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Abstract—Data series similarity search is a core operation for
several data series analysis applications across many different
domains. However, the state-of-the-art techniques fail to deliver
the time performance required for interactive exploration, or
analysis of large data series collections. In this Ph.D. work,
we present the first data series indexing solutions, for both
on-disk and in-memory data, that are designed to inherently
take advantage of multi-core architectures, in order to accelerate
similarity search processing times. Our experiments on a variety
of synthetic and real data demonstrate that our approaches are
up to orders of magnitude faster than the alternatives. More
specifically, our on-disk solution can answer exact similarity
search queries on 100GB datasets in a few seconds, and our in-
memory solution in a few milliseconds, which enables real-time,
interactive data exploration on very large data series collections.

Index Terms—Data series, Indexing, Modern hardware

I. INTRODUCTION

An increasing number of applications across many diverse
domains continuously produce very large amounts of data se-
ries1 (such as in finance, environmental sciences, astrophysics,
neuroscience, engineering, and others [1]–[3]), which makes
them one of the most common types of data. When these
sequence collections are generated (often times composed of
a large number of short series [3], [4]), users need to query
and analyze them (e.g., detect anomalies [5], [6]). This process
is heavily dependent on data series similarity search (which
apart from being a useful query in itself, also lies at the
core of several machine learning methods, such as, clustering,
classification, motif and outlier detection, etc.) [7].

The brute-force approach for evaluating similarity search
queries is by performing a sequential pass over the dataset.
However, as data series collections grow larger, scanning the
complete dataset becomes a performance bottleneck, taking
hours or more to complete [8]. This is especially problem-
atic in exploratory search scenarios, where every next query
depends on the results of previous queries. Consequently, we
have witnessed an increased interest in developing indexing
techniques and algorithms for similarity search [3], [7]–[22].

Nevertheless, the continued increase in the rate and volume
of data series production with collections that grow to several
terabytes [1] renders existing data series indexing technologies
inadequate. For example, the current state-of-the-art index,
ADS+ [8] requires more than 4min to answer any single
exact query on a moderately sized 250GB sequence collection.

1A data series, or data sequence, is an ordered sequence of real-valued
points. If the ordering dimension is time then we talk about time series,
though, series can be ordered over other measures (e.g., angle in astronomical
radial profiles, mass in mass spectroscopy, position in genome sequences, etc.).

Moreover, index construction time also becomes a significant
bottleneck in the analysis process [7]. Thus, traditional solu-
tions and systems are inefficient at, or incapable of managing
and processing the existing voluminous sequence collections.
[Contributions] In our work, we focus on the use of multi-
core and multi-socket architectures, as well Single Istruction
Multiple Data (SIMD) computations, to accelerate data series
similarity search. Our contributions are organized as follows.

1. ParIS [23] is the first data series index designed for multi-
core architectures. We describe parallel algorithms for index
creation and exact query answering, which employ parallelism
in reading the data from disk and processing them in the CPU.

2.ParIS+ [24] is an improvement of ParIS that achieves
perfect overlap between the disk I/O and the CPU costs
(completely masking out CPU cost) when creating the index.

3. MESSI [25] is the first parallel in-memory data series
index. Contrary to ParIS/ParIS+, MESSI employs a tree-
based query answering strategy that minimizes the number
of distance calculations, leading to highly efficient search.

II. PRELIMINARIES

[Data Series] A data series, S = {p1, ..., pn}, is a sequence of
points (Figure 1(a)), where each point pi = (vi, ti), 1 ≤ i ≤ n,
is a real value vi at a position ti that corresponds to the order of
this value in the sequence. We call n the size, or length of the
series. (For streaming series, we create and index subsequences
of length n using a sliding window.)
[Similarity Search] Nearest Neighbor (NN) queries are de-
fined as follows: given a query series Sq of length n, and a data
series collection S of sequences of the same length, n, we want
to identify the series Sc ∈ S that has the smallest distance to
Sq among all the series in the collection S. Common distance
measures for comparing data series are Euclidean Distance
(ED) [26] and dynamic time warping (DTW) [10].
[iSAX Representation] The iSAX representation first sum-
marizes the points in the data series using segments of equal
length, where the value of each segment is the mean of
the corresponding points (Piecewise Aggregate Approximation
(PAA)), and then divides the (y-axis) space in different regions
by assigning a bit-wise symbol to each region, and represents
each segment of the series with the symbol of the region
the segment falls into. This forms a word like 102002112
(subscripts denote the number of bits used to represent the
symbol of each segment), which is called the indexable
Symbolic Aggregate approXimation (iSAX) [9].
[ADS+ Index] Based on this representation, the ADS+ index
was developed [8]. It makes use of variable cardinalities (i.e.,
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Fig. 1. The iSAX representation, and the ADS+ index structure

variable degrees of precision for the symbol of each segment;
in order to build a hierarchical tree index, consisting of three
types of nodes: (i) the root node points to several children
nodes, 2w in the worst case (when the series in the collection
cover all possible iSAX representations), where w is the
number of segments; (ii) each inner node contains the iSAX
representation of all the series below it, and has two children;
and (iii) each leaf node contains the iSAX representations
and pointers to the raw data for all series inside it. When
the number of series in a leaf node becomes greater than the
maximum leaf capacity, the leaf splits: it becomes an inner
node and creates two new leaves, by increasing the cardinality
of the iSAX representation of one of the segments (the one
that will result in the most balanced split of the contents of
the node to its two new children [8], [12]). The two refined
iSAX representations (new bits set to 0 and 1) are assigned
to the two new leaves. In our example, the series of will be
placed in the outlined node of the index.

The ParIS/ParIS+ and MESSI indices use the iSAX repre-
sentation and basic ADS+ index structure [27], but implement
algorithms specifically designed for multi-core architectures.

III. PROPOSED SOLUTION

[ParIS/ParIS+ Approach] We describe our approach, called
Parallel Indexing of Sequences (ParIS), and then present
ParIS+, which improves uppon ParIS.

Figure 2 provides an overview of the entire pipeline of how
the ParIS index is created and then used for query answering.
In Stage 1 of the pipeline, a thread, called the Coordinator
worker, reads raw data series from the disk and transfers them
into the raw data buffer in main memory. In Stage 2, a number
of IndexBulkLoading workers, process the data series in the
raw data buffer to create their iSAX summarizations. Each
iSAX summarization determines to which root subtree of the
tree index the series belongs. Specifically, this is determined
by the first bit of each of the w segments of the iSAX
summarization. The summarizations are then stored in one of
the index Receiving Buffers (RecBufs) in main memory. There
are as many RecBufs as the root subtrees of the index tree,
each one storing the iSAX summarizations that belong to a

single subtree. This number is usually a few tens of thousands
(and at most 2w, where w is the number of segments in the
iSAX representation of each time series; we set w to 16, as
in previous studies [8]). The iSAX summarizations are also
stored in the array SAX (used during query answering).

When all available main memory is full, Stage 3 starts. In
this stage, a pool of IndexConstruction workers processes the
contents of RecBufs; every such worker is assigned a distinct
RecBuf at each time: it reads the data stored in it and builds
the corresponding index subtree. So, root subtrees are built in
parallel. The leaves of each subtree is flushed to the disk at
the end of the tree construction process. This results in free
space in main memory. These 3 stages are repeated until all
raw data series are read from the disk, the entire index tree is
constructed, and the SAX array is completed. The index tree
together with SAX form the ParIS index, which is then used
in Stage 4 for answering similarity search queries.

Paris+ improves ParIS by completely masking out the CPU
cost when creating the index. This is not true for ParIS, whose
index creation (stages 1-3) is not purely I/O bounded. The
reason for this is that, in ParIS, the IndexConstruction work-
ers do not work concurrently with the Coordinator worker.
Moreover, the IndexBulkLoading workers do not have enough
CPU work to do to fully overlap the time needed by the
Coordinator worker to read the raw data file. ParIS+ is an
optimized version of ParIS, which achieves a complete overlap
of the CPU computation with the I/O cost. In ParIS+, the In-
dexBulkLoading workers have undertaken the task of building
the index tree, in addition to performing the tasks of stage 2.
The IndexConstruction workers now simply materialize the
leaves by flushing them on disk.

For query answering, ParIS and ParIS+ are the same, and the
algorithm operates as follows. It first computes an approximate
answer by calculating BSF (Best-So-Far), i.e., the real distance
between the query and the best candidate series, which is in
the leaf with the smallest lower bound distance to the query.
Then, a number of lower bound calculation workers compute
the lower bound distances between the query and the iSAX
summary of each data series in the dataset, which are stored
in the SAX array, and prune the series whose lower bound
distance is larger than the approximate real distance computed
earlier. The data series that are not pruned, are stored in a
candidate list, which then a number of real distance calculation
workers consume in parallel and compute the real distances
between the query and the series stored in it (for which the
raw values need to be read from disk). For details see [23].
[MESSI Approach] In Figure 3, we present the pipeline of
the in-MEmory data SerieS Index (MESSI) [25]. In contrast
to ParIS/ParIS+, the raw data are stored in an in-memory
array, called RawData. In Stage 1, this array is split into
a predetermined number of chunks. A (different) number
of index bulk loading worker threads process the chunks to
calculate the iSAX summaries of the raw data series they
store. Chunks are assigned to index workers one after the other
(using Fetch&Inc). Based on the iSAX representation, we can
figure out in which subtree of the index tree an iSAX summary
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Fig. 3. Pipeline for creation of and query answering with the MESSI index.

will be stored. A number of iSAX buffers, one for each root
subtree of the index tree, contain the iSAX summaries to be
stored in that subtree. Each index worker stores the iSAX
summaries it computes in the appropriate iSAX buffers. To
reduce synchronization cost, each iSAX buffer is split into
parts and each worker works on its own part2. The number
of iSAX buffers is usually a few tens of thousands and at
most 2w, where w is the number of segments in the iSAX
summaries of each data series (w is fixed to 16 in this paper,
as in previous studies [8], [23]).

MESSI’s index construction phase is different from ParIS.
ParIS uses a number of buffers to temporarily store pointers to
the iSAX summaries of the raw data series before constructing
the index [23], [24]. MESSI allocates smaller such buffers per
thread for storing the iSAX summaries themselves. In this
way, it eliminates the synchronization cost in accessing the

2 We also tried an alternative technique: each buffer was protected by a
lock and many threads were accessing each buffer. However, this resulted in
worse performance due to contention in accessing the iSAX buffers.

iSAX buffers. To achieve load balancing, MESSI splits the
array storing the raw data series into small blocks, and assigns
blocks to threads in a round-robin fashion.

When the iSAX summaries for all raw data series have been
computed, we move to Stage 2, and the index workers proceed
in the construction of the tree index. Each worker is assigned
an iSAX buffer to work on (using Fetch&Inc). Each worker
reads the data stored in (all parts of) its assigned buffer and
builds the corresponding index subtree. Therefore, all index
workers process distinct subtrees of the index, and can work
in parallel and independently from one another, with no need
for synchronization3. When an index worker finishes with the
current iSAX buffer it works on, it continues with the next
iSAX buffer that has not yet been processed.

When the series in all iSAX buffers have been processed, the
tree index has been built and can be used to answer similarity
search queries, as shown in Stage 3. To answer a query, we
first perform a search for the query iSAX summary in the
tree index. This returns a leaf whose iSAX summary has
the closest distance to the iSAX summary of the query. We
calculate the real distances of the (raw) data series pointed
to by the elements of this leaf to the query series, and store
the minimum distance in a shared BSF (Best-So-Far) variable.
Then, the index workers traverse the index subtrees (one after
the other) using BSF to decide which subtrees will be pruned.
The leaves of the subtrees that cannot be pruned are placed
(along with the lower bound distance between the raw values
of the query series and the iSAX summary of the leaf node)
into a number of minimum priority queues. Each thread inserts
elements in the priority queues in a round-robin fashion so that
load balancing is achieved. the same number of elements).

As soon as the necessary elements have been placed in the
priority queues, each index worker chooses a priority queue
to work on, and repeatedly pops leaf nodes, on which it
performs the following operations. It first checks whether the
lower bound distance stored in the priority queue is larger

3 Parallelizing the processing inside each one of the index root subtrees
would require a lot of synchronization due to node splitting.



than the current BSF: if it is then we are certain that the leaf
node does not contain possible answers and we can prune
it; otherwise, the worker needs to examine the series in this
leaf node, by first computing lower bound distances using the
iSAX summaries, and if needed also the real distances using
the raw values. During this process, we may find a series with
a smaller distance to the query, in which case we update the
BSF. When a worker reaches a node whose distance is bigger
than the BSF, it gives up this priority queue and starts working
on another, because it is certain that all the other elements
in the abandoned queue have an even higher distance to the
query series. This process is repeated until all priority queues
are processed. At the end of the calculation, the value of BSF
is returned as the query answer.

Note that, similarly to ParIS/ParIS+, MESSI uses SIMD
(Single-Instruction Multiple-Data) for calculating the distances
of the index iSAX summaries from the query iSAX summary
(lower bound distance calculations), and the raw data series
from the query data series (real distance calculations) [23].

IV. EXPERIMENTAL EVALUATION

We summarize the performance results for index creation
and query answering using the ParIS/ParIS+ and MESSI
indices, for both on-disk and in-memory data. We compare
our methods to the state-of-the-art index, ADS+ [8], and serial
scan method, UCR Suite [10]. We use two sockets and split
the number of cores equally between them. The datasets we
use are Synthetic (random walk: 100M series of 256 points),
SALD (electroencephalography: 200M series of 128 points),
and Seismic (seismic activity: 100M series of 256 points).
[Index Creation Performance] In Figure 4, we evaluate the
time it takes to create the tree index for a Synthetic dataset
of 100M series as we vary the number of cores. The results
demonstrate that ParIS+ completely removes the (visible) CPU
cost when we use more than 6 cores. Figure 5 shows that the
index creation time of MESSI reduces linearly as the number
of cores increases (dataset of 100GB).

We also evaluate the time it takes to create the data series
for different datasets of size 100GB. The results depicted
in Figure 6 show that ParIS+ is 2.6x faster than ADS+ for
Synthetic, 3.2x faster for SALD, and 2.3x faster for Seismic.

Figure 7 focuses on in-memory index creation. We observe
that for the 100GB Synthetic dataset, MESSI performs 3.6x
faster than an in-memory implementation of ParIS. Note that
ParIS is faster than ParIS+ for in-memory index creation
(remember that in query answering, they both use the same
algorithm and perform equally). The reason is that ParIS+
accesses repeatedly the nodes that are children of the root
in order to grow the corresponding sub-trees (for on-disk
data, this helps to overlap the CPU with the disk I/O cost).
However, when in-memory, there is no expensive disk I/O
cost to overlap them with; thus, ParIS+ ends up performing
unnecessary calculations as it traverses the sub-trees over and
over again. In contrast, ParIS only accesses the children of the
root once for every time the main memory gets full (refer to
Stage 2 of Figure 2). Regarding the real datasets, MESSI is

3.6x faster than ParIS on SALD, and 3.7x faster than ParIS
on Seismic (both datasets are 100GB in size).
[Query Answering Performance] Figure 8 (log-scale y-axis)
shows the exact query answering time for ParIS+ and ADS+,
as we vary the number of cores, for HDD and SSD storage. In
both cases performance improves as we increase the number
of cores, with the SSD being > 1 order of magnitude faster.

Figure 9 (log-scale y-axis) compares the performance of the
MESSI query answering algorithm to its competitors, as the
number of cores increases, for a Synthetic dataset of 100GB.
The results show that MESSI significantly outperforms ParIS
and (an in-memory, parallel implementation of) UCR Suite.

In Figure 10 (log-scale y-axis), we show that on HDD and
across the datasets used in our study, ParIS+ is up to one order
of magnitude faster than ADS+ in query answering, and more
than two orders of magnitude faster than UCR Suite. When
the data are stored on an SSD (refer to Figure 11; log-scale
y-axis), both ADS+ and ParIS+ benefit from the low SSD
random access latency. In this case, ParIS+ is 15x faster than
ADS+, and 2000x faster than UCR Suite.

The results of in-memory query answering, depicted in
Figure 12 (log-scale y-axis), show that MESSI perform con-
siderably better than the other approaches. MESSI is 55x
faster than UCR Suite and 6.4x faster than (the in-memory
implemenation of) ParIS. The performance improvement with
regards to ParIS is because, in contrast to ParIS, MESSI
applies pruning when performing the lower bound distance
calculations, and therefore needs less computations overall to
execute this phase. Moreover, the use of the priority queues
result in even higher pruning power. As a side effect, MESSI
also performs less real distance calculations than ParIS.

Figures 12 also shows that MESSI exhibits the best perfor-
mance for the real datasets, SALD and Seismic (both 100GB
in size), as well. The reasons for this are those explained in
the previous paragraphs. For the SALD dataset, MESSI query
answering is 60x faster than UCR Suite and 8.4x faster than
ParIS, whereas for the Seismic dataset, MESSI is 80x faster
than UCR Suite, and almost 11x faster than ParIS. Note that
MESSI exhibits better performance than UCR Suite in the case
of real datasets. This is so because working on random data
results in better pruning than that on real data.

V. CONCLUSIONS AND CURRENT WORK

In this thesis, we describe the first data series indices that
exploit the parallelism opportunities of multi-core and multi-
socket architectures, for both on-disk and in-memory data. The
evaluation with synthetic and real datasets demonstrates the ef-
ficiency of our solutions, which are orders of magnitude faster
than the state-of-the-art competitors. This level of performance
achieved by our approaches enable for the first time interactive
data exploration on very large data series collections.

As part of our current work, we are extending our techniques
(i.e., ParIS+ and MESSI) to support the DTW distance mea-
sure. In order to do this, no changes are required in the index
structure: we can index a dataset once, and then use this index
to answer both Euclidean and DTW similarity search queries.
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Moreover, we are working on a GPU-based solution, where
the CPU and GPU collaborate to answer a query: the CPU
handles the index tree traversals and real distance calculations
(the raw data do not fit in the GPU memory), while the GPU
performs the lower bound distance calculations. We are also
integrating our techniques with a distributed approach [20],
[22], which is complementary to the ParIS+ and MESSI
solutions. Finally, we note that our techniques are applicable to
high-dimensional vectors in general (not just sequences) [21].
Therefore, we will study applications of our techniques in
problems related to deep learning embeddings (which are high-
dimensional vectors), such as similarity search for images [28].
[Acks] Work supported by Investir lAvenir, Univ. of Paris
IDEX Emergence en Recherche ANR-18-IDEX-000, Chinese
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