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Abstract—Recent data stream processing systems (DSPSs) can
achieve excellent performance when processing large volumes
of data under tight latency constraints. However, they sacrifice
support for concurrent state access that eases the burden of
developing stateful stream applications. Recently, some have
proposed managing concurrent state access during stream
processing by modeling state accesses as transactions. However,
these are realized with locks involving serious contention
overhead. Their coarse-grained processing paradigm further
magnifies contention issues and tends to poorly utilize modern
multicore architectures. This paper introduces TStream , a
novel DSPS supporting efficient concurrent state access on
multicore processors. Transactional semantics is employed like
previous work, but scalability is greatly improved due to two
novel designs: 1) dual-mode scheduling, which exposes more
parallelism opportunities, 2) dynamic restructuring execution,
which aggressively exploits the parallelism opportunities from
dual-mode scheduling without centralized lock contentions. To
validate our proposal, we evaluate TStream with a benchmark
of four applications on a modern multicore machine. The
experimental results show that 1) TStream achieves up to
4.8 times higher throughput with similar processing latency
compared to the state-of-the-art and 2) unlike prior solutions,
TStream is highly tolerant of varying application workloads such
as key skewness and multi-partition state accesses.

I. INTRODUCTION

The recent advances in data stream processing systems
(DSPSs) [1], [2], [3], [4] in terms of performance, elasticity,
and scalability have accelerated their adoption in many
emerging use cases. Modern stateful DSPSs such as Storm [2],
Heron [3], and Flink [1] achieve high performance via disjoint
partitioning of application states [5] – often through key-based
partitioning [6] so that each execution thread (i.e., executor)
maintains a disjoint subset of states and thereby bypass the
issue of concurrent state access. This type of design can
lead to tedious implementation and ineffective performance
in many cases (see later in section II-A).

Several recent works propose to support concurrent state
access in stream processing, where large mutable application
states may be concurrently accessed by multiple executors [7],
[8]. State consistency is maintained by the system by adopting
transactional semantics [7], [9]. Specifically, the set of state
accesses triggered by the processing of one input event
at one operator is defined as a state transaction. Multiple
state transactions are concurrently executed using various
concurrency control mechanisms [7], [10].

Unfortunately, prior implementations are not free of
bottlenecks when scaled up due to two reasons: First, they
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Fig. 1: Severe lock contentions of the PAT scheme [10].

are mostly built on centralized locking schemes, where every
transaction has to access a set of monotonically increasing
counters to decide if it is allowed to acquire locks of
its targeting states. Despite its simplicity, it has serious
contention issues and does not properly exploit the underlying
multicore nature of modern CPU architectures. Second, they
commonly follow a coarse-grained processing paradigm,
where an executor must finish all operations of processing
one event before the processing of the next event can begin.
This paradigm minimizes context switching overhead but
overlooks opportunities for parallel processing. In particular,
the processing of one event may involve multiple conflict-free
operations (e.g., stateless computation and multiple accesses to
different states). Blocking one state access often unnecessarily
blocks all operations of an event in this paradigm, further
intensifying contention.

Figure 1 shows the evaluation results of the PAT
scheme [10], the current state-of-the-art, on the Toll
Processing [11] application. We measure the average amount
of time spent on (i) state access, i.e., time spent accessing
states, (ii) access overhead, comprising of lock acquisition and
blocking due to access contention, and (iii) others, including
all other operations (excluding state access) and overheads
(e.g., context switching). As the number of cores used
increases, the overhead of accessing states quickly dominates
other operations due to serious contention. Therefore, we need
a new solution for scaling concurrent state access in the
DSPSs.

This paper presents TStream , a novel DSPS supporting
efficient concurrent state access in the context of main memory
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multicore architectures. TStream follows previous work [7],
[9] of employing transactional semantics to handle concurrent
state access but with much better scalability. The design
of TStream is inspired by our careful analysis of existing
applications. Stream processing usually consists of a set
of operations that are repeated for every input event, and
concurrent state access (if applied) often turns out to be a
performance bottleneck. This pattern guides us to abstract
the processing as a three-step procedure: preprocess, state
access, and postprocess. While this formulation may appear to
limit the flexibility of programming, it unlocks the potential
for simple and effective optimization opportunities, which we
exploit to improve scalability.

First, based on the three-step procedure, we propose an
execution strategy called Dual-Mode Scheduling, which
exposes more parallelism opportunities. By carefully
decoupling the second step (i.e., state access) from the
processing logic, TStream allows an executor to postpone
state access and instantly work on other input events without
being blocked. Delaying state transactions to the last minute
allows them to be processed in batches, enabling further
optimizations when accessing state.

Second, we propose a novel state transaction processing
mechanism called Dynamic Restructuring Execution.
Specifically, TStream restructures a batch of (postponed)
transactions into a collection of sorted lists called operation
chains. These can be evaluated in parallel without lock
contention, significantly relieving contention overhead in
concurrent state access.

In summary, we make the following contributions: First,
we propose an efficient way of handling concurrent state
access during stream processing with two novel designs.
Second, we implement the proposed designs as well as
several state-of-the-art schemes in a fully functional DSPS [12]
optimized for multicore architectures. We then compare them
both theoretically and experimentally, revealing the scalability
issues of prior solutions. We open the full source code of
the system and application benchmarks at https://github.com/
Xtra-Computing/briskstream/tree/TStream.

II. PRELIMINARIES
A. Data Stream processing

In this paper, we generally follow the definitions of data
stream processing presented in [13], and we briefly recall
them for completeness. We summarize the terminology used
in this work in Table I. Stream processing continuously
processes one or more streams of events. Each event (ets)
has a timestamp (ts) that indicates its temporal sequence. A
streaming application contains a sequence of operators that
continuously process streaming events [14]. To sustain a high
input stream ingress rate, each operator may be spread across
multiple executors (e.g., Java threads), which handle multiple
input events concurrently through stream partitioning [14].
Operators often need to maintain states during processing for
future reference [5]. To avoid state access conflict, the common
wisdom is adopting key-based stream partitioning [6] so that

TABLE I: Summary of Terminologies

Term Definition
Event (𝑒𝑡𝑠)

Input stream event with a timestamp (𝑡𝑠) to 
indicate its temporal sequence

Punctuation 
(𝑝𝑢𝑛𝑡𝑠)

Special tuple embedded in a data stream 
that indicates the end of a subset of the 
stream

State 
transaction 
(𝑡𝑥𝑛𝑡𝑠)

A set of state accesses (i.e., read and write 
to application states) triggered by 
processing of a single input event.

Correct state 
transaction 
schedule (𝑆)

A state transaction schedule 
𝑆 of (txnt1, txnt2, … txntn) is correct if it is 
conflict equivalent to txnt1 ≺ txnt2 ≺ ... ≺ txntn

each executor maintains a disjoint subset of states. Similarly,
operators are required to maintain their states exclusively. To
illustrate this, we use a simplified toll processing query (TP )
from the Linear Road Benchmark [11] as an example.

Motivating Example. TP calculates the toll every time a
vehicle reports its position in a new road segment, in which
tolls depend on the level of road congestion. It contains three
key operators: 1) Road Speed (RS) computes average
traffic speed of a road segment; 2) Vehicle Cnt (VC)
computes the average number of unique vehicles of a road
segment; 3) Toll Notification (TN) computes the toll
of a vehicle based on the traffic speed of and number of unique
vehicles on the road segment where the vehicle is.

One common way [15] to implement TP is shown in
Figure 2 (a), where ovals denote operators and arrows
denote data flow between operators. Parser parses input
events into traffic reports containing <timestamp, vehicle id,
geo position, speed>, and the computed toll is continuously
sent to Sink for output. Road congestion status (i.e., speed
and count) are application states [5], which are maintained
for future reference (the dashed arrows in the figure). To avoid
state access conflict, a key-based partition scheme is adopted to
split the input stream (the blue diamond arrows in the figure). It
also prevents operators from concurrently accessing the same
state by keeping their states exclusive.

However, such an implementation can be tedious and
ineffective. First, it requires users to carefully partition and sort
the input stream by selecting appropriate keys. In this example,
the application needs to ensure that any traffic report is
processed only when TN receives the updated road congestion
status from RS and VC. Prior work [15] embeds tuple buffering
and sorting operations (i.e., sort by vehicle id, geo-position
and timestamp) inside the TN as highlighted in Figure 2 (a).
This manual approach is cumbersome and can lead to errors
if tuples arrive too late (out of buffering limits). Second, the
ineffectiveness stems from the duplication of large application
states among operators. In this example, states maintained by
RS and VC have to be repeatedly forwarded to TN.

https://github.com/Xtra-Computing/briskstream/tree/TStream
https://github.com/Xtra-Computing/briskstream/tree/TStream
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Fig. 2: Implementation of Toll Processing (TP ).

B. Concurrent Stateful Stream Processing

Many applications utilizing concurrent state access have
been proposed covering various domains (e.g., Health-care [7],
IoT [9], and E-commerce [10]). Despite the implementation
differences, we identified three common application features.

F1: Three-step procedure. Each operator can be abstracted
as a three-step procedure: (1) preprocess input event (e.g. filter
invalid input); (2) accesses (shared) application states (e.g.,
read the road congestion status); finally, (3) perform further
processing based on access results (e.g., compute toll based
on road congestion status).

F2: Determined read/write sets. Read/write sets of each
state access is provided as arguments, which are inferred from
the input event. For example, which road segment to access
is determined by the corresponding traffic report (i.e., key of
state to access is tuple.geo position).

F3: Deterministic state access sequence. State accesses
must strictly follow their triggering event’s timestamp
sequence. For example, computation of a toll must be
processed according to the exact “current” road congestion
status to progress correctly, i.e., the toll should depend on
neither stale nor future road congestion status.

An implementation of TP utilizing concurrent state access
is illustrated in Figure 2 (b). It contains the same operators,
but road congestion information is shared among all operators
and their executors. Particularly, congestion status for all road
segments are maintained in two tables. One for the average
road speed and the other for the count of unique vehicles.
Input events are round-robin shuffled (the solid arrows in
the figure) among all executors which concurrently process
input events and access to the shared two tables. Such an
implementation significantly eased the burden of developing
stateful stream application as developers do not need to
manually split application states to ensure an exclusive and
correctly ordered access among different threads.

Unfortunately, concurrent state access introduces a new
challenge of preserving consistency to DSPSs as multiple
threads may concurrently access to the same application
state with arbitrary sequence. Previous studies [7], [8], [9],
[10] advocate that concurrent state access can be efficiently
managed with transactional semantics. We follow prior
work [7], [9] and specifically adopt two key definitions.

Definition 1 (State Transaction): The set of state accesses
triggered by processing of a single input event ets at an
operator is defined as one state transaction, denoted as txnts.
Timestamp ts of a state transaction is defined as that of its
triggering event.

Definition 2 (Correct State Transaction Schedule): A
schedule of transactions txnt1, txnt2, ..., txntn is correct if it
is conflict equivalent to txnt1 ≺ txnt2 ≺ ... ≺ txntn. A DSPS
ensuring a correct state transaction schedule always guarantees
deterministic state access sequence (F3).

C. Existing Solutions Revisited

To ensure a correct schedule of concurrent state transactions,
various concurrency control mechanisms have been proposed.
In the following, we revisit the representative ones.

1) Lock-based approach (LOCK): An earlier study by
Wang et al. [7] described a strict two-phase locking (S2PL)
-based algorithm that allows multiple state transactions to run
concurrently. To maintain a correct schedule (F3), it employs a
lockAhead process that compares each transaction’s timestamp
against a monotonically increasing counter to ensure that
transaction with the smallest timestamp always obtains locks
first, and hence guarantees proper state access sequence. By
utilizing determined read/write sets (F2), once a transaction
finished inserting its locks, the system can immediately
increase the counter to allow next transaction to proceed
without waiting for the transaction to finish processing.

2) Multiversion-Lock-based approach (MVLK): To relax
the rigorous lock incompatibility of the LOCK scheme, Wang
et al. [7] propose to adopt multiversion concurrency control,
where multiple copies of the same application state modified
at different timestamps are kept by the system. It further
maintains a counter (called lwm) of each state to guard
the state access order (F3). Specifically, transactions need
to compare their timestamp with the corresponding lwm
counters before proceed (F2). A write is permitted only if
the transaction’s timestamp is equal to lwm; while a read
is permitted as long as the transaction’s timestamp is larger
than lwm so that it can read a correct version of the state.
During commits, a transaction needs to increase lwm of all its
modified states.

3) Partition-based approach (PAT): S-Store [10] splits
application states into multiple disjoint partitions, and hence



only needs to guard accessing order for transactions targeting
the same partition by utilizing determined read/write sets (F2).
During execution, each transaction needs to first compare
its timestamp with monotonically increasing counters of its
targeted partitions (maybe more than one) to ensure that
it can proceed to insert locks (F3). It is noteworthy that,
despite being partitioned, two transactions can still conflict if
their targeted partitions are overlapping. This is fundamentally
different from key-based stream partitioning [6].

In Summary: There are two common scalability limitations
in prior solutions. First, to ensure schedule correctness
(F3), prior approaches compare the timestamp of every
state transaction with a set of monotonically increasing
counters to ensure that locks are granted in the desired
order. Despite its simplicity, such centralized locking schemes
can have serious contentions, which would severely degrade
system performance. Although PAT (i.e., S-Store) reduces
such overhead when transactions access disjoint state
partitions, it quickly devolves to LOCK with more multi-
partition transactions – a common problem for partition-based
approaches [16]. Second, they all adopt a coarse-grained
processing paradigm that sequentially evaluates the three-step
procedure (F1) for each event; an executor (i.e., thread) must
complete all operations of one event before starting next. This
minimizes potential context switching overhead, but overlooks
parallelism opportunities and further intensifying contention.

There are also many other existing concurrency control (CC)
schemes [17] that have not been applied to the problem of
concurrent state access in stream processing. For example,
the timestamp-ordering based (T/O) approach [18], [19] is
a popular CC technique that does not rely on locks. In a
T/O algorithm, each transaction is assigned a unique and
monotonically increasing timestamp as the serial order for
resolving conflicts. Only “fresh” transactions are allowed to
proceed. For example, a read would be aborted if the state
has been modified by a transaction with a larger timestamp. It
appears that adopting a T/O algorithm to support concurrent
stateful stream processing is straightforward, as we may
simply assign a unique timestamp to each state transaction
according to their triggering event. However, this could easily
end up with livelock in situations where there are many
executors, and eventually bring down system concurrency.
For example, consider the system handling txnt1=read(x)
and txnt2=write(x) in parallel and it is required that txnt1

≺ txnt2. Suppose that the processing of txnt2 is slightly
faster and successfully modifies the write timestamp of x (i.e.,
W TS(x)) to 2. Subsequently, txnt1 will be aborted and
never commit as its timestamp is now less than W TS(x)
(i.e., it comes too late). On the other hand, suppose that the
system follows the original definition of T/O and assigns a
larger timestamp to txnt1, it would be committed in this
case but state access order is violated. As a result, neither
way is able to ensure the correctness of the state transaction
schedule. Recent proposals of T/O algorithms generally follow
the original T/O scheme but propose different timestamp
allocation mechanisms [18], and hence will not help to resolve

the issue. Other existing CCs (e.g., OCC [20]) are similarly
not designed with an awareness of state access order (F3).

III. TStream OVERVIEW

In this work, we follow prior work [7], [9] for employing
transactional semantics on managing concurrent state access
but propose two novel designs to better utilize multicore
processors. Those designs are largely inspired by the set of
common features we identified from our careful analysis of
existing applications discussed in Section II-B.

D1: Dual-Mode Scheduling (Exposing Parallelism). We
propose an execution strategy called Dual-Mode Scheduling,
which exposes more parallelism opportunities. Instead of
evaluating three steps (F1) sequentially for each input as
done in the literature, TStream decouples the second step and
postpones it to be evaluated later. As a result, TStream has two
modes: 1) the compute mode where executors continuously
process more input events without being blocked due to
state access; 2) the state access mode where executors
collaboratively process a batch of postponed transactions with
abundant parallelism opportunities.

D2: Dynamic Restructuring Execution (Exploiting
Parallelism). We propose a novel Dynamic Restructuring
Execution strategy to efficiently evaluate a batch of
transactions in the state access mode. Leveraging
determined read/write sets (F2), TStream conceptually
decomposes each state transaction into multiple operations,
each targeting one state. On top of that, with a determined state
access sequence (F3), TStream restructures those operations
into timestamp-ordered lists (called operation chains), where
one list is tied to one state and evaluated by one thread. With
this restructuring, operation chains can be evaluated in parallel,
and state access conflict is avoided within the operation chains.

IV. DESIGN DETAILS

In this section, we discuss our designs in detail. We first
describe TStream’s APIs for users to implement concurrent
stateful stream processing applications. Then we discuss
the implementation of dual-mode scheduling and dynamic
restructuring execution.

A. Programming APIs

In line with many popular DSPSs, TStream expresses an
application as a DAG (Directed Acyclic Graph) with an
API similar to that of Storm [2]. To support concurrent
stateful stream processing, TStream provides a list of user-
implemented and system-provided APIs inside each operator.
The former are user implemented based on their application
requirements and the latter function as library calls, similar
to some existing frameworks [21]. Currently, all APIs are
implemented in Java.

User-implemented APIs are summarized in Table II, which
requires users to implement operations of an operator as a
three-step procedure (F1). We leave full automation of this
process for future work. A code template of an operator is
shown in Algorithm 1. State transaction is expressed through



Algorithm 1: Code template of an operator
1 boolean dualmode;// flag of dual-mode scheduling
2 Map cache;// thread-local storage
3 foreach event e in input stream do
4 if e is not punctuation// always true under prior

schemes
5 then
6 EventBlotter eb ← PRE PROCESS (e);// e.g.,

filter events
7 STATE ACCESS (eb);// issue one state

transaction
8 if dualmode then

/* stores events whose state access is
postponed under TStream scheme. */

9 cache.add(< e, eb >);
10 else

/* evaluates three steps contiguously
under prior schemes. */

11 POST PROCESS (< e, eb >);// e.g., computes
toll based on obtained road
statistics

12 else
/* if the event is a punctuation,

transaction processing can start. */
13 TXN START()// Triggers mode switching.
14 foreach < e, eb > ∈ cache do
15 POST PROCESS (< e, eb >);

Algorithm 2: STATE ACCESS of Road Speed
Input: EventBlotter eb
Result: avg

1 Function Fun(ts, key, speed) /* function as parameter */
2 READ(SpeedTable, ts, key, eb);// obtain average

speed of a road segment, result is stored
in eb.

3 avg ← eb.result + speed;// compute new average
speed.

4 return avg;

5 begin
6 READ MODIFY(SpeedTable, eb.ts, eb.key, eb.key, Fun(ts,

eb.key, eb.value), eb);// update average speed of
a road segment using return value of Fun.

the STATE_ACCESS API, which would be implemented by
users using system-provided APIs. Algorithm 2 3 4 illustrate
implementations of STATE_ACCESS by using Road Speed,
Vehicle Cnt, and Toll Notification as examples.
All operations issued from one invocation of STATE_ACCESS
are treated as one state transaction.

System-provided APIs are summarized in Table III READ,
WRITE, and READ_MODIFY stand for the atomic operation
of a state transaction. For brevity, table, timestamp, and
EventBlotter arguments are omitted in Table III and are
shown in Algorithm 3. Key and V alue stand for key and new
value of the state to access, respectively. opt means that the
parameter is optional. Fun stands for a user-defined function
such as increment by 1. CFun stands for a user-defined
function that determines whether the operation will be applied.
Users can implement Fun and CFun by constructing system-
provided APIs (e.g., a conditional update depends on a read
operation), similar to the way of constructing STATE_ACCESS.

Algorithm 3: STATE ACCESS of Vehicle Cnt
Input: EventBlotter eb
Result: cnt

1 Function Fun(ts, key, vid) /* function as parameter */
2 READ(CountTable, ts, key, eb);// obtain hashset of

CountTable.
3 eb.result.insert(vid);// update the hashset.
4 cnt ← eb.result.size();// only unique vehicle

counts.
5 return cnt;

6 begin
7 READ MODIFY(SpeedTable, eb.ts, eb.key, eb.key, Fun(ts,

eb.key, eb.value), eb);// update unique vehicle
count of a road segment using return value
of Fun.

Algorithm 4: STATE ACCESS of Toll
Notification

Input: EventBlotter eb
1 begin
2 READ(SpeedTable, eb.ts, eb.key s, eb);// obtain

average speed of a road segment.
3 READ(CountTable, eb.ts, eb.key c, eb);// obtain

vehicle count of a road segment.

TXN_START is used to indicate mode switching and is only
used under TStream’s dual-mode scheduling scheme.

B. Dual-Mode Scheduling

As discussed in Section III, TStream adopts a
nonconventional processing strategy, where the state access
step is postponed. There are three key components to support
such postponing efficiently and correctly: 1) EventBlotter
Maintenance creates and initializes a thread-local auxiliary
data structure called EventBlotter, which acts as the data
bridge linking the two processing modes; 2) Processing Mode
Switching enables efficient and correct mode switching in

TABLE II: User-implemented APIs

APIs Description

EventBlotter
PRE PROCESS (Event e)

Implements the pre-process function (e.g., filter).
It returns EventBlotter containing parameter values
(e.g., read/write sets) extracted from e.

void STATE ACCESS
(EventBlotter eb)

Implements the state transaction through
constructing system-provided APIs such as READ,
WRITE.

void POST PROCESS
(Event e, EventBlotter eb)

Implements the post-process function that is
depended on results of state access (stored in
EventBlotter).

TABLE III: System-provided APIs

APIs Description

void READ (Key d, EventBlotter eb)
issues a read request with key of d and
store results in eb for further processing
(i.e., post-process).

void WRITE (Key d, Value v, opt
CFun f∗(Key s))

issues a modify request so that state(d)←
v if f∗(s) is true or f∗(s) is null. If d!=s,
this request involves data dependency.

void READ MODIFY (Key d, Fun
f (Key t), opt CFun f∗(Key s))

issues a read and modify request so that
state(d)← f(t) if f∗(s) is true or f∗(s)
is null.

void TXN START ()
triggers mode switching to process
postponed transactions.



TStream with punctuation technique; 3) Progress Controller
generates punctuations and assigns timestamps to events and
punctuations. TStream requires punctuations to contain a
monotonically increasing timestamp.

1) EventBlotter Maintenance: A key design decision in
TStream is to maintain a thread-local auxiliary data structure
(implemented as a Java Class), called EventBlotter, to track
information (e.g., parameter values and processing results)
of each postponed transaction. An EventBlotter is created
by the system upon exiting PRE_PROCESS (i.e., Line 5
of Algorithm 1)). Upon entering STATE_ACCESS (i.e., Line
7 of Algorithm 1), TStream creates a state transaction
with a list of READ, WRITE, READ_MODIFY operations
according to users’ implementation. As mentioned before,
state transaction is not instantly processed under TStream’s
dual-model scheduling strategy. Instead, those operations are
registered to TStream to be evaluated later (Section IV-C).
Their parameter values (e.g., read/write sets) are stored in
the corresponding EventBlotter for future reference during
transaction processing. POST_PROCESS might be required
depending on the result of state accesses. To support this, we
store input events and their corresponding EventBlotters in a
thread-local map structure (i.e., Line 9 of Algorithm 1), which
will be processed after postponed transactions are processed.

2) Processing Mode Switching: TStream relies on
punctuation [22] to periodically switch between two
processing modes. A punctuation is a special type of event
that guarantees that no subsequent input event will have a
smaller timestamp. It is widely used in prior work for out-of-
order stream processing [23], [24]. Our usage of punctuation
is different from the previous work [23], as we target more
fine-grained control at transaction processing rather than
event processing. Specifically, input events may be processed
in arbitrary order in TStream , but their issued transactions
must be processed following a correct sequence (F3). A
punctuation ensures that any state transaction issued before it
should have a smaller timestamp than any ones issued after
it. This sharply delineates the timestamp boundary of a list of
transactions between any two consecutive punctuations and
gives TStream hints on how to effectively process them.

To ensure the correctness of mode switching, TStream
artificially adds two barriers (via the Cyclicbarrier [25]) to
synchronize executors. The first barrier is added after the
TXN_START is called. This ensures EventBlotter maintenance
for all events before the current punctuation is completed.
Only when all executors have switched to state access
mode, can state access begin. The second barrier is added
before the TXN_START exits. This guarantees the correctness
of the postprocessing step as executors do not resume to the
compute mode until all postponed state accesses are fully
processed (or aborted). By processing transactions in batches,
the overhead caused by these barriers will be amortized.

Figure 3 shows an example workflow of switching between
modes: (a) executors asynchronously switch to the state
access mode when they receive punctuation with a
timestamp of 5 (i.e., Line 13 of Algorithm 1) and no further
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Fig. 3: Example workflow of switching between modes.

input events are allowed to enter the system (e.g., e6, e7); (b)
subsequently, transaction processing is started (Section IV-C)
once all executors are in the state access mode; (c)
when all postponed transactions are processed, executors
are synchronously switched back to the compute mode to
process (i.e., POST_PROCESS) their stored unfinished events,
whose EventBlotter now contains the value of desired states
(i.e., Line 14∼15 of Algorithm 1); finally, (d) executors are
asynchronously resumed to process more input events.

3) Progress Controller: Punctuations are periodically
broadcast to the input stream of each executor as done in [24].
Punctuations’ timestamp must monotonically increase to
progress correctly, while events can have arbitrary timestamps
as long as they are smaller than the next punctuation.
For simplicity, we assign both events and punctuation a
monotonically increasing timestamp through the fetch&add
instruction (via the AtomicInteger in JDK8). This brings a
minor impact on the overall performance as the system’s
bottleneck is on concurrent state access.

C. Dynamic Restructuring Execution

The key problem in prior solutions (Section II-C) is
that all transactions are blocked while the one with
the smallest timestamp is acquiring the locks it needs.
Such a coarse-grained scheme is simple to realize but
introduces significant lock contention overhead. We propose
a fine-grained stream transaction execution mechanism,
called dynamic restructuring execution. Specifically, TStream
restructures a batch of state transactions (obtained from dual-
model scheduling) into a collection of operation chains that
can be evaluated in parallel without any lock contentions. It
involves two key components: 1) transaction decomposition,
which breaks down each transaction into atomic operations,
and inserting these into appropriate operation chains during
the compute mode and 2) transaction processing where the
operation chains formed are evaluated in parallel during the
state access mode.

1) Dynamic Transaction Decomposition: Once an event’s
EventBlotter is constructed and initialized, the executor is
ready to postpone the issued transaction (i.e., Line 7 of
Algorithm 1). Conceptually, it decomposes each transaction
into multiple state access operations, where each operation
targets one application state. Then, it dynamically inserts
decomposed operations into ordered lists (called operation
chains) with each list storing operations targeting one state



id ts state operation para. EB
O1 1 A READ_MODIFY +10 eb1
O2 1 B WRITE 0 eb1
O3 2 B READ null eb2
O4 3 C READ null eb3

e1 e2executor1 executor2
e3

O1→ O2→

O3

→O4 …
A collection of constructed operation-chains

Decomposed operations

txnt1

txnt3 txnt2

Fig. 4: Transaction decomposition example.

(e.g., average road speed of one road segment). As the
state transaction is expressed by constructing system-provided
APIs, the decomposition is naturally achieved by treating
one invocation of system-provided APIs (i.e., READ, WRITE,
READ_MODIFY) as an operation. For example, two READ

operations in Algorithm 3 will be inserted into two operation
chains as they target two different states from two tables.

Intuitively, any concurrent ordered data structure (e.g., self-
balancing trees) can be used to implement the operation
chain. However, inappropriate implementation can lead to
large overhead in construction and processing. We consider
two properties of a suitable data structure. First, it must allow
insertion from multiple threads simultaneously, while still
guaranteeing the order of operations in the same chain. Second,
it only requires sequential look-up rather than random access
during processing. Based on these considerations, we adopt
the ConcurrentSkipList due to its high insertion performance
and small overhead compared to alternative designs, such as
self-balancing trees, observed in prior work [26].

Figure 4 illustrates the decomposition process for three
transactions. txnt1 is decomposed into two operations, O1

and O2. Each operation is annotated with timestamp (ts) of
its original transaction, targeted state (state), access operation
(operation), and parameters (para.) including read/write sets
and dependent functions. O2 and O3 are inserted into the same
operation chain as they target the same state B. As O2 has a
smaller timestamp than O3, the chain is sorted as O2 → O3.
O1 and O4 form another two chains as they target different
states. Note that EventBlotters (EBs) are also embedded in
the operation (i.e. the last column of the table in Figure 4)
so that they can be tracked during transaction processing for
recording access results.

2) Parallel Transaction Processing: When executors are
all switched to the state access mode, they proceed to
collaboratively process the formed operation chains. There are
two cases that we need to consider.

• Case 1: there are no data dependencies among different
operation chains. Then, one executor simply sequentially
walks (i.e., evaluate) through an operation chain from
the top (i.e., operation with the smallest timestamp). All
operation chains can be processed in parallel by multiple
executors without any contentions.

• Case 2: there are data dependencies among different
operation chains. For example, a write operation of one
state is dependent on a read operation of another state.
TStream handles data dependencies with a simple yet

effective iterative process.
Handling Data Dependency. During transaction

decomposition, TStream records dependency information of
operation chains, e.g., chainA depends on chainB if there
is at least one operation targeting state A and dependent on
state B. This dependency recording process is lightweight
(i.e., simply marking chainA during operation insertion)
without contentions. During transaction processing, TStream
first parallelly process those operation chains with no data
dependencies. Then it parallelly processes the remaining ones
which are dependent on those previously processed. This
iterative process continues until all operations are processed.

This design has low overhead at tracking data dependencies
(only at operation chain level) with high parallelism, but
some operations may be processed out-of-order: operations
with larger timestamp without dependencies on others may
be processed earlier. To handle this issue, TStream maintains
multiple versions (i.e., updated by operations with different
timestamps) of a state during the processing if there are
dependencies on it. This ensures that subsequent reads will
get the correct version (i.e., not necessarily the latest one) of
the targeted states. After the current batch of transactions is
processed, all versions of a state except the latest are expired
and can be safely garbage collected, restoring all states to
having only a single version.

The amount of memory used for keeping multiversions of
states is related to the punctuation interval. Suppose there are
N transactions with a unique timestamp to handle between
two subsequent punctuations and each transaction touches m
states with a size of s. Then, the amount of memory required
to preserve different versions of the shared states is up to
N ∗m ∗ s. The upper limit is hit only if all transactions touch
the same set of states (i.e., each state will be touched by N
times) and all operations depend on each other (i.e., every state
needs to maintain multiple versions). Taking SL as an example
and suppose punctuation interval is 500, as each transaction
touches up to four different states and each state has a size of
100 bytes (Section VI), the memory required is hence up to
500 * 4 * 100 = 200 Kbytes.

This memory usage is stable during processing. As
mentioned in Section IV-B, multiversions of a state except
the newest version can be garbage collected immediately after
TStream switches back to compute mode. This is because
the subsequent transactions will never need to access the
previous versions of states except the latest ones as they are
guaranteed to have larger timestamps.

Handling Transaction Abort. If an update violates state
consistency (e.g., road speed can not be negative), it has
to be aborted, causing the corresponding transaction to be
aborted. TStream marks the corresponding input event as
“rejected” to notify users via the output stream. Due to
the synchronization barriers, TStream can abort transactions
by simply removing them (i.e., skip the offending update
operation during processing) from the batch of transactions
to process before resuming the compute mode. Application
semantics hence do not change under different schemes (i.e.,



LOCK , MVLK , PAT and TStream) and how state accesses
are executed or aborted is transparent to users, who only
know if the event is successfully executed or rejected. Note
that the goal of TStream is to support concurrent stateful
stream processing rather than supporting arbitrary user-defined
transaction aborts.

D. Consistency Guarantee

We now discuss how TStream ensures that concurrent state
transaction processing preserve the following properties [8] in
order to provide state consistency guarantee:

• Atomicity requires all or none operations of a state
transaction to be executed. Although transactions are
restructured under TStream, all operations between
two subsequent punctuations must be either executed
or aborted before TStream can resume to continue
processing new input events (i.e., new transactions).
Hence, transactions between two subsequent punctuations
will be executed (or aborted) and atomicity is always
satisfied in TStream.

• Consistency requires application state being valid (e.g.,
average road speed must be larger than 0) after all
updates applied. TStream processes all operations of
one operation chain (targeting at one state) in one
thread sequentially. Once a write operation violates
consistency, it will be aborted and subsequently abort the
corresponding transaction. Hence, TStream can always
satisfy consistency.

• Isolation requires concurrent transactions are executed
as if they are executed in some sequential order. This is
naturally guaranteed as TStream always guarantee correct
state transaction schedule (Definition 2): transactions are
executed as if they are executed follows event sequence.

• Durability requires modification to state are durable.
TStream can replicate states stored in memory to disk
before resuming to compute mode to satisfy durability.
In this paper, we assume states are always kept in main
memory.

E. System Optimizations

Transaction Batching. TStream focuses on achieving a
reasonable latency level with high throughput. Compared to
the existing approaches, TStream does not instantly process
each issued state transaction but periodically processing
batches of state transactions. The interval size of two
subsequent punctuations hence plays an important role in
tuning system throughput and processing latency. If a large
interval is configured, the system waits for a longer period
before processing transactions, which increases worst-case
processing latency. This is because some events are waiting
(i.e., stored on its executor) for their issued transactions to
be processed. Conversely, a small interval size might drop
system throughput due to insufficient parallelism to amortize
synchronization overhead. We will evaluate the effect of the
punctuation interval in our experiments.

NUMA-Aware Processing. Following previous work [27],
[28], we consider three different design options for processing
operation chains on multisocket multicore architectures. 1)
Shared-nothing: we maintain a pool of operation chains
per core. Essentially, decomposed operations are dynamically
routed to predefined cores by hash partitioning. One
executor is responsible for processing all operation chains
in one core. This configuration minimizes cross-core/socket
communication during execution but it may result in workload
imbalance; 2) Shared-everything: we maintain a centralized
pool of operation chains, which is shared among all executors;
3) Shared-per-socket: we maintain a pool of operation chains
per socket. Executors of the same socket can thus share their
workloads, but not across different sockets.

Workloads are shared among multiple executors under
shared-everything and shared-per-socket configuration. Instead
of statically assigning tasks to each executor, dynamic work-
stealing [29] can be applied to achieve better load balancing.
Specifically, multiple executors (in the same sharing group)
continuously fetch and process an operation chain as a task
from their shared task pool. Such a configuration achieves
better workload balancing but pays more for cross-core (and
cross-socket in the case of the shared-everything configuration)
communication overhead compared to the shared-nothing
configuration. We will evaluate TStream with varying NUMA-
aware processing configurations in our experiments.

F. System Limitations

TStream relies on a mostly single-version concurrency
control (i.e., multiversion of a state is maintained if there
are dependencies on it) without any centrally contented locks
via two novel designs (D1 and D2). However, it has two
main limitations. First, TStream performs the best when there
are no data dependencies among operation chains in the
workload (e.g., TP ) as all operation chains can be processed
in parallel. In our experiments, we show that TStream can
still perform better compared to previous solutions when the
workload contains a lot of data dependencies (e.g., SL ) owing
to the unlocked parallelism opportunities. Second, TStream
pays high overhead when aborting multi-write transactions.
This is because TStream decomposes each transaction into the
most fine-grained pieces (i.e., operations) and distributes them
into multiple (could be many) operation chains in order to
enlarge parallelism opportunities. Subsequently, the abortion
of a multi-write transaction may roll back multiple operation
chains. We plan to adopt an optimistic execution strategy [20]
to further enhance our system in future work.

V. IMPLEMENTATION DETAILS

TStream adopts a modular design. It contains two modules:
1) The stream module is based on BriskStream [12], a
highly optimized general purpose DSPS with an architecture
similar to Storm. We extend its original APIs as discussed in
Section IV-A to support concurrent statful stream processing;
2) The state module is based on the Cavalia [20] database,
which implements the system-provided APIs for managing



state transaction execution. Our proposed techniques can be
generalized to other existing DSPSs, such as Storm and Flink,
by integrating the state module into other DSPSs with minor
efforts. However, our solution is mainly designed for the
shared-memory multicore environment. It might require a
system redesign to fully take advantage of the design and
implementation of TStream in a distributed environment such
as Flink/Storm [14].

TStream does not rely on key-based partitioning [6] as
executors are allowed to access any part of application
states. This allows TStream to fuse [30] operators into
a single joint operator to eliminate the impact of
cross-operator communication, which is known to be a
serious performance bottleneck of DSPSs [12], [14], [31].
For example, Road Speed, Vehicle Cnt, and Toll
Notification operator are fused into one joint operator.
A switch-case statement is used to invoke the corresponding
operator logic for each input event. Subsequently, TStream
allows this joint operator to be scaled to any number of
executors without violating the consistency of state. Input
events can be round-robin shuffled among all executors of
the joint operator to ensure load-balancing. This further
simplifies application development and reduces the complexity
of execution plan optimization [12].

VI. EVALUATION

In this section, we show that TStream manages to better
exploit hardware resources compared to the state-of-the-art by
a detailed experimental evaluation.

A. Benchmark Workloads

A benchmark for transactional stream processing is still an
open problem. Previous work [9], [7], [10] typically chooses
a couple of applications in an ad hoc manner to evaluate
their system’s performance. For our experiments, we follow
the four criteria proposed by Jim Gray [32] and assemble
four applications: Grep and Sum (GS), Streaming Ledger (SL),
Online Bidding (OB), and Toll Processing (TP).

We briefly describe how our chosen applications achieve
the four criteria: 1) Relevance: the applications cover
diverse runtime characteristics and types of state access; 2)
Portability: we describe the high-level functionality of each
application and note that these can be ported easily to other
DSPSs supporting concurrent state access; 3) Scalability: the
applications chosen can be configured with different sizes; 4)
Simplicity: the applications are chosen with simplicity in mind
so that the benchmark is understandable.

Our benchmark covers different aspects of application
features. First, our applications cover varying runtime
characteristics. Specifically, when a single core is used, TP
spends 39% of the total time in compute mode, and this
ratio is 29% and 22% for SL and OB, respectively. GS spends
relatively less time in compute mode (13%), and more
time in state access mode. Second, they cover different
types of state transactions. Specifically, different combinations
of READ, WRITE and READ_MODIFY operations are involved

in the issued state transactions from different applications.
Furthermore, SL has heavy data dependencies when handling
transfer requests, i.e., updating one user account requires a
read of another user account.

We have described TP earlier in Figure 2 (b) in Section II.
Now, we describe the remaining applications, GS, SL,
and OB including its application scenario, implementation
details, and input setup. In all applications, we use a
Parser operator to generate and parse input events and
feed the remaining operators and a Sink operator to measure
system performance. All applications need to maintain shared
mutable states among operators, and concurrent state accesses
(modelled as state transactions) shall follow a correct schedule
(Def 2, Section II).

Grep and Sum (GS): GS represents a synthetic
scenario where an application needs to read or update
large shared mutable states and subsequently perform
a computation based on the obtained state values.

Record Table

Parser Grep Sum Sink

𝑒1

𝑒2
Key (32 bytes String) Value (32 bytes String)

Fig. 5: Grep and Sum (GS ).

Grep issues a state
transaction to access a
list of records for each input
event. If an event triggers a
state transaction with a list
of READ operations, Grep
forwards the input event
with the returned state values to Sum; otherwise, it updates
the state with a list of WRITE operations and forwards the
input event to Sink. Sum performs a summation of the
returned state values from Grep. After Sum finishes its
computation, it emits the result as one event to Sink. A
table of 10k unique records is shared among all executors of
Grep. Each record has a size of ∼128 bytes including JVM
reference overhead, and each transaction length is 10 (i.e.,
ten accesses per transaction).

Streaming Ledger (SL): SL is suggested by a
recent commercial DSPS, Streaming Ledger [33].

Account Table
accID(String) balance(long)

Asset Table
assID(String) balance(long)

Parser Sink
Deposit

𝑒1𝑒2

Transfer

Fig. 6: Streaming Ledger (SL ).

It processes events that
involve wiring money
and asset between
accounts. The detailed
descriptions are omitted
here for brevity and can
be found in the white
paper [33]. Deposit
processes requests that top-up user accounts or assets.
Transfer processes requests that transfer balances between
user accounts and assets. The updating results (success/fail)
are passed to Sink. The account and asset tables (each
containing 10k unique records) are shared among all
executors of Deposit and Transfer. Each record has
a size of ∼100 bytes including JVM reference overhead.
Transaction length is four for transfer request (i.e., transferring
from a pair of account and asset to another pair) and is two
for deposit request (i.e., update a pair of account and asset).
We set a balanced ratio between transfer and deposit requests
(i.e., 50% each) in the input stream.



Online Bidding (OB): OB represents a simplified online

Bidding items
     (int)    Price (long)   Qty (long)ID

Auth.Parser Trade Sink
𝑒1

𝑒2

Fig. 7: Online Bidding (OB ).

bidding system [34].
Auth authenticates trade
requests and dispatches
valid requests for further
processing. Trade handles
three types of requests
including (1) bid request
reduces the quantity of its requested item if the bid price is
larger or equal to the asking price and otherwise rejected.
If the item has insufficient quantities, the bid request is also
rejected. (2) alter request modifies the prices of a list of
requested items. (3) top request increases the quantity of
a list of items. The ratio of bid, alter, and top requests is
configured as 6:1:1. A table of 10k unique bidding items are
shared among all executors of Trade. Each record has a
size of ∼50 bytes including JVM reference overhead. The
transaction length of both the alter and the top request is 20,
and that of the bid request is one.

Toll Processing (TP): In this work, we focus on evaluating
mechanisms to support concurrent state access during stream
processing. We hence evaluate the implementation utilizing
concurrent state access as illustrated previously in Figure 2(b)
and omit the discussion of the conventional implementation.
Each record in the road speed table has a size of ∼80 bytes,
and record size in the vehicle count table varies depending
on the number of items in the HashSet, i.e., ∼32∗(2+|items|)
bytes. State transactions from Road Speed and Vehicle
Cnt has a length of one (i.e., update one record from one
table) and those from Toll Notification has a size of
two (i.e., read one record from the two tables).

B. Experimental Setup

We conduct all experiments on a 4-socket Intel Xeon E7-
4820 server with 128 GB DRAM. The OS kernel is Linux
4.11.0-rc2. Each socket contains ten 1.9GHz cores and 25MB
of L3 cache and is connected to the other three sockets via Intel
QPI. NUMA characteristics, such as local and inter-socket
idle latencies and peak memory bandwidths, are measured
with Intel Memory Latency Checker [35]. Specifically, local
memory latency (ns) is 142.6 and remote is 327.5, and local
memory bandwidth (MB/sec) is 20564.8 and remote is 9944.
The number of cores assigned to the system, the size of the
punctuation interval and NUMA-aware processing strategies
are system parameters that can be varied by users. We vary
both parameters in our experiments. We use a punctuation
interval of 500 and shared-nothing processing as the default
execution configuration. We pin each executor on one core and
assign 1 to 40 cores to evaluate the system scalability.

Application states are randomly populated and evenly
distributed to each executor before execution and are kept
the same among different tests. To present a more realistic
scenario, we model the access distribution as Zipfian skew,
where certain states are more likely to be accessed than others.
For GS, SL, and OB, we set the skew factor to 0.6. For
TP, we use the datasets from the previous work [14], which

accesses 100 different road segments with a skew factor of 0.2.
Application states may be partitioned beforehand and a multi-
partition transaction will access multiple partitions. Unless
explicitly mentioned, we set the length and ratio of multi-
partition transactions as 4 and 25%, respectively. That is, each
multi-partition transaction will access four different partitions,
and 25% of all transactions are multi-partition transactions.
Toll Notification of TP accesses one record from two
tables, and it hence always accesses two partitions. We use a
punctuation interval of 500 and shared-nothing as the default
execution configuration.

We implement three competing schemes including the
lock-based approach (LOCK ) [7], multiversion-lock-based
approach (MVLK ) [7], and partition-based approach
(PAT ) [10] into TStream . The original implementation of
LOCK and MVLK [7] is not public available and the
pseudocode given in the original paper is a single-threaded
program. As also pointed out by the original paper [10]
Section 4, the implementation of S-Store uses a single-core
for shared state accesses on one node. We hence adopt similar
ideas from prior works and re-implement the corresponding
multi-threaded version into TStream to utilize multicore
environment. We also examine the system performance when
locks are completely removed from the LOCK scheme, which
is denoted by No-Lock, representing an upper bound on the
system performance.

Evaluation Overview. We first show the overall
performance comparison of different schemes on the
benchmark suite (Section VI-C). Next, we provide transaction
processing time breakdown for different schemes using SL as
an example (Section VI-D). Then we evaluate TStream under
varying workload configurations (Section VI-E). Finally, we
perform a sensitivity study of TStream in Section VI-F to
validate the efficiency of our reimplmentation.

C. Overall Performance Comparison

Finding (1): TStream outperforms prior schemes by up to
4.8 times while ensuring a correct transaction schedule for
all applications at large core counts.
The comparison results are shown in Figure 8, and there

are three major observations. First, TStream significantly
outperforms the second-best scheme in all applications at large
core counts (i.e., 3.8 times over PAT for GS, 1.7 times over
PAT for SL, 3.3 times over PAT for OB, and 4.8 times
over LOCK for TP ). However, there is still a large room
to improve TStream to achieve the performance upper bound
indicated by No-Lock. Second, as expected, TStream brings
lower performance improvement when the workload has heavy
data dependencies (e.g., SL ). This is because it can only
evaluate a subset of operation chains (whose dependencies are
resolved) in parallel during each round. Third, PAT generally
performs better than LOCK and MVLK , as it avoids blocking
when transactions access disjoint partitions. However, PAT
performs poorly for TP because the workload only has 100
unique keys, and transactions are still heavily contented in
the same partition. Excessive access to partition locks causes



No-Lock LOCK MVLK PAT TStream

1 5 10 15 20 25 30 35 40

Number of Cores

10
1

10
2

10
3

10
2

10
3

10
4

10
3

10
4

10
4

T
h
ro

u
g
h
p
u
t 
(K

/s
e
c
)

(a) GS (50% read requests)
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(b) SL
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Fig. 8: Throughput (K events per second) comparison of
different applications under different schemes.

further performance degradation making it perform even worse
than LOCK . In contrast, TStream is still able to exploit
parallelism from a batch of transactions with a sufficiently
large punctuation interval.

D. Transaction Processing Time Breakdown

Finding (2): The centralized lock permitting process
results in serious contention. Our investigation reveals that
prior schemes spend ∼80% of their execution time on
synchronization.
As discussed earlier in Figure 1, Section I, state access

overhead quickly dominates runtime. We now use SL as a
case to further study transaction processing time (including
state access and access overhead) breakdown under different
schemes. Following the previous work [19], we report how
much time is spent on different components in the processing
of a state transaction. 1) Useful: The time spent on accessing
states. 2) Sync: The time spent on synchronization. It consists
of blocking time before lock insertion is permitted in LOCK ,
MVLK and PAT or blocking time due to synchronization
barriers during mode switching in TStream . 3) Lock: The total
amount of time that a transaction spends inserting locks after
it is permitted to do so. 4) RMA: The time spent on remote
memory access. A thread may remotely access global counters
in the case of LOCK , MVLK , and PAT . TStream may involve
remote access during transaction decomposition as threads
need to insert decomposed operation into appropriate operation
chains. Actual state access may also cause remote memory
access for all schemes run on multi-sockets. 5) Others: The
time spent for all other operations and system overheads such
as index lookup and context switching.

Figure 9 shows the time breakdown when the system is
run on a single or four CPU sockets. There are two major
takeaways. First, No-Lock spends more than 50% of the time
on Others. Further investigation reveals that index lookup
is the root cause of this performance degradation. We defer
the study of more scalable index design to future work and
concentrate on concurrent execution control in this work.
Second, Sync overhead dominates all consistency preserving
schemes regardless of the effect of NUMA. Although MVLK
spends less time in Sync compared to LOCK as read may
not be blocked by write, it spends more time in reading
and updating the lwm variables (grouped under the Others
overhead). TStream shows a high synchronization overhead
in SL due to heavy data dependencies. This shows that there
is a large room for improvement.

E. Workload Sensitivity Study

Finding (3): The fine-grained design makes TStream
robust to different workloads. Particularly, it maintains
high performance under a) varying ratios and lengths of
the multi-partition transaction, b) varying read/write state
access ratios, and c) highly skewed access.
We now use GS as an example to evaluate the different

schemes under varying workload configurations.
Multi-partition Transaction Percentage. We first study the

effect of state partitioning. We use a simple hashing strategy
to assign states to partitions based on their primary keys
so that each partition stores a similar number of states. As
a common issue of all partition-based algorithms [16], the
performance of PAT is heavily dependent on the length and
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Fig. 9: Runtime breakdown per state transaction in SL.
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(a) Varying ratio of multi-partition txns (length=6).
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(b) Varying length of multi-partition txns (ratio=50%).

Fig. 10: Multi-partition transaction evaluation.

ratio of multi-partition transactions. We first configure each
multi-partition transaction to access six different partitions
of the application states. We then vary the percentage of
multi-partition transactions in the workload. The results are
shown in Figure 10 (a). There are two key observations.
First, since PAT is specially designed to take advantage
of partitioning, it has low synchronization overhead when
no multi-partition transactions are present (i.e., ratio=0%).
However, it performs worse than TStream even without
any multi-partition transaction as TStream can utilize more
parallelism opportunities due to its fine-grained execution
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(a) Read/write workload ratio.
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Fig. 11: Varying application workload configurations of GS.
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Fig. 12: Effect of varying punctuation interval.

paradigm. Second, PAT ’s performance degrades with more
multi-partition transactions as it further reduces parallelism
opportunities. A similar observation can be found in Figure 10
(b), where we vary the length of multi-partition transactions
and fix its ratio to 50%. In the following studies, we set the
multi-partition ratio to 50% under PAT .

Read Request Percentage. We now vary the percentage of
events that trigger read requests to application states from 0%
(write-only) to 100% (read-only). In this study, we remove the
summation computation from GS and focus on evaluating the
efficiency of state access. We also set the key skew factor to
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Fig. 14: Varying NUMA-aware configurations.

be 0, and hence states are accessed with uniform frequency.
Figure 11 (a) shows the results and there are two major
observations. First, varying read/write request ratio has a minor
effect on system performance under prior schemes, LOCK ,
MVLK and PAT . This is because their execution runtime
is dominated by synchronization overhead. Second, TStream
generally performs worse with more read requests as TStream
has to write the state value to EventBlotter of the triggering
event (which triggers the read request) during transaction
evaluation. An interesting point to take note is that TStream’s
performance increases slightly under the read-only workload
compared to the mixed workload. When there are both reads
and writes to the same state, hardware prefetchers are not
effective as each prefetch can steal read and write permissions
for shared blocks from other processors, leading to permission
thrashing and overall performance degradation [36].

State Access Skewness. In this study, we configure a write-
only workload to examine how different schemes perform
under contented state updates. Figure 11(b) shows that
TStream is tolerant to access skewness. Prior schemes perform
worse with increasing skewness as there is more intensive
contention on the same lock. In contrast, TStream achieves
high performance even under serious skewness because
TStream is still able to discover parallelism opportunities
among a batch of transactions (a punctuation interval of 500).

F. System Sensitivity Study

Finding (4): TStream can be tuned to achieve low
processing latency and high throughput. We also find that
the shared-nothing NUMA-aware configuration achieves
the best performance.

Varying Punctuation Interval. The number of transactions
to handle between two consecutive punctuation plays a
critical role in TStream’s performance. Figure 12 (a) shows
that the performance of TStream generally increases with
a larger punctuation interval. It also shows that a large
punctuation interval is especially beneficial for TP because the
workload has only 100 unique segment IDs and transactions
are heavily contented at the same state. By allowing more
transactions to be accumulated, TStream increases parallelism
opportunities among more decomposed operations, and its
performance hence increases significantly. Figure 12 (b) shows
the processing latency of TStream with various punctuation
intervals. Following the previous work [37], we define the
end-to-end processing latency as the duration between the
time when an input event enters the system and the time
when the result is generated. Thanks to the significantly
improved performance, TStream achieves very low processing
latency. When the punctuation interval is set to 500, its 99th-
percentile processing latency is around 0.23∼0.63 ms, which
satisfies many existing use cases [37]. It also shows that
there is no clear trade-off between throughput and latency
under varying punctuation intervals. This is because higher
throughput also reduces queuing delays. Latency increases
with increasing punctuation interval only when throughput
can not be further improved (e.g., GS at an interval of
250). Figure 13 further shows that TStream (punctuation
interval=500) achieves comparable and sometimes even lower
processing latency compared to the state-of-the-art. The
optimal (e.g., maximum throughput) punctuation interval may
be affected by many factors including machine characteristics
(e.g., number of cores, size of LLC, and memory), number of
unique keys in the workload, state size, tuple size, length of
the state transaction, etc. Due to its considerable complexity,
we leave the estimation of the optimal punctuation interval
itself to future work.

Effect of NUMA-aware Optimizations. We now compare
different NUMA-aware processing configurations of TStream
including shared-nothing, shared-everything, and shared-per-
socket. Work-stealing can be further enabled in the latter two
configurations and our experimental results show that work-
stealing significantly improves their throughput by 1.6∼7.0
times. However, Figure 14 shows that TStream achieves the
best performance for all applications under the shared-nothing
configuration. This indicates that cross-core and cross-socket
communication during state transaction processing should
always be avoided. Nevertheless, we plan to investigate this
impact on other applications that may be more sensitive to
workload imbalance rather than communication overhead.



G. Compared to SStore

For a sanity test, we have compared SStore’s performance
against TStream (PAT scheme) on single core using SStore’s
Micro-Benchmark with one stored procedure setting (Fig.6
[10]), which contains three write operations. The results show
that TStream (PAT scheme) outperforms SStore about three
times: SStore achieves a throughput of ∼ 3.6K events/sec
and TStream (PAT scheme) achieves ∼ 11.7K events/sec.
This validates the efficiency of our re-implementation. The
performance superiority comes from TStream’s more efficient
execution mechanism. For example, three write operations in
this test are consecutively executed by one thread in TStream
rather than passively triggered by triggers (SStore) and context
switching overhead is significantly reduced.

VII. RELATED WORK

Concurrent Stateful Stream Processing. We have
reviewed some of the related work in Section II and now
discuss a few more. Botan et al. [9] presented an unified
transactional model for streaming applications. Affetti et
al. [8] recently proposed a state consistency model for stream
processing. Both studies provide the same formal definitions
on how mutable application states can be shared among
executors during stream processing through transactional
semantics, and we have adopted their consistency model.
However, their implementations heavily rely on locks to
guarantee state consistency. Unless these systems, TStream’s
novel design has been shown to achieve much higher
throughput and scalability with various workloads. There is
also a recent commercial system, called Streaming Ledger [33]
for extending Flink to support concurrent state access with
a goal similar to ours. It is close-sourced, and we can not
compare our system with that.

Database Partitioning. Prior work [38], [39] propose
to divide the underlying storage into multiple logical
partitions, each of which is assigned a single-thread execution
engine with exclusive access. Transaction workloads in those
databases are partitioned according to the primary key(s) in the
root table [40], and the performance can significantly degrade
as the ratio of multi-partition transactions increases [27]. S-
Store [10] adopts the same technique with extensions to
further guarantee state access ordering [41]. The partition-
based approach’s common drawback is their handling of multi-
partition transactions. In contrast, TStream decomposes a
collection of transactions at runtime and execute the resulting
operation chains at high system concurrency.

Program Partitioning. Many have proposed adopting
program partitioning and transformation to optimize the
performance of transaction processing, such as [42]. TStream
deviates from existing techniques such as transaction
chopping [43] which are purely static. TStream dynamically
restructures potentially conflicting operations in a collection
of state transactions into independent groups called operation
chains which are evaluated in a determined sequence (F3).
Transaction-chopping and its many variants such as [44]
were proposed in the context of nondeterministic transaction

processing, and thus their program partitioning technique does
not account for the state access sequence that is necessary
for state consistency of stream processing. The periodic
transaction processing of TStream is in the spirit of lazy
transaction evaluation [45], but TStream needs to ensure that
transactions are processed following input event sequence,
which results in different optimization opportunities (e.g.,
sorted operation chains).

Multicore Architectures. Multicore architectures have
brought many research challenges and opportunities for in-
memory data management, as outlined in recent surveys [46].
To meet the increasing performance demand, optimizing
stream processing on multicore machines has been a hot
research topic [14], [31], [47]. TStream is built to improve
multicore utilization standing on the shoulders of many
valuable existing works such as [12], [23], [27]. However, none
of the previous work addresses the scalability bottlenecks that
TStream solves, i.e. how to scale concurrent state access in
stream processing with consistency guarantee.

VIII. CONCLUSION

With the increasing adoption of stream processing in
emerging use cases, we believe that an efficient concurrent
stateful DSPS becomes more and more desirable. TStream
demonstrates that efficient concurrent state access during
stream processing can be elegantly supported with its novel
dual-mode scheduling and dynamic restructuring execution
mechanism on modern multicore architectures. In particular, it
guarantees strict state consistency, while judiciously exploits
more parallelism opportunities – both within the processing of
each input event and among a (tunable) batch of input events.

REFERENCES

[1] (2018) Apache flink, https://flink.apache.org/.
[2] (2018) Apache storm, http://storm.apache.org/.
[3] S. Kulkarni and et al., “Twitter heron: Stream processing at scale,” in

SIGMOD ’15.
[4] Y. Wu and K. Tan, “Chronostream: Elastic stateful stream computation

in the cloud,” in ICDE’15.
[5] P. Carbone and et al., “State management in apache flink: Consistent

stateful distributed stream processing,” Proc. VLDB Endow. 2017.
[6] N. R. Katsipoulakis and et al., “A holistic view of stream partitioning

costs,” Proc. VLDB Endow. 2017.
[7] D. Wang and et al., “Active complex event processing over event

streams,” Proc. VLDB Endow. 2011.
[8] L. Affetti and et al., “Flowdb: Integrating stream processing and

consistent state management,” in DEBS ’17.
[9] I. Botan and et al., “Transactional stream processing,” in EDBT ’12.

[10] J. Meehan and et al., “S-store: Streaming meets transaction processing,”
Proc. VLDB Endow. 2015.

[11] A. Arasu and et al., “Linear road: A stream data management
benchmark,” in VLDB ’04.

[12] S. Zhang and et al., “Briskstream: Scaling data stream processing on
shared-memory multicore architectures,” in SIGMOD ’19.

[13] D. J. Abadi and et al., “Aurora: A new model and architecture for data
stream management,” The VLDB Journal, 2003.

[14] S. Zhang and et al., “Revisiting the design of data stream processing
systems on multi-core processors,” in ICDE’17.

[15] M. J. Sax and M. Castellanos, “Building a transparent batching layer
for storm.” HP Labs Technical Report, 2013.

[16] A. Pavlo and et al., “Skew-aware automatic database partitioning in
shared-nothing, parallel oltp systems,” in SIGMOD ’12.

https://flink.apache.org/
http://storm.apache.org/


[17] P. A. Bernstein and E. Newcomer, Principles of transaction processing.
Morgan Kaufmann, 2009.

[18] X. Yu and et al., “Tictoc: Time traveling optimistic concurrency control,”
in SIGMOD ’16.

[19] X. Yu and et al., “Staring into the abyss: An evaluation of concurrency
control with one thousand cores,” Proc. VLDB Endow. 2014.

[20] Y. Wu and et al., “Transaction healing: Scaling optimistic concurrency
control on multicores,” in SIGMOD ’16.

[21] B. He and et al., “Mars: a mapreduce framework on graphics processors,”
in PACT’08.

[22] P. A. Tucker and et al., “Exploiting punctuation semantics in continuous
data streams,” TKDE’03.

[23] H. Miao and et al., “Streambox: Modern stream processing on a
multicore machine,” in USENIX ATC’17.

[24] B. Chandramouli and et al., “Trill: A high-performance incremental
query processor for diverse analytics,” Proc. VLDB Endow. 2014.

[25] Cyclicbarrier. https://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/CyclicBarrier.html.

[26] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,” in
Workshop on Algorithms and Data Structures, 1989.

[27] D. Porobic and et al., “Oltp on hardware islands,” Proc. of the VLDB
Endow. 2012.

[28] D. Porobic and et al., “Atrapos: Adaptive transaction processing on
hardware islands,” in ICDE’14.

[29] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” J. ACM, 1999.

[30] M. Hirzel and et al., “A catalog of stream processing optimizations,”
ACM Comput. Surv. 2014.

[31] S. Zeuch and et al., “Analyzing efficient stream processing on modern
hardware,” Proc. VLDB Endow. 2019.

[32] J. Gray, Benchmark Handbook: For Database and Transaction
Processing Systems. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992.

[33] “Data Artisans Streaming Ledger Serializable ACID Transactions on
Streaming Data, https://www.da-platform.com/streaming-ledger,” 2018.

[34] J. Tan and M. Zhong, “An online bidding system (obs) under price
match mechanism for commercial procurement,” Applied Mechanics and
Materials, 2014.

[35] (2018) Intel memory latency checker, https://software.intel.com/articles/
intelr-memory-latency-checker.

[36] N. D. E. Jerger and et al., “Friendly fire: understanding the effects of
multiprocessor prefetches,” in ISPASS’06.

[37] T. Das and et al., “Adaptive stream processing using dynamic batch
sizing,” in SOCC ’14.

[38] A. Thomson and D. J. Abadi, “The case for determinism in database
systems,” Proc. VLDB Endow. 2010.

[39] A. Kemper and T. Neumann, “Hyper: A hybrid oltp olap main memory
database system based on virtual memory snapshots,” in ICDE’11.

[40] M. Stonebraker and et al., “The end of an architectural era: (it’s time
for a complete rewrite),” in VLDB ’07.

[41] U. Cetintemel and et al., “S-store: A streaming newsql system for big
velocity applications,” Proc. VLDB Endow. 2014.

[42] A. J. Bernstein and et al., “Concurrency control for step-decomposed
transactions,” Inf. Syst. 1999.

[43] D. Shasha and et al., “Transaction chopping: Algorithms and
performance studies,” ACM Trans. Database Syst. 1995.

[44] N. Narula and et al., “Phase reconciliation for contended in-memory
transactions,” in OSDI’14.

[45] J. M. Faleiro and et al., “Lazy evaluation of transactions in database
systems,” in SIGMOD ’14.

[46] H. Zhang and et al., “In-memory big data management and processing:
A survey,” TKDE’15.

[47] A. Koliousis and et al., “Saber: Window-based hybrid stream processing
for heterogeneous architectures,” in SIGMOD ’16.

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CyclicBarrier.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CyclicBarrier.html
https://www.da-platform.com/streaming-ledger
https://software.intel.com/ articles/intelr-memory-latency-checker
https://software.intel.com/ articles/intelr-memory-latency-checker

	I Introduction
	II PRELIMINARIES
	II-A Data Stream processing
	II-B Concurrent Stateful Stream Processing
	II-C Existing Solutions Revisited
	II-C1 Lock-based approach (LOCK)
	II-C2 Multiversion-Lock-based approach (MVLK)
	II-C3 Partition-based approach (PAT)


	III TStream Overview
	IV Design Details
	IV-A Programming APIs
	IV-B Dual-Mode Scheduling
	IV-B1 EventBlotter Maintenance
	IV-B2 Processing Mode Switching
	IV-B3 Progress Controller

	IV-C Dynamic Restructuring Execution
	IV-C1 Dynamic Transaction Decomposition
	IV-C2 Parallel Transaction Processing

	IV-D Consistency Guarantee
	IV-E System Optimizations
	IV-F System Limitations

	V Implementation Details
	VI Evaluation
	VI-A Benchmark Workloads
	VI-B Experimental Setup
	VI-C Overall Performance Comparison
	VI-D Transaction Processing Time Breakdown
	VI-E Workload Sensitivity Study
	VI-F System Sensitivity Study
	VI-G Compared to SStore

	VII Related Work
	VIII Conclusion
	References

