
SeeMoRe: A Fault-Tolerant Protocol for Hybrid Cloud
Environments

Mohammad Javad Amiri Sujaya Maiyya Divyakant Agrawal Amr El Abbadi
Department of Computer Science, University of California Santa Barbara

Santa Barbara, California
{amiri, sujaya maiyya, agrawal, amr}@cs.ucsb.edu

ABSTRACT
Large scale data management systems utilize State Machine
Replication to provide fault tolerance and to enhance per-
formance. Fault-tolerant protocols are extensively used in
the distributed database infrastructure of large enterprises
such as Google, Amazon, and Facebook, as well as permis-
sioned blockchain systems like IBM’s Hyperledger Fabric.
However, and in spite of years of intensive research, exist-
ing fault-tolerant protocols do not adequately address all
the characteristics of distributed system applications. In
particular, hybrid cloud environments consisting of private
and public clouds are widely used by enterprises. However,
fault-tolerant protocols have not been adapted for such en-
vironments. In this paper, we introduce SeeMoRe, a hybrid
State Machine Replication protocol to handle both crash
and malicious failures in a public/private cloud environ-
ment. SeeMoRe considers a private cloud consisting of non-
malicious nodes (either correct or crash) and a public cloud
with both Byzantine faulty and correct nodes. SeeMoRe
has three different modes which can be used depending on
the private cloud load and the communication latency be-
tween the public and the private cloud. We also introduce
a dynamic mode switching technique to transition from one
mode to another. Furthermore, we evaluate SeeMoRe us-
ing a series of benchmarks. The experiments reveal that
SeeMoRe’s performance is close to the state of the art crash
fault-tolerant protocols while tolerating malicious failures.

1. INTRODUCTION
Today’s enterprises mostly rely on cloud storage to run

their business applications. Cloud computing has many ben-
efits in terms of cost savings, scalability, and easy access [59].
However, storing data on a single cloud may reduce robust-
ness and performance [14, 26, 31]. Robustness is the abil-
ity to ensure availability (liveness) and one-copy semantics
(safety) despite failures, while performance deals with the
response time of requests (latency) and the number of pro-
cessed requests per time unit (throughput) [7].

Fault-tolerant protocols are designed to satisfy both ro-
bustness and performance concerns using State Machine Repli-
cation (SMR) [35] techniques. SMR regulates the deter-
ministic execution of client requests on multiple copies of
a server, called replicas, such that every non-faulty replica
must execute every request in the same order [46] [35].

Large scale data management systems utilize SMR to pro-
vide fault tolerance and to increase the performance of the
system. Fault-tolerant protocols are extensively used in dis-
tributed databases such as Google’s Spanner [20], Amazon’s

Dynamo [23], and Facebook’s Tao [13], thus highlighting
the critical role of SMR in data management. SMR is also
the core component in the more recently developed, highly
popular set of technologies – Blockchain. In particular, per-
missioned blockchain systems extensively use fault-tolerant
protocols to establish consensus on the order of transactions
between a set of known, identified nodes that do not fully
trust each other.

While large enterprises might have their own Geo-replicated
fault-tolerant cloud storage around the world, smaller en-
terprises may only have a local private cloud that is lacking
in resources to guarantee fault tolerance. One solution is
to store all the data on third-party public cloud providers
[5,8,57]. Public clouds provide several advantages like elas-
ticity and durability, but they often suffer from security con-
cerns, e.g., malicious attacks [2]. Whereas private clouds are
considered more secure but may not provide sufficient elas-
ticity and durability. The trustworthiness of a private cloud
allows an enterprise to build services that can utilize crash
fault-tolerant protocols, i.e., protocols that make progress
when a bounded number of replicas only fail in a benign
manner, for example by either crashing or being unrespon-
sive. But due to lack of private resources, if a third-party
public cloud is used, the nodes of the public cloud may be-
have maliciously, in which case a more robust fault-tolerant
protocol is needed that allows the system to continue operat-
ing correctly, even when some replicas exhibit arbitrary, pos-
sibly malicious behavior. Current Byzantine fault-tolerant
protocols (e.g., PBFT [15]) introduce significant communi-
cation and latency overheads in order to tolerate failures
since they consider all failures as malicious.

An alternative solution to storing all the data in public
cloud is to use a hybrid cloud storage system consisting of
both private and public clouds [26]. In a hybrid cloud, the
nodes in the private cloud are trusted and may crash but
do not behave maliciously whereas the nodes in the pub-
lic cloud(s) might be malicious. Hybrid clouds address the
security concerns of using only public clouds by giving en-
terprises the ability to still use their private clouds. In ad-
dition, storing data on multiple clouds is more reliable, e.g.,
if a cloud outage happens, the system might still be able to
process requests. Moreover, while the small private cloud
may represent a scalability bottleneck, the system can rent
as many servers as required wants from the public clouds.
The benefits of a hybrid cloud necessitates designing new
protocols that can leverage the trust of private clouds and
the scalability of public clouds.

Despite years of intensive research, existing fault-tolerant

1

ar
X

iv
:1

90
6.

07
85

0v
1

 [
cs

.D
C

]
 1

8
Ju

n
20

19

protocols do not adequately address all the characteristics
of hybrid cloud environments. On one hand, the existing
Byzantine fault-tolerant protocols [7,15,32,34,40,41,56] do
not distinguish between crash and malicious failures, and
consider all failures as malicious, thus incurring a higher
cost in terms of performance. On the other hand, the hy-
brid protocols [18, 47] that have been designed to tolerate
both crash and malicious failures, make no assumption on
where the crash or malicious failures may occur. As a result
using these protocols in a hybrid cloud environment, where
all machines in the private cloud are known to be trusted
while machines in the public cloud could be compromised
and hence malicious, results in an unnecessary performance
overhead.

A hybrid fault tolerant protocol can be beneficial in a
distributed database such as Spanner [20]. Spanner con-
sists of a layered architecture where transaction manage-
ment is oblivious to the underlying fault-tolerant protocol
used. If a small enterprise wants to deploy Spanner in a
hybrid cloud, it can plug a hybrid fault-tolerant protocol in-
stead of the crash fault-tolerant protocol used in Spanner to
achieve more reliable replication in this heterogeneous cloud
setting. Permissioned blockchain systems can also take ad-
vantage of a hybrid protocol. For example, in IBM’s Hy-
perledger Fabric [4] the fault-tolerant (consensus) protocol
is pluggable. Hence, if some nodes are trusted but not all,
Fabric can benefit from a hybrid fault-tolerant protocol.

In this paper, we present SeeMoRe1: a State Machine
Replication protocol that leverages the localization of crash
and malicious failures in a hybrid cloud environment. SeeMoRe
considers a private cloud consisting of trusted replicas, a
subset of which may fail-stop, and a public cloud where a
subset of the replicas may behave maliciously. SeeMoRe
takes explicit advantage of this knowledge to improve perfor-
mance by reducing the number of communication phases and
messages exchanged and/or the number of required replicas.
SeeMoRe has three different modes of operation which can
be used depending on the load on the private cloud, and
the latency between the public and the private cloud. We
also introduce a dynamic and elastic technique to transition
from one mode to another.

A key contribution of this paper is to show how being
aware of where different types of failures (crash and mali-
cious) may occur in hybrid cloud environments, results in
designing more efficient protocols. In particular, this paper
makes the following contributions:

• A model for hybrid cloud environments is presented
which can be used by enterprises that do not have
enough servers in their trusted private cloud to run
fault-tolerant protocols and gives them the option of
renting from untrusted public clouds.

• SeeMoRe, a hybrid protocol that tolerates both crash
and malicious failures, is developed in three different
modes. Being aware of where the crash faults may oc-
cur and where the malicious faults can occur results in
reducing the number of communication phases, mes-
sages exchanged and/or required replicas. In addition,

1 SeeMoRe is derived from Seemorq, a benevolent, mythical
bird in Persian mythology which appears as a peacock with
the head of a dog and the claws of a lion. Seemorq in Persian
literature also refers to a group of birds who flew together
to achieve a common goal.

a technique to dynamically switch between different
modes of SeeMoRe is presented.

The rest of this paper is organized as follows. Section 2
presents related work. The system model is introduced in
Section 3. Section 4 presents a method to compute the re-
quired number of replicas from a public cloud. The design of
SeeMoRe is proposed in Section 5, elaborating on the three
modes, as well as the dynamic switching of modes. Section 6
shows the performance evaluation, and Section 7 concludes
the paper.

2. RELATED WORK
State machine replication (SMR) is a technique for imple-

menting a fault-tolerant service by replicating servers [35].
Several approaches [36, 43, 46] generalize SMR to support
crash failures among which Paxos is the most well-known
[36]. Paxos guarantees safety in an asynchronous network
using 2f+1 processors despite the simultaneous crash fail-
ure of any f processors. Many protocols are proposed to
either reduce the number of phases, e.g., Multi-Paxos which
assumes the leader is relatively stable or Fast Paxos [37] and
Brasileiro et al. [12] which add f more replicas, or reduce the
number of replicas, e.g., Cheap Paxos [38] which tolerates f
failures with f+1 active and f passive processors.

Byzantine fault tolerance refers to servers that behave
arbitrarily after the seminal work by Lamport, et al. [39].
Practical Byzantine fault tolerance protocol (PBFT) [15] is
one of the first and probably the most instructive state ma-
chine replication protocol to deal with Byzantine failures.
Although practical, the cost of implementing PBFT is quite
high, requiring at least 3f + 1 replicas, 3 communication
phases, and a quadratic number of messages in terms of the
number of replicas. Thus, numerous approaches have been
proposed to explore a spectrum of trade-offs between the
number of phases/messages (latency), number of processors,
the activity level of participants (replicas and clients), and
types of failures.

On latency, FaB [41] and Bosco [49] reduce the commu-
nication phases by adding more replicas. Speculative proto-
cols, e.g., Zyzzyva [34], HQ [22], and Q/U [1], also reduce
the communication by executing requests without running
any agreement between replicas and optimistically rely on
clients to detect inconsistencies between replicas.

To reduce the number of replicas, some approaches rely
on a trusted component (a counter in A2M-PBFT-EA [17],
MinBFT [54] and, EBAWA [53], a hypervisor [45], or a whole
operating-system instance [21]) that prevents a faulty replica
from sending conflicting (i.e., asymmetric) messages to dif-
ferent replicas without being detected.

In addition, optimistic approaches reduce the required
number of replicas during the normal-case operation by ei-
ther utilizing the Cheap Paxos [38] solution and keeping f
replicas in a passive mode (REPBFT [24]), or by separat-
ing agreement from execution [58]. In ZZ [56] both passive
replicas and separating agreement from execution are em-
ployed. Note that all these approaches need 3f + 1 replicas
upon occurrence of failures. REMINBFT [24], SPARE [25],
and CheapBFT [32] use a trusted component to reduce the
network size to 2f + 1 and then keep f of those replicas
passive during the normal-case operation. In contrast to
optimistic approaches, robust protocols (Prime [3], Aard-
vark [19], Spinning [52], RBFT [6]) consider the system to be

2

under attack by a very strong adversary and try to enhance
the performance of the protocol during periods of failures.

In this paper we focus on Hybrid fault tolerance. Such
consensus with multiple failure modes were initially addressed
in synchronous protocols [33,42,48,51]. Many recent efforts
have focused on partial synchrony, a technique that defines
a threshold on the number of slow (partitioned) processes.
Let m, c, and s denote the number of malicious, crash, and
slow servers respectively, VFT [44] and XFT [40] require
2m + c + min((m+c), s) + 1 and 2(m + c + s) + 1 servers
respectively, and SBFT [30] needs 3m+2c+1 servers as the
minimum size of the network from which 3m+c+1 are par-
ticipating in each quorum. VFT is very similar to PBFT re-
garding the number of phases and massage exchanges. XFT
however, optimistically assumes that an adversary cannot
fully control the Byzantine nodes and as a result, reduces
the phases of communication and message exchanges. SBFT
also reduces the number of message exchanges by assuming
the adversary controls only the crash failures.

Finally, Scrooge [47] and UpRight [18] are two asynchronous
hybrid approaches that use optimistic solutions. Scrooge
[47] uses a speculative technique to reduce the latency in
the presence of 4m+ 2c replicas. UpRight [18], which is the
closest protocol to SeeMoRe, requires 3m+ 2c+ 1 nodes as
the minimum network size from which 2m+c+1 are required
to participate in each communication quorum. In addition,
UpRight utilizes the agreement routines of PBFT [15], Aard-
vark [19], and Zyzzyva [34] and similar to [58], separates
agreement from execution. However, UpRight is not aware
which nodes may crash and which may be malicious, there-
fore, does not take advantage of this knowledge by plac-
ing particular processes executing specific protocol roles on
crash-only or malicious sites. On the other hand, SeeMoRe
knows where the crash or malicious faults may occur, thus,
it either reduces the number of communication phases and
message exchanges by placing the primary in the crash-only
private cloud, or decreases the number of required nodes by
placing the primary in the untrusted public cloud.

Storing data on multiple clouds to enhance fault tolerance
is addressed for both crash (ICStore [8], SPANStore [57])
and malicious (DepSky [9], SCFS [10]) failures which rely on
2f+1 and 3f+1 servers respectively. DAPCC [55] assumes
a synchronous cloud environment and solves the consensus
in a dual failure mode with n ≥ b(n− 1)/3c+ 2m+ c nodes
(similar to [48]). However, DAPCC needs b(n − 1)/3c + 1
rounds of communication. Hypris [26] on the other hand
reduces the number of required servers to 2f+1 (f+1 when
the system is synchronous and no faults happen) by keeping
the metadata in a private cloud assumed to be partially
synchronous.

3. SYSTEM MODEL
In this section, we introduce the system model wherein an

application layer, such as a distributed database manage-
ment system, relies on a replication service to store copies
of data across a cloud environment consisting of private and
public clouds. The replication service aims to replicate the
data across some trusted and some untrusted servers. The
replicas can be geo-distributed to provide low data access
latency to clients across the globe or they can be geograph-
ically confined to tolerate both crash or malicious failures.
Such a replication service can use SeeMoRe and we specify
the assumptions on which SeeMoRe is built in this section.

3.1 Basic Assumptions
We consider a hybrid failure model that admits both crash

and malicious failures where crash failures may occur in the
private cloud and malicious failures may only occur in the
public cloud. Note that a malicious failure can encompass
a crash failure but since the trust assumptions are low, we
do not distinguish between a crash or a malicious failure in
the public cloud. In a crash failure model, replicas operate
at arbitrary speed, may fail by stopping, and may restart,
however they may not collude, lie, or otherwise attempt to
subvert the protocol. Whereas, in a malicious failure model,
faulty nodes may exhibit arbitrary, potentially malicious,
behavior. We assume that a strong adversary can coordi-
nate malicious nodes and delay communication to compro-
mise the replicated service. However, the adversary cannot
subvert standard cryptographic assumptions about collision-
resistant hashes, encryption, and signatures, e.g., the adver-
sary cannot produce a valid signature of a non-faulty node.

Each pair of replicas is connected with point-to-point bi-
directional communication channels and each client can com-
municate with any replica. Network links are pairwise au-
thenticated, which guarantees that a malicious replica can-
not forge a message from a correct replica, i.e., if replica i
receives a message µ in the incoming link from replica j,
then replica j sent message µ to i beforehand.

We use the state machine replication algorithm [46] where
replicas agree on an ordering of incoming requests and all
replicas execute the requests in the same order. Our system
ensures safety in an asynchronous network that can drop,
delay, corrupt, duplicate, or reorder messages. Liveness is
guaranteed only during periods of synchrony when there is
a finite but possibly unknown bound on message delivery
time. The model puts no restrictions on clients, except that
their numbers must be finite, however, safety and liveness
require some constraints on the number of faulty servers.

Depending on the role of a node and the type of message it
wants to send, messages may contain public-key signatures
and message digests [15]. A message digest is a numeric
representation of the contents of a message produced by
collision-resistant hash functions. Message digests are used
to protect the integrity of a message and detect changes and
alterations to any part of the message. We denote a message
µ signed by replica r as

〈
µ
〉
σr

and the digest of a message

µ by D(µ). For signature verification, we assume that all
machines have the public keys of all other machines. In Sec-
tion 5, we explain when signatures and digests are needed.

3.2 Quorum and Network Size
We consider a cloud environment consisting of private and

public clouds. The system is an asynchronous distributed
system containing a set of N replicas where S of them ex-
ist in a private cloud and P of them are in a public cloud.
Nodes in the private cloud are non-malicious: either non-
faulty (correct) nodes or crashed nodes. The bound on the
maximum number of crashed nodes is assumed to be c. Sim-
ilarly, nodes in the public cloud can be either non-faulty
nodes or Byzantine nodes. The bound on the maximum
number of Byzantine nodes is m. We call the nodes in the
private cloud trusted and the nodes in the public cloud un-
trusted. All the clients and the replicas know which replicas
are trusted and which are untrusted.

Failures are divided into two disjoint classes: malicious
and crash faults. In crash fault-tolerant models, e.g., Paxos

3

[36], given that c nodes can crash, a request is replicated to
a quorum consisting of at least c+ 1 nodes to provide fault
tolerance and to guarantee that a value once decided will
remain decided in spite of failures (safety). Furthermore,
any two quorums intersect on at least one node and as a
result, 2c + 1 is the minimum number of nodes that allows
an asynchronous system to provide the safety and liveness
properties.

In the Byzantine failure models, e.g., PBFT [15], given
that m nodes can be malicious, the quorum size should be
at least 2m+1 to ensure that non-faulty replicas outnumber
the malicious ones, i.e., a request is replicated in enough non-
faulty nodes to guarantee safety in the presence ofm failures.
This implies that any two quorums intersect with at least
m+ 1 nodes to ensure one correct node in the intersection,
thus the minimum network size is 3m+ 1 [11].

Likewise, in the hybrid model the quorum size must in-
clude at least 2m + c + 1 nodes to tolerate c crash and m
malicious failures [18]. This also guarantees that the in-
tersection of any two quorums has to be at least m + 1
nodes. Since the quorum size is 2m + c + 1 and the in-
tersection of any two quorum Q and Q′ is m + 1 nodes,
|Q|+ |Q′| = N +m+ 1 = 4m+ 2c+ 2, thus the (minimum)
network size, N , will be [18]

N = 3m+ 2c+ 1 (1)

Intuitively, if there are f failures (of any type) in a net-
work, the network size has to be at least f larger than the
quorum size, as any network with smaller size could lead to
a deadlock situation where none of the f faulty servers are
participating. Since, f = m + c and the quorum size Q is
2m + c + 1, the network size should be at least Q + f i.e.,
3m+ 2c+ 1.

4. PUBLIC CLOUD
The hybrid failure model presented in Section 3 can be

used by enterprises that own private clouds with a limited
number of trusted servers which is insufficient to run a fault-
tolerant protocol. This model gives them the option of rent-
ing from untrusted public clouds. In this section, we present
two methods to identify the number of servers an enterprise
needs to rent from a public cloud.

A business that owns an insufficient number of trusted
servers (servers that might crash but are not malicious)
needs to rent more servers from some untrusted public clouds
to satisfy the minimum network size constraints (3m+2c+1)
of the protocol. Public clouds might provide some statistics
that show the percentage of faulty nodes in the cloud. If
there is no information on the type of failures, i.e. crash or
malicious, within the public cloud, we consider all the faulty
nodes as malicious and assume that the ratio of malicious
nodes in public cloud (m) to the size of public cloud (P)
is known and is equal to α = m

P . Note that, we assume a
uniform distribution of malicious nodes in public cloud, i.e.,
in any set π ⊆ P, at most α× π nodes are malicious.

Given the size of the private cloud S, the bound on the
maximum number of crashed nodes c in the private cloud,
and the ratio α of malicious nodes (m) in the public cloud
to the size of the public cloud (P), the task is to identify the
required number of nodes P to be rented from the public
cloud that allows satisfying the protocol constraints.

The total number of nodes in the network is N = S + P .
Given our assumption of α, we get m = αP . Replacing m

in Equation 1, we get N = 3αP + 2c + 1, which means,
(3α− 1)P = S − (2c+ 1), thus:

P = dS − (2c+ 1)

3α− 1
e (2)

As an example consider the situation that a private cloud
has 2 servers where one of them might be faulty, i.e., S = 2,
and c = 1, and we want to rent servers from a public cloud
with α = 0.3. Here, P = 2−2−1

3∗0.3−1
= −1
−0.1

= 10, which means
we need to rent 10 servers from the public cloud to provide
the safety constraints of the replication protocol.

In Equation 2, if the size of the private cloud (S) is equal
or greater than 2c+ 1, then the private cloud does not need
to rent any nodes and can run a crash-fault tolerant protocol
like Paxos [36] by itself. If there is no private cloud (S = 0)
or all the nodes in the private cloud are faulty (S = c), using
the private cloud has no advantage and it is more reasonable
to rent all the required nodes from the public cloud and
run a Byzantine fault-tolerant protocol in the public cloud.
However, if c < S < 2c+1, renting some nodes from a public
cloud might be helpful.

Similarly, if α ≥ 1
3
, (i.e., more than 1

3
of the nodes in

the public cloud are malicious), then the public cloud can-
not satisfy the network size constraint for Byzantine fault-
tolerance. Hence, an enterprise will need to rent servers if
its private cloud size, S, is between c+ 1 and 2c, and it can
rent servers from public cloud providers that satisfy α < 1

3
.

It should be noted that even if the size of the private cloud
is equal or greater than 2c + 1, and the public cloud does
not satisfy the α < 1

3
constraint, an enterprise might still

rent some replicas from the public cloud for load balancing
purposes.

Note that Equation 2 can easily be extended to address
the situation where the public cloud provides information on
the ratio of both malicious and crash nodes, i.e., the ratio
of malicious nodes to the size of public cloud (α = m

P) as
well as the ratio of crash nodes to the size of public cloud
(β = c

P) are known. In such a situation, Equation 2 can be
rewritten as:

P = dS − (2c+ 1)

3α+ 2β − 1
e (3)

This method, which identifies the required number of nodes
from a public cloud, assumes a uniform distribution of faulty
nodes in the public cloud. However, public clouds might not
guarantee a uniform distribution of α and alternatively spec-
ify the maximum number of concurrent failures in a cluster
of rental nodes explicitly. In such a setting, even if an en-
terprise rents a portion of that cluster, there is no guarantee
that the percentage of the faulty nodes in that portion is
equal to the percentage of the faulty nodes in the entire
cluster. For example, a public cloud might guarantee that
in a cluster of 10 nodes, at most two concurrent failures can
occur. Nonetheless, if an enterprise rents only two nodes
from that cluster, both of them might fail at the same time.
Assuming that the number of concurrent malicious failures
in a (cluster of nodes in a) public cloud is given and equal
to M , we would want to identify the required number of
nodes P to rent from such a public cloud. The total number
of nodes in the network is N = 3m + 2c + 1 = S + P and
there is no guarantee on a uniform distribution of malicious
nodes in the public cloud, thus m = M . Hence, the required
number of nodes is P = (3M + 2c+ 1)− S.

4

Similar to the first method, if the public cloud distin-
guishes between different types of failures and provides in-
formation on the number of both crash and malicious fail-
ures, given as C and M , the required number of nodes from
the public cloud is P = (3M+2C+2c+1)−S where c, sim-
ilar as before, is the number of crash failures in the private
cloud.

Finally, it should be noted that both methods of identi-
fying the public cloud size can be generalized to multiple
public clouds as well. In Such a settings, since different
public clouds might have different ratio (number) of faulty
nodes, the equation might have multiple solutions.

5. SeeMoRe
In this section we present SeeMoRe, a hybrid fault-tolerant

consensus protocol for a public/private cloud environment
that tolerates m Byzantine failures in the public and c crash
failures in the private cloud.

SeeMoRe is inspired by the known Byzantine fault-tolerant
protocol PBFT [32]. In PBFT, as can be seen in Figure 1(d),
during a normal case execution, a client sends a request to a
(primary) replica, and the primary broadcasts a pre-prepare
message to all replicas. Once a replica receives a valid pre-
prepare message, it broadcasts a prepare message to all other
replicas. Upon collecting 2f valid matching prepare mes-
sages (including its own message) that are also matched to
the pre-prepare message sent by the primary, each replica
broadcasts a commit message. In this stage, each replica
knows that all non-faulty replicas agree on the contents of
the message sent by the primary. Once a replica receives
2f + 1 valid matching commit messages (including its own
message), it executes the request and sends the response
back to the client. Finally, the client waits for f + 1 valid
matching responses from different replicas to make sure at
least one correct replica executed its request. PBFT also
has a view change routine that provides liveness by allowing
the system to make progress when the primary fails.

SeeMoRe consists of agreement and view change routines
where the agreement routine orders requests for execution
by the replicas, and the view change routine coordinates the
election of a new primary when the current primary is faulty.

The algorithm, similar to most fault-tolerant algorithms,
is a form of state machine replication. In such approaches, a
service is replicated across a group of servers in a distributed
system. Each server maintains a set of state variables, which
are modified by a set of ”atomic” and ”deterministic” oper-
ations. Operations are atomic if they do not interfere with
each other and deterministic if the same operation executed
in the same initial state generates the same final state. Also,
the initial state must be the same in all replicas.

The algorithm has to satisfy two main properties, (1)
safety: all correct servers execute the same requests in the
same order, and (2) liveness: all correct client requests are
eventually executed. Fischer et al. [29] show that in an asyn-
chronous system, where nodes can fail, consensus has no
solution that is both safe and live. Based on that impos-
sibility result, SeeMoRe, similar to most fault-tolerant pro-
tocols, ensures the safety property without any synchrony
assumption and considers a synchrony assumption to sat-
isfy the liveness property. Indeed, as long as the number
of faulty nodes does not exceed the defined threshold, a
protocol can produce linearizable executions, independent
of whether the network loses, reorders, or arbitrarily delays

messages. However, a weak synchrony assumption is needed
to satisfy liveness: the delay from the moment when a re-
quest is sent by a client for the first time and the moment
when it is received by its destination is in some fixed (but
potentially unknown) interval.

We identify each replica using an integer in [0, ..., N−1]
where replicas in the private cloud, i.e., trusted replicas,
have identifiers in [0, ..., S−1] and replicas in the public cloud,
i.e., untrusted replicas, are identified using integers in [S, ...,
N−1].

In SeeMoRe, the replicas move through a succession of
configurations called views [27] [28]. In a view, one replica
is the primary and the others are backups. Depending on
the mode, some backups are passive and do not participate
in the agreement. Views are numbered consecutively. All
replicas are initially in view 0 and are aware of their current
view number at all time.

We explain SeeMoRe in three different modes: Lion, Dog,
and Peacock 2. In the Lion mode, the primary is always in
the private cloud, thus the primary is non-malicious. The
Dog mode is used to reduce the load on the private cloud
by assuming that the primary is still in the private cloud,
but instead of processing the client requests itself, depends
on 3m+ 1 nodes in the public cloud to process the request.
This mode reduces the load on the private cloud, because
except for the primary, which does a single broadcast of the
client’s request, other replicas in the private cloud are pas-
sive and do not participate in any phases. Finally, in the
Peacock mode, an untrusted node is chosen as the primary
and the protocol relies completely on the public cloud to
process requests. This mode is useful when we intentionally
rely completely on the public cloud for two purposes: (1)
load balancing when all the nodes in the private cloud are
heavily loaded, or (2) reducing the delay when there is a
large network distance between the private and the public
cloud and the latency of having one more phase of com-
munication within the public cloud is less than the latency
of exchanging messages between the two clouds. The agree-
ment routine of the Peacock mode is the same as PBFT [32],
however, the view change routine can be more efficient.

In this section, we describe each of these three modes
in detail, followed by a technique to dynamically switch
between the modes. For each mode, we first present the
normal-case operation of the protocol and then show how
view changes are carried out when it appears that the pri-
mary has failed. Next, we show how SeeMoRe can dynami-
cally switch between these three modes. We use π to show
the current mode of the protocol where π ∈ {1, 2, 3}. At
the end of this section, we also present a short discussion
on different modes of SeeMoRe and compare it with some
known relevant protocols, i.e., the crash fault-tolerant proto-
col Paxos [36], the Byzantine fault-tolerant protocol PBFT
[15], and the hybrid fault-tolerant protocol UpRight [18].

5.1 The Lion Mode: Trusted Primary
Owning a private cloud gives SeeMoRe the chance to choose

a trusted node as the primary. When the primary is trusted,
all the non-faulty backups receive correct messages from the
primary, which eliminates the need to multicast messages
by replicas to realize whether all the non-faulty ones receive

2 We call the modes Lion, Dog, and Peacock because
seemorq (=SeeMoRe) is composed of these three animals.

5

the same message or not. Thus, we can reduce one phase of
communication and a large number of messages.

In particular, within a view, the normal case operation
for SeeMoRe to execute a client request in the Lion mode
proceeds as follows. A client sends a request message to
the primary, i.e., a trusted replica in the private cloud. The
primary assigns a sequence number to the request and multi-
casts a prepare message including the request to all replicas.
Replicas receive a prepare from the primary and send an ac-
cept to the primary. The primary upon receiving 2m+ c+ 1
matching accept messages, sends a commit message to all
replicas and a reply to the client. Upon receiving a com-
mit message from the primary, replicas execute the client
request. Finally, the client receives a reply message from the
primary and marks the request as complete.

Figure 1(a) shows the normal case operation of the Lion
mode. Here, replicas 0 and 1 are trusted (S = 2) and the
four other replicas, 2 to 5, are untrusted (P = 4). In addi-
tion, one of the trusted replicas (1) is crashed (c = 1) and
one of the untrusted replicas (5) is malicious (m = 1). With
a trusted primary, the total number of exchanged messages
is 3N .

The pseudo-code for the Lion mode is presented in Algo-
rithm 1. Although not explicitly mentioned, every sent and
received message is logged by the replicas. Each replica is
initialized with a set of variables as indicated in lines 1-4 of
the algorithm. The primary of view v is a replica p such
that p = (v mod S). A client ς requests a state machine
operation op by sending a message 〈REQUEST, op, tsς , ς〉σς to
replica p it believes to be the primary. The client’s times-
tamp tsς is used to totally order the requests and to ensure
exactly-once semantics. The client also signs the message
with signature σς for authentication.

Each replica keeps the state of the service, a message log
containing valid messages the replica has received, and two
integers denoting the replica’s current view and mode num-
bers. Message logs then serve as the basis for maintaining
consistency in view changes.

As indicated in lines 5-8, upon receiving a client request,
the primary p first checks if the signature and timestamp
in the request are valid and simply discards the message
otherwise. The primary assigns a sequence number n to
the request and multicasts a signed 〈〈PREPARE, v, n, d〉σp , µ〉
message to all the replicas where v is the current view, µ
is the client’s request message, and d is the digest of µ. At
the same time, the primary appends the message to its log.
The primary signs its message, because it might be used by
other replicas later in view changes as a proof of receiving
the message.

As shown in lines 9-11 of the algorithm, upon receipt of
〈〈PREPARE, v, n, d〉σp , µ〉 from primary p, replica r checks if
view v is equal to the replica’s view. It then logs the prepare
message, and responds to the primary with 〈ACCEPT, v, n, d, r〉
message. Since accept messages are sent only to the trusted
primary and are not used later for any other purposes, there
is no need to sign these messages.

Upon collecting 2m+ c valid accept messages from differ-
ent replicas (plus itself becomes 2m+c+1) for the request µ
in view v with sequence number n, as seen in lines 12-15, the
primary multicasts a commit message 〈〈COMMIT, v, n, d〉σp , µ〉
to all replicas. The primary attaches the request µ to its
commit message, so that if a replica has not received a pre-
pare message for that request, it can still execute the request.

Algorithm 1 The Normal-Case Operation in the Lion
mode
1: init():
2: r := replicaId
3: v := viewNumber
4: if r = (v mod S) then isPrimary := true

5: upon receiving µ=〈REQUEST, op, tsς , ς〉σς and isPrimary:
6: if µ is valid then
7: assign sequence number n
8: send 〈〈PREPARE, v, n, d〉σp , µ〉 to all replicas

9: upon receiving 〈〈PREPARE, v, n, d〉σp , µ〉 from primary p:
10: if v is valid then
11: send 〈ACCEPT, v, n, d, r〉 to primary p

12: upon receiving 〈ACCEPT, v, n, d, r〉 from 2m+c replicas and is-
Primary:

13: send 〈〈COMMIT, v, n, d〉σp , µ〉 to all replicas
14: execute operation op
15: send 〈REPLY, π, v, tsς , u〉σp to client ς with result u

The primary also executes the operation op and sends a re-
ply message 〈REPLY, π, v, tsς , u〉σp to client ς. Mode number
π and view number v are sent to clients to enable them to
track the current mode and view and hence the current pri-
mary. It is important especially when a mode change or
view change occurs, replacing the primary.

Once a replica receives a valid commit message with cor-
rect view number from the primary, it executes the operation
op, if all requests with lower sequence numbers than n has
been executed. This ensures that all non-malicious replicas
execute requests in the same order as required to provide
the safety property. Note that even if the replica has not re-
ceived a prepare message for that request, as long as the view
number is valid and the message comes from the primary,
the replica considers the request as committed.

When the client receives a reply message 〈REPLY, π, v, tsς , u〉σp
with a valid signature from primary p and with the same
timestamp as the client’s request, it accepts u as the result
of the requested operation.

If the client does not receive a reply from the primary after
a preset time, the client may suspect a crashed primary. The
client then broadcasts the same request to all replicas. A
replica, upon receiving the client’s request, checks if it has
already executed the request; if so, it simply sends the reply
message to the client. The client waits for a reply from the
private cloud or m + 1 matching reply messages from the
public cloud before accepting the result. The primary will
eventually be suspected to be faulty by enough replicas to
trigger a view change.

State Transfer. A fault-tolerant protocol must provide
a way to checkpoint the state of different replicas. It is
especially required in an asynchronous system where even
non-faulty replicas can fall arbitrarily behind. Checkpoint-
ing also brings slow replicas up to date so that they may
execute more recent requests. Similar to [15], in our proto-
col, checkpoints are generated periodically when a request
sequence number is divisible by some constant (checkpoint
period).

Trusted primary p produces a checkpoint and multicasts
a 〈CHECKPOINT, n, d〉σp message to the other replicas, where
n is the sequence number of the last executed request and d
is the digest of the state. A server considers a checkpoint to
be stable when it receives a checkpoint message for sequence
number n signed by trusted primary p. We call this message

6

(a) The Lion Mode (b) The Dog Mode (c) The Peacock Mode (d) PBFT

Figure 1: The normal case operation of the three modes of SeeMoRe and PBFT

a checkpoint certificate, which proves that the replica’s state
was correct until that request execution.

Checkpointing not only brings slow replicas up to date,
but it can also be used as a garbage collection mechanism.
All the messages sent by a replica are kept in a message log
in case they have to be re-sent. However, when a check-
point becomes stable, replicas do not need to keep messages
prior to the checkpoint in their log and can simply discard
all prepare, accept, and commit messages with sequence num-
bers less than or equal to the checkpoint’s sequence number.
They also discard all earlier checkpoints and checkpoint mes-
sages.

View Changes. The goal of the view change protocol is
to provide liveness by allowing the system to make progress
when a primary fails. It prevents replicas from waiting indef-
initely for requests to execute. A view change must guar-
antee that it will not introduce any changes in a history
that has been already completed at a correct client. Most
view change routines [15,16,22,27,28,34,58] are triggered by
timeouts and require enough non-faulty replicas to exchange
view change messages. SeeMoRe uses a similar technique in
the Lion mode. In such a situation, replicas detect the fail-
ure and reach agreement to change the view from v to v′.
The primary of new view v′ then handles the uncommitted
requests, and takes care of the new client requests.

View changes are triggered by timeout. When a replica
receives a valid prepare message from the primary, it starts
a timer that expires after some defined time τ . When the
backup receives a valid commit message, the timer is stopped,
but if at that point the backup is waiting for a commit mes-
sage for some other request, it restarts the timer. If the timer
expires, the backup suspects that the primary is faulty and
starts a view change.

When a backup suspects that the primary is faulty (its
timer for some prepare message expires), it stops accepting
prepare and commit messages and multicasts a 〈VIEW-CHANGE,
v + 1, n, ξ,P, C〉 message to all replicas where n is the se-
quence number of the last stable checkpoint known to r, ξ
is the checkpoint certificate, and P and C are two sets of
received valid prepare (without the request message µ) and
commit messages for requests with a sequence number higher
than n.

When primary p′ of new view v + 1 receives 2m+ c valid
view-change messages from different replicas, it multicasts a
〈NEW-VIEW, v+ 1,P ′, C′ 〉σp′ message to all replicas where P ′

and C′ are two sets of prepare and commit messages respec-
tively which are constructed as follows.

Let l be the sequence number of the latest checkpoint, and

h be the highest sequence number of a prepare message in
all the received P sets. For each sequence number n where
l < n ≤ h, the primary does the following steps:

1. It first checks all commit messages in set C of the re-
ceived view-change messages. If the primary finds a
commit message with a valid signature σp (p was the
primary of view v) for some request µ the primary adds
a 〈〈COMMIT, v + 1, n, d〉σp′ , µ〉 to C′

2. If no such commit message is found, the primary checks
the prepare messages in P sets:

• If the primary finds 2m+c+1 valid prepare messages
for n, it adds a 〈〈COMMIT, v + 1, n, d〉σp′ , µ〉 to C′.
• Else, if it receives at least one valid prepare message
for n, the primary adds a 〈〈PREPARE, v+1, n, d〉σp′ , µ〉
to P ′.

3. If none of the above situations occur, there is no valid
request for n, so the primary adds a 〈PREPARE, v+1,

n, d〉σp′ , µ
∅〉 to P ′ where µ∅ is a special no-op com-

mand that is transmitted by the protocol like other
requests but leaves the state unchanged. The third
situation happens when no replica has received a pre-
pare message from the previous primary.

In contrast to PBFT, since the primary is trusted, it
does not need to append all the view-change messages in
the new-view message which makes the new-view messages
much smaller. The primary inserts all the messages in P ′
and C′ to its log. It also checks the log to make sure its log
contains the latest stable checkpoint. If not, the primary in-
serts checkpoint messages for the checkpoint l and discards
the earlier information from the log.

Once a replica in view v receives a new-view message from
the primary of view v + 1, the replica logs all prepare and
commit messages, updates its checkpoint in the same way as
the primary, and for each prepare message, sends an accept
message to the primary. Non-faulty replicas in view v will
not accept a prepare message for a new view v′ > v without
having received a new-view message for v′.

Correctness. Within a view, since the primary is trusted
and it assigns sequence numbers to the requests, safety is
ensured as long as the primary does not fail. Indeed, for any
two committed requests r1 and r2 with sequence numbers
n1 and n2 respectively, if D(r1) = D(r2), then n = n′.

If the primary fails a view change is executed. To en-
sure safety across views, the primary waits for 2m+c accept

7

messages (considering itself, a quorum of 2m + c + 1) from
different replicas to ensure that committed requests are to-
tally ordered across views. In fact, for any two committed
requests r1 and r2 with sequence numbers n1 and n2, since
a quorum of 2m+c+1 replicas commits r1 and a quorum of
2m+c+1 replicas commits r2, and these two quorums have
at least m + 1 overlapping nodes, there should be at least
one non-faulty node that commits both r1 and r2 but this
is not possible because the node is not faulty. As a result,
if D(r1) = D(r2), then n = n′. This guarantees that in the
event of primary failure, any new quorum of 2m+c+1 repli-
cas will have at least m+ 1 overlapping nodes that received
a prepare message (and sent accept) for request µ from the
previous primary. Thus, there is at least one non-faulty node
in that quorum that helps the protocol to process request µ
in the new view.

5.2 The Dog Mode: Trusted Primary, Un-
trusted Backups

The Dog mode is proposed to reduce the load on the
private cloud. In this mode, a trusted primary receives a
request message, assigns a sequence number, and relies on
3m+ 1 untrusted nodes (in the public cloud) to process the
request. These 3m + 1 nodes are called proxies. Since a
trusted primary assigns the sequence number to the request
before broadcasting, this reduces the scope of any malicious
behaviour. Whereas in PBFT, when replicas receive a mes-
sage from the primary, they perform one round of commu-
nication to make sure all non-faulty replicas agree on a total
order for the requests within a view. However, here, since
a trusted primary assigns the sequence numbers, similar to
the Lion mode, there is no need for that phase.

Figure 1(b) shows the normal case operation of SeeMoRe
with a trusted primary (node 0). As before, two replicas
are trusted (S = 2), four replicas are untrusted (P = 4),
c = 1, and m = 1. Since a trusted primary assigns sequence
numbers, the protocol, similar to Paxos, needs two phases
to process requests. However, since the protocol tolerates
malicious failures, the number of messages in terms of the
number of replicas, similar to PBFT, is quadratic. Here,
there are totally N + (3m + 1)2 + (3m + 1) ∗ N messages
exchanged where 3m+ 1 is the total number of proxies. In
this particular example, since m = 1, all replicas in the
public cloud are proxies.

Algorithm 2 provides the pseudo-code for the Dog mode.
Lines 1-5 indicate the initialization of state variables for
each replica, including the primary and the proxies. A
replica r in the public cloud is a proxy in view v if r−(v
mod P)∈[S, ..., S+3m]. Here since replicas are in the public
cloud, r is an integer in [S, ..., N−1]. The public cloud might
have more than 3m+1 replicas, however, 3m+1 is enough
to reach consensus and any additional replicas may degrade
the performance. The trusted primary of view v is chosen
in the same way as the first mode, i.e., p is the primary if
p=(v mod S).

As shown in lines 6-9 of the algorithm, the primary, upon
receiving request µ, validates the timestamp and signature
of µ, assigns a sequence number n, and multicasts signed
prepare message 〈〈PREPARE, v, n, d〉σp , µ〉 to all replicas.

When a proxy receives a prepare message from the pri-
mary, as indicated in lines 10-12, it validates the view num-
ber, logs the message and sends a signed accept message
〈ACCEPT, v, n, d, r〉σr to all the other proxies. Here, in con-

Algorithm 2 The Normal-Case Operation in the Dog mode

1: init():
2: r := replicaId
3: v := viewNumber
4: if r = (v mod S) then isPrimary := true
5: else if r − (v mod P) ∈ [S, .., S + 3m] then isProxy := true

6: upon receiving µ = 〈REQUEST, op, tsς , ς〉σς and isPrimary:
7: if µ is valid then
8: assign sequence number n
9: send 〈〈PREPARE, v, n, d〉σp , µ〉 to all replicas

10: upon receiving 〈〈PREPARE, v, n, d〉σp , µ〉 from the primary p
and isProxy:

11: if v is valid then
12: send 〈ACCEPT, v, n, d, r〉σr to all proxies

13: upon receiving 〈ACCEPT, v, n, d, r〉 from 2m+1 proxies:
14: send 〈COMMIT, v, n, d, r〉σr to all other proxies
15: send 〈INFORM, v, n, d, r〉σr to all private cloud nodes and non-

proxy nodes in public cloud
16: execute operation op
17: send 〈REPLY, π, v, tsς , u〉σr to client ς with result u

trast to the first mode, the proxy signs its message as a proof
of message reception in case of a view change.

As described in lines 13-17 of the algorithm, upon receiv-
ing 2m+1 matching accept messages (including its own mes-
sage) with correct signatures, a proxy r multicasts a com-
mit message 〈COMMIT, v, n, d, r〉σr to the other proxies. Each
proxy r also sends a signed inform message 〈INFORM, v, n, r, d〉σr
to all the nodes in the private cloud and all non-proxy nodes
in the public cloud. The inform message, including its iden-
tifier r and message digest d, to inform them that such a
request is committed. Non-proxy nodes wait for 2m + 1
valid matching inform messages from different proxies which
are matched by the prepare message that they received from
the primary before executing the request. If the proxy has
executed all requests with sequence numbers lower than n, it
executes the request n and sends a reply message 〈REPLY, π, v,
tsς , u〉σr with result u to the client.

Any other replica that receives m + 1 matching commit
messages from the proxies with valid signatures, correct mes-
sage digest, and view numbers equal to its view number con-
siders the request as committed, and executes the request.
Since all the replicas receive prepare messages from the pri-
mary, they have access to the request and can execute it.

The client also waits for 2m+ 1 matching reply messages
from different proxies before accepting the result. If the
client has not received a valid reply after a preset time, the
client multicasts the request to the proxies. The proxies
re-send the result if the request has already been processed
and the client waits for m+ 1 matching reply messages from
the proxies before accepting the result. Otherwise, similar
to the first mode, eventually the primary will be suspected
to be faulty by enough replicas and a view change will be
triggered.

State Transfer. Checkpointing in the Dog mode works in
the same way as the Lion mode. Trusted primary p multi-
casts a signed checkpoint message to all other replicas with
the sequence number of the last executed request and the di-
gest of the state. Upon receiving a checkpoint message from
the primary, a server considers that a checkpoint is stable
and logs the message which is used later as a checkpoint
certificate.

View Changes. In the Dog mode, view change happens

8

when the trusted primary is suspected to have crashed. Here,
similar to the Lion mode, we rely on the primary of new
view to handle the prepared but not yet committed requests.
However, since the nodes in the public cloud are process-
ing the requests, they are the ones who send view-change
messages. Each node in the public cloud multicasts a view-
change message 〈VIEW-CHANGE, v+ 1, n, ξ,P〉 to all the nodes
in the public cloud and the primary of the next view where
ξ is the checkpoint certificate for sequence number n, and P
is the set of received valid prepare messages with a sequence
number higher than n.

In this mode, in contrast to the Lion mode, nodes do
not include the set of commit messages (C) in their view-
change messages because in the Dog mode, to show that
a request is committed, a nodes needs to include 2m + 1
valid commit messages for that request, which makes the
view-change messages much larger.

Primary p′ of the new view waits for 2m + 1 valid view-
change messages from the proxies of the last active view,
i.e., the view with a non-faulty primary, before multicasting
a new-view message. This is needed to ensure the correctness
of the protocol even if there are consecutive crashed primary
nodes (inactive views) and the number of nodes in the public
cloud are more than the number of proxies (the set of proxies
are changed from one view to another).

Upon receiving 2m + 1 valid view-change messages, pri-
mary p′ of view v+1 multicasts a new-view message 〈NEW-VIEW,
v + 1,P ′ 〉σp′ to all the replicas where for each sequence

number n (between the latest checkpoint and the highest
sequence number of a prepare message), if there is any valid
prepare message in set P of the received view-change mes-
sages, the primary adds a 〈PREPARE, v + 1, n, d〉σp′ to P ′.
Else, there is no valid request for n, so similar to the Lion
mode, the primary adds a no-op prepare message 〈PREPARE, v+

1, n, d〉σp′ , µ
∅〉 to P ′.

Here, again, since the primary is trusted it does not need
to include view-change messages in the new-view message.
The primary then inserts all the messages in P ′ to its log
and updates its checkpoint, if needed.

Once a proxy of view v + 1 receives a new-view message
from the primary of view v + 1, the proxy logs all prepare
messages, updates its checkpoint, and multicasts an accept
message to all the proxies for each prepare message in P ′.
Other replicas also receive the new-view message to be in-
formed that the view is changed.

Correctness. Within a view, since the primary is trusted
and it assigns sequence number to the requests, similar to
the Lion mode, safety is ensured as long as the primary does
not fail. To ensure safety across views, since 3m + 1 nodes
participate in the protocol, to commit a message, 2m + 1
matching accept messages are needed. In fact, for any two
committed requests r1 and r2 with sequence numbers n1

and n2, since a quorum of 3m + 1 replicas commits r1 and
a quorum of 3m + 1 replicas commits r2, and these two
quorums have at least m+ 1 overlapping nodes, there is at
least one non-faulty node that commits both r1 and r2, but
this is not possible because the replica is non-faulty. As a
result, if D(r1) = D(r2), then n = n′.

5.3 The Peacock Mode: Untrusted Primary,
Untrusted Backups

One characteristic of online services is the ever changing
patterns in client requests. While there might be periods
of high traffic thus overloading some servers, at other pe-
riods, the resources may be underutilized. Also, depending
on server placements and communication delays, enterprises
may benefit from protocols that allow a subset of the servers,
e.g. only the public cloud, to handle certain client requests.

The third mode of the protocol, the Peacock mode, is
presented to handle two different situations. First, when
the private cloud is heavily loaded and the public cloud can
handle the requests by itself for load balancing. Second,
when there is a large network distance between the private
and the public cloud and the latency due to one more phase
is less than the latency of exchanging messages between the
two clouds. In both situations, the nodes in the private
cloud become passive replicas in the agreement routine and
are only informed about the committed messages. However,
they still may participate in the view change routine.

In the Peacock mode, SeeMoRe completely relies on 3m+
1 nodes in the public cloud to process the requests. The
untrusted primary of view v in the Peacock mode is replica
p where p = (v mod P) + S. Similar to the Dog mode,
since there might be more than 3m+1 replicas in the public
cloud, in each view, 3m+ 1 are chosen as proxies. Node i is
a proxy in view v if i − (v mod P) ∈ [S, ..., S + 3m]. This
ensures that the primary is always a proxy.

In the Peacock mode, SeeMoRe processes the requests us-
ing PBFT [15] with two small changes. First, the primary
multicasts signed pre-prepare message along with the request
to all the nodes (and not only the 3 + 1 proxies). Second,
when the request is committed, each proxy r sends a signed
inform message 〈INFORM, v, n, d, r〉σr to all the nodes in the
private cloud as well as all non-proxy nodes in the public
cloud. Other nodes also wait for m + 1 valid matching in-
form messages from different proxies before executing the
request.

As indicated in Figure 1(c), similar to PBFT, the Peacock
mode processes the requests in three phases: pre-prepare,
prepare, and commit. As can be seen, the replicas in the pri-
vate cloud have no participation in any phases and are only
informed about the committed requests. The total number
of exchanged messages in the Peacock mode is N+2∗(3m+
1)2 + (1 + S) ∗ (3m+ 1).

View Changes. In the Peacock mode, we rely on a trusted
node in the private cloud, called transferer, to change the
view. Indeed, instead of the primary of the new view, a
transferer changes the view. Replica t in the private cloud
is the transferer of view v′ (changes the view from v to v′)
if t = (v′ mod S). Choosing a transferer to change views
helps in minimizing the size of new-view messages and more
importantly, reduces the delay between the request and its
reply. Because even if there are consecutive malicious pri-
mary nodes, since the transferer takes care of the uncom-
mitted requests of view v, the protocol does not carry the
messages from one view to another. In contrast, in PBFT,
it is possible that a valid request in view v be committed in
view v+m (when there are m consecutive primaries). Other
than the transferer, view change in the Peacock mode is sim-
ilar to PBFT. Proxies multicast view-change messages to all
replicas. When the transferer of new view v + 1 receives
2m + 1 valid view-change messages from different proxies
of view v, it multicasts a new-view message to all replicas
in both public and private clouds. Once a proxy receives

9

a valid new-view message, it logs all the prepare messages,
updates its checkpoint, and sends an accept message to all
other proxies for each prepare message. When the transferer
has changed the view and the new primary receives the new-
view message from the transferer, the new primary starts to
process new requests in view v + 1.

Correctness. In the Peacock mode, the protocol ensures
safety and liveness similar to PBFT [15].

5.4 Dynamic Mode Switching
We presented three different modes of SeeMoRe and ex-

plained when each mode is useful. Now, we show how to
dynamically switch between different modes.

An enterprise might prefer to use the Lion mode of SeeMoRe,
because it needs fewer phases (in comparison to the Peacock
mode) and less number of message exchanges (in comparison
to the Dog or Peacock mode). However, if the private cloud
becomes heavily loaded, or at some point, a high percentage
of requests are sent by clients that are far from the private
cloud and much closer to the public cloud, it might be bene-
ficial to switch to the Dog or Peacock mode. SeeMoRe might
also plan to switch back to the Lion mode, e.g., when the
load on the private cloud is reduced. To change the mode,
the protocol also has to change the view, because the pri-
mary and the set of participant replicas might be different
in different modes. Therefore, to handle a mode change,
the protocol first performs a view change, and then the pri-
mary of the new view in the new mode starts to process new
requests.

For the switch to happen a trusted replica s multicasts
a 〈MODE-CHANGE, v + 1, π′〉σs to all the replicas where π′ is
the new mode of the protocol, i.e., Lion, Dog, or Peacock.
When the protocol wants to switch to the Lion or Dog mode,
replica s is the primary of view v + 1, and when it switches
to the Peacock mode, replica s is the transferer of view v+1.

5.5 Discussion
In this section, we compare the different modes of SeeMoRe

with three well-known protocols: the crash fault-tolerant
protocol Paxos [36], the Byzantine fault-tolerant protocol
PBFT [15], and the hybrid fault-tolerant protocol UpRight
[18].

We consider four parameters in this comparison: (1) the
number of communication phases, (2) the number of mes-
sage exchanges, (3) the receiving network size, and (4) the
quorum size. The results are reported in Table 1.

The knowledge of where a crash or a malicious failure may
occur and thus choosing a trusted primary simply reduces
one phase of communication. In fact, in PBFT, the prepare
phase is needed only to make sure that non-faulty replicas
receive matching pre-prepare messages from the primary. In
contrast, in the Lion and Dog modes of SeeMoRe, since the
primary is a trusted node, replicas receive the same mes-
sage from the primary, thus there is no need for that phase
of communication and the requests, similar to Paxos, are
processed in two phases (while in contrast to Paxos mali-
cious failures can occur in the public cloud). In comparison
to Upright, although Upright processes the requests in two
phases, it utilizes the speculative execution technique intro-
duced by Zyzzyva [34] which becomes costly in the presence
of failures. Note that the speculative execution technique
can easily be applied to SeeMoRe as well.

Table 1: Comparison of fault-tolerant protocols
Protocol phases messages Receiving Network Quorum size

Lion 2 O(n) 3m+2c+1 2m+c+1
Dog 2 O(n2) 3m+1 2m+1

Peacock 3 O(n2) 3m+1 2m+1
Paxos 2 O(n) 2f+1 f+1
PBFT 3 O(n2) 3f+1 2f+1

UpRight 2 O(n2) 3m+2c+1 2m+c+1

The number of message exchanges in the Lion mode is
similar to Paxos and is linear in terms of the total number
of replicas. In the Dog mode, the number of messages is
quadratic, however it is still much less than PBFT (since
it has one phase of n-to-n communication instead of two).
Upright also has a quadratic number of messages.

The Lion mode, similar to Upright, needs 3m+2c+1 nodes
to receive a client request. In the Dog mode, however, only
the trusted primary and 3m+1 nodes from the public cloud
participate in each phase. Since the Peacock mode utilizes
PBFT, the number of phases and message exchanges are
the same as PBFT. However, since the primary is in the
public cloud, communicating with the private cloud has no
advantage, thus it proceeds with 3m + 1 nodes instead of
3m+ 2c+ 1 as in the Lion mode and UpRight.

6. PERFORMANCE EVALUATION
This section evaluates the performance of the SeeMoRe

protocol. SeeMoRe is implemented by adapting the BFT-
SMaRt library [50]. We mainly reuse the communication
layer of BFT-SMaRt but implement our agreement and view
change routines for the different modes of the protocol.

We first, show how the protocol tolerates different number
of failures (both crash and malicious). Next, we evaluate the
performance of the protocol in a no failure setting by varying
the number of clients (requests) and using different micro-
benchmarks, and finally, evaluate the impact of the failure
of the primary node (view change) on the performance of
SeeMoRe.

In each experiment, we compare different modes of SeeMoRe
with an asynchronous crash fault-tolerant (CFT) protocol,
an asynchronous Byzantine fault-tolerant (BFT) protocol,
and a simplified version of the asynchronous hybrid fault-
tolerant protocol UpRight [18] (we call it S-UpRight). For
both CFT and BFT we use the original BFT-SMaRt code-
base (the optimized implementations of Paxos [36] and PBFT
[15]). UpRight has two aspects: first, the hybrid model that
tolerates both crash and malicious failures (in a network of
size 3m + 2c + 1), and second, the protocol that combines
a set of techniques such as speculative execution and sepa-
ration of ordering and execution. For the S-UpRight proto-
col, we use the UpRight hybrid model since this part of the
UpRight is relevant to SeeMoRe, however, to ensure a fair
comparison with other protocols and since all other proto-
cols use the pessimistic approach, we use a PBFT-like proto-
col (i.e., PBFT protocol with less number of nodes) instead
of the UpRight protocol. Note that, as mentioned before,
both the speculative execution and separation of ordering
from execution techniques can be integrated into SeeMoRe
as well.

10

0 4 8 12 16 20
0

2

4

6

8

Throughput [Kreqs/sec]

L
a
te

n
cy

[m
s]

BFT

S-UpRight

Peacock

Dog

Lion

CFT

(a) f = 2 (c = 1, m = 1)
N : SeeMoRe, S-UpRight=6,

CFT=5, BFT=7

0 3 6 9 12
0

2

4

6

8

Throughput[Kreqs/sec]

L
a
te

n
cy

[m
s]

BFT

S-UpRight

Peacock

Dog

Lion

CFT

(b) f = 4 (c = 2, m = 2)
N : SeeMoRe, S-UpRight=11,

CFT=9, BFT=13

0 3 6 9 12
0

2

4

6

8

Throughput [Kreqs/sec]

L
a
te

n
cy

[m
s]

BFT

S-UpRight

Peacock

Dog

Lion

CFT

(c) f = 4 (c = 1, m = 3)
N : SeeMoRe, S-UpRight=12,

CFT=9, BFT=13

0 4 8 12 16 20
0

2

4

6

8

Throughput [Kreqs/sec]

L
a
te

n
cy

[m
s]

BFT

S-UpRight

Peacock

Dog

Lion

CFT

(d) f = 4 (c = 3, m = 1)
N : SeeMoRe, S-UpRight=10,

CFT=9, BFT=13

Figure 2: Throughput/Latency measurement by increasing the number of failures

The experiments were conducted on the Amazon EC2
platform. Each VM is Compute Optimized c4.2xlarge in-
stances with 8 vCPUs and 15GB RAM, Intel Xeon E5-2666
v3 processor clocked at 3.50 GHz. In the experiments, both
the public and private clouds are located in the same data
center i.e., AWS US West Region.

In each experiment, we vary the number of requests sent
by all the clients per second from 103 to 106 (by increasing
the number of clients running on a single VM) and measure
the end-to-end throughput (x axis) and latency (y axis) of
the system. Each client waits for the reply before sending a
subsequent request.

6.1 Fault-Tolerance Scalability
In the first set of experiments, we evaluate the perfor-

mance of SeeMoRe when configured to tolerate different
number of failures (f). We consider the 0/0 micro-benchmark
(both request and reply payload sizes are close to 0 KB)
and measure the throughput and latency of SeeMoRe, S-
UpRight, CFT, and BFT protocols. Since, f = c + m, we
evaluate CFT and BFT to tolerate c + m failures in each
experiment. In all these scenarios and for SeeMoRe, we put
2c nodes in the private and 3m+1 nodes in the public cloud.
The results are shown in Fig. 2(a)-(d).

In the first scenario, when f = 2 (c = m = 1), the network
size of the different protocols is close to each other (BFT
requires 7, SeeMoRe and S-UpRight require 6, and CFT re-
quires 5 nodes). As a result, as can be seen in Fig. 2(a), the
performance of the Lion mode becomes very close to CFT
(8% difference in their peak throughput). Similarly, the per-
formances of S-UpRight and BFT are close to each other (4%
difference in their peak throughput). Note that the Peacock
mode shows better performance than S-UpRight (still worst
than the Dog and Lion modes) because in the Peacock mode,
SeeMoRe relies only on the public cloud which consists of
only 4 nodes. In addition, while in comparison to the Lion
mode, both the Peacock and Dog modes need less number
of nodes, the Lion mode has better performance because it
needs less number of phases and message exchanges.

In the next three scenarios, the network tolerates the same
number of failures (f = 4), as a result, the performance of
BFT and CFT does not change from one scenario to an-
other. However, since the number of crash and malicious
failures are varied, the network size of SeeMoRe and S-
UpRight changes. Hence, they show different performance
in different scenarios.

When both m and c increase to 2 (Fig. 2(b)), The Dog

mode shows similar performance to the Lion mode. This
is the result of the trade off between the quorum size and
the message complexity; Only 5 nodes (2m + 1) partic-
ipate in the Dog mode which requires O(n2) number of
messages whereas the quorum size of the Lion mode is 7
(2m + 1c + 1) but it requires O(n) messages (see Table 1).
In addition, since SeeMoRe in the Peacock mode communi-
cates with only 7 nodes, it shows much better performance
than BFT (24% difference in their peak throughput) and
even S-UpRight (18% difference in their peak throughput).

By increasing the number of tolerated malicious failures
to 3 while reducing the number of tolerated crash failures
back to 1 (Fig. 2(c)), the network size of SeeMoRe becomes
closer to the BFT network size. As a result, CFT shows
better performance (12% difference in its peak throughput)
than the Lion mode and also the performance of SeeMoRe
in the Peacock and Dog modes, which communicate with
10 nodes in the public cloud, becomes closer to S-UpRight
(with 12 nodes) and BFT (with 13 nodes).

On the other hand, increasing the number of tolerated
crash failures to 3 while maintaining the number of mali-
cious failures to 1 (Fig. 2(d)) results in a network size close
to CFT. In this setting, the performance of the Dog and
Peacock modes become better than both the Lion mode
and CFT. This is expected because the Dog mode processes
a request in the public cloud which needs only 4 replicas
(since m = 1) but with the same number of phases as the
Lion mode. Similarly, although the Peacock mode processes
requests in three phases, since it needs fewer servers to pro-
ceed, its performance is better than the Lion mode and CFT.
In fact, since the number of malicious failures in this sce-
nario is the same as the first scenario, both the Dog and
Peacock modes show the same performance as the first sce-
nario (Fig. 2(a)).

6.2 Changing Payload Size
We now repeat the base case scenario (c=m=1) of the pre-

vious experiments (Fig. 2(a)) using two micro-benchmarks
0/4, 4/0 to show how request and reply sizes affect the per-
formance of different protocol. Figs. 3(a) and 3(b) show the
throughput and latency for 0/4 and 4/0 micro-benchmarks
respectively. Since the Lion and Dog modes need less com-
munication phases and message exchanges, their performance
is close to CFT, e.g., for latency equal to 4 ms, the through-
put of the Lion and Dog modes is 10% and 17% less than
CFT respectively. Similarly, the Peacock mode and S-UpRight
are close to BFT, e.g., with 4 ms latency, the throughput

11

0 5 10 15 20
0

2

4

6

8

10

12

Throughput [kreqs/sec]

L
a
te

n
cy

[m
s]

BFT

S-UpRight

Peacock

Dog

Lion

CFT

(a) Benchmark 0/4

0 3 6 9 12 15
0

2

4

6

8

10

12

Throughput [kreqs/sec]

L
a
te

n
cy

[m
s]

BFT

S-UpRight

Peacock

Dog

Lion

CFT

(b) Benchmark 4/0

Figure 3: Throughput/Latency for c = 1 and m = 1

of the Peacock mode is the same as BFT. Note that due to
the overhead of request transmission between the replicas,
the request size affects the performance of all protocols more
than the reply size.

6.3 Performance During View Change
Finally, we evaluate the impact of view change on the per-

formance of SeeMoRe. We trigger a primary failure shortly
before the end of a checkpoint period to evaluate the worst-
case overhead that can be caused by a failure. We consider
the base case scenario (c = m = 1) with a total network of
N = 6 nodes (for SeeMoRe), where 2 nodes are in the pri-
vate cloud and 4 in the public cloud. The experiment was
run with micro-benchmark 0/0 and with a checkpoint pe-
riod of 10000 request i.e., a checkpoint is taken every 10000
requests. Fig. 4 shows the behavior of SeeMoRe, S-UpRight
and BFT where the y-axis is throughput and the x-axis is
a timeline with a failure injected around time 30. As can
be seen, the protocols behave as expected until the crash
is triggered. This crash and the view change routine cause
the protocols to be temporarily out of service (in particular,
15 millisecond in the Lion mode, 20 millisecond in the Dog
mode, and 24 millisecond in the Peacock mode). However,
when the view change is complete, the throughput increases
to the original level for each protocol. As can be seen, BFT
takes twice as much time as the Lion mode to revive and
continue to process the requests. The Peacock mode also
recovers faster than S-UpRight and BFT due to its use of
transferers.

Overall, the evaluation results for a network that tolerates
f = m + c failures where m and c are the number of mali-
cious and crash failures respectively, can be summarized as
follow. First, when c is equal or less than m (for small c
and m), the performance of SeeMoRe in the Lion mode is
very close to the crash fault-tolerant protocol Paxos due to
the required number of phases and message exchanges in the
Lion mode. In addition, when c is larger than m, SeeMoRe
in both the Dog and Peacock modes demonstrates better
performance than the Lion mode and even Paxos since in
both modes, SeeMoRe relies completely on the public cloud
to process the requests. Furthermore, all three modes of
SeeMoRe show better performance than the hybrid protocol
S-UpRight since SeeMoRe is aware of where the crash faults
may occur and where the malicious faults can occur. Fi-
nally, all three modes of SeeMoRe have better performance
than BFT since they reduce the number of communication
phases, messages exchanged and required nodes.

0 20 40 60 80 100
0

4

8

12

16

20

Timeline [ms]

T
h
r
o
u
g
h
p
u
t

[K
r
e
q
/
s
]

BFT

S-Upright

Peacock

Dog

Lion

Figure 4: Performance during view change

7. CONCLUSIONS
In this paper, we proposed SeeMoRe, a hybrid state ma-

chine replication protocol to tolerate both crash and mali-
cious failures in a public/private cloud environment. SeeMoRe
is targeted to be used by smaller enterprises that own a
small set of servers and intend to rent servers from pub-
lic cloud providers. Such an enterprise can highly benefit
from SeeMoRe, as the protocol distinguishes between crash
failures that could occur within the trusted private cloud
and malicious failures that could only occur in the public
cloud. SeeMoRe can execute in any one of three modes,
Lion, Dog, and Peacock, and can dynamically switch among
these modes. The Lion and Dog modes of SeeMoRe require
less communication phases and message exchanges while the
Peacock mode is useful for a heavily loaded private cloud
or when there is a large network distance between the two
clouds.

Our evaluations show that the performance of Lion and
Dog modes is close to Paxos while in contrast to Paxos,
which only tolerates crash failures, malicious failures can
occur. In the Peacock mode, since the primary is in the
public cloud, its performance is similar to PBFT with m
failures. However, in comparison to UpRight, which requires
quorums of size 2m+ c+ 1, Peacock needs quorums of size
2m+ 1, and hence is more efficient.

8. REFERENCES
[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson,

M. K. Reiter, and J. J. Wylie. Fault-scalable
byzantine fault-tolerant services. ACM SIGOPS
Operating Systems Review, 39(5):59–74, 2005.

[2] M. A. AlZain, B. Soh, and E. Pardede. Mcdb: Using
multi-clouds to ensure security in cloud computing. In
IEEE International Conference on Dependable,
autonomic and secure computing (DASC), pages
784–791. IEEE, 2011.

[3] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime:
Byzantine replication under attack. IEEE
Transactions on Dependable and Secure Computing,
8(4):564–577, 2011.

[4] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, et al. Hyperledger fabric:
a distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys
Conference, page 30. ACM, 2018.

12

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

[6] P. Aublin, S. B. Mokhtar, and V. Quéma. Rbft:
Redundant byzantine fault tolerance. In IEEE
International Conference on Distributed Computing
Systems (ICDCS), pages 297–306. IEEE, 2013.

[7] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma,
and M. Vukolić. The next 700 bft protocols. ACM
Transactions on Computer Systems (TOCS), 32(4):12,
2015.

[8] C. Băsescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti,
M. Vukolić, and I. Zachevsky. Robust data sharing
with key-value stores. In IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN), pages 1–12. IEEE, 2012.

[9] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. Depsky: dependable and secure storage in a
cloud-of-clouds. ACM Transactions on Storage (TOS),
9(4):12, 2013.

[10] A. N. Bessani, R. Mendes, T. Oliveira, N. F. Neves,
M. Correia, M. Pasin, and P. Verissimo. Scfs: A
shared cloud-backed file system. In USENIX Annual
Technical Conference, pages 169–180, 2014.

[11] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM (JACM),
32(4):824–840, 1985.

[12] F. Brasileiro, F. Greve, A. Mostéfaoui, and
M. Raynal. Consensus in one communication step. In
International Conference on Parallel Computing
Technologies, pages 42–50. Springer, 2001.

[13] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo,
S. Kulkarni, H. Li, et al. {TAO}: Facebooks
distributed data store for the social graph. In
Presented as part of the 2013 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 13), pages
49–60, 2013.

[14] C. Cachin, I. Keidar, and A. Shraer. Trusting the
cloud. Acm Sigact News, 40(2):81–86, 2009.

[15] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[16] M. Castro, R. Rodrigues, and B. Liskov. Base: Using
abstraction to improve fault tolerance. ACM
Transactions on Computer Systems (TOCS),
21(3):236–269, 2003.

[17] B.-G. Chun, P. Maniatis, S. Shenker, and
J. Kubiatowicz. Attested append-only memory:
Making adversaries stick to their word. In ACM
SIGOPS Operating Systems Review, volume 41-6,
pages 189–204. ACM, 2007.

[18] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 277–290. ACM,
2009.

[19] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making byzantine fault tolerant
systems tolerate byzantine faults. In NSDI, volume 9,
pages 153–168, 2009.

[20] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[21] M. Correia, N. F. Neves, and P. Verissimo. How to
tolerate half less one byzantine nodes in practical
distributed systems. In IEEE Int. Symposium on
Reliable Distributed Systems, pages 174–183. IEEE,
2004.

[22] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. Hq replication: A hybrid quorum protocol
for byzantine fault tolerance. In OSDI, pages 177–190,
2006.

[23] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
ACM SIGOPS operating systems review, volume 41,
pages 205–220. ACM, 2007.

[24] T. Distler, C. Cachin, and R. Kapitza.
Resource-efficient byzantine fault tolerance. IEEE
Transactions on Computers, 65(9):2807–2819, 2016.

[25] T. Distler, I. Popov, W. Schröder-Preikschat, H. P.
Reiser, and R. Kapitza. Spare: Replicas on hold. In
NDSS, 2011.

[26] D. Dobre, P. Viotti, and M. Vukolić. Hybris: Robust
hybrid cloud storage. In Proceedings of the ACM
Symposium on Cloud Computing, pages 1–14. ACM,
2014.

[27] A. El Abbadi, D. Skeen, and F. Cristian. An efficient,
fault-tolerant protocol for replicated data
management. In ACM SIGACT-SIGMOD symp. on
Principles of database systems, pages 215–229. ACM,
1985.

[28] A. El Abbadi and S. Toueg. Availability in partitioned
replicated databases. In ACM SIGACT-SIGMOD
symposium on Principles of database systems, pages
240–251. ACM, 1985.

[29] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, 1985.

[30] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. K. Reiter, D. Seredinschi, O. Tamir,
and A. Tomescu. Sbft: a scalable decentralized trust
infrastructure for blockchains. arXiv preprint
arXiv:1804.01626, 2018.

[31] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono,
A. D. Satria, J. Adityatama, and K. J. Eliazar. Why
does the cloud stop computing?: Lessons from
hundreds of service outages. In Proceedings of the
ACM Symposium on Cloud Computing, pages 1–16.
ACM, 2016.

[32] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle,
V. Mohammadi, W. Schröder-Preikschat, and
K. Stengel. Cheapbft: resource-efficient byzantine
fault tolerance. In ACM European conference on
Computer Systems, pages 295–308. ACM, 2012.

[33] R. M. Kieckhafer and M. H. Azadmanesh. Reaching
approximate agreement with mixed-mode faults. IEEE
Transactions on Parallel and Distributed Systems,
5(1):53–63, 1994.

[34] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and

13

E. Wong. Zyzzyva: speculative byzantine fault
tolerance. ACM SIGOPS Operating Systems Review,
41(6):45–58, 2007.

[35] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[36] L. Lamport. Paxos made simple. ACM Sigact News,
32(4):18–25, 2001.

[37] L. Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[38] L. Lamport and M. Massa. Cheap paxos. In
International Conference on Dependable Systems and
Networks, pages 307–314. IEEE, 2004.

[39] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382–401,
1982.

[40] S. Liu, P. Viotti, C. Cachin, V. Quéma, and
M. Vukolic. Xft: Practical fault tolerance beyond
crashes. In OSDI, pages 485–500, 2016.

[41] J.-P. Martin and L. Alvisi. Fast byzantine consensus.
IEEE Trans. on Dependable and Secure Computing,
3(3):202–215, 2006.

[42] F. J. Meyer and D. K. Pradhan. Consensus with dual
failure modes. IEEE Transactions on Parallel &
Distributed Systems, (2):214–222, 1991.

[43] D. Ongaro and J. K. Ousterhout. In search of an
understandable consensus algorithm. In USENIX
Annual Technical Conference, pages 305–319, 2014.

[44] D. Porto, J. Leitão, C. Li, A. Clement, A. Kate,
F. Junqueira, and R. Rodrigues. Visigoth fault
tolerance. In Proceedings of the Tenth European
Conference on Computer Systems, page 8. ACM, 2015.

[45] H. P. Reiser and R. Kapitza. Hypervisor-based
efficient proactive recovery. In Reliable Distributed
Systems, 2007. SRDS 2007. 26th IEEE International
Symposium on, pages 83–92. IEEE, 2007.

[46] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

[47] M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and
N. Suri. Scrooge: Reducing the costs of fast byzantine
replication in presence of unresponsive replicas. In
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 353–362. IEEE,
2010.

[48] H.-S. Siu, Y.-H. Chin, and W.-P. Yang. A note on

consensus on dual failure modes. IEEE Transactions
on Parallel and Distributed Systems, 7(3):225–230,
1996.

[49] Y. J. Song and R. van Renesse. Bosco: One-step
byzantine asynchronous consensus. In International
Symposium on Distributed Computing, pages 438–450.
Springer, 2008.

[50] J. Sousa, E. Alchieri, and A. Bessani. State machine
replication for the masses with bft-smart. 2013.

[51] P. Thambidurai, Y.-K. Park, et al. Interactive
consistency with multiple failure modes. In
Proceedings Seventh Symposium on Reliable
Distributed Systems, pages 93–100. IEEE, 1988.

[52] G. S. Veronese, M. Correia, A. N. Bessani, and L. C.
Lung. Spin one’s wheels? byzantine fault tolerance
with a spinning primary. In Reliable Distributed
Systems, 2009. SRDS’09. 28th IEEE International
Symposium on, pages 135–144. IEEE, 2009.

[53] G. S. Veronese, M. Correia, A. N. Bessani, and L. C.
Lung. Ebawa: Efficient byzantine agreement for
wide-area networks. In High-Assurance Systems
Engineering (HASE), 2010 IEEE 12th International
Symposium on, pages 10–19. IEEE, 2010.

[54] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung,
and P. Verissimo. Efficient byzantine fault-tolerance.
IEEE Transactions on Computers, 62(1):16–30, 2013.

[55] S.-S. Wang, K.-Q. Yan, and S.-C. Wang. Achieving
efficient agreement within a dual-failure
cloud-computing environment. Expert Systems with
Applications, 38(1):906–915, 2011.

[56] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and
E. Cecchet. Zz and the art of practical bft execution.
In The conference on Computer systems, pages
123–138. ACM, 2011.

[57] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett,
and H. V. Madhyastha. Spanstore: Cost-effective
geo-replicated storage spanning multiple cloud
services. In ACM Symposium on Operating Systems
Principles, pages 292–308. ACM, 2013.

[58] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
byzantine fault tolerant services. ACM SIGOPS
Operating Systems Review, 37(5):253–267, 2003.

[59] Q. Zhang, L. Cheng, and R. Boutaba. Cloud
computing: state-of-the-art and research challenges.
Journal of internet services and applications,
1(1):7–18, 2010.

14

	1 Introduction
	2 Related Work
	3 System Model
	3.1 Basic Assumptions
	3.2 Quorum and Network Size

	4 Public Cloud
	5 SeeMoRe
	5.1 The Lion Mode: Trusted Primary
	5.2 The Dog Mode: Trusted Primary, Untrusted Backups
	5.3 The Peacock Mode: Untrusted Primary, Untrusted Backups
	5.4 Dynamic Mode Switching
	5.5 Discussion

	6 Performance Evaluation
	6.1 Fault-Tolerance Scalability
	6.2 Changing Payload Size
	6.3 Performance During View Change

	7 Conclusions
	8 References

