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Abstract—We propose definitions of fairness in machine learn-
ing and artificial intelligence systems that are informed by the
framework of intersectionality, a critical lens arising from the
Humanities literature which analyzes how interlocking systems
of power and oppression affect individuals along overlapping
dimensions including gender, race, sexual orientation, class, and
disability. We show that our criteria behave sensibly for any
subset of the set of protected attributes, and we prove economic,
privacy, and generalization guarantees. We provide a learning
algorithm which respects our intersectional fairness criteria. Case
studies on census data and the COMPAS criminal recidivism
dataset demonstrate the utility of our methods.

I. INTRODUCTION

The increasing impact of artificial intelligence and machine
learning technologies on many facets of life, from com-
monplace movie recommendations to consequential criminal
justice sentencing decisions, has prompted concerns that these
systems may behave in an unfair or discriminatory manner [J3]],
[35], [36]. A number of studies have subsequently demon-
strated that bias and fairness issues in Al are both harmful
and pervasive [2]], [7]], [8]. The Al community has responded
by developing a broad array of mathematical formulations of
fairness and learning algorithms which aim to satisfy them [4],
[17], [22], [43]. Fairness, however, is not a purely technical
construct, having social, political, philosophical and legal
facets [9]]. At this juncture, the necessity has become clear for
interdisciplinary analyses of fairness in Al and its relationship
to society, to civil rights, and to the social goals which are to
be achieved by mathematical fairness definitions, which have
not always been made explicit [34].

In particular, it is important to connect fairness and bias
in algorithms to the broader context of fairness and bias
in society, which has long been the concern of civil rights
and feminist scholars and activists [28]], [36]]. In this work,
we address the specific challenges of fairness in Al that are
motivated by intersectionality, an analytical lens from the
third-wave feminist movement which emphasizes that civil
rights and feminism should be considered simultaneously
rather than separately [[13]]. We propose intersectional Al
fairness criteria and perform a comprehensive, interdisci-
plinary analysis of their relation to the concerns of diverse
fields including the humanities, law, privacy, economics, and
statistical machine learning. Our contributions include:
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1) A critical analysis of the consequences of intersectionality
in the particular context of fairness for Al,

2) Three novel fairness metrics: differential fairness (DF)
which aims to uphold intersectional fairness for Al
and machine learning systems, DF bias amplification, a
slightly more politically conservative fairness definition
which measures the bias specifically introduced by an al-
gorithm, and differential fairness with confounders which
can alter outcome distributions (DFC),

3) Proofs of the desirable intersectionality, privacy, eco-
nomic, and generalization properties of our metrics,

4) A learning algorithm which enforces our criteria, and

5) Case studies on census and criminal recidivism data
which demonstrate our methods’ practicality and their
benefits versus the subgroup fairness criterion of [27].

II. INTERSECTIONALITY AND FAIRNESS IN Al

We begin with an introduction to intersectionality and an
analysis of its relationship to fairness in an artificial intel-
ligence and machine learning context. Intersectionality is a
lens for examining societal unfairness which originally arose
from the observation that sexism and racism have intertwined
effects, in that the harm done to Black women by these two
phenomena is more than the sum of the parts [13[], [40].
The notion of intersectionality was later extended to include
overlapping injustices along more general axes [11]. In its
general form, intersectionality emphasizes that systems of
oppression built into society lead to systematic disadvantages
along intersecting dimensions, which include not only gender,
but also race, nationality, sexual orientation, disability status,
and socioeconomic class [11]-[13]], [24], [32], [40]. These
systems are interlocking in their effects on individuals at each
intersection of the affected dimensions.

The term intersectionality was introduced by Kimberlé
Crenshaw in the 1980’s [[13|] and popularized in the 1990’s,
e.g. by Patricia Hill Collins [11f, although the ideas are
much older [12], [40]. In the context of machine learning
and fairness, intersectionality was recently considered by [8]],
who studied the impact of the intersection of gender and skin
color on computer vision performance, and by [23], [27],
who aimed to protect certain subgroups in order to prevent
“fairness gerrymandering.” From a humanities perspective,
[36] critiqued the behavior of the Google search engine with an
intersectional lens, by examining the search results for terms
relating to women, people of color, and their intersections, e.g.
“Black girls.”
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Fig. 1. Implicit causal assumptions (a,b) and values-driven ideal world scenarios (c,d) for inframarginality and intersectionality notions of fairness. Here, A
denotes protected attributes, X observed attributes, Y~ outcomes, N individuals, p number of protected attributes. Red arrows denote potentially unfair causal
pathways, which are removed to obtain the ideal world scenarios (c,d). The above summarizes broad strands of research; individual works may differ.

Intersectionality has implications for Al fairness beyond the
use of multiple protected attributes. Many fairness definitions
aim (implicitly or otherwise) to uphold the principle of infra-
marginality, which states that differences between protected
groups in the distributions of “merit” or ‘“risk” (e.g. the
probability of carrying contraband at a policy stop) should
be taken into account when determining whether bias has
occurred [39]. A closely related argument is that parity of
outcomes between groups is at odds with accuracy [17], [22].
Intersectionality theory provides a counterpoint: these differ-
ences in risk/merit, while acknowledged, are frequently due
to systemic structural disadvantages such as racism, sexism,
inter-generational poverty, the school-to-prison pipeline, mass
incarceration, and the prison-industrial complex [12f, [13],
[15], [24], [42]. Systems of oppression can lead individuals
to perform below their potential, for instance by reducing
available cognitive bandwidth [41]], or by increasing the prob-
ability of incarceration [/1], [[15]]. In short, the infra-marginality
principle makes the implicit assumption that society is a fair,
level playing field, and thus differences in “merit” or “risk”
between groups in data and predictive algorithms are often to
be considered legitimate. In contrast, intersectionality theory
posits that these distributions of merit and risk are often
influenced by unfair societal processes (see Figure [I)).

As an example of a scenario affected by unfair processes,
consider the task of predicting prospective students’ academic
performance for use in college admissions decisions. As
discussed in detail by [41]], and references therein, individ-
uals belonging to marginalized and non-majority groups are
disproportionately impacted by challenges of poverty and

racism (in its structural, overt, and covert forms), including
chronic stress, access to healthcare, under-treatment of mental
illness, micro-aggressions, stereotype threat, disidentification
with academics, and belongingness uncertainty. Similarly,
LGBT and especially transgender, non-binary, and gender
non-conforming students disproportionately suffer bullying,
discrimination, self-harm, and the burden of concealing their
identities. These challenges are often further magnified at the
intersection of affected groups. A survey of 6,450 transgender
and gender non-conforming individuals found that the most
serious discrimination was experienced by people of color,
especially Black respondents [21]. Verschelden explains the
impact of these challenges as a tax on the “cognitive band-
width” of non-majority students, which in turn affects their
academic performance. She states that the evidence is clear

“...that racism (and classism, homophobia, etc.) has
made people physically, mentally, and spiritually ill
and dampened their chance at a fair shot at higher
education (and at life and living).”

A classifier trained to predict students’ academic performance
from historical data hence aims to emulate outcomes that
were substantially affected by unfair factors [3]]. An accurate
predictor for a student’s GPA may therefore not correspond
to a fair decision-making procedure |5]. We can resolve this
apparent conflict if we are careful to distinguish between the
statistical problem of classification, and the economic problem
of the assignment of outcomes (e.g. admission decisions) to
individuals based on classification. Viewing the classifier’s task
as a policy question, it becomes clear that high accuracy need
not be the primary goal of the system, especially when we



consider that “accuracy” is measured on unfair data]

In Figure|l| we summarize the causal assumptions regarding
society and data, and the idealized “perfect world” scenarios
implicit in the two approaches to fairness. Inframarginality
(a) emphasizes that the distribution over relevant attributes
X varies across protected groups A, which leads to potential
differences in so-called “merit” or “risk” between groups,
typically presumed to correspond to latent ability and thus
“deservedness” of outcomes Y [39]]. Intersectionality (b) em-
phasizes that we must also account for systems of oppression
which lead to (dis)advantage at the intersection of multiple
protected groups, impacting all aspects of the system including
the ability of individuals to succeed (“merit”) to their potential,
had they not been impacted by (dis)advantage [13]. In the
ideal world that an algorithmic (or other) intervention aims to
achieve, inframarginality-based fairness desires that individual
“merit” is the sole determiner of outcomes (c¢) [22], [39],
which can lead to disparity between groups [17]. In ideal in-
tersectional fairness (d), since ability to succeed is affected by
unfair processes, it is desired that this unfairness is corrected
and individuals achieve their true potential [41]]. Assuming
potential does not substantially differ across protected groups,
this implies that parity between groups is typically desirableE]

In light of the above, we argue that an intersectional
definition of fairness in Al should satisfy the following criteria:

A Multiple protected attributes should be considered.

B All of the intersecting values of the protected attributes,
e.g. Black women, should be protected by the definition.

C We should still also ensure that protection is provided on
individual protected attribute values, e.g. women.

D The definition should protect minority groups, who are
often particularly affected by discrimination in society.

E The definition should ensure that systematic differences
between the protected groups, assumed to be due to
structural oppression, are rectified, rather than codified.

These desiderata do not uniquely specify a fairness definition,
but they provide a set of guidelines to which legal, political,
and contextual considerations can then be applied to determine
an appropriate fairness measure for a particular task.

III. EXISTING FAIRNESS DEFINITIONS

We now consider existing fairness definitions and their
relation to the aforementioned criteria (see the Appendix for
further discussion of related work). Relevant fairness defini-
tions aim to detect and prevent discriminatory (or other) bias
with respect to a set of protected attributes, such as gender,
race, and disability status. Given criterion we focus on
multi-attribute definitions. The two dominant multi-attribute

! Amazon recently abandoned a classifier for job candidate selection which
was found to be gender biased [[I4]. We speculate that this was likely due to
similar issues.

2Disparity could still be desirable if there are legitimate confounders which
depend on protected groups, e.g. choice of department that individuals apply
to in college admissions. We address this scenario in Section
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Fig. 2. Toy example: probability of the “positive” class is 0.8 for a
majority group, 0.1 for a minority group, varying P(minority).

approaches in the literature are subgroup fairness [27|] and
multicalibration [23|].

We adapt the notation of [29] to all definitions in this paper.
Suppose M (x) is a (possibly randomized) mechanism which
takes an instance x € x and produces an outcome y for
the corresponding individual, Si,...,S, are discrete-valued
protected attributes, A = S; X Sy x ... X 5, and 6 is the
distribution which generates x. For example, the mechanism
M (x) could be a deep learning model for a lending decision,
A could be the applicant’s possible gender and race, and 6
the joint distribution of credit scores and protected attributes.
The protected attributes are included in the attribute vector
x, although M (x) is free to disregard them (e.g. if this is
disallowed). The setting is illustrated in Figure

Definition IIL.1. (Statistical Parity Subgroup Fairness [27|])
Let G be a collection of protected group indicators g
A — {0,1}, where g(s) = 1 designates that an individual
with protected attributes s is in group ¢. Assume that the
classification mechanism M (x) is binary, i.e. y € {0,1}.

Then M (x) is ~y-statistical parity subgroup fair with respect
to 0 and G if for every g € G,

|Prro(M(x) = 1) — Pao(M(x) = 1|g(s) = 1)]
X Pylg(s) =1) < 7 . (1

Note that v € [0,1], smaller is better. The first term
penalizes a difference between the probability of the positive
class label for group g, and the population average of this
probability. The term Py(g(s) = 1) weights the penalty by the
size of group g as a proportion of the population. Statistical
parity subgroup fairness (SF) is a multi-attribute definition
satisfying criterion [A] To satisfy [B]and [C| G can be all inter-
sectional subgroups (e.g. Black women) and top-level groups
(e.g. men). The first term in Equation [T} which encourages
similar outcomes between groups, enforces criterion [E}

From an intersectional perspective, one concern with SF is
that it does not satisfy criterion [D} the protection of minority
groups. The term Py(g(s) = 1) weights the “per-group
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Fig. 4. “Per-group” v-SF and our proposed e-DF, vs probability (i.e.
size) of groups, Adult dataset. Circles: intersectional subgroups (e.g.
Black women of USA). Squares: top-level groups (e.g. men).

(un)fairness” for each group g, i.e. Equation [I] applied to g¢
alone, by its proportion of the population, thereby specifically
downweighting the consideration of minorities. In Figure |Z|, we
show an example where varying the size of a minority group
P(minority) drastically alters y-subgroup fairness, which finds
that a rather extreme scenario is more acceptable when
the minority group is small. Our proposed criterion, e-DF
(introduced in Section [IV)), is constant in P(minority).

Figure [] reports “per-group” +’s on the UCI Adult census
dataset, i.e. Equation [T] applied separately to each group, em-
pirically seen have an increasing relationship with P(group).
The final ~-SF is determined by the worst case of the per-
group v’s. A small minority group thereby will most likely not
directly affect v-SF, since the downweighting makes it unlikely
to be the “most unfair” group.

Kearns et al. [27] justify the use of the Py(g(s) = 1) term
via statistical considerations, as it is useful to prove general-
ization guarantees to extrapolate from empirical estimates of ~y
(see Section|[VIII-D)). From a different ethical perspective, total
utilitarianism, increasing the utility (i.e. reducing unfairness)

for a large group of individuals at the expense of smaller
groups could also be justified by the increase in the total utility
of the population. The problem with total utilitarianism, of
course, is that it admits a scenario where many people possess
low utility. We do not intend to dismiss SF as a valid notion
of fairness. Our claim here, rather, is simply that due to its
treatment of minority groups, SF does not fully encapsulate
the principles of fairness advocated by intersectional feminist
scholars and activists [L1], [13]], [24], [32], [40].

Other candidate multi-attribute fairness definitions include
false positive subgroup fairness [27] and multicalibration
[23]. These definitions are similar to SF, but they concern
false-positive rates and calibration of prediction probabilities,
respectively. Since they focus on reliability of estimation
rather than allocation of outcomes, they do not directly ad-
dress criterion [E} and so are weaker definitions from a civil
rights/feminist perspective. This does not preclude their use for
intersectional fairness scenarios in which harms are caused by
incorrect predictions, rather than unfair outcome assignments;
indeed, this is the type of approach [8|] take for studying
intersectional fairness in computer vision applications. Nev-
ertheless, we will not consider them further here.

IV. DIFFERENTIAL FAIRNESS (DF) MEASURE

We now introduce our proposed fairness measures which
satisfy our intersectionality criteria from Section Note that
there are multiple conceivable fairness definitions which sat-
isfy these criteria. For example, SF could be adapted to address
criterion [D] by simply dropping the P(g(s) = 1) term, at the
loss of its associated generalization guarantees. We instead
select an alternative formulation, which is similar to this ap-
proach in spirit, but which has additional beneficial properties
from a societal perspective regarding the law, privacy, and
economics, as we shall discuss below. Our formalism has a
particularly elegant intersectionality property, in that Criterion
[C] (protecting higher-level groups) follows automatically from
Criterion [B| (protecting intersectional subgroups).

We motivate our criteria from a legal perspective. Consider
the 80% rule, established in the Code of Federal Regulations
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[20] as a guideline for establishing disparate impact in viola-
tion of anti-discrimination laws such as Title VII of the Civil
Rights Act of 1964. The 80% rule states that there is legal
evidence of adverse impact if the ratio of probabilities of a
particular favorable outcome, taken between a disadvantaged
and an advantaged group, is less than 0.8:

P(M(x) = 1|group A)/P(M(x) = 1|group B) < 0.8 . (2)

Our first proposed criterion, which we call differential fair-
ness (DF), extends the 80% rule to protect multi-dimensional
intersectional categories, with respect to multiple output val-
ues. We similarly restrict ratios of outcome probabilities
between groups, but instead of using a predetermined fairness
threshold at 80%, we measure fairness on a sliding scale that
can be interpreted similarly to that of differential privacy, a
definition of privacy for data-driven algorithms [18]. Differen-
tial fairness measures the fairness cost of mechanism M (x)
with a parameter e.

Definition IV.1. A mechanism M (x) is e-differentially fair
(DF) with respect to (A, ©) if for all 6 € © with x ~ 0, and
y € Range(M),

Paro(M(x) = yls;, 0)
~ Paro(M(x) = yls;, 0)
for all (s;,s;) € A x A where P(s;|0) >0, P(s;|0) > 0.

- <e, 3)

In Equation@, si, s; € A are tuples of all protected attribute
values, e.g. gender, race, and nationality, and © is a set of
distributions 6 which could plausibly generate each instance
XE| For example, © could be the set of Gaussian distributions
over credit scores per value of the protected attributes, with
mean and standard deviation in a certain range.

This is an intuitive intersectional definition of fairness:
regardless of the combination of protected attributes, the prob-
abilities of the outcomes will be similar, as measured by the

3The possibility of multiple § € © is valuable from a privacy perspective,
where © is the set of possible beliefs that an adversary may have about the
data, and is motivated by the work of [29]. Continuous protected attributes
are also possible, in which case sums are replaced by integrals in our proofs.

ratios versus other possible values of those variables, for small
values of e. For example, the probability of being given a loan
would be similar regardless of a protected group’s intersecting
combination of gender, race, and nationality, marginalizing
over the remaining attributes in x. If the probabilities are
always equal, then ¢ = 0, otherwise ¢ > 0. We have arrived
at our criterion based on the 80% rule, but it can also be
derived as a special case of pufferfish [29]], a generalization of
differential privacy [19] which uses a variation of Equation 3]
to hide the values of an arbitrary set of secrets.

Definition IV.2. A mechanism M (x) is e-pufferfish private
in a framework (S,Q,0) if for all € © with x ~ 0,
for all secret pairs (s;,s;) € Q and y € Range(M),

Prro(M(x) = ylsi, 0)
T Prro(M(x) = yls;,0)

—€

e, 4)

when s; and s; are such that P(s;|0) > 0, P(s;|0) > 0.

Differential fairness adapts pufferfish to the task of defining
algorithmic fairness, by selecting a set of protected attributes
as the secrets, and ensuring that the values of these attributes
are indistinguishable. Thus, differential fairness provides a
closely related privacy guarantee to differential privacy.

If Pyr,¢ is unknown, it can be estimated using the empirical
distribution, or via a probabilistic model of the data. Assuming
discrete outcomes, Ppgi(yls) = ]\JI\-,’S, where N, ¢ and Ng
are empirical counts of their subscriptsed values in the dataset
D. Empirical differential fairness (EDF) corresponds to
verifying that for any y, s;, s;, we have

676 < Ny1si st < 66
B NSz‘ Ny,Sj B

(&)

Alternatively, if we estimate e-DF' via the posterior predictive
distribution of a Dirichlet-multinomial model, the criterion for
any y, s;, s; becomes

—e Nys; +a Ns;, + V]

< < e, 6
¢ =Not+Da Nyo +a =° ©




where scalar « is each entry of the parameter of a sym-
metric Dirichlet prior with concentration parameter ||,
Y = Range(M). We refer to this as smoothed EDF.

Note that EDF and smoothed EDF methods can sometimes
be unstable in extreme cases when nearly all instances are
assigned to the same class. To address this issue, instead
of using empirical hard counts per group [V, s, we can also
use soft counts for (smoothed) EDF, based on a probabilistic
classifier’s predicted P(y|x), as follows:
o€ < ZXED:A:S,L' P(le) +a NS] + |y‘0é <e

- NSa‘, + |y‘0¢ ZxED:A:sj P(y‘X) +a _(7)

€

V. DF BIAS AMPLIFICATION MEASURE

We can adapt DF to measure fairness in data, i.e. outcomes
assigned by a black-box algorithm or social process, by using
(a model of) the data’s generative process as the mechanism.

Definition Vi A labeled  dataset D =
{(x1,¥1),---,(xXn,yn)} is e-differentially fair (DF) in
A with respect to model Phrodei(X,y) if mechanism
M(x) =y ~ Phrrodei(y|X) is e-differentially fair with respect
t0 (A, {Prrodei(X)}), for Phrodel trained on the dataset.

Similarly to differential privacy, differences e; —¢; between
two mechanisms Mas(x) and M;(x) are meaningful (for fixed
A and ©, and for tightly computed minimum values of ¢), and
measure the additional “fairness cost” of using one mechanism
instead of the other. When ¢; is the differential fairness of a
labeled dataset and €5 is the differential fairness of a classifier
measured on the same dataset, e —e1 is a measure of the extent
to which the classifier increases the unfairness over the original
data, a phenomenon that [43|] refer to as bias amplification.

Definition V.2. A mechanism M (x) satisfies (€2 — €1 )-DF bias
amplification with respect to (A, 0, D, M) if it is ea-DF and
D is a labeled dataset which is e1-DF with respect to model
M.

Politically speaking, e-DF' is a relatively progressive notion
of fairness which we have motivated based on intersectionality
(disparities in societal outcomes are largely due to systems of
oppression), and which is reminiscent of demographic parity
[17]. On the other hand, (e2 —€1)-DF bias amplification is a
more politically conservative fairness metric which does not
seek to correct unfairness in the original dataset (i.e. it relaxes
criterion [E), in line with the principle of infra-marginality (a
system is biased only if disparities in its behavior are worse
than those in society) [39]]. Informally, eo-DF and (e2 — €1)-
DF bias amplification represent “upper and lower bounds”
on the unfairness of the system in the case where the relative
effect of structural oppression on outcomes is unknown.

VI. ILLUSTRATIVE WORKED EXAMPLES

A simple worked example of differential fairness is given
in Figure [5] In the example, given an applicant’s score = on
a standardized test, the mechanism M (z) = x > ¢ approves

Probability of Being Admitted to University X

Gender
A B Overall
Race | 81 (0.931) 234 (0.867) 312 (0.882)
2 192 (0.730) 25 (0.688) 24T (0.720)
Overall 322 (0.780) 223 (0.826)
TABLE I

INTERSECTIONAL EXAMPLE: SIMPSON’S PARADOX.

the hiring of a job applicant if their test score z > ¢, with
t = 10.5. The scores are distributed according to 6, which
corresponds to the following process. The applicant’s protected
group is 1 or 2 with probability 0.5. Test scores for group
1 are normally distributed N(z;p; = 10,0 = 1), and for
group 2 are distributed N (z; pue = 12,0 = 1). In the figure,
the group-conditional densities are plotted on the top, along
with the threshold for the hiring outcome being yes (i.e.
M(xz) = 1). Shaded areas indicate the probability of a yes
hiring decision for each group (overlap in purple). On the
bottom, the calculations show that M(z) is e-differentially
fair for ¢ = 2.337. This means that the probability ratios
are bounded within the range (e ¢,e€) = (0.0966,10.35),
i.e. one group has around 10 times the probability of some
particular hiring outcome than the other (y = no). Under the
presumption that the two groups are roughly equally capable
of performing the job overall, this is clearly unsatisfactory in
terms of fairness.

The intersectional setting, in which there are multiple
protected variables, is specifically addressed by differential
fairness, by considering the probabilities of outcomes for each
intersection of the set of protected variables. We illustrate
this setting with an example on admissions of prospective
students to a particular University X. In the scenario, the
protected attributes are gender and race, and the mechanism
is the admissions process, with a binary outcome. Our data,
shown in Table[l] is adapted from a real-world scenario involv-
ing treatments for kidney stones, often used to demonstrate
Simpson’s paradox [[10]], [26]]. Here, the “paradox” is that for
race 1, individuals of gender A are more likely to be admitted
than those of gender B, and for race 2, those of gender A
are also more likely to be admitted than those of gender B,
yet counter-intuitively, gender B is more likely to be admitted
overall.

Since the admissions process is a black box, we model it
using Equation [5] empirical differential fairness (EDF). By
calculating the log probability ratios of (Gender, Race) pairs
from Table [I, as well as for the pairs of probabilities for the
declined admission outcome (1 — P(admit)), and plugging
them into Equation [5] we see that the mechanism is ¢ = 1.511-
DF with A = Gender x Race. By calculating € using the
admission probabilities in the Overall row (Gender) and
the Overall column (Race), we find that ¢ = 0.2329 for
A = Gender, and € = 0.8667 for A = Race. We will prove
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Fig. 6. Ideal-world intersectional fairness but with counfounder variables
present. Disparity in overall outcomes between protected groups may occur.

in Theorem [VIILI|that e with A = Gender x Race is an upper
bound on ¢-DF for A = Gender and for A = Race. Thus,
even with a “Simpson’s reversal” differential (un)fairness will
not increase after summing out a protected attribute.

VII. DEALING WITH CONFOUNDER VARIABLES

As we have seen, differential fairness can be used to
measure the inequity between the outcome probabilities for
the protected groups and their intersections at different levels
of measurement granularity, although it does not determine
whether the inequities were due to systemic factors and/or
discrimination. In the case study above, a confounding variable
which could explain the Simpson’s reversal is the decision
of the prospective student on whether to apply to University
X. The €-DF criterion is appropriate when the differences
are believed to be due to systems of oppression, as posited
by intersectionality theory, and such confounder variables are
not present. With confounders, parity in outcomes between
intersectional protected groups, which e-DF rewards, may no
longer be desirable (see Figure [). We propose an alternative
fairness definition for when known confounders are present.

Definition VIL1. Ler 6 € O be distributions over (Xx,c),
where ¢ € C are confounder variables. A mechanism M (x)
is e-differentially fair with confounders (DFC) with respect to
(A,©,C), if for all ¢ € C, M(x) is e-DF with respect to
(A,©).), where ©|. = {P(x/0,c)|0 € ©}.

In the university admissions case, Definition penalizes
disparity in admissions at the department level, and the most
unfair department determines the overall unfairness e-DFC.

Theorem VIL1. Let M be an e-DFC mechanism in (A, 0, C),
Then M is e-differentially fair in (A, ©).

From Theorem if we protect differential fairness
per department, we obtain differential fairness and its corre-
sponding theoretical economic and privacy guarantees in the
University’s overall admissions, bounded by the € of the most
unfair department, even in the case of a Simpson’s reversal.
A proof is given in the Appendix. If confounder variables are
latent, we can attempt to infer them probabilistically in order to

apply DFC. Alternatively, (e2 — €1)-DF bias amplification can
still be used to study the impact of an algorithm on fairness.

VIII. PROPERTIES OF DIFFERENTIAL FAIRNESS

We now discuss the theoretical properties of our definitions.

A. Differential Fairness and Intersectionality

Differential fairness explicitly encodes protection of inter-
sectional groups (criterion [B]). For DF, we prove that this auto-
matically implies fairness for each of the protected attributes
individually (criterion [C), and indeed, any subset of the pro-
tected attributes. For example, if a loan approval mechanism
M(x) is eDF in A = gender X race X nationality, it is
also e-DF in, e.g., A = gender by itself, or A = gender
X nationality. In other words, by ensuring fairness at the
intersection of gender, race, and nationality under our criterion,
we also ensure the same degree of fairness between genders
overall, and between gender/nationality pairs overall, and so
on. In the above, € is a worst case, and DF may also hold for
lower values of e.

Lemma VIIL1. (Proof given in the Appendix.) The e-DF
criterion can be rewritten as: for any 6 € ©, y € Range(M),

log  max

P, M(x) =yl|s,0
A PS50 M0 (M (x) = yls, 0)

—log  min  Pye(M(x)=1yls,0) <e€. (8)

s€A:P(s]0)>0

Theorem VIIL.1. (Intersectionality Property) Let M be an
e-differentially fair mechanism in (A,0), A =51 xSy x...x
Sp, and let D = S, x ... x Sy, be the Cartesian product of
a nonempty proper subset of the protected attributes included
in A. Then M is e-differentially fair in (D, ©).

Proof. Define E = S1 X ... X Sq_1 X Sqy1... X Sk_1 X
Sk+1 X ... X Sp, the Cartesian product of the protected
attributes included in A but not in D. Then for any 6 € O,
y € Range(M),

(x) =ylD = 5,0)

log max

Prro(M
s€D:P(s|0)>0

=1 P =y|lE = 0)F,
8 B0 2y P10 (M 0) =3B = c,8,0)Fo(E
<1
- OgseD:rga)\(eboP;Ee'eE:PG{%i)iﬂs,abo
(Pro(M(x) =y|E =¢€,s,0)) x Py(E = es,0)
=lo max ax Pro(M(x) =y|E =¢,s,0)
seD:P(s|0)>0e'€E: Pg(E e’[s,0)>0
=log max Pro(M(x) = yls', 0)

s'€A:P(s’|0)>0

By a similar argument, logmingep.p(sjgy>o0 Prro(M(x) =
y|D = s,0) > logmingea.p(s'joy>0 Pro(M(x) = y|s’,0).

=els,0)
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Fig. 7. The number of groups and intersectional subgroups to protect
when varying the number of protected attributes, with 2 values per protected
attribute.

Applying Lemma [VIIL.1} we hence bound ¢ in (D, ©) as
Prro(M(x) = y|D =s,0)

log max
s€D:P(s|6)>0

min Prro(M(x) =y|D =s,0

s€D:P(s]|0)>0 Mﬂ( (x) =yl )

Puo(M(x) = yls', 0)

— log

<log max

s'€A:P(s']6)>0

€))
O

-1 i Prro(M(x) =y|s',0) < €.
Ogs/eA;%33\9>>o mo(M(x) = yls',6) < e

This property is philosophically concordant with intersec-
tionality, which emphasizes empathy with all overlapping
marginalized groups. However, its benefits are mainly practi-
cal: in principle, one could protect all higher-level groups in SF
by specifying >°¢_, (¥) K7 binary indicator protected groups,
where K is the number of values per protected attribute. This
quickly becomes computationally and statistically infeasible.
For example, Figure [/| counts the number of protected groups
that must be explicitly considered under the two intersectional
fairness definitions, in order to respect the intersectional fair-
ness criteria B and [C| The intersectionality property (Theorem
implies that when the the bottom-level intersectional
groups are protected (blue curve), differential fairness will au-
tomatically protect all higher-level groups and subgroups (red
curve). Since subgroup fairness does not have this property,
all of the groups and subgroups (red curve) must be protected
explicitly with their own group indicators g(s). Although the
number of bottom-level groups grows exponentially in the
number of protected attributes, the total number of groups
grows much faster, at the combinatorial rate of Z?Zl (?) K.

B. Privacy Interpretation

The differential fairness definition, and the resulting level of
fairness obtained at any particular measured fairness parameter
€, can be interpreted by viewing the definition through the lens

of privacy. Differential fairness ensures that given the outcome,
an untrusted vendor/adversary can learn very little about the
protected attributes of the individual, relative to their prior
beliefs, assuming their prior beliefs are in O:

~Pilo)  P(silM(x) =y.0) o P(silf)
P(sj|0) = P(sj|M(x) =y,0) = P(s;]0)

E.g., if aloan is given to an individual, an adversary’s Bayesian
posterior beliefs about their race and gender will not be sub-
stantially changed. Thus, the adversary will be unable to infer
that “this individual was given a loan, so they are probably
white and male.” Our definition thereby provides fairness
guarantees when the user of M (x) is untrusted, cf. [[17],
by preventing subsequent discrimination, e.g. in retaliation
to a fairness correction. Although DF is a population-level
definition, it provides a privacy guarantee for individuals.
The privacy guarantee only holds if § € ©, which may not
always be the case. Regardless, the value of ¢ may typically
be interpreted as a privacy guarantee against a ‘“reasonable
adversary.” The privacy guarantee is inherited from pufferfish,
a general privacy framework which DF instantiates [29].

(10)

C. Economic Guarantees

We also show that differential fairness provides economic
guarantees. An e-differentially fair mechanism admits a dispar-
ity in expected utility of as much as a factor of exp(e) ~ 1+¢
(for small values of €) between pairs of protected groups with
s; € A, s; € A, for any utility function that could be chosen.
E.g., consider a loan approval process, where the utility of
being given a loan is 1, and being denied is 0. Suppose the
approval process is In(3)-differentially fair. The process could
then be three times as likely to award a loan to white men as
to white women, and thus award white men three times the
expected utility as white women. The proof follows the case
of differential privacy [19]]. Let u(y) : Range(M(x)) — R>o
be a utility function. Then:

EHMPMM&L:/PMMM&W@Wy

< [ e Puatuls)ulv)dy = Ery, [ul)ls)]

Y

Similarly, for (e2 — ¢1)-DF bias amplification, M (x) admits
at most an exp(ez — €1) = 1+ €5 — €1 (for small values of
€2 — €1) multiplicative increase in the disparity of expected
utility between pairs of protected intersections of groups with
s; € A, s; € A, relative to the data generating process M.

D. Generalization Guarantees

In order to ensure that an algorithm is truly fair, it is
important that the fairness properties obtained on a dataset will
extend to the underlying population. Kearns et al. [27] proved
that empirical estimates of the quantities per group which
determine subgroup fairness, Py g(y = 1|g(s) = 1)Py(g(s) =
1), will be similar to their true values, with enough data
relative to the VC dimension of the classification model’s
concept class H. We state their result below.



DF-Classifier

SF-Classifier

Models =00 €1 =02231 € =egara =00 M ="Vdata Typical Classifier
Accuracy 0.811 0.823 0.839 0.835 0.839 0.839
Performance Measures ~ F1 Score 0.470 0.520 0.600 0.550 0.590 0.602
ROC AUC 0.849 0.862 0.885 0.882 0.886 0.892
e-DF 0.428 0.379 1.629 1.334 1.590 1.646
Fairness Measures ~-SF 0.006 0.012 0.039 0.026 0.034 0.041
(using soft counts) Bias Amp-DF -0.952 -1.001 0.249 -0.046 0.210 0.266
Bias Amp-SF -0.027 -0.021 0.006 -0.007 0.001 0.008
e-DF 1.602 1.676 2.034 1.843 1.843 2.115
Fairness Measures ~-SF 0.003 0.010 0.034 0.017 0.026 0.040
(using hard counts) Bias Amp-DF -0.303 -0.229 0.129 -0.062 -0.062 0.210
Bias Amp-SF -0.037 -0.030 -0.006 -0.023 -0.014 0.000
TABLE TI
COMPARISON OF INTERSECTIONALLY FAIR CLASSIFIERS WITH THE TYPICAL CLASSIFIER ON THE ADULT DATASET (¢; = 0.2231 IS THE
80% RULE).
DF-Classifier SF-Classifier . .
Models =00 € =0221 e =cgra =00 1 =data Typical Classifier
Accuracy 0.686 0.684 0.692 0.690 0.697 0.700
Performance Measures  F1 Score 0.633 0.642 0.643 0.622 0.647 0.641
ROC AUC 0.730 0.723 0.734 0.719 0.739 0.734
e-DF 0.180 0.281 0.410 0.404 0.468 0.773
Fairness Measures ~-SF 0.006 0.021 0.033 0.007 0.028 0.035
(using soft counts) Bias Amp-DF -0.360 -0.259 -0.130 -0.136 -0.072 0.233
Bias Amp-SF -0.015 0.000 0.012 -0.014 0.007 0.014
e-DF 0.207 0.671 0.884 0.825 0.860 0.897
Fairness Measures ~v-SF 0.015 0.045 0.060 0.017 0.048 0.062
(using hard counts) Bias Amp-DF -0.339 0.125 0.338 0.279 0.314 0.351
Bias Amp-SF -0.025 0.005 0.020 -0.023 0.008 0.022
TABLE TII

COMPARISON OF INTERSECTIONALLY FAIR CLASSIFIERS WITH THE TYPICAL CLASSIFIER ON THE COMPAS DATASET (¢; = 0.2231 1S
THE 80% RULE).

Theorem VIIL.2. [27]’s Theorem 2.11 (SP Uniform Con-
vergence). Fix a class of functions H and a class of group
indicators G. For any distribution P, let S ~ P™ be a dataset
consisting of m examples (x;,y;) sampled i.i.d. from P. Then
for any 0 < 0 < 1, with probability 1 — 0, for every h € H
and g € G, we have:

|P(y=1|g(s) =1,h)P(g(s) = 1)
— Ps(y = 1|g(s) = 1,h)Ps(g(s) = 1)|

~ ¢ [(VCDIM(H) + VCDIM(G)) logm + log(1/6)
<o(y g ).

(12)

Here, O hides logarithmic factors, and Pg is the empirical
distribution from the S samples. It is natural to ask whether
a similar result holds for differential fairness. As [27] note,
the SF definition was chosen for statistical reasons, revealed
in the above equation: the Py(g(s) = 1) term in SF arises
naturally in their generalization bound. For DF, we specifically
avoid this term due to its impact on minority groups, and must
instead bound Py ¢(y|s) per group s. For this case, we prove
the following generalization guarantee.

Theorem VIIL3. Fix a class of functions H, which without
loss of generality aim to discriminate the outcome y = 1 from
any other value, denoted here as y = 0. For any conditional
distribution P(y,x|s) given a group s, let S ~ P™ be a

dataset consisting of m examples (x;,vy;) sampled i.i.d. from
P(y,x|s). Then for any 0 < 6 < 1, with probability 1 — 4, for
every h € H, we have:

|P(y = 1ls,h) — Ps(y = 1[s, h)|

<6 ( \/VCDIM(H)logm+log(1/6)) '

m

13)

Proof. Let g(s') = 1 when s’ = s and 0 otherwise, and let
G = {g(s')}. We see that G has a VC-dimension of 0. The
result follows directly by applying Theorem ( 27]’s
Theorem 2.11) to H and G, and considering the bound for the
distributions P over (x,y) where P(g(s') =1) = 1. O

While SF has generalization bounds which depend on the
overall number of data points, DF’s generalization guarantee
requires that we obtain a reasonable number of data points for
each intersectional group in order to accurately estimate e-DF.
This difference, the price of removing the minority-biasing
term, should be interpreted in the context of the differing
goals of our work and [27]], who aimed to prevent fairness
gerrymandering by protecting every conceivable subgroup
that could be targeted by an adversary.

In contrast, our goal is to uphold intersectionality, which
simply aims to enact a more nuanced understanding of unfair-
ness than with a single protected dimension such as gender
or race. In practice, consideration of 2 or 3 intersecting pro-
tected dimensions already improves the nuance of assessment.



Sufficient data per intersectional group can often be readily
obtained in such cases, e.g. [8] studied the intersection of
gender and skin color on fairness. Similarly, [27] focus on
the challenge of auditing subgroup fairness when the sub-
groups cannot easily be enumerated, which is important in the
fairness gerrymandering setting. In contrast, in our intended
applications of preserving intersectional fairness the number
of intersectional groups is often only around 22 — 2°,

IX. LEARNING ALGORITHM

In this section we introduce a simple, practical learning
algorithm for differentially fair classifiers (DF-Classifiers).
Our algorithm uses the fairness cost as a regularizer to balance
the trade-off between fairness and accuracy. We minimize,
with respect to the classifier My (x)’s parameters W, a
loss function Lx (W) plus a penalty on unfairness which is
weighted by a tuning parameter A > 0. We train fair neural
networks using gradient descent (GD) on our objective via
backpropagation and automatic differentiation. The learning
objective for training data X becomes:

min[Lx (W) + ARx(c)] (14)
where Rx (€) = max(0, €pry, (x) — €1) represents the fairness
penalty term, and €y, (x) is the € for Mw(x). To make the
objective differentiable, €y, (x) is measured using soft counts
(Equation [7). If €; is 0, this penalizes e-DF, and if €; is the
data’s ¢, this penalizes bias amplification. Optimizing for bias
amplification will also improve e-DF, up to the €; threshold.
In practice, we found that a warm start optimizing Lx (W)
only for several “burn-in” iterations improves convergence. For
large datasets, stochastic gradient descent (SGD) can be used
instead of batch GD. In this case, we recommend that €, (x)
be estimated on a development set D, as minibatch estimates
may be unstable in the intersectional data regime.

X. EXPERIMENTS

We performed all experiments on two datasets: the Adult
1994 U.S. census income data from the UCI repository [30]
(protected attributes: race, gender, USA vs non-USA nation-
ality), and the COMPAS dataset regarding a system that is
used to predict criminal recidivism [2] (protected attributes:
race and gender)E]

A. Fair Learning Algorithm

The goals of our experiments were to demonstrate the
practicality of our DF-Classifier method in learning an in-
tersectionally fair classifier, and to compare its behavior to
a learned subgroup fair SF-Classifier and a typical classifier
(without the fairness penalty term of Equation [14), especially
with regards to minorities. Instead of [27]’s algorithm, we
trained the SF-Classifier using the same GD+backpropagation
approach, replacing ¢ with v in Equation ie. Rx(v) =
max(0, Yary (x) — 71)- This simplifies and speeds up learning
to handle deep neural networks.

“4Predicted income, used for consequential decisions like housing approval,
may result in digital redlining [3|.

All classifiers were trained on a common neural network
architecture via adaptive gradient descent optimization (Adam)
with learning rate = 0.01 using pyTorch. The configuration
of the neural network was 3 hidden layers, 16 neurons in
each layer, “relu” and “sigmoid” activations for the hidden
and output layers, respectively. We trained for 500 iterations,
disabling the fairness penalties for the first 50 “burn-in”
iterations. We chose A as 0.1 and 1.0 for DF-Classifier and
SF-Classifier, respectively, as a best trade-off value via grid
search over the randomly held out 20% development sets.

We learned fair classifiers in several settings: 1) we set
the target thresholds to perfect fairness, €;=0.0 and ~;=0.0
for DF-Classifier and SF-Classifier, respectively, and 2) to
penalize bias amplification by the algorithm, by setting the
thresholds to e€1=€44tq and y1=74qt, for DF-Classifier and
SF-Classifier, respectively. Finally, to protect the 80%-rule we
set e;=—1og 0.8 = 0.2231 for DF-Classifier only. Since there
is no straightforward way to enforce the 80%-rule for SF-
Classifier, it was not considered in this analysis.

Tables [[I] and compare the classifiers on the Adult and
COMPAS datasets, respectively. Both DF-Classifier and SF-
Classifier were able to substantially improve their fairness
metrics over the typical classifier, with modest costs in
accuracy, F1 score, and ROC AUC, and the trade-off varied
roughly monotonically in the target value €; or ;. Based
on soft count estimation (Equation , the DF-Classifier with
€1 = 0 improved from € = 1.646 to € = 0.428 on Adult with
a loss of 2.8 percentage points of accuracy. On COMPAS,
it improved from ¢ = 0.773 to € = 0.180, corresponding to
a worst-case difference in utility between groups of a factor
of e =~ 1.2, with a loss of just 1.4 percentage points of
accuracy. When trained to prevent bias amplification, the
fairness metrics were improved with little (COMPAS) to no
(Adult) reduction in accuracy. While SF-Classifier typically
had slightly higher accuracy under the same settings, DF-
Classifier often greatly improved ~v-SF as well, while SF-
Classifier enjoyed only modest improvements in ¢-DF. The
conclusions were similar with “hard count” smoothed EDF
estimates (Equation @), but the metrics’ estimates were higher.

An important goal of this work was to consider the impact
of the fairness methods on minority groups. In Figure [8| we
report the “per-group unfairness,” defined as Equations [I] and
[3] with one group held fixed, versus the group’s probability
(i.e. size) on the COMPAS dataset. Both methods improve
their corresponding per-group unfairness measures over the
typical classifier. On the other hand, similarly to Figure
the -SF metric only assigns high per-group unfairness values
to large groups in its measurement, so minority groups are
not able to influence the overall -SF unfairness. This
was not the case for ¢-DF metric, where groups of various
sizes had similarly high per-group ¢ values. Furthermore,
the DF-Classifier improved the per-group fairness under
both metrics for groups of all sizes, while the SF-classifier
did not improve the per-group ~-SF for small groups.
Our overall conclusion is that the DF-Classifier is able to
achieve intersectionally fair classification with minor loss in
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Fig. 8. Per-group measurements of (a) e-DF and (b) ~-SF of the classifiers vs group size (probability), COMPAS dataset, calculated using
Equations [I] and 3] with the group held fixed. Circles: intersectional subgroups. Squares: top-level groups. The methods improve fairness,
both per group and overall, but SF-Classifier is empirically seen to ignore minority groups in the overall v-SF measurement, calculated as

a worst-case over all groups.

Gini Coefficient ()

Dataset €Data _ YData _ €LR YLR

Adult 0.099 0.256 0.126 0.257

COMPAS 0.151 0.376 0.135 0.343
TABLE IV

COMPARISON OF THE INEQUITY IN THE PER-GROUP ALLOCATION
OF THE e-DF AND «-SF METRICS VIA THE GINI COEFFICIENT
(LOWER IS BETTER).

COMPAS Dataset

Protected attributes e-DF ~v-SF

race 0.1003  0.0070
gender 0.9255  0.0656
race, gender 1.3156  0.0604

Adult Dataset

Protected attributes e-DF ~v-SF

nationality 0.2177  0.0045
race 0.9188  0.0128
gender 1.0266  0.0434
gender, nationality 1.1511  0.0431
race, nationality 1.1534  0.0163
race, gender 1.7511  0.0451
race, gender, nationality ~ 1.9751  0.0455

TABLE V
PROTECTION OF INTERSECTIONALITY BY DF METRIC ON
COMPAS AND ADULT DATASET. THE CASES IN RED ARE WHERE
~-SF VIOLATES THE INTERSECTIONALITY PROPERTY ENJOYED
BY e-DF (THEOREM

performance, while providing greater protection to minority
groups than when enforcing subgroup fairness.

B. Inequity of Fairness Measures

We have seen that the v-SF metric downweights the consid-
eration of minorities (cf. Figures @] and [8). In this experiment,
we quantify the resulting inequity of fairness consideration
using the Gini coefficient [33]], a commonly used measure
of statistical dispersion which is often used to represent the
inequity of income. The Gini coefficient (G) of a fairness
metric F is calculated as

G= 5303 PIPs)IF — Pl

i=1 j=1

where p = Y. | F5,P(s;) and P(s;) is the fraction of
population belonging to the " intersectional group, while
Fs, represents the fairness measure (i.e. per-group € or y)
of that group. For a fixed algorithm and data distribution, a
fairness metric with a smaller Gini coefficient distributes its
(un)fairness consideration more equitably across the popula-
tion, which is typically desirable in the sense that the entire
population has a voice in the determination of (un)fairness.

Table [[V] shows a comparison of G values for the ¢-DF and
~-SF metrics on the Adult and COMPAS datasets. Both fair-
ness metrics are measured for the labeled dataset (i.e. €pata)
as well as for a logistic regression (LR) classifier (i.e. €z r)
trained on the same dataset. In all the experiments, the G value
for e-DF is much lower compared to v-SF’s G value. Thus,
e-DF was observed to provide a more equitable distribution
of its per-group fairness measurements, presumably due to its
more inclusive treatment of minority groups.

5)

C. Evaluation of Intersectionality Property

In our final experiment (Table [V), we studied the ability of
~-SF to preserve the intersectionality property shown for e-DF
in Theorem [VIII.1] by measuring fairness with different sets



of protected attributes. The property is violated if removing
a protected attribute increases the metric. As expected, e-DF
obeyed the intersectionality property, but y-SF violated it as
~ for gender > ~ for race x gender (COMPAS), and v for
gender > v for gender x nationality (Adult).

XI. CONCLUSION

We introduced three Al fairness definitions which satisfy
intersectional fairness desiderata, differential fairness and its
bias amplification and confounder-aware counterparts, and
proved their attractive properties regarding the law, privacy,
economics, and statistical learning, along with a learning
algorithm to enforce them. With extensive experiments across
two datasets, we have shown that our criteria can be practically
attained, and they behave more equitably with regard to mi-
nority groups than subgroup fairness. In future work, we plan
to investigate the impact of data sparsity on the measurement
and enforcement of fairness in the intersectional multi-attribute
regime.
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APPENDIX

A. Proof of Lemma |VIII.

Proof. The definition of e-differential fairness is, for any 6 €

©, y € Range(M), (s;,s;) € A x A where P(s;|6) > 0,
P(S]w) > 0,

e < Pua(M(x) = yls:.0)

= Prro(M(x) = ylsy,0)

Taking the log, we can rewrite this as:

IN

e . (16)

—e < IOg PN[’Q(M(X) = y|si7 0)

—log Prpg(M(x) = yls;,0) <e. a7

The two inequalities can be simplified to:

| log Parp(M (x) = ylsi, 0)
(18)

For any fixed # and y, we can bound the left hand side by
plugging in the worst case over (s;,s;),

|log Paro(M(x) = ylsi, 0) — log Par,e(M(x) = y|s;, 0)]

<log max Pag(M(x)=yls,0

s log max Mo (M(x) = yls, 0)
—log min Pue(M(x) =yls,0) . 19
og o min Mo (M(x) = yls, 0) (19)

Plugging in this bound, which is achievable and hence is tight,
the criterion is then equivalent to:

| P, M = 0
og max Mo (M(x) = yls, 0)
—1 P, M = ) < 20
Ogszprgllglbo wo(M(x) = yls, 0) < e (20
O

B. Proof of Theorem

Proof. Letf € ©,y € Range(M),c € C, and (s;,s;) € AxA
where P(s;|0) > 0 and P(s;|6) > 0. We have:

Puro(M(x) = ylsi, 0)
Prro(M(z) = yls;.0)

Y ocec Prro(M(x) = ylsq, ¢, 0) Paro(clsi, 0)
Yece Paro(M(z) = ylsj, ¢, 0) Paso(cls;, 0)

P, (M(z) |s;,c,0)
>ocec P,\];I:(M(J,) z\sjca)P (clsi, 0)

Paro (M) =y[5;,.0)
Yeco piiim T=ulssc.0 Lo (cls;s 0)

Pyro(M(x) = ylsi, c,0)
Py(cls;, 0
ZP]MG r) = yls;, ¢, 0) b(clsi, 6)
< Zeﬁpg clsi, 0) = e . Q21
ceC

Reversing s; and s; and taking the reciprocal shows the other
inequality. O

—log Parg(M(x) = yls;,0)| < €.

C. Related Work

This section discusses relationships with other concepts in
fairness, privacy, and in the treatment of subsets of protected
groups.

1) Fairness Definitions: An overview of fairness research
can be found in [5]. We briefly describe several of the most
influential mathematical definitions of fairness below, and
discuss their relationships to our proposed differential fairness
criterion.

The 80% rule: Our criterion is related to the 80% rule,
ak.a. the four-fifths rule, a guideline for identifying unin-
tentional discrimination in a legal setting which identifies
disparate impact in cases where P(y = 1]s1)/P(y = 1]s2) <
0.8, for a favourable outcome y = 1, disadvantaged group s,
and best performing group sy [20]. This corresponds to testing
that € > —log 0.8 = 0.2231, in a version of Equation [3| where
only the outcome y = 1 is considered.

Demographic Parity: [17] defined (and criticized) the
fairness notion of demographic parity, a.K.a. statistical parity,
which requires that P(y|s;) = P(y|s;) for any outcome y
and pairs of protected attribute values s;, s; (here assumed to
be a single attribute). This can be relaxed, e.g. by requiring
the total variation distance between the distributions to be less
than e. Differential fairness is closely related as it also aims
to match probabilities of outcomes, but measures differences
using ratios, and allows for multiple protected attributes.
The criticisms of [[17] are mainly related to ways in which
subgroups of the protected groups can be treated differently
while maintaining demographic parity, which they call “subset
targeting,” and which [27] term “fairness gerrymandering.”
Differential fairness explicitly protects the intersection of
multiple protected attributes, which can be used to mitigate
some of these abuses.

Equalized Odds: To address some of the limitations with
demographic parity, [22] propose to instead ensure that a
classifier has equal error rates for each protected group.
This fairness definition, called equalized odds, can loosely
be understood as a notion of “demographic parity for er-
ror rates instead of outcomes.” Unlike demographic parity,
equalized odds rewards accurate classification, and penalizes
systems only performing well on the majority group. However,
theoretical work has shown that equalized odds is typically
incompatible with correctly calibrated probability estimates
[37]. It is also a relatively weak notion of fairness from a civil
rights perspective compared to demographic parity, as it does
not ensure that outcomes are distributed equitably. Hardt et al.
also propose a variant definition called equality of opportunity,
which relaxes equalized odds to only apply to a “deserving”
outcome. It is straightforward to extend differential fairness to
a definition analogous to equalized odds, although we leave the
exploration of this for future work. A more recent algorithm
for enforcing equalized odds and equality of opportunity for
kernel methods was proposed by [16].

Individual Fairness (“Fairness Through Awareness”):
The individual fairness definition, due to [[17], mathemati-
cally enforces the principle that similar individuals should



get similar outcomes under a classification algorithm. An
advantage of this approach is that it preserves the privacy
of the individuals, which can be important when the user of
the classifications (the vendor), e.g. a banking corporation,
cannot be trusted to act in a fair manner. However, this is
difficult to implement in practice as one must define “similar”
in a fair way. The individual fairness property also does not
necessarily generalize beyond training set. In this work, we
take inspiration from Dwork et al.’s untrusted vendor scenario,
and the use of a privacy-preserving fairness definition to
address it.

Counterfactual Fairness: [31] propose a causal definition
of fairness. Under their counterfactual fairness definition,
changing protected attributes A, while holding things which
are not causally dependent on A constant, will not change
the predicted distribution of outcomes. While theoretically ap-
pealing, there are difficulties in implementing this in practice.
First, it requires an accurate causal model at the fine-grained
individual level, while even obtaining a correct population-
level causal model is generally very difficult. To implement
it, we must solve a challenging causal inference problem over
unobserved variables, which generally requires approximate
inference algorithms. (In the case of differential fairness, we
advocate the use of Bayesian models which typically require
approximate inference as well, although empirical distributions
can be used if sufficient data is available.) Finally, to achieve
counterfactual fairness, the predictions (usually) cannot make
direct use of any descendant of A in the causal model. This
generally precludes using any of the observed features as
inputs.

Threshold Tests: [39] address infra-marginality by model-
ing risk probabilities for different subsets (i.e. attribute values)
within each protected category, and requiring algorithms to
threshold these probabilities at the same points when de-
termining outcomes. In contrast, based on intersectionality
theory, our proposed differential fairness criterion specifies
protected categories whose intersecting subsets should be
treated equally, regardless of differences in risk across the
subsets. Our definition is appropriate when the differences in
risk are due to structural systems of oppression, i.e. the risk
probabilities themselves are impacted by an unfair process.
We also provide a bias amplification version of our metric,
following [43]], which is more in line with the infra-marginality
perspective.

2) Privacy Definitions: Differential Privacy: Our work on
fairness is inspired by differential privacy, the gold-standard
notion of privacy for data-driven algorithms [19]]. Essentially,
differential privacy is a promise: if an individual contributes
their data to a dataset, their resulting utility, due to algorithms
applied to that dataset, will not be substantially affected.
The privacy guarantee is obtained via the use of randomized
algorithms, typically by adding sufficient noise, e.g. from the
Laplace distribution, in order to obfuscate the impact of any
one data point on the algorithms’ outputs.

Definition A.1. M (x) is e-differentially private if
P(Mx)eS) .
PM(x')eS) ~

for all outcomes S, and pairs of databases x, x' differing in
a single element.

€

Similarly to differential privacy, our proposed differential
fairness definition bounds ratios of probabilities of outcomes
resulting from a mechanism. However, there are several impor-
tant differences. When bounding these ratios, differential fair-
ness considers different values of a set of protected attributes,
rather than databases that differ in a single element. It posits
a specified set of possible distributions which may generate
the data, while differential privacy implicitly assumes that the
data are independent [29]. Finally, since differential fairness
considers randomness in data as well as in the mechanism,
it can be satisfied with a deterministic mechanism, while
differential privacy can only be satisfied with a randomized
mechanism.

3) Other Related Work: Fairness and Intersectionality:
Of particular relevance to this work, fairness in an intersec-
tional setting has been considered by [8]] in a computer vision
context, and by [27] and [23|], who aim to protect certain
subgroups by preventing “fairness gerrymandering.”

Fairness and Uncertainty: Bayesian modeling of fairness
has been performed by [39]] in the context of stop-and-frisk
policing, and by [31]], who use Bayesian inference on a causal
model. As an alternative to the Bayesian methodology, adver-
sarial methods are another strategy for managing uncertainty in
a fairness context, e.g. [[6] apply this approach to the setting
of ensuring fairness given a limited number of observations
in which demographic information is available. [38] study
various hypothesis testing methods for the 80% rule in the
small data regime.

Fairness and Privacy: The work of [25] also addresses
untrusted vendors, focusing on differentially private fair learn-
ing algorithms (with respect to protected attributes) which
obtain obtain fairness under a different criterion. In contrast,
differential fairness ensures that the behavior of the final
algorithm, rather than the learning process for the algorithm,
preserves the privacy of the individuals’ protected attributes.



	I Introduction
	II Intersectionality and Fairness in AI
	III Existing Fairness Definitions
	IV Differential Fairness (DF) Measure
	V DF Bias Amplification Measure
	VI Illustrative Worked Examples
	VII Dealing with Confounder Variables
	VIII Properties of Differential Fairness
	VIII-A Differential Fairness and Intersectionality
	VIII-B Privacy Interpretation
	VIII-C Economic Guarantees
	VIII-D Generalization Guarantees

	IX Learning Algorithm
	X Experiments
	X-A Fair Learning Algorithm
	X-B Inequity of Fairness Measures
	X-C Evaluation of Intersectionality Property

	XI Conclusion
	References
	Appendix
	A Proof of Lemma VIII.1
	B Proof of Theorem VII.1
	C Related Work
	C1 Fairness Definitions
	C2 Privacy Definitions
	C3 Other Related Work



