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Abstract—Approximate Nearest Neighbor (ANN) search in
high-dimensional space is a fundamental task in many applica-
tions. Locality-Sensitive Hashing (LSH) is a well-known method-
ology to solve the ANN problem with theoretical guarantees
and empirical performance. We observe that existing LSH-
based approaches target at the problem of designing search
optimized indexes, which require a number of separate indexes
and high index maintenance overhead, and hence impractical for
high-dimensional streaming data processing. In this paper, we
present PDA-LSH, a novel and practical disk-based LSH index
that can offer efficient support for both updates and searches.
Experiments on real-world datasets show that our proposal
outperforms the state-of-the-art schemes by up to 10× on update
performance and up to 2× on search performance.

I. INTRODUCTION

Nearest Neighbor (NN) search in high-dimensional Eu-
clidean space plays an essential role in many applications.
Despite there are numerous studies on NN search in multi-
dimensional space, it was shown that their performance will
sharply degenerate as the dimensionality increases due to the
“curse of dimensionality” [9].

Locality-Sensitive Hashing (LSH) is a widely used tech-
nique that has shown significant promise in dealing with the
curse of high-dimensionality. However, as LSH was originally
designed to find objects within a fixed radius, to ensure quality
guarantees, it has to build indexes for different radii. In this
case, hundreds or thousands of hash tables are constructed,
which result in expensive space cost and search cost.

Many LSH based variants have been proposed to alleviate
the limitations of LSH [2], [3], [5], [8]. At their core, these
approaches aim to build an index with smaller space cost
and search cost while preserving an acceptable accuracy.
Early work adopts the multi-probe strategy [5] to reduce the
number of maintained hash tables. Unfortunately, the space
saving trades away the theoretical guarantees on the quality
of query results. Recently, it has been proposed to store each
LSH projection in separate B-Trees, including C2LSH [2]
and QALSH [3]. They can gradually enlarge the query radius
by performing B-Tree range searches. However, they suffer
from the poor random writes in each B-Tree when processing
updates. Other work [8] proposes to projects high-dimensional
data objects into a low-dimensional space so that they can be
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indexed by existing multi-dimensional indexes, such as R-tree.
Nevertheless, it cannot scale to more projections since the
R-Tree doesn’t work well when the dimensionality is more
than 6. Therefore, the quality of query result is not stable. In
summary, existing methods cannot make a trade-off between
update efficiency, search efficiency and quality guarantees, but
all of which are crucial factors for efficiently indexing high-
dimensional data streams.

In this paper, we propose a new disk-based LSH index that
offers fast c-ANN searches with low maintenance cost, while
also holding theoretical guarantees on the result quality. First,
we follow C2LSH and QALSH to use a set of single LSH
functions as base functions, so that we can enjoy the benefits of
performing multiple-radii searches within one index. We adopt
the LSM-Tree with cascading update technique to facilitate
efficient updates on each LSH function. Then, different from
C2LSH and QALSH that apply Chernoff tail bounds to derive
the tail probability of a binomial distribution, which represents
the probability of two objects colliding more than a given
threshold under the set of base LSH functions, we utilize
cumulative distribution function (CDF) of the normal distri-
bution to approximate it more reasonably. As a consequence,
the number of LSH functions derived by our method is much
smaller than previous studies. To improve the search perfor-
mance, we combine collision number and precise projection
distance information to select the candidates more effectively.
In the following, we refer to such a proposal as PDA-LSH
(Projection Distance Aware LSH).

II. THE PDA-LSH FRAMEWORK

In this section, we describe the indexing and search methods
of PDA-LSH.

A. Indexing Strategy

We follow QALSH to use a base of m single query-
aware LSH functions to enjoy the benefit of multi-radii search
and query-aware bucket partitions. The indexing procedure
essentially projects each d-dimensional object o along m
random lines, and stores the projected values in m separate
indexes. The difference from QALSH is that PDA-LSH uses
the write-friendly LSM-Tree to index the projection pairs
〈hi(o), ID(o)〉, where hi(o) is the i-th projection of object
o and ID(o) represents its unique identifier.
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Fig. 1. Searching objects in ascending order of projection distances

Algorithm 1: c-ANN of PDA-LSH
Input: q: the query object; m: the number of LSH functions; l:

the collision threshold; thr: the threshold of the squared
sum of l projection distances for search radius R = 1;
w: the initial bucket width for R = 1; βn: maximum
number of candidates.

Output: the nearest object in the set C of candidates.
1 C ← φ;
2 HM ← min-heap with maximum size of βn;
3 Compute hi(q) for i ∈ {1, 2, · · · ,m};
4 Locate each hi(q) in the corresponding LSM-Tree;
5 while C < βn do
6 o← pick from all LSM-Trees the next object with smallest

projection distance to q;
7 i← the label of LSM-Tree o comes from;
8 R← |hi(o)−hi(q)|

w/2
;

9 t← thr ×R2;
10 Col(o)← Col(o) + 1;
11 Pdist(o)← Pdist(o) + (hi(o)− hi(q))

2;
12 if Col(o) == l then
13 Push 〈Pdist(o), ID(o)〉 into the min-heap HM;
14 end
15 while HM.root.Pdist ≤ t do
16 o← pop an object from H;
17 C ← C ∪ o;
18 if |{o|o ∈ C ∧ dist(o, q) ≤ c×R}| ≥ 1 then
19 break;
20 end
21 end
22 end
23 return the nearest object omin ∈ C;

B. Approximate Nearest Neighbor Search

The main idea of PDA-LSH is that it uses the precise
projection distance to estimate the distance in original space.
Moreover, in order to limit the error of estimation, PDA-
LSH must collect “abundant” projection distance information
to differentiate the “near objects” and “far objects”.

To implement the above high level idea, PDA-LSH adopts a
threshold based strategy. More specifically, given pre-specified
thresholds of collision number l and projection distance t, if a
data object o collides with a query object q under at least l LSH
functions, and the squared sum of the l projection distances
is at most t, then it is a good candidate of being the c-ANN
of q. The process can be seen in Algorithm 1. An example of
the search procedure is shown in Fig. 1.
c-k-ANN extension. Algorithm 1 can also be easily extended
to support the c-k-ANN search by changing the terminating
conditions as the following: (1) There exist k objects in C
whose Euclidean distances to q are at most cR; (2) βn+k−1
candidates in C have been found.

III. PARAMETER SETTINGS

In this section, we illustrate how internal parameters are
computed to ensure the correctness of PDA-LSH. Previous
study [4] has shown that if objects are accessed in ascending
order of their projection distances, the correctness of c-ANN
is guaranteed if the algorithm has guarantees on the (R, c)-NN
problem. Thus, we only consider the (R, c)-NN problem. Due
to space constraints, we leave all the proofs in our extended
technical report.

A. PDA-LSH for (R, c)-NN

PDA-LSH can directly solve the (R, c)-NN problem by
imposing buckets with width Rw. To ensure the correctness
of PDA-LSH, the following two properties, which support the
two terminating conditions of PDA-LSH, should hold at the
same time with constant probability:

• P1 . Col(o) ≥ l ∧
∑

i∈L(o)

(hi(o) − hi(q))2 ≤ thr × R2,

given dist(o, q) ≤ R.
• P2 . |{o|Col(o) ≥ l∧

∑
i∈L(o)

(hi(o)−hi(q))2 ≤ thr×R2∧

dist(o, q) > cR}| < βn.
where L(o) denotes the set of o’s l projections within a base of
m projections whose distances are smallest to q. According to
the theoretical analysis of LSH based methods [3], the internal
parameters of PAD-LSH should be carefully set to ensure: (1)
Pr[P1 ] ≥ 1−δ, where δ is the false negative probability; and
(2) Pr[P2 ] ≥ 1

2 . On this basis, we have the lower bound on
the probability of both P1 and P2 being true as 1

2 − δ.
Given the input parameters c, β and δ specified by the

user [2], [3], three parameters of PDA-LSH are required to be
computed. One is the base cardinality of LSH functions, which
is denoted as m, and the others are thresholds of collision
number and projection distance, which are denoted by l and
thr, respectively.

For ease of reference, given an object o with distance
s from the query q, we use e1(s,R) to denote the event
Col(o) ≥ l under radius R, and use e2(s,R) to denote the
event

∑
i∈L(o)

(hi(o) − hi(q))
2 ≤ thr × R2. Accordingly, the

assertion of P1 and P2 is assured by the following theorem.

Theorem 1. For any c > 1 and R > 0, with carefully chosen
m, l and thr that satisfy: (1) Pr[e1(s,R)∩ e2(s,R)] ≥ 1− δ
if s ≤ R; (2) Pr[e1(s,R)∩ e2(s,R)] < β

2 if s > cR, then the
probability that both P1 and P2 hold is at least 1

2 − δ.

Now our aim is to choose a correct set of m, l and thr
that satisfy the requirement of Theorem 1. In addition, the
base cardinality m is simply the number of separate indexes in
PDA-LSH, and a small number of indexes would lead to small
space cost and index access cost. Therefore, it’s best to choose
a correct set of parameters with the minimum value of m.
Given m, l and thr, to verify whether Theorem 1 is satisfied,
we need to compute the probability of e1(s,R) ∩ e2(s,R).
By Bayes’ theorem, we have Pr[e1(s,R) ∩ e2(s,R)] =
Pr[e1(s,R)]× Pr[e2(s,R)|e1(s,R)].



We first introduce how to calculate Pr[e1(s,R)]. For any
object o with distance s from the query q, let p(s,R) denote
their collision probability under a query-aware LSH function
with bucket width Rw. Due to the stability of standard normal
distribution N (0, 1), we have the Lemma 1 as follows:

Lemma 1. For any o, q ∈ Rd, hi(o) − hi(q) is distributed
according to the normal distribution N (0, dist2(o, q)) [7].

By Lemma 1, p(s,R) can be computed as:

p(s,R) = Pr[|hi(o)− hi(q)| ≤ R ·
w

2
] =

∫ Rw
2s

−Rw2s
φ(x) dx

where φ(x) is the probability density function (PDF) of
N (0, 1). Moreover, as each of the m LSH functions is generat-
ed randomly and independently, then we have Pr[e1(s,R)] =
m∑
i=l

(
m
i

)
p(s,R)i(1− p(s,R))m−i.

After Pr[e1(s,R)] is available, the biggest challenge, how-
ever, is that there is no closed form expression for the
conditional probability Pr[e2(s,R)|e1(s,R)], and compute it
exactly is very expensive if not impossible. Consequently, it
is computationally prohibitive to find the optimal parameters.
Alternatively, we resort to a heuristic and practical method,
which finds relatively small values of m and l that lead to
satisfactory search performance without abandoning quality
guarantees. Next, we present how to compute them.

B. Computing Internal Parameters
The first step in our parameter setting is to choose m

properly, so that we have “enough” projection information
to make a distinction between the “near objects” and “far
objects”. To ensure that there always exists at least one correct
setting, we propose to choose a conservative value of m.
Similar to QALSH, we first quantize the projection distances
into collision number to enjoy a closed form expression of
the probability analysis. Then, by choosing an appropriate m,
we aim to make sure that there must exist a set of m, l and
thr = +∞ which satisfy Theorem 1 (PDA-LSH is actually
equivalent to QALSH in this case).

Obviously, given the search radius R and two objects o, q
with distance s, their collision number under m hash func-
tions follows the binomial distribution B(m, p(s,R)). Thus,
the probability of two objects colliding more than a given
threshold is exactly the right-tail probability of a binomial
distribution. Different from QALSH that applies Chernoff
tail bounds to derive the tail probability, we propose to
approximate B(m, p(s,R)) by the normal distribution N (m ·
p(s,R),m · p(s,R) · (1− p(s,R))), and use its CDF to get a
more accurate estimation of the right-tail probability. Suppose
that m is given, we aim to find a value of l that ensures: (1) the
right-tail probability of N (m · p1,m · p1 · (1− p1)) associated
with l is at least 1− δ, where p1 = p(R,R); (2) the right-tail
probability of N (m · p2,m · p2 · (1− p2)) associated with l is
at most β

2 , where p2 = p(cR,R). After applying the standard
normal distribution transformation, we have

l ≤ mp1 + Φ−1(δ)
√
mp1(1− p1) = lupper

l ≥ mp2 + Φ−1(1− β

2
)
√
mp2(1− p2) = llower.

On the base of above bounds, the minimum m that
satisfies lupper ≥ llower can be computed as mmin =

d(Φ−1(1− β2 )
√
p2(1−p2)−Φ−1(δ)

√
p1(1−p1)

p1−p2 )2e.
Once m is determined, our goal is to choose a correct

set of l and thr where l is minimized. The smaller l is,
the earlier the candidates can be found, and the less index
access cost is required. However, for each specified l, recall
that the conditional probability Pr[e2(s,R)|e1(s,R)] has no
closed-form expression. Alternatively, we use the Monte Carlo
method [1] to estimate it. Before jumping into details of setting
l and thr, we first introduce two useful Lemmas that will be
used to simplify our parameter setting procedure.

Lemma 2. For any R > 0 and o1, o2, q ∈ Rd, let s1 =
dist(o1, q) and s2 = dist(o2, q). If 0 < s1 < s2, we have
Pr[e1(s1, R)] > Pr[e1(s2, R)], Pr[e2(s1, R)|e1(s1, R)] >
Pr[e2(s2, R)|e1(s2, R)] and Pr[e1(s1, R) ∩ e2(s1, R)] >
Pr[e1(s2, R) ∩ e2(s2, R)].

Lemma 3. For any c, s, R > 0, Pr[e1(s,R) ∩ e2(s,R)] =
Pr[e1(cs, cR) ∩ e2(cs, cR)].

Lemma 2 indicates that, when setting parameters to sat-
isfy Theorem 1, we only need to bound the probabili-
ty Pr[e1(s,R) ∩ e2(s,R)] for two critical distances, i.e.,
Pr[e1(R,R) ∩ e2(R,R)] ≥ 1 − δ and Pr[e1(cR,R) ∩
e2(cR,R)] ≤ β

2 . For this purpose, we first introduce how to
estimate them with respect to the specific l and thr. Moreover,
based on Lemma 3, we can normalize the problem of estimat-
ing Pr[e1(R,R)∩e2(R,R)] and Pr[e1(cR,R)∩e2(cR,R)] to
estimating Pr[e1(1, 1) ∩ e2(1, 1)] and Pr[e1(c, 1) ∩ e2(c, 1)].
Next, we propose a Monte Carlo method to estimate them.

Take Pr[e1(1, 1) ∩ e2(1, 1)] as an example, we first ran-
domly sample N points on a (d − 1)-sphere with radius
1 [6], where d is the dimensionality of dataset. Note that the
center of the sphere does not affect the estimation because the
projection distance is only related to the distance in original
space (see Lemma 1), thus we assume that the default center
is the origin. For specific l and thr, we then find N ′ points,
each of which meets the following limits: (1) there are at
least l projections falling in the interval [−w2 ,

w
2 ]; (2) there

exists a set of l projections whose square sum is at most thr.
By the law of large numbers, Pr[e1(1, 1) ∩ e2(1, 1)] can be
approximated by N ′

N if N is large enough. The estimation
of Pr[e1(c, 1) ∩ e2(c, 1)] can be performed in a similar way,
the only difference is that we randomly sample points on a
(d− 1)-sphere with radius c.

With the aforementioned methods of probability estimation,
we inspect the values of l in ascending order, and select the
minimum l, which ensures that there exists a correct thr
satisfying Pr[e1(1, 1) ∩ e2(1, 1)] ≥ 1 − δ ∧ Pr[e1(c, 1) ∩
e2(c, 1)] ≤ β

2 as the result.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency and accuracy of
our proposed method. We compare PDA-LSH with QALSH



TABLE I
INTERNAL PARAMETERS AND INDEX SIZE OF PDA-LSH, QALSH AND SRS

Datasets d n
PDA-LSH QALSH SRS

m l (l′) Index Size m l Index Size m l Index Size
Sift 128 1,000,000 45 33 (36) 346.09 MB 83 63 905.92 MB 6 - 38.7 MB

Msong 420 994,020 45 33 (36) 343.32 MB 83 63 886.54 MB 6 - 37.6 MB
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and SRS, which are two state-of-the-art I/O efficient algo-
rithms with theoretical guarantees on the result quality.

A. Experimental Setup

The experiments were ran on a workstation powered by Intel
Xeon Gold-6148 CPU on Linux (Ubuntu 16.04), having a 15K
RPM disk. All the experiments were conducted using the direct
I/O mode. We experimented on two real-world datasets. The
characteristics of the datasets are summarized in Table I. We
set the page size to 8 KB. We use 4-byte integers to store the
object IDs and 4-byte floats to store the hash projections. To
be fair, the success probability of all algorithms is set to 1

2−
1
e .

The default approximate ratio c is set to 2. Both of PDA-LSH
and QALSH use w = 2.719 so that the gap between p1 and
p2 is maximized.

B. Experimental Results

Space consumption. Table I shows the index size of the three
algorithms. SRS has the smallest size because it uses much
fewer projections than other methods. The index size of PDA-
LSH is 2.6× smaller than QALSH. There are two primary
reasons: one is that PDA-LSH uses fewer separate indexes.
Another reason is that the LSM-Tree is more space efficient
than the B-Tree when handling updates, because it has no
split/merge operations.
Update performance. From Fig. 2, we can see that PDA-LSH
always achieves the best performance.
Search performance. We follow the previous studies [3],
[8] and adopt the following three metrics in our search
performance evaluations: overall ratio, I/O cost and running
time. The results are shown in Fig. 3-5. We observe that both
PDA-LSH and QALSH offer much higher accuracies than
SRS. SRS has the smallest I/O cost due to its small index
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size. However, this is often at the expense of sacrificing result
accuracy. We also observe that the I/O cost of PDA-LSH is
2.3-2.6× less than QALSH while offering comparable result
accuracies. When the data dimensionality is large, PDA-LSH
has comparable performance than SRS although its I/O cost
is higher. The main reason is that PDA-LSH benefits from the
fast sequential I/Os brought by LSM-Tree.

V. CONCLUSION

In this paper, we addressed the problem of indexing high-
dimensional data over streams, in which case the update
efficiency, search efficiency and quality guarantees are all
crucial. We proposed an efficient LSH index, namely PDA-
LSH, for high-dimensional streaming data processing. The
experimental results demonstrate the efficiency and accuracy
of our proposal.
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