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HisRect: Features from Historical Visits and
Recent Tweet for Co-Location Judgement

Pengfei Li, Hua Lu, Senior Member, IEEE, Qian Zheng, Shijian Li, and Gang Pan

Abstract—Enabled by smartphones, social media users are increasingly going mobile. This trend fosters various location based
services on social media platforms (e.g., Twitter). Many services like friends notification and community detection benefit from
co-location judgement, i.e., to decide whether two Twitter users are co-located in some point-of-interest (POI). This problem is
challenging due to the limited information in tweets and the lack of explicit geo-tags in tweets that can be used as labeled data. Our
approach to this problem is based on a novel concept of HisRect features extracted from users’ historical visits and recent tweets: The
former has impacts on where a user visits in general, whereas the latter gives more hints about where a user is currently. In practice,
labeled data is scarce. Therefore, we design a semi-supervised learning (SSL) framework that leverages unlabeled data to

extract HisRect features. Moreover, we employ an embedding neural network layer to process HisRect features of two users, which
decides co-location based on the embedding difference between the two features. Our model is extensively evaluated on two large sets
of real Twitter data from more than one million users. The experimental results demonstrate that our HisRect features and SSL
framework are highly effective at deciding co-locations. In terms of multiple metrics, our approach clearly outperforms alternative

approaches using state-of-the-art techniques.

Index Terms—Twitter, POI, Co-Location Judgement, Semi-Supervised Learning

1 INTRODUCTION

Riven by smartphones and mobile Internet, social media
D users are increasingly going mobile [1], [2]. For exam-
ple, Twitter had approximately 257 million mobile active users
monthly as per the first quarter in 2016!. Along with this trend
is the emergence of location based services deployed on social
media. Most of such location based services require accurate
or coarse user locations to decide the service results for users.
However, many people actually do not share their precise locations
in their social posts [3], [4]. It is thus necessary to bridge this gap
in order for the relevant location based services to take full effect.

In this work, we study a co-location judgement problem, i.e., to
judge if two Twitter users are at the same point-of-interest (POI) in
a period of time. We stipulate that two tweets are sent in the same
time period if their time difference is less than a threshold At.
Many important applications today need to know how to acquire
the information about “if two users stay together” or “who are
in the same place among a group of users”. For example, friends
notification [5] is a very popular service on social media, which
notifies a user that one of his/her friends is also present at the same
POI in the same time. As another example, many social network
platforms also offer local people recommendation [6], [7], which
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can recommend users who are close to and share the same interest
with a user in need. Furthermore, “followship” measurement in the
real world [8] investigates when a person visits a POI due to the
influence of another person. Other examples include community
detection and group analysis [9], [10], [11] that aim to find users
sharing interests and appear in the same place at the same time.
Such people may form communities in an online-to-offline fashion
to fulfill different purposes. All aforementioned applications can
clearly benefit from co-location judgement. Existing works usually
requires the input data to be geotagged, i.e., tweets must be
associated with coordinates or place names. However, geo-tagged
tweets only occupy a small fraction in all tweets [3]. Solving
the problem of co-location judgement provides a better way
to enable these applications as it can deal with non-geotagged
tweets. Traditional location inference approaches [12] also work
in these tasks—we just infer the location of every user and then
judge if users in question are in the same location. However, as
our experiments show, such a method results in low inference
accuracy whereas our co-location judgement approach achieves
high judgement accuracy.

The problem of co-location judgement on Twitter data is
challenging. On the one hand, the content length of each tweet
is limited to 140 characters and thus a tweet conveys little
information in general. As Twitter users often use non-standard
and shorthand terms, tweets are often vague and noisy. Thus, it
is difficult to find location clues from short, noisy tweets. On the
other hand, as tweets are mostly not geo-tagged [13], and even
fewer tweets are explicitly associated to POIs, the labeled data
across each POI, on average, is scarce.

Since only a small fraction of tweets are geo-tagged, it is not
possible to directly know if two Twitter users are co-located or
not. We have to make use of other information available for the
users. Fortunately, people often send location-related tweets when
they get to new POIs. Also, the places a user has ever visited tend
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to have an impact on where they are now or where they are going.
Therefore, our approach to the co-location judgement problem is
based on historical visits and recent tweet contents.

To address the challenges, our solution integrates users’ visit
history and recent tweets in feature selection. A user’s historical
visits can be regarded as a kind of prior information, whereas
her/his recent tweet is often related to where she/he is (or heading
to). We deliberately extract features from historical visits and
recent tweets (HisRect for short), which combine Twitter user
visit history and recent tweet contents. Furthermore, we decide
if two users are co-located based on the difference between
their HisRect features.

To alleviate the issue of data scarcity, we further propose
a semi-supervised learning (SSL) framework [14] that leverages
unlabeled data, those geo-tagged tweets which are not explicitly
associated to any POI, to train the HisRect featurizer. Subse-
quently, we feed the HisRect features of two users to another
embedding neural network layer and calculate the difference of
the two embeddings. Finally, we construct our co-location judger
as a feed-forward neural network that only takes the embedding
difference as input.

Our HisRect featurizer and co-location judgement are experi-
mentally evaluated on large real datasets. The experimental results
demonstrate that our HisRect based approach is effective at finding
co-located users and it clearly outperforms alternative approaches.
Furthermore, our HisRect features result in more accurate POI
inference than the state-of-the-art techniques.

Our contributions are summarized as follows.

e« We formulate the problem of co-location judgement on
Twitter data. To the best of our knowledge, this is the first
work to address this problem.

e We design HisRect features which quantify the spatial and
temporal aspects in Twitter users’ visit history and address
the local features in recent tweets.

e We develop a novel semi-supervised embedding learning
framework to train the HisRect featurizer such that unla-
beled data can be exploited in our solution. The framework
includes a carefully-designed affinity graph that considers
both spatial and temporal distances between HisRect fea-
ture instances. Relevant experimental results demonstrate
the effectiveness of the proposed semi-supervised method.

e We conduct extensive performance evaluation using real-
world Twitter data. The results verify the effectiveness of
our HisRect features and semi-supervised framework.

The rest of this paper is organized as follows. Section 2 reviews
the related work. Section 3 formulates the research problem.
Section 4 describes how to build HisRect features and presents
the semi-supervised learning framework for training the featur-
izer. Section 5 details our approach for co-location judgement.
Section 6 reports the experimental results. Finally, Section 7
concludes the paper and points to future work directions.

2 RELATED WORK

To the best of our knowledge, there exists no work on the co-
location judgement problem on Twitter data. A straightforward
solution works as follow. For two twitter users who sent tweets in
the same period of time, we infer two respective locations based
on their tweet contents or their historical visits and check if the
two inferred locations are the same. Therefore, we briefly review

2

location inference or recommendation methods in Section 2.1.
Also, we review semi-supervised learning techniques briefly in
Section 2.2.

2.1 Location Inference or Recommendation

To infer locations for individual tweets, most existing approaches
rely on tweet contents. Kinsella et al. [15] create language models
of locations using geo-tagged tweets, measure the Kullback-
Leibler divergence between such a model and a tweet, and infer the
tweet location at the neighborhood and city level. Doran et al. [16]
build smoothed language models to estimate tweet locations at
the neighborhood level. Priedhorsky et al. [17] propose a two-
dimensional Gaussian Mixture Model to infer the city of a tweet.
Zubiaga et al. [13] extract features from user profiles and tweet
contents, following a weighted maximum entropy classifier to
determine the country for a tweet in real-time. Flatou et al. [18]
use a Gaussian model to capture the location distributions of n-
grams and associate geographic scope to such n-grams.

Some studies consider not only content and metadata in user
profiles but also temporal information. Yuan et al. [19] propose a
probabilistic topic model to exploit micro-blogging data to detect
spatio-temporal topics, and then they use the topics to model user
mobility behavior and infer tweet locations. Dredze et al. [20]
also consider the impact of time on tweet locations, taking time
as a feature and using a linear classifier trained on geo-tagged
tweets to infer tweet locations at the city level. Palpanas and
Paraskevopoulos [21], [22] exploit the similarities in the contents
between a tweet and a set of geo-tagged tweets posted at the same
time in order to decide if the given tweet is from the same location
as others. Besides, Noulas et al. [23] and Ryoo et al. [24] exploit
users mobility to predict their next places. McGee et al. [25], [26],
Yamaguchi et al. [27] and Kong et al. [28] consider temporal
spatial aspects when making location inference.

Some recent POI/location recommendation models are able to
predict the location or POI for a given user at a given time period.
Recent studies [29], [30], [31], [32], [33] focuses on leveraging the
geographical and social influences to improve recommendation
accuracy. Studies [34], [35], [36] make use of temporal cyclic
patterns and temporal sequential patterns. Besides, semantic infor-
mation is adopted by many recommendation approaches to allevi-
ate the data sparsity problem. Yin et al. propose LCA-LDA [37]
and Geo-SAGE [38] models to exploit the content information
of checked-in POIs to infer both personal interests and local
preferences. Also, SPORE [39] fuses sequential influence with
personal interests in the latent and exponential space, TPM [40]
utilizes cyclic patterns, and GE [41] embeds four corresponding
relational graphs into a shared low dimensional space to capture
the sequential effect, geographical influence, temporal cyclic effect
and semantic effect. ST-LDA [42] learns region-dependent per-
sonal interests according to the contents of their checked-in POIs
at each region. SH-CDL [43] jointly performs deep representation
learning for POIs from heterogeneous features and hierarchically
additive representation learning for spatial-aware personal prefer-
ences. However, unlike our HisRect-based approach, these models
requires a user’s historical data in the training process in order to
make recommendations for the user. That said, these models can
hardly deal with new users, i.e., those users whose historical data
is not available in the training dataset. Furthermore, they require
semantic information about POIs (such as tags or descriptions).
Moreover, most of these models focus on building static features
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for users and POlIs/items. Thus, they will predict the locations of
a users at two time periods to be the same. Although some models
consider the temporal information when making predictions, they
only concern time, days or hours, e.g., if a user posts two tweets
of 2 o’clock but on two different Saturdays, the two times are
regarded as the same and the user will most likely receive the
same POI recommendations. Also, they do not utilize the textual
information of relevant tweets when predicting the locations of
users. In summary, those recommendation methods fall short for
our co-location judgment problem as their design characteristics
are different from what is needed by our problem..

2.2 Graph-based Semi-Supervised Learning

Semi-supervised learning (SSL) aims to leverage unlabeled data
to improve performance when labeled data is scarce. Graph-based
SSL uses a matrix to describe the similarities between any two
instances. Let L and U be the numbers of labeled and unlabeled
instances, respectively. Let x1.;, and xy;11..4+y denote the in-
put vectors of labeled and unlabeled instances, respectively, and
v1.1 are the labels of x;.;,. Graph-based SSL learns a classifier
f : x — y. The mainstream approaches usually need an affinity
graph, which is a (L + U) x (L + U) matrix A. Each entry a;;
indicates the similarity between instances ¢ and j that are either
labeled or unlabeled. The matrix can be derived from distances
between instances [14], [44], [45], [46], or from external data
such as knowledge graphs [47], document citation networks [48]
and social networks [49]. In this paper, our matrix A is constructed
based on the spatial and temporal distances between instances.

Generally, the loss function of graph-based SSL can be written
as follows [14]:

! l+u
L= 0(fx),yi) + D> Lulf(xi), f(x5), a5)
i=1 ij=1

In particular, f(-) is the prediction function to be learned that
maps input x to labels y, £; is some proper loss function for
supervised loss on labeled data, and and £, for unsupervised loss
on both labeled and unlabeled data. Specifically, ¢,, incurs a large
penalty when similar instances with a large a;; are predicted to
have different labels.

Different graph-based SSL algorithms define unsupervised
loss /¢, in different ways. Zhu et al. [45] use label propagation
to force f to agree with yy.;, where f is a label lookup table
for unlabeled instances in the graph and can be obtained with
a closed-form solution. Talukdar et al. [49] propose a variant of
label propagation called modified adsorption that allows prediction
on labeled instances to vary and incorporates node uncertainty.
Zhou et al. [44] define ¢, as squared loss. Belkin et al. [14] use
the Laplacian Eigenmaps regularizer and parameterize f in the
Reproducing Kernel Hilbert Space with £,, being squared loss or
hinge loss.

Different from aforementioned approaches, Yang et al. [50]
present an SSL. framework based on graph embeddings. Weston
et al. [46] propose to learn an embedding function instead of
a prediction function. In their proposal, f(x) € R? is the
embedding for a given instance x € R™. In this case, ¢,, is defined
as a;;]| f(xs) — f(x;)|l2 for any instances x; and x;.

In this paper, we adopt the idea of semi-supervised embedding.
Nevertheless, we use a neural network to fit the embedding
function f because neural networks have powerful expression
ability [51]. As the dimension of the embeddings is high (up to

3

512) in our setting, the Euclidean distance is not a feasible measure
for similarity [52]. Instead, we use the cosine distance to calculate

ly.

3 PROBLEM FORMULATION AND FRAMEWORK

This section formulates the research problem and gives our solu-
tion framework. .

3.1 Notations and Problem Formulation

It is very difficult to directly know if two Twitter users are co-
located as the geo-tagged tweets are scarce. Thus, we consider
utilizing other information available to solve the problem. Accord-
ing to our observations, the places a user has ever visited tend to
have impact on where they are now or where they are going. Also,
people usually send location-related tweets contents when they get
to new POlIs. In this study, we make use of geo-tagged tweets that
are posted with geo-locations captured as latitude and longitude.
Such a tweet implies a visit of a place by the corresponding Twitter
user. With the help of an appropriate geographic information
service like OpenStreetMap?, we are able to decide if a geo-
tagged tweet was posted in a POL. In addition, we also consider
the contents of the most recent tweets of Twitter users. By taking
into account the visit histories and the recent tweet contents, we
expect to identify if two Twitter users are currently located in the
same POI or not.

The notations used throughout the paper are given in Table 1.

TABLE 1: Notations

P Set of POIs

Ry, Labeled profiles

Ry Unlabeled profiles

Rir@m | Labeled profiles of training dataset
Rtest Labeled profiles of testing dataset

'y Labeled pairs

sz I, | Positive and negative pairs with I" z Ur;=rg
I‘tLT’“" Labeled pairs of training dataset

riest Labeled pairs of testing dataset

'y Unlabeled pairs

FtUm”” Unlabeled pairs of training dataset

At The time period

Definition 1 (POI). A POI p is a 4-tuple p = (pid, bp, lat,
lon), where pid is p’s identifier, bp is p’s bounding polygon
formed by connecting N coordinate points, and (lat,lon) is
the central point of the polygon bp.

We use (lat,lon) € p.bp to denote that a point (lat,lon) is

inside the POI p.

Definition 2 (Tweet). A tweet ¢ is a 4-tuple t = (ts, content,
lat, lon) where ts is the timestamp when t was posted, and
content is the content of . If ¢ is a geo-tagged tweet, lat
and lon represents the latitude and longitude, respectively.
Otherwise, both lat and [on are set to null.

Let P be the set of all POIs. A tweet ¢ is a POI tweet if there
is a POI p € P such that (t.lat,t.lon) € p.bp, i.e., tweet t was
posted when the user was at a POl in P.

A geo-tagged tweet implies a visit as follows.

Definition 3 (Visit). A visit v is a 3-tuple v = (s, lat, lon),
meaning a user visited location (lat, lon) at time ts.

2. https://www.openstreetmap.org/
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Fig. 1: The framework of building and training HisRect features and co-location judgement with HisRect featurizer

In the training phase, we extract ts, lat and [on from all
geo-tagged tweets in a user’s timeline, which forms a complete
sequence of visits of the user. Such a sequence is called the user’s
visit history. Furthermore, we build user profiles that combine user
visit history and recent tweet.

Definition 4 (Profile). A user profile r is a 4-tuple r = (utd,
t, v-history, pid), where uid identifies the user who sent the
recent tweet ¢, v-history is the user’s visit history before ¢.ts,
and pid is a POI identifier.

For convenience, we use r.ts, r.lat, r.lon and r.content to
denote r.t.ts, r.t.lat, r.t.lon and r.t.content, respectively. If r.t
is a POI tweet at p, r.pid is set to p.pid and r is regarded as
labeled; otherwise, r.pid is set to null and r is unlabeled.

In the co-location judgement, we consider a pair of users.

Definition 5 (Pair). A pair is a 3-tuple 7“/17’\] = (74, r§, co-label)
where r; and r; are two profiles, r;.uid # r;.uid, and |r;.ts—
T'j.t8| < At.

A pair is unlabeled and its co-label is set to null, if either of
its profiles is unlabeled. Otherwise, the pair is labeled. In a labeled
pair, co-label is set to 1 in the training data if the two users are
co-located at the same POI. Such a pair is positive. Otherwise,
co-label is set to 0 and the pair is negative. We use I'} and '} to
denote the sets of positive and negative pairs, respectively.

In the rest of this paper, we use d(a,b) to denote the spatial
distance between two objects with location connotations. Specifi-
cally, a or b can be a profile, a visit or a POI. Besides, we define
the spatial distance d(r, P) between a profile 7 and the POI set
P as the lower bound distance between r and all POIs in P, i.e.,
d(r, P) = min {d(r,p) | p € P}.

Our research problem is formulated as follows:

Co-Location Judgement: Given two profiles 7; and 7;
generated by two new users such that 7;.uid # rj;.uid, and
|rits — rj.ts| < At, ie., r; and r; form a pair, suppose that
the two profiles’ pids are unknown, decide if they are co-located,
i.e., if they are from the same POI.

3.2 Solution Framework

Fig. 1 shows the framework of our solution to the co-location
judgement problem. The core is to extract features from historical
visits and recent tweets in profiles. The left part illustrates how
it works. The feature, called ‘HisRect’, F(r) of the profile r
includes two parts: the fixed dimensional feature F"(r) which
quantifies the spatial and temporal aspects of historical visits,
and F°(r) which extracts the location clues from the raw recent
tweet contents and is also fixed dimensional. To get F°(r), we
adopt the skip-gram algorithm [53] to build word vectors first.
Then BiLSTM-C [54], an LSTM variant, is used to convert the
word vector sequence of the tweet content in a profile into the
fixed dimensional feature F°(r). We detail the procedure of
building HisRect feature of profiles from Section 4.1 to 4.3. To
train this featurizer, we propose an graph-based semi-supervised
learning approach, as shown in right upper part in Fig. 1. The
SSL framework takes pairs and labeled profiles as input. It needs
a similarity matrix A that measures the ‘distance’ of both profiles
in a pair. To create A, we take the spatial and temporal distance
of two profiles into consideration (Section 4.4). After that, each
profile is expressed as a fixed dimensional feature vector. Finally,
the right lower part shows the procedure of judging if a pair
7;7; is co-located or not using the featurizer F. We calculate
the difference of features F(r;) and F(r;) and feed it into a
binary classifier composed of fully-connected layers and activation
functions only. It is noteworthy that the parameters of JF are fixed
during this stage. Section 5 describes the approach in details.

4 HisRECT FEATURE

The HisRect F(r) of a profile r includes two parts: F"(r)
featurizes r.v-history; F°(r) is the embedding of r.content.
The left part of Fig. 1 shows how to build HisRect feature of a
profile.

4.1

A straightforward way to featurize a user’s visit history is to use
a one-hot encoding vector representing the POI identities [33].
However, this way fails to take into account when the visits to

Feature of Historical Visits
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those POIs took place and neither can this way utilize those visits
whose coordinates are not inside any POI. Thus, we need to find
a better way to model users’ visit histories.

In a short period of time, a user is unlikely to move from
one POI to another that is far away. Therefore, a user’s historical
visits have an impact, to some extent, on her/his current locations.
Intuitively, more recent visits tend to have a higher impact. It is
thus beneficial to utilize a user’s visit history by considering both
temporal and spatial aspects. More specifically, we want to know
where the users have been before, when they went to those places,
how far the two places are with subsequent POI candidates. To
quantify these aspects, we propose a featurizing method, shown in
the left upper part of Fig. 1, that considers all of these aspects:

— td cd
w0 = L, pry 6d+d(v7P|P|)] "
Fi(r) = EQ—norm( Z mw(v)) ()

vEr.v-history

Above, d(v, p;) is the spatial distance between the visit v and the
i-th POI p;. The i-th item in w(v) is a spatial relevance measure
between v and p;: the value of ith item in w(v) almost grows in
inverse proportion with the distance between POIs of v and p;. The
coefficient m is an influential factor of the timestamp of
v, which implies that more recent visits have a larger impact on the
user’s current POI. Parameters €4 and ¢; are distance-concerned
and time-concerned smoothing factors, respectively. It is evident
from the definition of F"(r) that if the user have ever been to
some places close to some POI p;, the ith weight in F" (r) will
be large.

On the one hand, by using F"(r) to quantitatively describe
the temporal and spatial distances between users’ visits and every
POI, we obtain a kind of prior information about a user’s current
location. On the other hand, F°(r) extracts posterior information
from users’ recent tweets that contain more clues about where they
are now.

If a profile r contains no historical visit, we just set the value
of every dimension of F"'(r) to be the same, ie., F'(r) =
¢?>-norm([1, .., 1]). Therefore, our model is able to deal with the
user timelines that contain no POI tweet.

We compare our approach with that using one-hot encoding
and find our approach performs much better. These experimental
results are reported in Section 6.

4.2 Feature of Recent Tweet

Generally, r.content can be defined as a sequence of words
r.content = (wy,...,wy) with length of T'. Since processing
words directly is difficult, we convert r.content into a sequence
of fixed-dimensional vectors. In particular, we extract the content
of all tweets of each timeline in our training data Cl.,;, and
use the skip-gram algorithm [53] to train these word vectors.
Consequently, each word is expressed as an M -dimensional vector
of float numbers, where M is an empirical value that has little
impact on the overall model performance. It is set to 512 in
our experiments. Subsequently, we express the word sequence of
r.content as a word vector sequence X = (21, ...,z7). This X
serves as the vectorization for r.content. Each x; in X is the
word w;’s M-dimensional vector and the length of the sequence
X, i.e., | X]|, is T. This way, we convert r.content into X.
Bidirectional Long short-term memory (BLSTM) [55] is spe-
cialized for sequential data. It takes X as input and computes the
N-dimensional hidden state sequences H = (hog,....,h7) and H =

5

(;1_0,...,%) bidirectionally. However, BLSTM take the sequence of
individual word vectors as input. Sometimes, an individual word
cannot give clear location clues but word groups or phrases have
close ties with some particular locations. For example, “statue” or
“liberty” can be used everywhere, whereas “Statue of Liberty” is
the landmark of New York City. Motivated as such, we combine
word groups in the hope of extracting such local features that are
more powerful for location inference.

To address this idea, we use BiLSTM-C [54], a variant of
LSTM which adds a convolution layer above the BLSTM layer, to
exploit the local features inside the word groups. It concatenates
every vector in H and H and converts the combination of them
into a T'x N x 2-dimensional tensor H that can be viewed as a 2-
channel image with height 7" and width N. Using one filter K €
R3*N to convolute H, followed by a nonlinear rectified linear
unit (Relu) operation, BiLSTM-C gets a (T-2)x N-dimensional
output “feature map”. By computing the mean of elements in this
“feature map” across the first dimension, we get the fixed IN-
dimensional feature F€(r) of r.content:

It ke
h 1 h 1
H::O - H::l -
Wy W
Fe(r) = Mean(Relu (K « H)) 3)

The architecture of BiLSTM-C' is shown in the bottom-left part
of Fig. 1.

4.3 Combination of F"(r) and F¢(r)

To obtain the final HisRect F(r), we merge F*(r) and F°(r)
through vector concatenation and feed [F"(r), F(r)] to a feed-
forward neural network which is composed of some stacked
fully connected layers followed by nonlinear rectified linear units
(Relu(x) = maxz(0,x)). Combining Eq. (2) and (3), we obtain
the representation of HisRect feature F'(r):

Fr) = 1 (B2 F 0, 7)) ).

where ()¢ is the total number of fully connected layers in F.

4.4 Semi-Supervised HisRect Training

The HisRect feature is the bridge between raw profiles and POIs. It
is natural to train F by feeding HisRect features to a POI inference
classifier. As we have a labeled profile set Ry, a straightforward
way is to use a supervised learning method. Such a method
estimates the probabilities of a profile located in every POI and
builds a supervised loss function based on the probabilities and
their actual labels. However, a supervised method falls short when
there lacks sufficient training data. In our case, out of the total
1,904,227 profiles, only 533,400 are associated to a POI. In other
words, the amount of unlabeled data is almost three time larger
than that of the labeled data. This motivates us to employ a
graph-based semi-supervised learning (SSL) method to leverage
unlabeled data to generate better features.
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Our SSL approach aims to solve the following optimization
problem:

ff=argmin L, + L, “)
fenN
l+u
where £, = Z Q45 (1 - <5(F(Ti))75(7(rj))>)
ij=1

with €(x) = normalize (th (...h2 (hl(x))))

Above, f is the objective function, .#” is a normalized vector
function space, and L,,,; is the supervised loss of the POI classifier
P, a feed-forward neural network taking the labeled profiles set
Ry, as input which is just the cross entropy in our settings. £ is a
normalized feed-forward network to embed the HisRect features
of profiles into R” space in which F is the dimensionality of
embeddings and (). is the number of fully connected layers.
The unsupervised loss £, takes the labeled and unlabeled pairs
sets I'r, and I'y as input, and a;; is the similarity between
profiles r; and r;. £, gives a large penalty when the cosine
distance? is large between the embeddings of two similar profiles.
In Fig. 1, the top-right part illustrates the joint training of the
semi-supervised HisRect featurizer F and the POI classifier P.
The most important thing is how to measure the similarity
between two profiles. As each profile contains latitude and longi-
tude, it is natural to use the spatial distance between two profiles
to compute their similarity. Also, the time dimension should be
taken into consideration as two profiles tend to be less similar if
they were posted at different times. By considering the spatial and
temporal aspects, we derive the similarity matrix A as follows:

1, it mr; €7,

-1, if ;7 € T,

if r; € Ty and d(r5,75) < p

and d(r;, P) < pand d(rj, P) < p
and |r;.ts — rj.ts| < At,

0, otherwise.

aij - 6:1
e;l+d(ri i)

In particular, p and At are the thresholds for spatial and temporal
distances, respectively; 6:1 is another smoothing factor.

Two profiles should be similar if they are associated to the
same POI in the same time period. In contrast, two profiles in
a negative pair are supposedly different, as they are associated
to different POIs. Accordingly, a penalty should be given if the
distance is large between features of profiles in a positive pair.
Otherwise, it gives a reward, i.e., a negative penalty. Therefore,
we set the similarity item a;; for profiles in positive and negative
pairs to be 1 and -1, respectively.

When a pair of profiles are not from the labeled set I'z,
we cannot measure their similarity in the aforementioned way.
For profile pairs from I'y, we utilize the lat, lon and ts in
the profiles. Intuitively, the shorter the spatial distance between
two profiles, the larger the similarity between them is. Given
a profile pair, if their spatial distance is larger than p or their
temporal distance is larger than A¢, we set their similarity to be 0.
Furthermore, if a profile r was posted in a place close to no POI,
i.e., d(r, P) > p, we think it offers little useful information and
set all the similarities involving 7 to be 0. Those relevant profiles

3. As E(F(r;)) and E(F(r;)) are normalized, we do not need to divide
the product of their £2-norm.

6

are unlabeled and we are less confident to say that their features
are totally different. Therefore, we do not set them to -1.

We train F, € and P as follows. First, we build the sets I'j,
and 'y from labeled profile set Ry, and unlabeled profile set R,
respectively, and calculate the similarity matrix A. For A, we only
need to consider those pairs of profiles in Ry | JRy, as the weights
of the pairs not in ' | JT'yy are all 0. These pairs have no impact on
the penalty £,,. After we obtain the aforementioned data, batches
are sampled from Ry, and Iz |JI'y according to the proportion of
Ry, : T UT'y. Subsequently, we feed the samples to the network
to calculate £,,; and L,. Finally, by updating © 7, ©p and
©g—the parameters of F, £ and P, respectively, we perform
a stochastic gradient descent step with mini-batch Adam [56]
to optimize the supervised loss L,,; and the unsupervised loss
L,,. The whole procedure is repeated for a number of iterations
until £,,; and L, are convergent. The whole training process is
formalized in Algorithm 1.

Algorithm 1 Semi-supervised HisRect feature training

Imput: R.,I'r, 'y, A, B
1: set Q) = |RL‘ + |FL UFU‘
2: set Ypoi = %L s Yu = %Jirm
3: repeat
4 generate a random number € [0, 1)
5 if v < vpoi then
6 sample a batch of labeled profiles B, € Ry, of size B
7 Lpoi = _% ZreBT Log(ppoi[r-pid])
8: Take a gradient step to optimize Lp0;, update © 7 and Op
9
10
11

else
sample a batch of pairs B, € I'r, | JT'v of size B
Lu=—5% Y ep, Giill€(H(r:)), E(H(r;)) |13
12: Take a gradient step to optimize L., update © r and Og
13: until £,,; and L., all converge or are sufficiently small

5 HISRECT-BASED CO-LOCATION JUDGEMENT

The HisRect feature is suitable to solve the problem of co-location
judgement. If two users have similar historical visits or send tweets
from the same POI, they are more likely to be co-located. On the
contrary, two users with very different visits histories are very
likely to be in different places.

In order to judge if two profiles 7; and r; are co-located, a
simple method called Comp2Loc uses the classifier P to infer
the POIs for both profiles and see if the two inferred POIs
are identical. However, this method only considers part of the
original HisRect featurse and utilizes the features of 7; and r;
separately. It lacks insight on the intrinsic properties of co-located

airs.

P A more sophisticated method should consider the difference
between the features of r; and r; and thus capture the intrinsic
relationship between r; and r;. The bottom-right part of Fig. 1
shows the framework of our approach to the co-location judgement
problem. We use an embedding layer £’ to embed the His-
Rect features of 7; and r;. Also, we construct a feed-forward
neural network C whose input is the difference vector between
the two embeddings. On top of C follows a binary softmax layer.
It is basically a logistic regression with sigmoid function and the
corresponding cross entropy is reducible to a log loss function.
The formula of &£’, C, co-location probability estimate p.,, and
the supervised loss are shown as follows.

£'(x) = h (...;f (hl(x))); C(x) = ho (...h2(h1(x)))
peli775) = o (€(IE (7)) - £ (Fr)]))
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Leo=— Z lOQ(pCO(T/iT\j))_ Z lOg(l—pco(T/H"\j))

7 €ry 7T €LY

Above, @, and Q. are the numbers of fully connected layers in
&’ and C, respectively. When pe, (7;7;) is larger than a threshold
(it is set to 0.5 generally), the profiles r; and r; are regarded as
co-located.

To train £ and C, we only need the labeled pairs set I'f.
In each training iteration, we sample batches from I'y,, calculate
corresponding L.,, and take a gradient decent step until L.,
converges. Note that the parameters © x of F are fixed at this
stage.

We can also connect the HisRect featurizer F with £’ and C
directly and take L, as loss objective to train the parameters © r,
O¢/ and O¢ jointly using labeled pairs I',. This approach, called
One-phase, omits the process of HisRect feature training. As some
profiles in Ry, may not show in any pair in I';,, One-phase may fail
to exploit useful information. Also, One-phase cannot be trained
in a semi-supervised way since it does not use unlabeled data.
Experiments show that our approach outperforms One-phase.

Our proposed co-location approach can be easily wrapped into
an efficient clustering algorithm. Given N profiles, we can get an
N x N probability matrix S with each item S; ; representing
the similarity of profiles r; and r;. By taking each profile as
a node and linking an edge between node ¢ and j if S;; is
larger than a threshold (in general, it is set to 0.5), this matrix
is converted into an undirected graph. Consequently, the clusters
are just the connected components of the graph. We do not even
need to designate the number of clusters. The experimental results
demonstrate that our approach works well on clustering tasks.

6 EXPERIMENTS
6.1 Experimental Settings
6.1.1 Datasets

We use the open-source library mwitter4j* to access Twitter’s open
API to crawl data. We crawl timelines of Twitter users whose
profile location is in one of New York’s five boroughs® (NYC
for short) or Clark County (including Las Vegas, LV for short) in
Nevada. Totally, there are 892,172 NYC and 207,682 LV Twitter
user timelines, involving 992,390,010 and 148,021,872 tweets,
respectively. Only 2.2 percent of NYC tweets and 2.0 percent
of LV tweets are geo-tagged. In addition, we download NYC
and LV OpenStreetMap data dump® and extract all POI bounding
polygons. By checking the coordinates in those geo-tagged tweets
against the POI bounding polygons, we identify all POI tweets,
i.e., those sent in a POI. In the data we use, most POIs involve no
tweets. Therefore, we only consider the top 1000 POIs in NYC and
top 250 POIs in LV that have the most tweets. We filter out the user
timelines that contain no POI tweet and obtain 58,966 and 10,844
user timelines in NYC and LV, respectively. We randomly select
% of these timelines to form the testing dataset. The remaining
timelines are split into training and validation data in the ratio of
9:1.

We obtain labeled profiles set RY"", labeled pairs set ['474%",
and unlabeled pairs set F'}}“i” for the training dataset. In the

4. http://twitterdj.org

5. The five boroughs are: Manhattan, Brooklyn, The Bronx, Staten Island
and Queens.

6. https://wiki.openstreetmap.org/wiki/Planet.osm

7

testing or validation dataset, only the labeled profiles set RS’
and labeled pairs set FtLeSt are needed. More details about the
datasets are given in Table 2.

6.1.2 Training and Implementation

Each stopword” in the content of all profiles is replaced with
a </s> symbol firstly. Since the ratio between the numbers of
negative/unlabeled and positive pairs is very large, we use % of
negative and unlabeled pairs only in every training epoch, i.e.,
negative and unlabeled pairs can be gone through in every 10
epochs.

It is noteworthy that our approach design is independent of
the At in the problem setting. We conduct some preliminary
experiments using different At¢ values. The performance results
are very stable despite the varying At. Therefore, for both training
and testing datasets, we set Af to be 1 hour in subsequent
experiments.

Other important details are as follows:

e We replace each stop word with a </s> and only consider
those words appearing more than 10 times when training
word embeddings.

e The parameters of the LSTM and all the fully connected
layers are initialized with Gaussian noise with mean being
0 and standard deviation set to be 0.01.

e We initialize the initial state of the LSTM with 0.

o To avoid exploding gradient problem, we enforced a hard
constraint on the norm of gradient by scaling it when its
norm exceeds a threshold [0, 5].

e We use dropout and the configuration is set to keep
probability of 0.8 [57] at the LSTM layer and before
every fully connected layer during training. These are not
involved when applying the model on testing dataset.

e We use three Adam optimizers to minimize Ly, Ly
and L., respectively. To avoid overfitting, we add a [2-
regularization term on these three loss functions.

e We perform SGD with mini-batch Adam, started with
learning rates of 0.01 for all the three optimizers. The
coefficients of learning rates and [2-regularization terms all
decrease with the number of training iterations increasing.

o We set At = 1h, ¢4 = 1000m, €, = 50m and p =
1000m, respectively.

6.1.3

For performance comparison with other co-location judgement ap-
proaches, we apply four widely-used metrics, i.e., Acc (accuracy),
Rec (recall), Pre (precision) and F (Fl-score, F} = %).

Evaluation Metrics and Approaches

Table 3 summarizes the differences among all applr?ézrichlégein
our experiments. HV is short for historical visits. Our proposed
approach is called HisRect; HisRect-SL is the same but uses the
supervised HisRect training only. An approach is FF (short for
Feature-first) if it extracts features for both profiles in a pair first,
followed by using the features to make the judgement. One-phase
is not a FF approach as it does not use an explicit step to extract
features.

A Naive approach infers the locations of two profiles and
checks if the two locations are identical. In our experiments, we
implement three naive approaches: Comp2Loc and two exiting
tweet location inference approaches called T'G-TI-C [22] and

7. https://www.ranks.nl/stopwords
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TABLE 2: Dataset statistics

Dataset #timeline | #labeled profiles | #avg visits/profile | #pos-pairs | #neg-pairs | #unlabeled pairs
NYC Training 42,454 480,646 42.94 243,080 5,817,634 4,432,984
Validation 4718 52,754 43.56 2,867 69,313 None
Testing 11,794 129,003 44.16 18,219 418,091 None
v Training 7,835 130,455 24.46 25,711 366,423 163,160
Validation 871 12,225 23.64 270 2,935 None
Testing 2,177 36,989 23.35 2,211 28,596 None

TABLE 3: Eleven co-location judgement approaches
Tweet | SSL

Approach Naive
N-Gram-Gauss
TG-TI-C
Comp2Loc
One-phase
History-only
Tweet-only
HisRect-SL
One-hot
BLSTM
ConvLSTM
HisRect

SNEN

SRR RN REIR]

ENENENENENENENPREN PR =!

NN SN SN X NSNS
NSNS XSS XS] XX
XX XX XXX XS

N-Gram-Gauss [18]. In particular, TG-TI-C' infers tweet lo-
cations using similarity comparison between a tweet and a set of
geo-tagged tweets, whereas N-Gram-Gauss trains a Gaussian
model for the distribution of geo-specific n-grams and uses that
model to discover the geographic scope for a given n-gram.

Also, to investigate if our design of HisRect is effective at
capturing historical visits and recent tweet contents, we build
another kind of feature which uses a one-hot encoding to model a
user’s visit history and featurizes the recent tweet in the same way
with HisRect.

In addition, to study the effect of the convolution layer of
the architecture BiLSTM-C, we build another neural network
model, named BLSTM, that only uses bidirectional LSTM and
omits the convolution layer from BiLSTM-C. Moreover, we im-
plement ConvLSTM [58] which uses convolutional structures in-
stead of fully-connected layers in both the input-to-state and state-
to-state transitions. Unlike our HisRect, these two approaches
use bidirectional LSTM or ConvLSTM without the following
convolution layer when extracting features of tweet contents.

The original testing set contains significantly more negative
pairs than positive pairs. In order to have clear comparison, we
split the negative pairs into 10 parts, merge each of them with the
positive pairs to form 10 testing sets instead. The reported results
of each approach are the average over the 10 testing sets.

6.2 Experimental Results on Co-Location Judgement

Table 4 reports the overall performance results of all the eleven
approaches. The results show that our HisRect approach is overall
the best in terms of all metrics. Moreover, the ROC-curves of all
approaches but the three naive ones are presented in Figure 2.
The naive approaches are excluded because it is impossible to
set the thresholds of the false positive rates for them. All of
the tested approaches are trained with the same training dataset
and their parameters are tuned to the best separately. It is also
evident from Figure 2 that our HisRect performs best. Its AUC
values are 0.974 and 0.957 in NYC and LV datasets, respectively.
In Co-location judgement problems, judging the co-located pairs
rightly matters more, i.e., we hope to get a higher recall on the
prerequisite of a relatively high accuracy. Considering the low
rate of positive pairs, we use %0 of negative and unlabeled pairs

only in every training epoch to increase the proportion of labeled
pairs. Similarly, we split the negative pairs into 10 parts and
merge each of them with the positive pairs to form 10 testing
sets in order to have clear comparison (Section 6.1.1). Overall, the
approaches that based on “historical visits + tweet contents” type
feature almost get high AUC values and performs much better
than other methods. Our HisRect outperforms the state-of-the-art
alternatives. Subsequently, we further compare the performance
differences and disclose the reasons behind.

6.2.1 Comparison with Existing Approaches

HisRect performs much better than TG-TI-C and N-Gram-
Gauss on all of the three metrics. Even Comp2Loc, another
naive approach, also outperforms them. Compared with HisRect,
Comp2Loc yields worse results on these metrics except Pre.
Comp2Loc judges a pair to be co-located only when P clas-
sifies both profiles in the pair into the same POL In this case,
the HisRect features of both profiles are very similar and thus
Comp2Loc achieves high Pre by using the features. However,
the HisRect features of the two profiles which are involved in the
same POI may focus on different aspects. As a result, Comp2Loc
cannot understand the intrinsic relationships. Therefore, it per-
forms worse in terms of Acc, Rec and Fj.

6.2.2 The Effect of HisRect Features

Compared to History-only and Tweet-only, HisRect-SL and His-
Rect clearly improve the performance of co-location judgement.
These results indicate that our HisRect features are more powerful
than those features that only consider either visit history or
recent tweets. Besides, HisRect outperforms One-hot. Thus, it is
reasonable to say that HisRect utilizes the historical visits in a
better way. Moreover, HisRect achieves better performance than
BLSTM and ConvL.STM. This shows that the BiLSTM-C struc-
ture in HisRect features is more suitable for extracting features
of tweet contents and our complete HisRect features model the
historical visits more effectively.

6.2.3 The Effect of Semi-supervised Training

Both HisRect-SL and One-phase are inferior to HisRect on these
four metrics. Such performance differences clearly demonstrate
the power of semi-supervised learning framework that leverages
unlabeled data in our approach.

6.3 The Power of HisRect Features

To understand the power of HisRect features in different settings,
we also design more experiments and report relevant results.

6.3.1 Historical Visits or Tweet Contents Are Not Available

In order to verify the power of HisRect features, we investigate
whether HisRect can work well if only historical visits or tweet
contents are used in the features. We carry out experiments with
variants of relevant approaches. We remove the visit history of
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TABLE 4: Performance of different approaches

Approach NYC Dataset LV Dataset
Acc Rec Pre Fy Acc Rec Pre Fi
TG-TI-C 0.7367 | 0.4388 | 0.5980 | 0.5062 0.6707 | 0.4374 | 0.6944 | 0.5367
N-Gram-Gauss | 0.7769 | 0.5110 | 0.6751 | 0.5817 0.7102 | 0.4826 | 0.7663 | 0.5922
Comp2Loc 0.9106 | 0.7274 | 0.9709 | 0.8317 0.8283 | 0.6196 | 0.9791 | 0.7590
History-only 0.7942 | 0.5366 | 0.7143 | 0.6128 0.7525 | 0.6139 | 0.7721 | 0.6840
Tweet-only 0.8735 | 0.7316 | 0.8314 | 0.7783 0.8037 | 0.6482 | 0.8685 | 0.7423
One-phase 0.9017 | 0.8045 | 0.8622 | 0.8324 0.8414 | 0.7227 | 0.8932 | 0.7989
HisRect-SL 0.9222 | 0.8446 | 0.9018 | 0.8669 0.8781 | 0.8061 | 0.9040 | 0.8522
One-hot 0.8805 | 0.7424 | 0.8450 | 0.7904 0.8011 | 0.6812 | 0.8324 | 0.7493
BLSTM 0.9186 | 0.8252 | 0.8985 | 0.8603 0.8762 | 0.7908 | 0.9143 | 0.8481
ConvLSTM 0.9135 | 0.8266 | 0.8811 | 0.8530 0.8662 | 0.7849 | 0.8955 | 0.8366
HisRect 0.9341 | 0.8618 | 0.9162 | 0.8881 0.8981 | 0.8348 | 0.9242 | 0.8772
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Fig. 2: The ROC-curve and AUC of different approaches. (a): NYC dataset; (b): LV dataset

every profile in T'/°" to obtain a new dataset I'/***\ H. Also,
by replacing each word in the tweet contents of every pro-
file in FtLeSt with the symbol </s>, we obtain another dataset
T%es'\T. We test our well-trained HisRect model on these two
datasets. For convenience, the model on I'}*$"\ H and T'%***\ T are
called HisRect\H and HisRect\T, respectively. Table 5 reports
the comparative results of three HisRect-based approaches with
History-only and Tweet-only.

TABLE 5: Comparison among HisRect-based approaches,
History-only and Tweet-only on NYC dataset

Approach Acc Rec Pre I3

HisRect\T 0.7607 | 0.4495 | 0.6539 | 0.5328
HisRect\H 0.8319 | 0.7721 | 0.7032 | 0.7361
History-only | 0.7942 | 0.5366 | 0.7143 | 0.6128
Tweet-only 0.8735 | 0.7316 | 0.8314 | 0.7783
HisRect 0.9341 | 0.8618 | 0.9162 | 0.8881

It is apparent that HisRect performs badly if the testing
dataset is composed by historical visits or tweet contents only.
Its results are even worse than that of History-only when tweet
contents are missing. Without historical visits in I'}**, Tweet-
only outperforms HisRect. However, HisRect is clearly the best
when the dataset is complete, which indicates that HisRect is
able to establish useful linkages between historical visits and
tweet contents. As most profiles’ v-history are not empty in real
word data, our proposed approach can work well in real world
applications.

6.3.2 HisRect Visualization

In order to better understand why HisRect works well, we leverage
labeled and unlabeled data together to generate HisRect features

and observe if such features are good expressions of raw data
or not. We get the HisRect features F(r) for every profile r in
the top-5 POIs in the testing dataset. Due to the high number of
dimensions, we use t-SNE [59] transformation to visualize His-
Rect features, as shown in Figure 3.

It can be seen from Figure 3 that only a small central part
mixes many different POIs and results in chaos. According to
our observation, the contents in the profiles displayed in the
center either have no tie with any POIs or are noises, and the
corresponding visit histories offer little information. Local clues
can be hardly found in these profiles. Except for the slight chaos,
most profiles that come from the same POIs are adjacent to each
other and form clusters as shown in Figure 3. Therefore, it is
reasonable to say that HisRect featurizer JF are able to extract
good features of profiles.

6.3.3 POl Inference Based on HisRect

We also investigate the performance of HisRect features on the
POI inference problem, i.e., to infer the POI of a tweet without
geo-tag. We compare the inference accuracy of HisRect with the
following approaches:

e History-only only utilizes visit histories in profiles. The
rest is the same with HisRect.

e Tweet-only only utilizes the contents of tweets in profiles.
The rest is the same with HisRect.

e One-hot model the visit histories using one-hot encoding
vectors.

e HisRect-SL does not leverage unlabeled pairs when train-
ing HisRect features. The rest is the same with HisRect.

e BLSTM uses bidirectional LSTM when training features
of tweet contents. The rest is the same with HisRect.
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Fig. 3: 2-dimensional t-SNE projection of HisRect features

e ConvLSTM uses ConvLSTM [58] when training features
of tweet contents. The rest is the same with HisRect.

e N-Gram-Gauss [18] learns a Gaussian model for the dis-
tribution of geo-specific n-grams and applies that model to
discover the geographic scope for a given n-gram.

e TG-TI-C [22] infers tweet locations using similarity com-
parison between a tweet and a given set of geo-tagged
tweets. It exploits the contents and time-evolution charac-
teristics.

We use the metric Acc@QK to evaluate the performance of
these approaches on NYC and LV datasets, where K is the
number of POI candidates each model infers. Figure 4 show the
performance of all the nine approaches. It is clear that our His-
Rect performs the best. It is the only one that achieves accuracy
higher than 64% and 70% on NYC and LV datasets, respectively.

Furthermore, we split every RY**! of two datasets into two
parts: TRtLeSt contains those profiles that either History-only or
Tweet-only can infer correctly, and FRtLCSt is the set of the
opposite cases. Table 6 reports the accuracy of HisRect inferring
the POIs on both datasets. For NYC dataset, 92.09% of profiles
in TR'fSt can be inferred correctly by HisRect. It shows that the
combination of visit history and recent tweet is able to capture the
typical features of either information source. Even when neither
History-only nor Tweet-only can infer POIs of any profiles in
FR'®" correctly, HisRect is still able to achieve an accuracy of
more than 26%. The accuracies on LV dataset are similar with
that of NYC dataset. Again, these results demonstrate the power
of HisRect features.

TABLE 6: Accuracy of HisRect on TRY**" and FRY*"

TRtest FRtest
Dataset Number Acc Number Acc
NYC 76,735 0.9209 52,468 0.2635
LV 26,653 0.9112 10,336 0.3247

6.4 Parameters Study
6.4.1 Effect of Training Dataset Size

In order to investigate how the amount of training data affects the
performance, we design an experiment as follows. We randomly
pick up 10%, 20%, .., 90% and 100% of the user timelines in the
NYC training dataset, obtaining corresponding labeled profiles,
labeled and unlabeled pairs to train all approaches. Figure 5
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illustrates the comparative recalls of the ten approaches with
varying amount of training timelines. The figure also reports
the ratios between positive, negative, unlabeled pairs and labeled
profiles of varying amount of training timelines with respect to the
corresponding statistics.

Clearly, all the ten approaches work better with more training
data. More training data enable them to extract better features that
in turn result in more accurate identifications. Nevertheless, His-
Rect can achieve good performance even when the amount of
training dataset is very small. This shows that our model is
equipped with a more powerful expression ability and less sen-
sitive to the amount of training data.

6.4.2 Effect of Deep Learning Parameters

Since deep learning is used widely, we want to explore if deeper
architectures can bring about improvements to the resolving of the
research problem in this work. We vary the number of fully con-
nected layers (() ) and that of stacked bidirectional LSTM layers
in HisRect featurizer F (Q);). Table 7 shows the performance with
different neural architectures.

TABLE 7: Recall and accuracy in different settings

Rec Q=11Q=2]Q=3]|Q =4
Qf =1 0.8384 0.8400 0.8557 0.8394
Qr = 0.8307 0.8583 0.8618 0.8546
Qr=3 0.8354 0.8452 0.8484 0.8461

Acc Q=1]1@Q=2]Q=3] Q=4
Qf = 0.9160 0.9201 0.9241 0.9209
Qf =2 0.9175 0.9290 0.9341 0.9259
Qf = 0.9125 0.9247 0.9264 0.9166

From Table 7, we find that a deeper architecture does not
necessarily improve the performance. When @y = 2 and Q; = 3,
the corresponding recall and accuracy are the highest. This ob-
servation is also seen in the experiments with different Q., Q.
and )./, where the optimal parameter values are 3, 2 and 2,
respectively.

6.4.3 Comparison with Other SSL Alternatives

We alter the cosine distance with ¢2 norm of two embeddings’
difference in calculating the unsupervised loss, which is the case
in [46]. The best accuracy and recall on NYC dataset are 0.9232
and 0.8453, respectively. If we remove the embedding € in the
formula of the unsupervised loss, the corresponding accuracy and
recall are 0.9237 and 0.8515, respectively. These results are worse
than the performance of HisRect with the best configurations.
Therefore, our HisRect has clear advantages over other SSL
approach in the problem of co-location judgement.

6.4.4 Computation Time and Scalability

Once the HisRect featurizer F and the co-location judge C are
trained, the HisRect feature construction and co-location judge-
ment can both be finished in 1 ms for a given profile pair. Besides,
the computation time of converting raw tweets and timelines into
profiles and pairs is also very short (less than 1 ms per tweet).
Thus, our approach can work in online scenarios.

We also investigate the scalability of our training procedures.
We randomly pick up 10%, 20%, .., 90% and 100% of the user
timelines in the NYC training dataset. Figure 6 reports the average
training time of two models (the HisRect Featuizer and the His-
Rect model for co-location judgement) per sample in an episode
with respect to different amounts of timelines. Here, a sample
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is either a pair or a profile, depending on the kind of data fed
into models. Specifically, the input samples of HisRect featurizer
contain ['7@" Tirain and RIr" However, those of HisRect
co-location model contain I‘tL“”" only. Suppose the training time
of HisRect featurizer and HisRect co-location model over one
episode is T and T¢, respectively. The average training time

|Firazn‘_,’_ll—\bratnl_;’_‘RtLrazn‘

uﬂt:,;%, respectively. Figure 6 shows that the training time per
L .

sample of these two models is almost constant, roughly 0.4 and

1.25 ms, respectively.

per sample of these two models is and

6.5 A Case Study: Using a Co-location Judgement Ap-
proach to Cluster User Profiles

In many applications such as local user recommendation [6],
community detection [60] and group analysis [10], people often
care more about identifying who are in the same POI given a
group of profiles. To address this issue, we design an experiment as
follows. We sample groups of profiles with each group containing
5 profiles and design 5 typical patterns: 5-0, 4-1, 3-2, 3-1-1, 2-
2-1. Pattern 3-2 means 3 out of 5 profiles (numbered a, b and c)
are located in one POI and the other two (numbered d and e) are
located in another POI. The meanings of other patterns are similar.
Given a 3-2 pattern, if an approach can identify that a, b and c
are co-located in a POI and d, e are located in another POI, we
regard that the approach can identify the group pattern correctly.
Specifically, we use HisRect to generate a 5 X 5 probability matrix
and find all connected components as clusters. We compare if the
predicted clusters are the same with the actual ones. We randomly
select 2,000 groups of each different patterns. Table 8 shows the
accuracy of HisRect and the other three alternative approaches on
identifying group patterns on NYC testing dataset.

TABLE 8: Accuracies of four approaches on identifying group
patterns on NYC datasets

Approach 5-0 4-1 3-2 3-1-1 2-2-1

HisRect 0.8753 | 0.7915 | 0.7658 | 0.6198 | 0.5821
Comp2Loc 0.0392 | 0.0579 | 0.0703 | 0.1250 | 0.1767
N-Gram-Gauss | 0.0113 | 0.0339 | 0.0503 | 0.0838 | 0.1237
TG-TI-C 0.0046 | 0.0189 | 0.0216 | 0.0715 | 0.0984

Referring to Table 8, it can be seen that HisRect yields much
higher accuracy than other approaches when identifying group
patterns. In particular, the accuracies of HisRect on identifying
patterns on these datasets are all larger than 58%. These results
demonstrate that HisRect is effective at co-location and clustering
tasks, whereas the alternative approaches excel in neither.
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7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to judge if two
Twitter users stay at the same POI in the same period of time.
Our approach profiles each user by taking into account both visit
histories and recent tweets. From such profiles, HisRect features
are extracted by a HisRect featurizer. A semi-supervised learning
framework with profile embedding is employed to train the featur-
izer. The HisRect features of two user profiles are fed to another
embedding layer. Subsequently, a feed-forward network takes their
embeddings difference as input and decides whether the pair is co-
located in one of those pre-defined POIs. We conduct extensive
experiments using large real datasets collected from Twitter. The
experimental results demonstrate that our approach achieves high
accuracy, recall, precision and Fl-score, and clearly outperform
alternative approaches.

The proposed approach in this paper uses visit histories and
tweet contents. For future work, it is interesting to consider other
information such as social relationship among users and frequent
patterns shared by users. Such information may be utilized to
build better similarities for user profiles and thus help improve
the performance of co-location judgement.
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