque is not as efficient as the other
two systems. Table 3 also indicates that Arabesque allocates
a huge amount of memory for the lower layer system.

RStream is an X-Stream-based system. In the preprocess-
ing phase, RStream partition the input graph into several
parts according to an optional partition number given by
the user. RStream uses std::set to maintain the graph
topological structure, therefore it fails in loading Youtube
in our 128 GB memory environment. The triangle count-
ing in RStream uses another data structure of the graph
and counting strategy, and it runs normally with the GRAS
model.

Error

Error

Error

MiCo PA

142x
Error

Ytb

MiCo PA

Error

Error

Error

Error

Ytb MiCo PA Ytb

MiCo PA Ytb
(a) FSM (b) k-Motif

(c) k-Clique (d) TC

Error

Error

Error

Error

0x

8x

16x

24x

32x

40x

MiCo PA NYtb
1x

109x

M
em

or
y

Re
du

ce
d

0x

1.6x

3.2x

4.8x

6.4x

8x

300
500
1000
5000
300
500
1000
5000
300
500
1000
5000

1x

Arabesque RStream

0x

8x

16x

24x

32x

40x

3 4 3 4 3
1x

Arabesque RStream

M
em

or
y

Re
du

ce
d

0x

10x

20x

30x

40x

50x

3 4 5 3 4 5 3 4 5
1x

Figure 10: Comparisons of Memory Consumption
with Arabesque and RStream. These figures in-
dicate the memory reduction factor of the mining
algorithms in Table 2. Each x-axis indicates the ar-
gument of each algorithm. The Gray bars indicate
the algorithm runs out of the memory.

FSM: As discussed earlier, we ran FSM by exploring sub-
graphs in edge-induced strategy and we used the minimum
image-based support metric [6], which defines the frequency
of a pattern as the minimum number of distinct mappings
for any vertex in the pattern, over all instances of the pat-
tern. We explicitly state the support used in each experi-
ment, since this parameter is sensitive to the input graph.
Theoretically, the smaller support is, the more computation
is needed. However, the calculation of MNI support for each
pattern needs much more computation resources. In the im-
plementation of the FSM in Kaleido, we do not statistic the
accurate MNI support of each pattern. Instead, when the
MNI support of any pattern reaches the threshold given by
the user, we mark this pattern a frequent pattern and prune
it from the candidate. Therefore the run-time of the FSM
computation in Kaleido does not decrease monotonically as
the support increases, as illustrated in Figure 11. It will
increases to peak time, due to meeting the pruning thresh-
old is getting harder, then decreases normally because the
frequent vertices and edges are more and less.

8

Table 2: Comparisons of running time between Kaleido (KA), Arabesque (AR) and RStream (RS) on four
mining algorithms, frequent subgraph mining (3-FSM, option: support), motif counting (k-Motif, option: k),
clique discovery (k-Clique, option: k) and triangle counting (TC) over the former datasets, CiteSeer (CS),
MiCo, Patents (PA), Youtube (Ytb). Each result indicate the running time of the application in second. ‘-’
indicates the execution runs out of the memory. ‘/’ indicates the execution runs out of the SSD.

Dataset CS MiCo PA Ytb
Apps Options KA AR RS KA AR RS KA AR RS KA AR RS

3-FSM

300 0.04 23.03 0.14 7.35 101.77 330.72 25.47 139.8 1228 132.59 426.67 -
500 0.04 17.05 0.14 8.19 70.74 326.29 26.41 133 1220 133.31 409.23 -
1000 0.03 17.01 0.14 7.84 46.65 316.68 28.71 119.4 1222 136.24 397.19 -
5000 0.02 17.01 0.14 3.97 29.67 261.70 31.51 102.6 1179 155.04 396.11 -

Motif
3 0.03 23.42 0.11 1.39 28.37 73.92 4.74 79.71 100.61 35.47 246.24 -
4 0.06 26.10 0.42 198.17 284.79 / 152.28 634.47 / 4988.96 - -

Clique
3 0.02 23.01 0.02 0.46 27.92 4.75 0.56 60.55 95.34 2.16 195.63 -
4 0.03 27.03 0.03 3.88 37.71 167.22 1.14 79.68 196.37 7.83 461.81 -
5 0.04 29.99 0.04 183.63 299.01 - 1.46 84.81 212.95 18.99 505.9 -

TC 0.02 23.18 0.05 0.17 25.05 2.74 0.52 70.17 5.4 2.24 287.04 39.68

Table 3: Comparisons of memory consumption
(MB) between Kaleido, Arabesque (AR) and
RStream (RS) over CiteSeer. Each result indi-
cate the memory consumption of the application in
Mega-byte.

Apps Options Kaleido AR RS

3-FSM

300 205.8 1916 97.1
500 194.2 1888 97.1
1000 130.9 1864 97.1
5000 23.3 1889 97.1

Motif
3 26.9 1802 196.7
4 166.8 1812 482.5

Clique
3 25.8 1890 97.1
4 29.7 1932 97.1
5 27.2 1940 97.1

TC 26.9 1819 198.3

As shown in Table 2 and Figure 10a, Kaleido outperforms
Arabesque by a GeoMean of 8.5×, 4.4× and 2.9× over MiCo,
Patent and Youtube respectively, while the memory con-
sumption reduces a GeoMean of 3.1× and 2.9× over MiCo
and Patent respectively and increases 1.2× over Youtube.
As discussed in 3.1.1, comparing with the intermediate data
structure of Arabesque ODAG, the structure of embeddings
CSE in Kaleido saves time from the extra canonical check-
ing when travel the embeddings, but it trades some space of
the intermediate data to obtain more efficient performance
since the space complexity of ODAG is O(|V |2). Even so,
Kaleido saves considerable space comparing Arabesque over
MiCo and Patent, because Arabesque needs a huge amount
of memory to establish its based system and graph data
structure and the isomorphism checking library bliss also
consumes considerable space.

Comparing with RStream, Kaleido outperforms it by a
GeoMen of 46.7× over MiCo and 43.4× over Patent, while
the memory consumption reduces a GeoMean of 4.2× over
MiCo and 6.3× over Patent. We found that in the relational
phase of RStream [34], the shuffling operation and the ag-
gregating operation produce many memory allocations and
deallocations. The shuffling operation turns each tuple into
a quick pattern, which allocates and deallocates memory
frequently. The aggregating operation builds a hashmap to
statistic the support of each pattern in using bliss. We will

1s

10s

100s

1000s

10
0 1k 10
k

20
k

30
k

10
0k

20
0k 1m 5m

MiCo Patent Youtube

0.1GB

1GB

10GB

100GB

10
0 1k 10
k

20
k

30
k

10
0k

20
0k 1m 5m

MiCo Patent Youtube

(a) Run-Time (b) Memory Consumption(a) Run-Time

1s

10s

100s

1000s

10
0 1k 10
k

20
k

30
k

10
0k

20
0k 1m 5m

MiCo Patent Youtube

0.1GB

1GB

10GB

100GB

10
0 1k 10
k

20
k

30
k

10
0k

20
0k 1m 5m

MiCo Patent Youtube

(a) Run-Time (b) Memory Consumption(b) Memory Consumption

Figure 11: The run-time and the memory consump-
tion trends over the increasing of support in 3-FSM.
The x-axis indicates the support of 3-FSM.

discuss the comparison with bliss in Section 6.3.
Motif Counting: Motif counting assumes the input graph

is unlabeled and explores all of the embeddings exhaus-
tively until the subgraph reaches the maximum size. Ta-
ble 2 and Figure 10b respectively report the comparison of
the run-time and the memory consumption with Arabesque
and RStream. Comparing with Arabesque, Kaleido outper-
forms by a GeoMean of 6.8× and the memory consumption
reduces by a GeoMean of 20.7×. Comparing with RStream,
Kaleido outperforms by a GeoMean of 33.6× and the mem-
ory consumption reduces by a GeoMean of 7.7×. 4-Motif in
RStream needs 6 iterations to explore all of 4-embeddings
and writes too much intermediate data to disk, so that our
480 GB SSD cannot afford it. Thus we tested 4-Motif in
RStream over MiCo and Patent on another server, which
has an Intel(R) Xeon(R) E5-2640 v4 CPU with a total of 40
threads, 128 GB RAM and 4 TB Seagate ST4000NM0024-
1HT HDD disk. RStream produces 1.64 TB and 549.15 GB
intermediate data over MiCo and Patent respectively and
finishes in 114917s and 19740s.

Clique Discovery and Triangle Counting: Clique
Discovery is to enumerate all complete subgraphs in the
input graph. Triangle Counting is to count the number of
triangles in the input graph. Table 2 and Figure 10c and Fig-
ure 10d respectively report the comparison of the run-time
and the memory consumption with Arabesque and RStream.
Comparing with Arabesque, Kaleido outperforms by a Ge-

9

Ru
n

Ti
m

e

0s

12s

24s

36s

48s

60s

PA MC Ytb

M
em

or
y

0GB

0.25GB

0.5GB

0.75GB

1GB

PA MC Ytb

0s

60s

120s

180s

240s

300s

PA MC Ytb

0GB

8GB

16GB

24GB

32GB

PA MC Ytb
(a) 3-Motif (b) 3-FSM

276s

78.5G
B

0s

0.8s

1.6s

2.4s

3.2s

4s

5-Motif 5-FSM

Kaleido
Bliss

0GB

0.2GB

0.4GB

0.6GB

0.8GB

5-Motif 5-FSM

Kaleido
Bliss

(c) PA

0s

100s

200s

300s

400s

500s

4-Motif 4-FSM

0GB

10GB

20GB

30GB

40GB

4-Motif 4-FSM
(d) CiteSeer

1020s

Figure 12: Comparisons of isomorphism checking al-
gorithms with bliss. Figure a and b compare 3-Motif
and 3-FSM over Patent, MiCo and Youtube. Figure
c compares 4-Motif and 4-FSM over Patent. Fig-
ure d compares 5-Motif and 5-FSM over CiteSeer.
The upper figures compare the run-time; the lower
figures compare the memory consumption

oMean of 34.1× and the memory consumption reduces by a
GeoMean of 10.6×. Arabesque has a good performance in
running 5-cliques over MiCo. Because MiCo is a denser but
smaller graph. The ODAG saves a huge amount of mem-
ory while CSE must store many repeating vertices in deeper
layers. Comparing with RStream, Kaleido outperforms by a
GeoMean of 72.0× and the memory consumption reduces by
a GeoMean of 25.0×. To discover k-cliques, RStream uses
a tricky solution with only k iterations of the edge-induced
exploration. However, it still performs than Arabesque ex-
cept 3-clique over MiCo and produces many intermediate
data. For example, it produces 51.2 GB intermediate data
in 4-clique over MiCo.

6.3 Comparisons with Isomorphism Checking
Algorithms

In this section, we compare our isomorphism checking
algorithm with the state-of-the-art library, bliss [18]. To
test bliss, we replace the isomorphism checking algorithm in
Kaleido with bliss.

Figure 12 illustrates the comparison with bliss. To fully
evaluate Kaleido’s isomorphism checking algorithm, we com-
pared 3-FSM, 4-, 5-FSM and Motif Counting respectively
over different datasets. For motif counting, the speedup is
5.8× but the memory consumption is similar. For FSM,
the speedup is 2.1× and the memory consumption reduces
by 3.1×. The reason is that the pattern considered by
motif counting only contains the structural information of
subgraphs, while it contains the label information in FSM.
Kaleido builds the weighted adjacency matrix for each pat-
tern, while Bliss builds search trees. In FSM, Bliss needs
larger hash space and consumes more memory than motif
counting. On the other hand, the counting of motifs is a
simple statistic of the occurrence of each motif, while FSM
calculates the MNI support of each pattern and this cal-
culation needs quite an amount of computation resources.
Therefore the speedup of replacing Bliss in FSM is not as
high as motif counting.

Ti
m
e

0s

15s

30s

45s

60s

300 500 1000 5000

Kaleido Bliss

300 500 1000 5000

M
em

or
y

0GB

6GB

12GB

18GB

24GB

300 500 1000 5000 300 500 1000 5000
(a) PA-7 (b) PA-37

0s

250s

500s

750s

1000s

300k 500k

Kaleido Bliss

80k 100k

0GB

25GB

50GB

75GB

100GB

300k 500k 80k 100k
(c) PA-7 (d) PA-37

Figure 13: Comparisons of Kaleido and bliss in run-
ning 3-FSM and 4-FSM when the number of vertex
labels changes in 7-label Patent (PA-7) and 37-label
Patent (PA-37). Figure a and b show results of 3-
FSM; Figure c and d show results of 4-FSM. The
x-axis indicates the support of FSM applications.

Since the graph Patent possesses two levels of vertex la-
bels, the category and the sub-category of each patent, we
tested the performance of 3-FSM and 4-FSM over Patent in
Kaleido and bliss with several supports, when the number
of vertex labels changes. Figure 13 illustrates the result.
When the number of vertex labels increases, both Kaleido
and Bliss needs more time. The reason is the implementa-
tion of FSM in Kaleido, in which Kaleido does not statistic
the accurate MNI support of each pattern but prunes pat-
terns which reach the support threshold from the candidate
instead. When the support threshold is fixed, the 37-label
Patent (PA-37) ought to return less frequent patterns than
the 7-label Patent (PA-7). As Figure 11 illustrates, the run-
time trend of the support in 3-FSM is to increase first and
then decrease. Note that Figure 11 illustrates that the run-
time trend is to decrease when the support is larger than
10,000. Thus Figure 13b shows more run-time in PA-37 than
Figure 13a in PA-7. The number of frequent embeddings in
PA-7 and PA-37 is close (335,781,273 and 335,035,665 re-
spectively in support 300). It almost needs no extra space
in Kaleido, while bliss needs extra memory to build more
complexity search trees and maps to a larger hash space.
In testing 4-FSM, the intermediate embeddings account for
the major memory consumption, while Bliss needs longer
run-time to check the isomorphism over embeddings. The
number of frequent embeddings 4-FSM with support 500 K
over PA-7 and 4-FSM with support 100 K over PA-37 is
close (1,303,911,410 and 1,490,970,608). The run-time and
the memory consumption of these two applications is close
too. The reason is the support constrains that frequent pat-
terns contain only one kind of vertex label. It concludes that
Bliss is more sensitive with the vertex label information of
the input graph than Kaleido; when the number of vertex
labels increases, Bliss needs more space to calculate the hash
value of each pattern.

6.4 Scalability
We tested 3-FSM with 5000 support, 3-Motif and 5-Clique

over Patent in varying numbers of threads. Figure 14 il-
lustrates Kaleido’s run-time and memory consumption for

10

this experiment. It illustrates that Motif Counting and
Clique Discovery scale ideally both in the run-time and the
memory consumption. While FSM only performs sublin-
early in the run-time and the memory consumption increases
as the number of threads grows. The implementation of
FSM causes this phenomenon. To avoid using concurrent
hashmap in the statistic of frequent patterns, we calculate
the support of each pattern in every thread independently.
It avoids the synchronization over each thread, but it con-
sumes more memory in the pattern computation phase. The
overhead of merging aggregating hashmap for FSM in multi-
thread is inevitable in our implementation. If we could re-
place it by a efficient concurrent hashmap, the scalability of
FSM in Kaleido would near linear scaling.

(a) Run-Time (b) Memory Consumption

0s

75s

150s

225s

300s

2 4 8 16 32

3-FSM-5000 3-Motif 5-Clique
Ideal Ideal Ideal

0.0GB

2.3GB

4.5GB

6.8GB

9.0GB

2 4 8 16 32

3-FSM-5000 3-Motif 5-Clique
Ideal Ideal Ideal

(a) Run-Time
(a) Run-Time (b) Memory Consumption

0s

75s

150s

225s

300s

2 4 8 16 32

3-FSM-5000 3-Motif 5-Clique
Ideal Ideal Ideal

0.0GB

2.3GB

4.5GB

6.8GB

9.0GB

2 4 8 16 32

3-FSM-5000 3-Motif 5-Clique
Ideal Ideal Ideal

(b) Memory Consumption

Figure 14: Scalability of Kaleido in 2, 4, 8, 16, 32
threads. Figure 14a shows the run-time; Figure 14b
shows the memory consumption. The dotted lines
indicate the ideal run-time and memory consump-
tion respectively.

6.5 I/O and Load-balance in Hybrid Storage
To evaluate the performance of hybrid storage of the in-

termediate data, we ran 4-FSM over Patent with 50k and
100k supports and 4-Motif over Patent and MiCo in memory
and on the hybrid storage respectively. In the hybrid storage
testing, we stored the last layer of CSE on SSDs. Table 4 re-
ports the result of these applications. It illustrates that the
performance attenuation of using hybrid storage in Kaleido
is acceptable (lower than 30% in these applications). For 4-
FSM over Patent, the memory consumption reduced by the
size of the last layer in CSE. For 4-Motif, the memory con-
sumption increases, because we built a buffer in fixed size
for each thread (in these applications, 16 MB) and the total
size of buffers is larger than the last layer of embeddings.
Note that k-Motif only stores k − 1 layers embeddings in
Kaleido.

Table 4: Performance of Kaleido on the hybrid stor-
age in 4-FSM over Patent with 50k and 100k sup-
ports and 4-Motif over Patent and MiCo.

Apps In-Memory Time(s) Memory (GB)

4-FSM(PA,50k)
Yes 312.1 76.7
No 362.7 15.8

4-FSM(PA,100k)
Yes 125.7 32.8
No 135.8 11.4

4-Motif(PA)
Yes 152.2 2.5
No 249.2 2.7

4-Motif(MC)
Yes 198.1 0.6
No 247.5 1.4

read write

(a)12GB (b)16GB (c)20GB (d)>=24GB
0MB/s

125MB/s

250MB/s

375MB/s

500MB/s

Figure 15: I/O of 4-FSM over Patent with support
100k. These four figures show the I/O in limiting the
memory cache of Kaleido with cgroup. The x-axis
indicates the run-time of FSM; the y-axis indicates
the reading and writing speed.

120s
140s
160s
180s

12 13 14 15 16 17 18 19 20 24 32

Time

Figure 16: Run-time of 4-FSM over Patent with
100k support in the different limitation of maximum
RAM. The x-axis indicates the limitation of max
RAM; the y-axis indicates the run-time.

For 4-FSM over Patent with 100k support, the memory
consumption is 11.4 GB and the size of the intermediate
data is less than our experimental server (128 GB). To fully
evaluate the design of embedding hybrid storage in Kaleido,
we used cgroup 2 in Linux to limit the maximum RAM of
Kaleido in our experimental environment.

Figure 15 illustrates the I/O of this application in different
limitations of max RAM. When the limitation of maximum
RAM is larger than 24 GB, the intermediate data will be
fully cached in memory. Figure 16 illustrates the run-time
of different limitations of max RAM. When the limitation
of maximum RAM is lower than 20 GB, the application
reads the intermediate data from the disk and the run-time
increases within 20%.

6.5.1 Load-balance
We evaluated the load-balance in hybrid storage by veri-

fying the effectiveness of the prediction of the candidate size.
We ran 4-FSM with support 50 K and 100 K over Patent
and 4-Motif over Patent and MiCo. The result is illustrated
in Figure 17. The prediction of the candidate size saves the
run-time in the exploration over hybrid storage and it out-
performs 1.2× over non-prediction. Figure 18 illustrates the
CPU utilizing rate of 4-FSM over Patent with supports 50
K and 100 K and the prediction improve the efficiency of
the exploration significantly.

7. RELATED WORK
Over the last decades, graph mining has emerged as an

important research topic. Here we discuss the state-of-the-
art for the graph mining problems tackled in this paper.

Graph Mining Algorithms gSpan [35] is an efficient
frequent subgraph mining algorithm designed for mining

2A cgroup is a collection of processes that are bound to a
set of limits or parameters defined via the cgroup filesystem.
http://man7.org/linux/man-pages/man7/cgroups.7.html

11

http://man7.org/linux/man-pages/man7/cgroups.7.html

ᤒ໒ 1

4Motif MiCo 246.62 5375 0.959821428571429

MiCo un-balance 248.735 5322 0.950357142857143

PA 248.505 5349 0.955178571428571

PA un-balance 249.966 5345 0.954464285714286

4FSM 100k 144.019 4494 0.8025

100k un-balance 171.171 3524 0.629285714285714

50k 380.875 4777 0.853035714285714

50k un-balance 426.705 4029 0.719464285714286

ᤒ໒ 2

Mo(MC)

Mo(PA)

FSM(50k)

FSM(100k)

0s

100s

200s

300s

400s

Mo(MC) Mo(PA) FSM(50k)FSM(100k)

Prediction Non-Prediction

0%

25%

50%

75%

100%

Mo(MC) Mo(PA) FSM(50k) FSM(100k)
(a) Run-Time (b) CPU Utilization Rate

�1

Figure 17: The comparison of prediction and non-
prediction in hybrid storage. The first two columns
in Figure a and b compare the 4-Motif over MiCo
and Patent; the last two columns compare the 4-
FSM over Patent with supports 50 K and 100 K.

0%

100% CPU

0%

100%

0%

100%

0%

100% CPU

(d) FSM(100k) Non-Prediction

(b) FSM(100k) Prediction(a) FSM(50k) Prediction

(c) FSM(50k) Non-Prediction

�1

Figure 18: Comparisons of the CPU utilizing rate
in 4-FSM over Patent with supports 50 K and 100
K. The dotted boxes indicate the embedding explo-
ration phase in FSM.

multiple input graphs. However, gSpan is designed for mul-
tiple graphs of mining problems. If we have a single in-
put graph, we have to find multiple instances in the same
graph, therefore it complexes the problem. Michihiro et al.
[19] first proposed algorithms to mine patterns from a sin-
gle graph. They use an expensive anti-monotonic definition
of support based on the maximal independent set to find
edge-disjoint embeddings. GraMi [11] proposes an effective
method in the single large graph and presents an extended
version with supporting structural constraints and an ap-
proximate version. Pržulj et al. [25] introduces the mo-
tif counting problem. Ribeiro et al. [27] presents G-Tries
which is an effective approach for storing and finding the
frequency of motifs. Apaŕıcio et al. [3] designs and imple-
ments a parallel version of G-Tries. Maximal clique is well
studied problem.

Graph Mining Systems Arabesque [33] is a distributed
graph mining system which supports popular mining algo-
rithms. Arabesque proposed a graph exploration model with
the concept of embeddings. Arabesque explores all the em-
beddings under constraining of user-defined filters and the
developer processes each embedding with a filter-process
programming model. Compared with Kaleido, Arabesque
needs another canonically checking of each embedding in
traveling embeddings. ScaleMine [1] is a parallel frequent
subgraph mining system, which computes the approximate
solution of frequent patterns firstly and statistics the ex-
act solution by using the results of the first step to prune
the search space. NScale [26] is designed to solve graph
mining problems using MapReduce framework. It proposes
a neighborhood-centric model, in which a k-hop neighbor-
hood subgraph of an interest-point is constructed with k

rounds of Map-Reduce and each round of Map-Reduce ex-
tends the 1-hop new neighbors. However, the overhead of
MapReduce in processing candidate subgraphs is very high.
G-Miner [7] is a distributed graph mining system, which
models subgraph processing as independent tasks and de-
signs suitable scheduling for the task pipeline. However,
G-Miner does not support FSM and motif counting. ASAP
[17] is a distributed, sampling-based approximate compu-
tation engine for graph pattern mining. ASAP leverages
graph approximation theory and extends it to general pat-
terns in a distributed setting. It allows users to trade-off
accuracy for result latency. However, ASAP only counts
the interest of the user with an acceptable error, like mo-
tif counting and pattern matching, but cannot return the
exact result of frequent patterns. RStream [34] is the first
single-machine, out-of-core graph mining system. RStream
employs a GRAS programming model which combines GAS
model and relational algebra to support a wide variety of
mining algorithms. However, the join of subgraphs and
edges of the input graph in RStream is still an expensive
operation. The edge-induced exploration of subgraphs also
complexes some mining problems, like motif counting and
clique discovery.

Graph Isomorphism Checking Libraries The most
common practical approach for the graph isomorphism prob-
lems is canonical labeling, a process in which a graph is re-
labeled in such a way that isomorphic graphs are identical
after relabeling. The mainly strategy of the canonical la-
beling is building search tree for the input graph. Nauty
[22] is the first program that could handle large automor-
phism groups; it uses automorphism to prune the search in
testing automorphism. Nauty generates the search tree in
depth-first order, while Trace [24] introduces a breadth-first
search in generating the search tree. Saucy [9] is an imple-
mentation of the Nauty system by utilizing the sparsity and
particular construction of colored graphs. However, these
libraries focus on the checking of the automorphism, which
only suits for the unlabeled graphs. Bliss [18] supports the
isomorphism checking of labeled graphs. However, build-
ing the search tree brings frequently memory allocating and
deallocating which slow down the processing and consume
a huge amount of memory. In addition, bliss is designed for
the large graph isomorphic checking, while the eigenvalue
checking strategy is sufficient in the mining scenes.

8. CONCLUSION
In this paper, we present Kaleido, a single-machine, out-

of-core graph mining system. Kaleido follows the subgraph-
centric model and provides a user-friendly simple API that
allows non-experts to build graph mining workloads eas-
ily. To efficiently store and process the huge amount of
intermediate data, Kaleido builds a succinct intermediate
data structure and adjusts the storage in memory or out-of-
core smoothly according to the scale of intermediate data.
Kaleido designs an lightweight and efficient graph isomor-
phism checking algorithm for small graphs in which the num-
ber of vertices is less than 9. Experimental results demon-
strates that Kaleido is more efficient than the state-of-the-
art graph mining systems in most cases. The isomorphism
checking algorithm in Kaleido is more efficient and consumes
less memory than the state-of-the-art graph library.

9. REFERENCES

12

[1] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat,
and F. Jamour. Scalemine: Scalable parallel frequent
subgraph mining in a single large graph. In SC, pages
61–72. IEEE Press, 2016.

[2] C. C. Aggarwal, H. Wang, et al. Managing and mining
graph data, volume 40. Springer, 2010.

[3] D. O. Apaŕıcio, P. M. P. Ribeiro, and F. M. A.
da Silva. Parallel subgraph counting for multicore
architectures. In IPDPS, pages 34–41. IEEE, 2014.

[4] C. Avery. Giraph: Large-scale graph processing
infrastructure on hadoop. Proceedings of the Hadoop
Summit. Santa Clara, 11(3):5–9, 2011.

[5] L. Babai, W. M. Kantor, and E. M. Luks.
Computational complexity and the classification of
finite simple groups. In SFCS, pages 162–171. IEEE,
1983.

[6] B. Bringmann and S. Nijssen. What is frequent in a
single graph? In PAKDD, pages 858–863. Springer,
2008.

[7] H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and
J. Cheng. G-miner: an efficient task-oriented graph
mining system. In EuroSys, page 32. ACM, 2018.

[8] X. Cheng, C. Dale, and J. Liu. Statistics and social
network of youtube videos. In 2008 16th Interntional
Workshop on Quality of Service, pages 229–238.
IEEE, 2008.

[9] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L.
Markov. Exploiting structure in symmetry detection
for cnf. In DAC, pages 530–534. ACM, 2004.

[10] W. Eberle, J. Graves, and L. Holder. Insider threat
detection using a graph-based approach. Journal of
Applied Security Research, 6(1):32–81, 2010.

[11] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and
P. Kalnis. Grami: Frequent subgraph and pattern
mining in a single large graph. PVLDB 14,
7(7):517–528, 2014.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM, volume 29, pages 251–262. ACM, 1999.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages
17–30. USENIX, 2012.

[14] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. Graphx: Graph
processing in a distributed dataflow framework. In
OSDI, pages 599–613. USENIX, 2014.

[15] F. Harary, C. King, A. Mowshowitz, and R. C. Read.
Cospectral graphs and digraphs. Bulletin of the
London Mathematical Society, 3(3):321–328, 1971.

[16] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou.
Mining coherent dense subgraphs across massive
biological networks for functional discovery.
Bioinformatics, 21(suppl 1):i213–i221, 2005.

[17] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman,
V. Braverman, and I. Stoica. Asap: Fast, approximate
graph pattern mining at scale. In OSDI, pages
745–761, 2018.

[18] T. Junttila and P. Kaski. Engineering an efficient
canonical labeling tool for large and sparse graphs. In

ALENEX, pages 135–149. SIAM, 2007.
[19] M. Kuramochi and G. Karypis. Finding frequent

patterns in a large sparse graph. In Proceedings of the
2004 SIAM International Conference on Data Mining,
pages 345–356. SIAM, 2004.

[20] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In KDD 15, pages 177–187.
ACM, 2005.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In SIGMOD,
pages 135–146. ACM, 2010.

[22] B. D. McKay. Computing automorphisms and
canonical labellings of graphs. In Combinatorial
mathematics, pages 223–232. Springer, 1978.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

[24] A. Piperno. Search space contraction in canonical
labeling of graphs. arXiv preprint arXiv:0804.4881,
2008.

[25] N. Pržulj. Biological network comparison using
graphlet degree distribution. Bioinformatics,
23(2):e177–e183, 2007.

[26] A. Quamar, A. Deshpande, and J. Lin. Nscale:
neighborhood-centric large-scale graph analytics in the
cloud. VLDBJ, 25(2):125–150, 2016.

[27] P. Ribeiro and F. Silva. G-tries: a data structure for
storing and finding subgraphs. Data Mining and
Knowledge Discovery, 28(2):337–377, 2014.

[28] A. Roy, L. Bindschaedler, J. Malicevic, and
W. Zwaenepoel. Chaos: Scale-out graph processing
from secondary storage. In SOSP, pages 410–424.
ACM, 2015.

[29] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
Edge-centric graph processing using streaming
partitions. In SOSP, pages 472–488. ACM, 2013.

[30] Y. Saad. Iterative methods for sparse linear systems,
volume 82. siam, 2003.

[31] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming
verification hardness: an efficient algorithm for testing
subgraph isomorphism. PVLDB, 1(1):364–375, 2008.

[32] J. Shun and G. E. Blelloch. Ligra: a lightweight graph
processing framework for shared memory. In PPoPP,
volume 48, pages 135–146. ACM, 2013.

[33] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos,
M. J. Zaki, and A. Aboulnaga. Arabesque: a system
for distributed graph mining. In SOSP 15, pages
425–440. ACM, 2015.

[34] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H.
Xu. Rstream: marrying relational algebra with
streaming for efficient graph mining on a single
machine. In OSDI, pages 763–782. USENIX, 2018.

[35] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM, pages 721–724. IEEE, 2002.

[36] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
computation-centric distributed graph processing
system. In OSDI, pages 301–316. USENIX, 2016.

13

	1 Introduction
	1.1 Problem statement
	1.2 Limitations of State-of-the-Art Systems
	1.3 Our Approaches

	2 Preliminaries
	3 Computation Model
	3.1 Embedding Exploration
	3.1.1 Embeddings Data Structure

	3.2 Pattern Aggregation

	4 Implementation
	4.1 Embedding Hybrid Storage
	4.2 Load-balance of Hybrid Storage

	5 Kaleido API
	5.1 Popular Mining Applications in Kaleido

	6 Evaluation
	6.1 Experimental Setup
	6.2 Comparisons with Mining Systems
	6.3 Comparisons with Isomorphism Checking Algorithms
	6.4 Scalability
	6.5 I/O and Load-balance in Hybrid Storage
	6.5.1 Load-balance

	7 Related Work
	8 Conclusion
	9 References

