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Abstract—A way of finding interesting or exceptional records
from instant-stamped temporal data is to consider their “dura-
bility,” or, intuitively speaking, how well they compare with other
records that arrived earlier or later, and how long they retain
their supremacy. For example, people are naturally fascinated by
claims with long durability, such as: “On January 22, 2006, Kobe
Bryant dropped 81 points against Toronto Raptors. Since then, this
scoring record has yet to be broken.” In general, given a sequence
of instant-stamped records, suppose that we can rank them by
a user-specified scoring function f , which may consider multiple
attributes of a record to compute a single score for ranking.
This paper studies durable top-k queries, which find records
whose scores were within top-k among those records within
a “durability window” of given length, e.g., a 10-year window
starting/ending at the timestamp of the record. The parameter
k, the length of the durability window, and parameters of the
scoring function (which capture user preference) can all be given
at the query time. We illustrate why this problem formulation
yields more meaningful answers in some practical situations
than other similar types of queries considered previously. We
propose new algorithms for solving this problem, and provide
a comprehensive theoretical analysis on the complexities of the
problem itself and of our algorithms. Our algorithms vastly
outperform various baselines (by up to two orders of magnitude
on real and synthetic datasets).

I. INTRODUCTION

Instant-stamped temporal data consists of a sequence of
records, each timestamped by a time instant which we call
the arrival time, and ordered by the arrival time. Such data is
ubiquitous in a rich variety of domains; i.e., sports statistics,
weather measurement, network traffic logs and e-commerce
transactions. A way of finding interesting or unusual records
from such data is to consider their “durability,” or, intuitively
speaking, how well they compare with other records (i.e.,
records that arrive earlier or later) and how long they retain
the supremacy. For example, consider the performance record:
“On January 22, 2006, Kobe Bryant scored 81 points against
Toronto Raptors.” While impressive by itself, this statement
can be boosted by adding some temporal context: “At that
time, this record was the top-1 scoring performance in the
past 45 years of NBA history.” Naturally, the further back
we can extend the “durability” (while the record still remains
top), the more convincing the statement becomes. We can
extend durability forward in time as well: “Since 2006, Kobe’s

§Most of the work was conducted when authors were at Duke University.

81 points scoring performance has yet to be broken as of
today.” The notion of durability is widely used in media
and marketing, because people are naturally attracted by
those events that “stood the test of time.” Such analysis of
durability is a useful part of the toolbox for anybody who
works with historical data, and can be particularly helpful to
journalists and marketers in identifying newsworthy facts and
communicating their impressiveness to the public. Because
temporal data can accumulate to very large sizes (especially
for granular data such as weather or network statistics), and
because users often want to find durable records with respect
to different ranking criteria quickly, we need to answer durable
top-k queries efficiently.

In this paper, we consider durable top-k queries for finding
instant-stamped records that stand out in comparison to others
within a surrounding time window. In general, each record may
have multiple attributes (besides the timestamp) whose values
are relevant to ranking these records. We assume that there is a
user-specified scoring function f that takes a record as input,
potentially considers its multiple attributes, and computes a
single numeric score used for ranking. Intuitively, a durable
top-k query returns, given a time duration τ , records that
are within top k during a τ -length time window anchored
relative to the arrival time of the record. How the window
should be positioned relative to the arrival time depends on
the application; our solution only stipulates that the relative
positioning is done consistently across all records. In practice,
we observe most statements in media involving durability
either ends the window at the arrival time of the record
(i.e., looking back into the past) or begins the window at the
arrival time of the record (i.e., looking ahead into the future).
Generally speaking, each record returned by our durable top-k
corresponds to a statement about the record that highlights the
durability of its supremacy.

Note that there are different ways for capturing the notion
of durability in queries, including some types that have been
studied in the past. Different application scenarios may call
for different semantics. To understand why our definition of
durable top-k queries may be more appropriate than others
in some scenarios, we examine the alternatives with a simple
concrete example.

Example I.1. Suppose we are interested in finding exceptional
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(3) Tumbling Window Top-k
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Fig. 1: A case study on finding durable noteworthy rebound
performances in NBA history. Red squares highlight results
returned by different queries, and line segments represent the
durability time window.

rebounds performances (by individual players in individual
games) in NBA history—particularly, those that stood out as
the top record (or tying for the top record) in a 5-year time
span. Figure 1.(1) plots all relevant records (i.e., no fewer than
27 rebounds by a single player in a single game) in entire NBA
history. We consider the following three queries to accomplish
our task; the latter two have been widely studied in the stream
processing and top-k query processing literature. Note that in
this example k = 1.

• Durable top-k (our query): This is the query that we
propose. For each record, we look back in a 5-year window
ending at the timestamp of the record, and check whether
the record has the top score among all records within this
window. Figure 1.(2) highlights the records (red squares)
returned by our query; for each result record, we also show
its 5-year durability window as a line segment ending at the
record for which it remains on the top.

• Tumbling-window top-k: This query first partitions the
timeline into a series of non-overlapping, fixed-sized (5-
year) windows, and then returns the top record within each
time window. The placement of the windows is up to the user
and can affect results. Results for one particular placement
of the windows are shown in Figure 1.(3).

• Sliding-window top-k: This query slides a 5-year window
along the timeline, and returns the top record for each
position of the sliding window. Figure 1.(4) highlights a few
representative sliding windows, as well as the top records
during these windows.

All these queries are able to uncover some meaningful durable
top records; i.e., for any data record (X,Y, Z) marked as a
red square in Figure 1, we can claim “player X grabbed

Y rebounds in a game on date Z, which is the best in
some 5-year span.” First, the durability aspect adds to the
impressiveness of the statement. Second, the combination of
durability and ranking helps reveal interesting records that
would otherwise be ignored if we simply filter the records
by a high absolute value. For instance, all three queries find
(Duncan, 27, 2009) as a durable top-1 record. While this
record may not seem impressive by number alone, it was
indeed the top-1 from 2002 to 2010. This is an interesting
observation, as it reflects a trend (relatively low rebounds of
all players) during that era of NBA.

However, there are also notable differences.
• Tumbling-window vs. our query: The general observation

is that the results of tumbling-window are highly sensi-
tive to the choice of window placement. In Figure 1.(3),
tumbling-window picks (Mutombo, 29, 2001) and the other
two performances with 29 rebounds as they were the best
ones during 2000-2005, but there were more impressive
performances right before them, unfortunately leaving the
impression that they stood out only because the windows
were cherry-picked. Furthermore, if we choose to place all
windows slightly to the right such that the last window ends
with the most recent arrival time, (Rodman, 34, 1992) will
be eliminated by (Oakley, 35, 1988), and (Duncan, 27, 2009)
will be overlooked since it is shadowed by (Love, 31, 2010).
Overall, because of high sensitivity to window boundaries,
tumbling-window runs the risk of omitting important records
as they happen to be overshadowed by some other records
in the same window, and picking less interesting records as
they happen to be the top ones in that specific window.

• Sliding-window vs. our query: Sliding-window is not sus-
ceptible to window placement, but it effectively considers
all possible window placements, and it returns the union
of all top records for each such placement. This approach
leads to possibly many records that are not as meaningful in
practice. In Figure 1.(4), sliding-window apparently returns
overwhelmingly more results compared to our query, which
makes it less applicable to mining most noteworthy records.
Even more unnatural is the fact that as we slide the window
along the timeline, a record can come in and out of the
result; i.e., there is no continuity. To illustrate, suppose we
are interested in durable top-2 records with 5-year windows,
and let us focus on Drummond’s 29 rebounds performance
on 2015.11.3 (highlighted in Figure 1.(4)). It is surrounded
by two top performance (Howard, 30, 2018) and (Bynum,
30, 2013). Sliding-window will return this record when the
window is positioned at 2014-2019, but not when positioned
at 2013-2018; however, the record will be returned again
when the window moves to 2012-2017. Such discontinuity
makes the results rather unnatural to interpret.

In comparison, our query does not have the issue of sensitivity
to window placement or that of difficulty of interpretation,
because we assess each record in a 5-year window that leads
up to its own timestamp. Thus, our query result records can
be consistently interpreted as having durability “within the
past 5 years” and clearly communicated to the audience. The
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results from the other two queries would be qualified with
rather specific durability windows,1 which may be perceived
as cherry-picking. In general, we argue that consistency and
simplicity of our query make it more applicable to journalists,
marketers, and data enthusiasts alike who seek result that are
easily explainable to the public.

In comparison, our query does not have the issue of sensitiv-
ity to window placement or that of difficulty of interpretation,
because we assess each record in a 5-year window that leads
up to its own timestamp. Thus, our query result records can
be consistently interpreted as having durability “within the
past 5 years” and clearly communicated to the audience. The
results from the other two queries would be qualified with
rather specific durability windows, which may be perceived
as cherry-picking.

Although the above example ranks records by a single
attribute, its argument can be extended to the general case
where records are ranked by a user-specified scoring function
that combines multiple attribute values into a single score.

Besides sports, durable top-k queries have applications
across many other domains. For instance, Wikipedia states
that “In late January 2019, an extreme cold wave hit the Mid-
western United States, and brought the coldest temperatures
in the past 20 years to most locations in the affected region,
including some all-time record lows.” This statement stems
from a simple durable top-k query over historical weather
data, and allows the Wikipedia article to convey the severity
of event effectively. As an example involving more complex
ranking, cybersecurity analysts rely on network traffic log to
identify unusual and potentially malicious intrusions. With a
appropriately defined scoring function that combines multiple
features of a session, such as duration, volume of data transfer,
number of login attempts, and number of servers accessed,
a durable top-k query can quickly help identify unusual
traffic (relative to others around the same time) for further
investigation. As another example, a financial broker may
accompany a recommendation with a statement “The price-to-
earnings ratio (P/E) of this stock last Friday was among the
top 5 P/E’s within its section for more than 30 days,” which is
also a durable top-k query. In sum, the efficiency of durable
top-k queries makes them suitable for using large volumes
of historical efficiently to drive insights or identify leads for
further investigation; the conceptual simplicity of these queries
also make them particular attractive for explaining insights and
communicating them effectively to the public.

Contributions. Our contributions are as follows:
• We propose to find “interesting” records from large instant-

stamped temporal datasets using durable top-k queries.
Compared with other query types related to durability, our
query produces results that are more robust (i.e., less sensi-

1A related question is whether we can post-process the results of the sliding-
window query to obtain the results to our query; e.g., filtering those result
records in Figure 1.(4) to get those in Figure 1.(2). Unfortunately, such an
approach, which we consider as one of the baselines in our experiments, is
prohibitively slow on large datasets, as we shall show in later sections.

tive to window placement than tumbling-window) and more
meaningful (i.e., easier to interpret than sliding-window).

• We propose a suite of solutions based on two approaches
that process “promising” records in different prioritization
orders. We provide a comprehensive theoretical analysis on
complexities of the problem and of our proposed solutions.

• Our solutions are general and flexible. They do not dictate
any specific scoring function f , but instead assume a well-
defined building block for answering top-k queries using f ,
which can be “plugged into” our solutions and analysis. We
give some concrete example of f and the building block in
later sections. In particular, f can be further parameterized
according to user preference; these parameters, along with
k, τ and I (the overall temporal range of history of inter-
est), can be specified at query time, making our solutions
flexible and suitable for scenarios where users may explore
parameter setting at run-time, interactively or automatically.

• We show that the query time complexity of our algorithms is
proportional to O(|S|+k

⌈ |I|
τ

⌉
) in the worst case, where |S|

is the answer size. Furthermore, we prove that the expected
answer size of a durable top-k query |S| is O(k

⌈ |I|
τ

⌉
) under

the random permutation model (where the data values can
be arbitrarily chosen by an adversary but arrival order is
random); this result implies that the expected query time of
our algorithms in practice is linear in the output size.

Paper Overview. In a nutshell, our proposed algorithms 1)
visit promising records in some manner, and 2) check the
durability (with respect to a top-k query) for each record
we visit. Techniques for improvement mostly focus on how
to efficiently identify candidate records and eventually reduce
the total number of durability checks in the second step. Our
proposed algorithms come in two flavors: time-prioritized and
score-prioritized, introduced in Section III and Section IV,
respectively. The time-prioritized solution traverses and finds
candidate records sequentially along the timeline, while the
score-prioritized solution greedily chooses unvisited candi-
dates with the maximum score (with respect to f ). Though
in different manners, we show in later sections that these
two solutions actually equivalently reduce and bound the size
of candidate records (or, the number of durability checks).
More interestingly, in Section V, we further demonstrate that
the bound is proportional to the answer size of a durable
top-k query, which means our algorithms run faster when
the query is more selective, e.g., with smaller k or longer
durability τ . Section VI experimentally evaluates our proposed
solutions, including implementations inside a database system.
Section VII reviews related work and Section VIII concludes.

II. PROBLEM STATEMENT AND PRELIMINARIES

Problem Statement. Consider a dataset P with n records,
where each record p ∈ P has d real-valued attributes and
is represented as a point (p.x1, p.x2, . . . , p.xd) ∈ Rd. For
simplicity, we consider a discrete time domain of interest
T = {1, 2, . . . , n}, and let p.t ∈ T denote the arrival time of
p. All records in P are organized by increasing order of their
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TABLE I: Table of notation
T Time domain
p.t Arrival time of p
f Scoring function
k Parameter of Top-k query

π≤k([t1, t2]) Top-k records in time interval [t1, t2]
I Query interval
τ Durability duration
u Query vector

s(n), q(n) Space, query time of top-k index

arrival time. Given a non-empty time window W : [t1, t2] ⊆ T,
let P (W ) denote the set of records that arrive between t1 and
t2; i.e., P (W ) = {p ∈ P | t1 ≤ p.t ≤ t2}.

Assume a user-specified scoring function maps each record
p to a real-valued score, f : Rd → R. Given a time
window W = [t1, t2], a top-k query Q(k,W ) asks for the
k records from P (W ) with the highest scores with respect to
f . Let π≤k([t1, t2]) denote the result of Q(k,W ); i.e., for
∀p ∈ π≤k([t1, t2]), there are no more than k − 1 records
q ∈ P ([t1, t2]) with f(q) > f(p).

For simplicity of exposition, we consider durability win-
dows ending at the arrival time of each record (i.e., the
“looking-back” version), but our solution can be extended to
the general case where the windows are anchored consistently
relative to the arrival times (including the “looking-ahead” ver-
sion). We say a record p is τ -durable2 if p ∈ π≤k([p.t−τ, p.t]).
That is, p remains in the top-k for τ time during [p.t− τ, p.t].
We are interested in finding records with long durability. Note
that if a record p is τ -durable, then it is also τ ′-durable
for τ ′ ≤ τ . We are interested in finding records with “long
enough” durability, i.e., durability at least τ . Given a query
interval I and a durability threshold τ ∈ [1, |T|], a durable top-
k query, denoted DurTop(k, I, τ), returns the set of τ -durable
records that arrive during I; i.e., DurTop(k, I, τ) = {p ∈ P (I) |
p ∈ π≤k([p.t − τ, p.t])}. For a record p ∈ DurTop(k, I, τ) we
can also ask what is the maximum duration that it remains in
the top-k. Table I summarized our notations.

Scoring Function and Top-k Query Building Block. As
discussed earlier, our proposed algorithms and complexity
analyses are applicable to any user-specified scoring function
f as long as there exists a “building block” that can answer
basic (non-durable) top-k queries under f . This building block
can be a “black box”: the novelty and major contribution of
our algorithms come from its ability to reduce and bound the
number of invocations of the building block, totally indepen-
dent of how the building block operates itself. Of course, the
overall algorithm complexity still depends on the efficiency
of the building block. For a function f , we consider that an
index of size O(s(n)) can be constructed in O(u(n)) time that
answers top-k queries with respect to f in O(q(n) + k) time,
where n is the data size and s(·), u(·), q(·) are functions of n.

In this paper, we are more interested in top-k queries on a
subset of data specified by a time window W given at query
time; i,e., computing Q(k,W ) that reports the k records in
P (W ) with the highest scores with respect to f . With a slight

2If τ is obvious from the context, we drop τ from the definition, i.e., we
say that a record is durable.

care, the top-k query building block can be used to solve
this problem by paying a logarithmic factor in index size,
query time and construction time. That is, for a function f we
can construct an index of size O(s(n) log n) in O(u(n) log n)
time so that for given k,W , Q(k,W ) can be computed in
O((q(n) +k) log n) time. If the top-k building block supports
updates (insertion/deletion of an item) in O(α(n)) time, our
range top-k index also supports updates in O(α(n) log n) time.

Here, we give some concrete examples of f that are widely
used in real-life applications, for which efficient top-k query
building blocks exist. Consider the following class of scoring
functions parameterized by u, which captures user preference:
• linear: fu(p) =

∑d
i=1 ui · p.xi,

• linear combination of monotone scoring functions: fu(p) =∑d
i=1 ui · h(p.xi), where h is a monotone function; i.e.,

h(·) = log(·),
• cosine: fu(p) = 1

|p||u|
∑d
i=1 ui · p.xi,

where u is a real-valued preference vector and fu denotes that
the scoring function f is parameterized by u. We refer to this
class of functions as preference functions. Top-k queries using
such class of scoring functions (preferably in the above three
forms) have been well studied over the past decades both in
computational geometry [1]–[6] and databases [7]–[10]. For
example, for preference functions above, there is an index with
u(n) = O(n), s(n) = O(n), and q(n) = O(n1−1/bd/2c),
skipping polylog(n) factors. Using the results in [5], updates
can also be supported in α(n) = O(polylog(n)) time.

As mentioned above, users can replace the scoring block
with other functions (i.e., non-linear or non-monotone). The
centerpiece of our algorithm and analysis, which bounds the
number of invocations of the top-k query building block,
remains unchanged. But in that case, the complexity of the
building block will affect the overall complexity bound. We
choose these functions because 1) they are widely used in
real-life applications that require ranking and 2) they are both
linear and monotone, so preference top-k can be efficiently
answered (using the same index).

Sliding-Windows and Baseline Solution. Recall from the
discussion in Example I.1 (Figures 1-(2) and 1-(4)) that there
is a connection between our problem and the sliding-window
version, which has been well studied [11]–[13]. Indeed, one
of our baseline solution is adopted from [11] with incre-
mental top-k maintenance over sliding windows3. However,
the standard sliding-window technique is more suitable for
data streams, where incoming data must be scanned linearly
anyway. Instead, our query analyzes historical data. The linear
complexity of sliding windows becomes infeasible especially
when dealing with large datasets. The limitation hence mo-
tivates our solutions in later sections. Experimental results
demonstrate our algorithms’ significant efficiency gain (up to
2 orders of magnitude) over sliding-window baselines.

Duration of durable top-k records. When an algorithm
finds a record p in DurTop(k, I, τ), we can also get the maxi-

3In particular, the idea of Skyband Maintanence Algorithm (SMA) to reduce
the number of top-k re-computations from scratches.
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mum duration (in history) that it remains in the top-k. We do
it by running a binary search with respect to the arrival times
of the records back in history. For each step of the binary
search we ask a top-k query to check if p is still in the top-k
records. The correctness follows from the observation that if
a record is τ ′-durable then it is also τ -durable for any τ < τ ′.
The binary search has O(log n) steps and each top-k query
takes O(q(n)) time. For all records in |DurTop(k, I, τ)| this
procedure takes O(|DurTop(k, I, τ)| · q(n) log n) time. Notice
that this procedure is independent of the algorithm we use to
find the τ -durable records in I , so it can be applied in the end
of all the algorithms we propose in the next sections (without
increasing their total running time).

III. TIME-PRIORITIZED APPROACH

The time-prioritized approach is straightforward: we visit
records in time order and check their durability. We start with
a baseline approach (Section III-A) and propose an improved
version (Section III-B) using the observation that we can
skip many unpromising records in practice. What is more
interesting is how this simple improvement leads to provably
substantial reduction in complexity (Section III-C).

A. Time-Baseline Algorithm
We start with a baseline solution, referred to as Time-

Baseline or T-Base. T-Base shares the same spirit as the
solution proposed in [11], where authors studied the problem
on how to continuously monitor top-k queries over the most
recent data in a streaming setting. The main idea is to
incrementally maintain the top-k set over continuous sliding
windows. We start with the right endpoint of query interval,
and sequentially slide a τ -length window backwards along the
timeline. For each sliding window [t− τ, t], we need the top-
k result to check whether the record (arriving at time t) is
τ -durable. With two adjacent windows W1 = [t − τ, t] and
W2 = [t − τ − 1, t − 1], top-k results could be updated
incrementally, if the expired record (e.g., P [t]) is not a top-k on
W1. Otherwise, we need to compute the top-k on window W2

from scratch to guarantee correctness. The procedure repeats
until we visit all records in the query interval I .

Next, we analyze the query time complexity of T-Base.
There are only two types of records: durable or non-durable.
After visiting each durable record, we need to issue a top-k
query. After visiting each non-durable record, we only need to
incrementally update the current top-k set with new incoming
record in O(log k) time. Assuming a top-k query can be
answered in O

(
(q(n) + k) log n

)
time, then T-Base runs in

O
(
|S|(q(n) + k) log n + n log k)

)
, where |S| is the answer

size. This algorithm takes super-linear time (on the number of
records in the query interval). Next, we show a solution with
sub-linear query time.

B. Time-Hop Algorithm
It is not hard to see that the durable top-k query can be

viewed as an offline version of the top-k query in the sliding-
window streaming model. Hence, the baseline algorithm in-
troduced above does not best serve our needs. Since the entire
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Fig. 2: Data skipping in Time-Hop Algorithm.

Algorithm 1: T-Hop (k, I, τ)

Input: P , k, τ , and I : [t1, t2].
Output: DurTop(k, I, τ)

1 Initialize answer set: S ← ∅, top-k set: π≤k ← ∅;
2 tcurr ← t2;
3 while tcurr >= t1 do
4 π≤k ← Q(k, [tcurr − τ, tcurr]);
5 if P [tcurr] ∈ π≤k then
6 S ← S ∪ P [tcurr];
7 tcurr ← tcurr − 1;
8 else
9 tcurr ← most recent arrival time of records in π≤k;

10 return S;

data is available in advance, the manner of continuous sliding
window wastes too much time on those non-durable records.
After all, a meaningful durable top-k query should be selective.

Before describing the algorithm, we illustrate the main idea
using an example for k = 3, shown in Figure 2. By running
a top-3 query Q(3, [t1− τ, t1]), consider the record p arriving
at t1 (black circle) is not τ -durable; i.e., p 6∈ π≤3([t1− τ, t1]).
We know the current top-3 set contains records (red squares)
that arrive at t4, t3 and t2. Then, no records arriving between
t2 and t1 would be τ -durable and we can safely hop from t1
to t2. This simple and useful observation simplifies the query
procedure, and allows larger strides for sliding windows.

Now, we present our algorithm Time-Hop (T-Hop) (the
pseudocode can be found in Algorithm 1). For each record
we visit with timestamp ti, we run a top-k query in [ti− τ, ti]
(Line 4). If the record is not durable, we slide the window
back to the most recent arrival time of records, say tj , in the
current top-k set (Line 9), skipping the non-durable records
between tj and ti. Otherwise, if a durable record is found, we
slide the window backwards by 1 (Line 7) as usual. Note that
if we adopt the look-ahead version of durability, we just need
to reverse the traversal order (and time-hopping) on timeline
as well.

C. Complexity Analysis of T-Hop

For the Time-Hop algorithm, the time complexity purely
depends on the number of top-k queries called in the query
procedure. We provide a worst-case guarantee on the number
of top-k queries performed, as shown by the lemma below
(See Appendix B for full proofs).

Lemma 1. The total number of top-k queries performed by
the Time-Hop algorithm is O

(
|S|+ k

⌈ |I|
τ

⌉)
.
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Fig. 3: Blocking mechanism in score-prioritized approach

Proof (Sketch). For each record we visit in T-Hop, a top-k
query is called for a durability check. If the record is not τ -
durable, we refer it to as a false check. Otherwise, we add
it to the answer set. Hence, we only need to bound the total
number of false checks. We decompose the total number of
false checks into a set of disjoint τ -length windows, and derive
an upper bound of false checks that happen in such a window.

In particular, let ρ be a window of length τ and let Sρ be
the τ -durable records in ρ. We divide the false checks in ρ
into two types. If a false check appears immidiately after a
τ -durable record (found by the algorithm) then this is a type-
1 false check. Otherwise it is a type-2 false check. From the
definition, the number of type-1 false checks in ρ is O(Sρ).
Furthermore, we show that after finding i type-2 false checks
in ρ, a top-k query (that is called for durability check) can
only find k − i records in ρ. In that way we show that the
number of type-2 false checks is O(k).

Given a query interval I , there are at most
⌈ |I|
τ

⌉
disjoint

τ -length sub-intervals. We conclude that the number of top-k
queries is O

(
|S|+ k

⌈ |I|
τ

⌉)
.

Overall, with an efficient top-k module, T-Hop answers a
durable top-k query DurTop(k, I, τ) in O

(
(|S|+k

⌈ |I|
τ

⌉
)(q(n)+

k) log n
)

time. Compared to T-Base, T-Hop runs in sublinear
query time (assuming that the ratio

⌈ |I|
τ

⌉
is not arbitrarily

large), i.e., the running time does not have a linear dependency
on the number of records in I . Our experimental results
in Section VI suggests that T-Hop is one to two orders of
magnitude faster than T-Base in practice. Furthermore, we
recall that our index can be implemented with near linear size
and polylogarithmic update time for preference queries.

Notice that the number of top-k queries performed by T-
Hop depends on |S| and k

⌈ |I|
τ

⌉
. Ideally, we would like to

argue that the number of top-k queries is O(|S|). In theory,
the term k

⌈ |I|
τ

⌉
can be arbitrarily large comparing to |S|. In

Section V-A we study the expected size of S in a random
permutation model where a set of n scores, chosen by an
adversary, are assigned randomly to the records. In such a
case we show that the expected size of S is roughly O(k

⌈ |I|
τ

⌉
),

meaning that in practice we expect that the number of top-k
queries we execute are asymptotically equal to |S|.

IV. SCORE-PRIORITIZED APPROACH

One weakness of time-prioritized approach is that it does
not pay much attention to scores and simply visit records
sequentially along the timeline (with hops). Though Lemma 1
shows that T-Hop visits O(|S|+ k

⌈ |I|
τ

⌉
) records in the worst

case, it still potentially visits many low-score and non-durable
records and ask more top-k queries. In contrast, the score-

prioritized approach visits candidate records in descending
order of their scores because records with high scores have
a higher chance of being durable top-k records. Furthermore,
these high-score records can also serve as a benchmark for
future records, enabling a “blocking mechanism” to prune
candidates.

Before describing the algorithms, we illustrate the main idea
using an example shown in Figure 3. Suppose we answer a
durable top-3 query with τ by visiting records in descending
order of their scores: p1, p2 and p3, and all three records
are durable ones. p1 has the highest score in the entire query
interval, any record that lies in the τ -length time interval
[p1.t, p1.t + τ ] will be dominated by p1, which we refer to
as being “blocked” by p1. Similarly, p2 (the second highest
score) and p3 (the third highest score) also block a τ -length
interval starting from their arrival times. The time axis is
partitioned into intervals by endpoints of all blocking intervals.
In Figure 3, the number under each interval shows how many
records block this interval. Notice the bold red interval, where
any record in this interval lies in three blocking intervals
after processing p1, p2 and p3. Since there are already three
records with higher score than any record in this interval, it
can not have any τ -durable top-3 record, and we can safely
remove this time interval from consideration. As we continue
adding blocking intervals, eventually every remaining record
in the query interval will be blocked by at least three blocking
intervals. The algorithm can now stop because no more durable
top records can be found. The procedure is straightforwardly
applicable to look-ahead version of durability, by simply
reversing the direction of blocking intervals.

We describe three algorithms in the following sections. They
differ on how the high-score records are found and how the
blocking intervals are maintained.

A. Score-Baseline Algorithm

We start with a baseline method (S-Base) of score-
prioritized approach, which sorts records in the query interval
in descending order of their scores. Given k, τ and a query
interval [t1, t2]: (1) Sort all records in time interval [t1− τ, t2]
in descending order of scores. (2) For each record p in sorted
order: If p.t ∈ [t1, t2] and p lies in less than k blocking
intervals, add p to answer set; Otherwise, continue. In any
case, add a blocking interval [p.t, p.t+ τ ].

Since all blocking intervals have the same length τ , we only
need to maintain the left endpoints of such intervals (using a
balanced binary search tree) to find intersection counts. The
number of blocking intervals is O(n). Hence, insertion and
query can both be finished in O(log n) time. The sorting takes
O(n log n) time so the overall query time complexity of S-
Base is O(n log n).

Next we describe two better algorithms that avoid sorting
all records in the query interval.

B. Score-Band Algorithm (Monotone fff Only)

If we could quickly find a small set of candidate records
C, which is guaranteed to be a superset of the answers; i.e.,
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Fig. 4: Index for k-skyband duration.

Algorithm 2: S-Band (k, I, τ)

Input: P , k, τ , and I .
Output: DurTop(k, I, τ)

1 S ← ∅, Γ← ∅;
2 Compute C ⊂ P by finding durable k-skyband set;
3 Sort C in descending order of scores;
4 for p ∈ C do
5 if p lies in < k blocking intervals in Γ then
6 π≤k ← Q(k, [p.t− τ, p.t]);
7 if p ∈ π≤k then
8 S ← S ∪ {p};
9 else

10 for q ∈ π≤k ∧ q not visited before do
11 Γ← Γ ∪ {[q.t, q.t+ τ ]};

12 Γ← Γ ∪ {[p.t, p.t+ τ ]};
13 return S;

S ⊆ C, then we could get a faster algorithm by only sorting
C. It is well-known that the k records with the highest score,
with respect to any monotone scoring functions, belong to the
k-skyband.4 Hence, if a record p is τ -durable for a top-k query
(with respect to a monotone f ), then p must also be τ -durable
for the k-skyband; i.e., p is in the k-skyband for the time
interval [p.t− τ, p.t]. This observation enables us to construct
an offline index about each record’s duration of belonging to
the k-skyband, and efficiently produce a superset C of answers
to durable top-k queries. Note that the score-band algorithm
has its limitation, since the k-skyband technique only applies
to monotone scoring functions.

Index. Score-Band algorithm needs additional index for
finding candidate set C, which we refer to as durable k-
skyband. Suppose the value of k is known. For each record
p, we compute the longest duration τp that p belongs to the
k-skyband. Then we map each record p into the “arrival time
- duration” plane as a two-dimensional point, p̃ = (p.t, τp).
We then index all such points in the 2D plane using a priority
search tree [14] (or kd-tree, R-tree in practice). To answer
DurTop(k, I, τ), we first ask a range query with the 3-sided
rectangle I×[τ,+∞]. The set of points that fall into the search
region is the superset to actual answers of durable records.
This index can be constructed in O(n log n) time, has O(n)

4For ∀p, q,∈ P , p dominates q if p is no worse than q in all dimensions,
and p is better than q in at least one dimension. k-skyband contains all the
points that are dominated by no more than k − 1 other points. Skyline is a
special case of k-skyband when k = 1.

t

p4
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τ
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or

e

Fig. 5: Durability checks in S-Band and S-Hop.

space and the query time is O(|C| + log n) in order to get
the set C. Figure 4 shows an example. We have four records
p1, p2, p3, p4 arriving at t1, t2, t3, t4, whose duration for k-
skyband is τ1, τ2, τ3 and τ4. We map them into p̃1, p̃2, p̃3 and
p̃4 according to their arriving time and k-skyband duration.
The 3-sided rectangle I × [τ,+∞] is shown as the shaded
region. In this case, C = {p2, p4}.

In general case, notice that we do not know the value of
k upfront, i.e., a query has k as a parameter, so we cannot
construct only one such index. There are two ways to handle
it. If we have the guarantee that k ≤ κ0 for a small number
κ0 then we can construct κ0 such indexes with total space
O(nκ0). Otherwise, if k can be any integer in [1, n], we can
construct O(log n) such indexes (priority search trees), one
for each k = 20, 21, . . . , 2logn, so the space is O(n log n).
Given a durable top-k query we first find the number k̄ with
k ≤ k̄ ≤ 2k, and then we use the corresponding index to get
the superset C. In this case, C contains the records that are
τ -durable to the k̄-skyband, so S ⊆ C.

Query Algorithm. We refer to this score-prioritized ap-
proach using durable k-skyband candidates as Score-Band
algorithm, or S-Band. Full algorithm is sketched in Algo-
rithm 2 and described below. Given k, I, τ , we first retrieve the
candidate set C using the durable k-skyband index as shown
above. Then we sort C and visit records in descending order
of their scores. For each record p we visit, we first check the
number of blocking intervals that p lies. If p lies in less than
k blocking intervals, it is a promising candidate and we run a
top-k query on time interval [p.t− τ, p.t] for durability check.
If p is indeed τ -durable, we add p to answer set. Otherwise,
we need to add a blocking interval for each record returned
by the top-k query (if we have not done so yet), since they
all have higher scores than p. On the other hand, if p already
lies in at least k blocking intervals, we can simply skip it. In
the end, we add the blocking interval [p.t, p.t+ τ ] for p.

We can see that S-Band works similarly to S-Base. The
only difference is that for a record that is blocked less than k
times, we still have to execute a top-k query to check whether
the record is τ -durable (Line 6). This step of durability check
is necessary. Though some records are guaranteed to be non-
durable (i.e., not captured by C with durable k-skyband), they
can still block other records (with lower scores) to be durable
ones. Consider a concrete example in Figure 5 where black
dots represent candidate records in C and red squares represent
records that are not in C. S-Band would only visit p1, p4 and
p5. At the time we visit p4, there is only one blocking interval
(introduced by p1). However, p2 and p3 actually have higher
scores than p4. By running a durability check query on p4,
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we can discover these missing records and add corresponding
blocking intervals (Line 10-11) for better pruning power in
future steps.

Complexity. The query time complexity of S-Band can
be decomposed into three parts: 1) a range search query to
find candidate set C; 2) sort C according to their scores; 3)
find durable records from sorted C sequentially. Summing up
the above, the overall query time complexity of S-Band is
O
(
|C|(q(n) + k) log n

)
, assuming that a top-k query can be

answered in O(q(n) + k) time. In the worst case |C| = O(n)
since all points can lie in the k-skyband. In Section V we show
that using the probabilistic model in [15] (where the coordi-
nates of the points are randomly assigned) the expected size
of C is O(k

⌈ |I|
τ

⌉
logd−1 τ). Due to the blocking mechanism,

in practice we expect that the number of top-k queries will
be smaller. However, notice that we always need to sort all
records in C which might make S-Band much slower due to
the size of C that increases (in expectation) exponentially on
the dimension d.

C. Score-Hop Algorithm

The data reduction strategy of S-Band offers adequate
benefits for improving the overall running time on datasets
in low dimensions (≤ 5). However, the query overhead
on searching and sorting candidate records becomes a huge
burden on high-dimensional data, as it is well-known that the
size of k-skyband tends to explode (or equivalently, records
in high-dimensional space tends to stay in k-skyband for a
longer duration) in high-dimensional space. Furthermore, S-
Band requires additional index and only applies to monotone
scoring functions. To overcome the drawbacks of S-Base and
S-Band, we propose another approach that does not require
sorting and has better worst case guarantee. The main idea is
that there is no need to sort records in advance; we can find
the record with the next highest score one by one as we find
durable records. With the help of blocking mechanism, we can
skip certain time intervals when we find the next highest score
record, despite the fact that there might be some high-score
records in such intervals. This procedure has an analogy to the
Time-Hop algorithm, since we effectively skip certain records
while we traverse records in descending order of their scores,
as we taking a hop in the score-domain.

Query Algorithm. We refer to this solution as Score-
Hop algorithm, or S-Hop. The main idea of the algorithm
is straightforward. In each iteration, we find the record with
the maximum score among the records that lie in less than k
blocking intervals. Let p be such a record. We run a durable
top-k query so if p is a τ -durable record we add it in S.
If p is not a τ -durable record, we add a blocking interval
for each record returned by the durable top-k query (if they
have not been added before). In the end, we add the blocking
interval [p.t, p.t+τ ] and we continue with the next record with
the highest score. The actual implementation of the algorithm
is more subtle, to guarantee a fast query time as described
below; pseudo-code is provided in Algorithm 3. Given a query

Algorithm 3: S-Hop (k, I, τ)

Input: P , k, τ , and I : [a, b].
Output: DurTop(k, I, τ)

1 H ← ∅, S ← ∅, Γ← ∅;
2 for [li, ri] : disjoint τ -length intervals in I do
3 Mi ← Q(u, k, [lr, ri]);
4 H.push(Mi.pop());

5 while H 6= ∅ do
6 p← H.pop(), and let p ∈Mj ;
7 if p lies in < k blocking intervals in Γ then
8 π≤k ← Q(u, k, [p.t− τ, p.t]);
9 if p ∈ π≤k then

10 S ← S ∪ {p};
11 else
12 for q ∈ π≤k ∧ q not visited before do
13 Γ← Γ ∪ {[q.t, q.t+ τ ]};

14 M−j ← Q(k, [lj , p.t− 1]);
15 M+

j ← Q(k, [p.t+ 1, rj ]);
16 H.push(M−j .top()), H.push(M+

j .top());
17 else if Mj 6= ∅ then
18 H.push(Mj .pop());

19 if p not visited before then
20 Γ← Γ ∪ {[p.t, p.t+ τ ]};

21 return S;

interval I = [a, b], we partition the interval into a set of disjoint
τ -length sub-intervals: [a, a + τ), [a + τ, a + 2τ), . . . , [a +⌊ |I|
τ

⌋
τ, b]. Let [li, ri] be the i-th sub-interval, and in each

interval we find the k records 5 with the highest score, denoted
Mi. We construct a max-heap H over all the top-1 records
from all sub-intervals. Besides that, each node in H also keeps
the original interval [li, ri] and the set Mi associated with
the record. We repeat the following until H is empty. We
take and pop the top record from H . Let p be that record
originated from Mj . Then p will be processed in the following
two cases: 1) If p lies in at least k blocking intervals, we
update H by pushing the next top record in Mj (if there is
any). 2) If p lies in less than k blocking intervals, we update
H as follows. Assume that [lj , rj ] is the corresponding sub-
interval of Mj (or p). We first split [lj , rj ] into two non-empty
intervals [lj , p.t−1] and [p.t+1, rj ]. Then, run a top-k query on
[lj , p.t− 1] to get a new top-k set M−j . Similarly, get another
new set M+

j from [p.t+1, rj ]. We replace the old set Mj with
M−j and M+

j , along with its corresponding interval [lj , p.t−1]
and [p.t+1, rj ], respectively. Finally, we update H by pushing
the current top records from M−j and M+

j into the heap. In
the end, we add the blocking interval from record p (if it is the
first time we visited p). Figure 6 illustrates the main procedure
of S-Hop on how to find next record with highest score. It is
worth mentioning that the hopping movement happens at Line
18: we effectively skip certain intervals by not updating the
max-heap and stop asking top-k queries on its sub-intervals.

5As a practical note, we notice that finding the top-1 record (instead of
top-k) in each time interval can be more efficient in most real-life datasets.
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Fig. 6: Illustration of Score-Hop algorithm on finding next
record with highest score (if p lies in less than k blocking
intervals).

6

Compared to S-Band, S-Hop does not have a strong depen-
dency on the dimension of the data (only the running time
of the top-k queries depends on the dimension) and makes
better use of the blocking mechanism. In the end, we only
find and process high-score records as we need instead of
acquiring a full sorted order of records in advance, which leads
to better worst case theoretical guarantees and faster query
time. Experimental results in Section VI demonstrate that S-
Hop can be 1 to 2 orders of magnitude faster than S-Band on
high-dimensional (≥ 10) datasets.

Correctness. The following lemma proves the correctness
of S-Hop.

Lemma 2. Given k, I and τ , the Score-Hop algorithm returns
the correct answer for durable top-k query.

Proof (Sketch). Let S∗ be the τ -durable records in I . We show
that S ⊆ S∗ and S∗ ⊆ S. The algorithm always checks by
running a top-k query if a record should be in the solution
(line 8 of Algorithm 3) so S ⊆ S∗.

Next we prove S∗ ⊆ S. The algorithm visits the records
in descending (score) order so it is not possible that a record
p ∈ S∗ lies in at least k blocking intervals before the algorithm
visits p. We also need to prove that the algorithm does not miss
any durable record in a sub-interval [lj , rj ] that corresponds
to an empty Mj . If |P ([lj , rj ])| ≤ k then the result follows.
Otherwise, we argue using induction that each time when the
algorithm finds a record p in Mj that is contained in at least k
blocking intervals, any timestamp in the sub-interval [lj , p.t]
lies in at least k blocking intervals. Hence, if Mj is empty,
any timestamp in [lj , rj ] lies in at least k blocking intervals
and no other durable records are in [lj , rj ].

D. Complexity Analysis of S-Hop

The query complexity analysis of S-Hop is non-trivial and
needs more care. There are three main sub-procedures in S-
Hop: find next highest score record, top-k queries for durabil-
ity check and blocking mechanism. As presented above, the
first two components both rely on multiple top-k queries. We
first show a worst-case guarantee on the total number of top-k
queries called in the algorithm. Please refer to Appendix C for
full proof.

6In practice, we make sure that when we ask k top-1 queries in an interval
we remove it from the max-heap.

Lemma 3. The total number of top-k queries performed by
the Score-Hop algorithm is O(|S|+ k

⌈ |I|
τ

⌉
).

Proof (Sketch). As we had in the proof of Lemma 1 we need to
bound the number of false checks. Let p be a false check and
let p′ be the record with the largest timestamp in Q(k, [p.t−
τ, p.t]). We say that p is assigned to p′. If p′.t < a, where a is
the timestamp such that I = [a, b], then we assign p to a. We
first show that at the moment that we find the false check p the
corresponding record p′ can only have one of the following
three properties: i) it lies in at least k blocking intervals, ii)
p′ ∈ S and it lies in at most k − 1 blocking intervals, iii)
p′ = a. If p′ has property ii) then p is a type-1 false check.
Otherwise, p is a type-2 false check.

We first bound the number of type-1 false checks. Notice
that after a type-1 false check p is assigned to p′ then all
timestamps in the sub-interval [p′.t, p.t] lie in at least k
records. So if another false check q later in the algorithm
is assigned to p′, again, then q can only be a type-2 false
check. Hence, the type-1 false checks are bounded by O(|S|).
In order to bound the type-2 false checks we assume a window
ρ of length τ in I . We make the following key observation:
At the moment that we find a type-2 false check p, it lies
in at most k − 1 blocking intervals while p′ lies in at least
k blocking intervals, so there should be a blocking interval
[l, r], where its right endpoint lies between p′.t and p.t, i.e.,
p′.t ≤ r ≤ p.t. (Notice that if p′ = a is assigned more than
once then it also lies in at least k blocking intervals.) Using
this observation along with other properties of the false checks
we can show that after finding k type-2 false checks in ρ,
each timestamp in ρ will lie in at least k blocking intervals.
Hence, the algorithm will not run any other top-k query in ρ.
Since there are

⌈ |I|
τ

⌉
disjoint τ -length sub-intervals in I we can

bound the total number of type-2 false check by O(k
⌈ |I|
τ

⌉
).

Overall, the number of false checks along with the durable
records in I is O(|S|+ k

⌈ |I|
τ

⌉
).

The lemma above also shows that the number of different
sets Mj that are created by the algorithm is O(|S|+ k

⌈ |I|
τ

⌉
).

For each set we can visit at most k records so in total the
algorithm may visit O(k(|S|+ k

⌈ |I|
τ

⌉
)) records 7. Each top(),

or pop() procedure takes O(log n) time so in total we need
O(k(|S| + k

⌈ |I|
τ

⌉
) log n) to visit these records. Furthermore,

recall that we need O(log n) time to check if a record lies
in at least k blocking intervals and O(log n) time to insert a
blocking interval (using a binary search tree) so we also spend
O(k(|S|+k

⌈ |I|
τ

⌉
) log n) time for the blocking mechanism. No-

tice that this running time is dominated by the time to answer
O(|S| + k

⌈ |I|
τ

⌉
) top-k queries, so S-Hop answers a durable

preference top-k query in O
(
(|S| + k

⌈ |I|
τ

⌉
)(q(n) + k) log n

)
time (with an efficient top-k query procedure in O(q(n)+k)).

7We note that the algorithm may visit some records, that lie in at least k
blocking intervals, more than once. The upper bound O(k(|S| + k

⌈ |I|
τ

⌉
))

counts all the times that the algorithm visits a record. We can modify the
algorithm so that it does not visit the same record twice but that would make
the description of the algorithm more complicated without decreasing the
overall asymptotic complexity.
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Similarly to T-Hop our index for S-Hop has near linear space
and supports updates in polylogarithmic time for preference
queries.

As it turns out, hopping in time-domain (T-Hop) and in
score-domain (S-Hop) gives us the same complexity bound.
But in practice, S-Hop is more conservative in asking prefer-
ence top-k queries compared to T-Hop, due to the candidate
pruning brought by blocking mechanism. This makes S-Hop
run faster than T-Hop when the top-k query itself is expensive;
i.e., a larger k or on high-dimensional datasets.

V. EXPECTED COMPLEXITY

In the previous sections we presented two types of al-
gorithms (time-prioritized and score-prioritized) to answer
durable top-k queries with the same worst-case guarantee on
their query time. In particular we showed that their query
times depend on k

⌈ |I|
τ

⌉
and |S|. In this section, we go beyond

the worst-case analysis and analyze their performance in a
more “expected” sense. Most importantly, we show in Sec-
tion V-A that the expected size of |S| is roughly k

⌈ |I|
τ

⌉
if the

scores of data records are drawn randomly from an arbitrary
distribution (which can be picked by a powerful adversary
with the advance knowledge of the query parameters). This
result essentially establishes that, under this model, our best
algorithms are in a sense optimal because their complexity
is expected to be linear in the output size. Secondly, in
Section V-B, we study the expected complexity of Score-
Band algorithm by bounding the expected size of τ -durable
k-skyband candidate set C using the same probabilistic model
used in [15].

A. Expected Answer Size

Consider a set of n records P with pi.t = i, for pi ∈ P .
We analyze the expected size of a query output when the
scores of records are assigned in a semi-random manner,
where the data values can be arbitrarily chosen and then
they are assigned in a random order to the records. More
formally, we consider a random permutation model (RPM).
Let X = x1 < x2 < . . . < xn be a sequence of n arbitrary
non-negative numbers chosen by an adversary, and let σ be
a permutation of {1, . . . , n}. We set f(pi) = xσ(i), i.e., the
score of record pi is xσ(i), where σ(i) is the image of i
under σ. As argued in [16], the random permutation model
is more general than the model in which all scores are drawn
from an arbitrary unknown distribution, so our result holds for
this model as well. The random permutation model has been
widely used in a rich variety of domains and considered as a
standard for complexity analysis; i.e., online algorithms [17]–
[19], discrete geometry [20]–[22], and query processing [16].
Our main result is the following.

Lemma 4. In the random permutation model, given k, τ and
I , we have E [|S|] = k |I|τ+1 .

Proof. For a record pi ∈ P (I), let Xi be the random variable,
which is 1 if pi is a τ -durable record, and 0 otherwise.

Thus, E [|S|] = E [
∑
iXi] . Using the linearity of expectation,

E [
∑
iXi] =

∑
iE [Xi] =

∑
iPr [Xi = 1 ] .

Thus our goal is to compute Pr [Xi = 1 ] : the probability
that there are less than k records in [pi.t− τ, pi.t) with score
larger than f(pi). Let P τi = {pi−τ , . . . , pi−1}. For a subset
Q ⊂ P τi , let AQ be the binary random variable, which is 1 if
all records in Q have score greater than f(pi) and all records
in Q = P τi \Q have score less than f(pi). We have

Pr [Xi = 1 ] =

k−1∑
l=0

∑
Q⊂P τi ,|Q|=l

Pr [AQ ] . (1)

We estimate Pr [AQ ] as follows. Let V ⊂ X with |V | =
τ+1. We first bound the conditional probability Pr [AQ | V ]
such that the records in P τi ∪ {pi} are assigned scores from
V . We consider all possible permutations of V and count only
those cases where the records in Q have larger value than
f(pi), and the records in Q have values less than the value of
f(pi). Notice that the permutations that satisfy this property
must assign the first l largest values of V to Q, then the (l+1)-
th largest value to pi and the rest τ−l smaller values of V to Q.
Under such assignment, any permutations of values in Q and
Q are valid cases. Hence, the number of valid permutations
are l!(τ − l)!, while the number of all possible permutations
of V are (τ + 1)!. We have

Pr [AQ | V ] =
l!(τ − l)!
(τ + 1)!

=
1

τ + 1

1(
τ
l

) . (2)

Since (2) holds for all V , Pr [AQ ] =
1

τ + 1

1(
τ
l

) . Substituting

this in (1), we obtain

Pr [Xi = 1 ] =
∑k−1
l=0

(
τ
l

)
1

τ+1
1

(τl)
=
∑k−1
l=0

1
τ+1 = k

τ+1 (3)

Finally,

E [|S|] =
∑
i

Pr [Xi = 1 ] = k
|I|
τ + 1

. (4)

Combining Lemma 4 with the analysis of Sections III-C
and IV-D, we conclude that in a random permutation model the
expected query time complexity of both Time-Hop and Score-
Hop algorithms is O(|S|(q(n) + k) log n), or equivalently
O
(
k
⌈ |I|
τ

⌉
(q(n) + k) log n

)
, where O(q(n) + k) reflects the

time complexity of answering a top-k query. In Section VI,
our experimental results on real and synthetic datasets both
confirm this finding.

B. Expected size of durable k-skyband

In this subsection we bound the expected size of τ -durable
k-skyband records, denoted by C, from Section IV-B in a
probabilistic model similar to the previous case. Recall that
the size of C affects the running time of the S-Band algorithm.

Let P = {p1, . . . , pn} with pi.t = i. We use the same
random model as in [15] where (the attributes of) records
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TABLE II: Dataset summary
Dataset Dimensionality Size (# records)
NBA-X 1,2,3,5 1M

Network-X 2,3,5,10,20,30,37 5M
Syn-X 2 1M,2M,5M,10M,20M,50M

are randomly generated. The following lemma bounds the
expected size of C (See Appendix D).

Lemma 5. In the random model as in [15], given k, τ and I ,
we have E [|C|] = O(k |I|τ logd−1 τ).

Combining Lemma 5, the analysis of Section IV-B and an
efficient top-k query procedure runs in O(q(n) + k) time, the
expected query time complexity of Score-Band algorithm is
O
(
k
⌈ |I|
τ

⌉
(q(n)+k) log n logd−1 τ

)
. It shows that the expected

complexity of Score-Band algorithm can be higher than Time-
Hop or Score-Hop algorithm by a factor of at most logd−1 τ .
Experimental results in Section VI also confirm this finding as
we vary the data dimensionalities. The curse of dimensionality
makes Score-Band algorithm perform worse even compared to
other simple baselines. Again, Time-Hop and Score-Hop are
both generally applicable to arbitrary user-specified scoring
functions, while Score-Band only works for monotone func-
tions.

VI. EXPERIMENTS

A. Experiment Setup

Datasets. We use two real-life datasets and some synthetic
ones, as summarized in Table II and described below:

NBA8 contains the performance of each NBA player in each
game from 1983 to 2019, with in total ∼ 1 million individual
performance records on 15 numeric attributes. Records are
naturally organized by date and time, and we break ties (e.g.,
performances of different players in the same game) arbitrarily.
We choose some subsets of 15 attributes to create datasets
with different dimensions collectively referred to as NBA-X:
NBA-1 selects only 3-point-made; NBA-2 captures the points
and assists; NBA-3 chooses points, assists, rebounds; NBA-5
includes five dimensions: points, assists, rebounds, steals and
blocks.

Network9 is the dataset from KDD Cup 1999. This dataset
contains ∼ 5 million records with 37 numeric attributes
that describe network connections to a machine, including
connection duration, packet size, etc. The query in this case
utilizes a scoring function that weighs a variety of numerical
attributes to rank connections in order to identify unusual and
potentially malicious ones. Records have unique timestamps
and are ordered by these timestamps. Since these attributes
have different measurement units, we scale the value of each
dimension using MinMax normalization. To study the impact
of data dimensionalities on query efficiency, we choose the
first 2, 3, 5, 10, 20, 30 and 37 attributes from the full
dimensions to create 7 different datasets collectively referred

8NBA datasets were collected from https://www.basketball-reference.com/
9https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

(1) IND (2) ANTI
Fig. 7: Value distributions for synthetic dataset

TABLE III: Query Parameters (default value in bold)
Parameter Range

k 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
τ 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%
|I| 10%, 20%, 30%, 40%, 50%, 60%, 70% 80%
d 1, 2, 3, 5, 10, 20, 30, 37

to as Network-X, where X represents the dimensionality of
the dataset.

Syn is a synthetic two-dimensional dataset that is used for
scalability test on proposed solutions. We generate Syn with
independent (IND) and anti-correlated (ANTI) data distributed
in a 2D unit square. For IND data, the attribute values of
each tuple are generated independently, following a uniform
distribution. ANTI data are drawn from the portion inside the
positive orthant of an annulus centered at the origin with outer
radius 1 and inner radius 0.8, representing an environment that
most of the records gather in k-skyband. Figure 7 illustrates
the sample value distributions of IND and ANTI. The full size
of Syn is 50 million and each data point has an unique arriving
time. We further choose several subsets of Syn with 1, 2, 5,
10 and 20 millions of records. The set of synthetic datasets
are collectively referred to as Syn-X, where X represents data
size.

Query Parameters. Table III summaries the query param-
eters under investigation, along with their ranges and default
values. Among these, the query interval length |I| and the
durability τ is measured as percentage of dataset size n. When
varying query interval length, we always fix the right endpoint
of the interval to be the most recent timestamp in dataset and
only move the left endpoint.
Implementations & Evaluation Metric. To make the dis-
cussions concrete and concise, we choose a linear and mono-
tone preference scoring function throughout the experimental
section in the simple form: fu(p) =

∑d
i=1 ui ·p.xi, where u is

a user-specified preference vector and ui is the (non-negative)
weight for i-th attribute of a record. At query time, user need to
specify u as one of the input parameters. Since the focus of this
paper is not to develop the best possible index for top-k queries
Qu(k,W ), our implementation of the top-k building block
simply adopts a tree index (on the time domain of P ), and
answer Qu(k,W ) in a straightforward top-down manner with
a branch-and-bound method. More specifically, each tree node
stores the skyline of all records that it contains. The skyline
helps us quickly identify the maximum score of each node
under any preference vector u. Then, to answer Qu(k,W ),
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(1) Performance on NBA-2 as τ varies.

(2) Performance on Network-2 as τ varies.
Fig. 8: Performance comparison as τ varies.

(1) Performance on NBA-2 as k varies.

(2) Performance on Network-2 as k varies.
Fig. 9: Performance comparison as k varies.

it is sufficient to use at most k nodes (that are contained by
time window W ) with the highest scores according to u. This
index offers adequate performance in our experiments, but it
can certainly be replaced by more sophisticated index with
better worst-case guarantees, without affecting the rest of our
proposed solution.

Using the building block of top-k queries described above,
we further implement T-Base (Section III-A), T-Hop (Sec-
tion III-B), S-Base (Section IV-A), S-Band (Section IV-B)
and S-Hop (Section IV-C). Performance of various methods
are evaluated using the following two metrics: number of top-
k queries and overall query time (in millisecond). For each
query parameter setting, we run the query 100 times with 100
different randomly generated preference vectors, and report
the average with standard deviation.

All methods were implemented in C++, and all experiments
were performed on a Linux machine with two Intel Xeon E5-
2640 v4 2.4GHz processor with 256GB of memory.

B. Algorithm Evaluations

According to the theoretical analysis of our algorithms in
previous sections, the query efficiency depends on the length
of durability window τ , the value of k, the length of query
interval I , the data dimensionality d and the data size n. For
fair evaluation and comparison of algorithm efficiency, we
designed a set of variable-controlling experiments such that
each time we only vary one query parameter of interest and
fix the others to default values.

Comparison of Algorithms when Varying τ . In Figure 8,
we investigate the performance of all durable top-k solutions,
as we vary durability τ . Figure 8-1-(a) shows the query
efficiency comparison on NBA-2. The sorting based solution
S-Base is the slowest, as it requires fully sorting all records
in the time interval of length |I| + τ . T-Base is faster than
S-Base and mostly independent of τ . All the rest solutions, T-

Hop, S-Hop and S-Band, become more efficient as we increase
τ , or equivalently, when query is more selective. This finding
confirms our analysis in Section V that the query efficiency
bounds of Hop-based solutions and S-Band both depend on
the answer size, which is O(k |I|τ ). T-Hop and S-Hop nearly
perform the same, while S-Band can be slightly faster. When
the query is highly selective (τ is half of the length of
entire time domain), they are 1-2 orders of magnitude faster
compared to T-Base and S-Base, respectively. Similar trends
can be seen in Figure 8-2-(a), where we test algorithms on a
larger dataset Network-2. The only difference is that baseline
solutions (T-Base and S-Base) are more expensive and the
efficiency difference between baseline solutions and T-Hop/S-
Hop/S-Band is even larger (up to 3 orders of magnitude).

Next, we take a closer look at T-Hop, S-Hop and S-Band in
Figure 8-1-(b), which compares the number of top-k queries
needed for these three advanced algorithms. For S-Hop, the
total number of top-k queries is decomposed into two parts:
top-k queries for durability check (unshaded region of a green
bar) and top-k queries for finding the next highest score record
(shaded region). For S-Band, we also plot the size of durable
k-skyband candidate set C on top the figure as red circled line,
reflecting the overhead cost of sorting C for S-Band. Now it is
clear that the main reason why T-Hop/S-Hop/S-Band becomes
faster when τ is large is that fewer top-k queries are needed.
A more selective query with larger τ also makes the candidate
set C of S-Band smaller, demonstrating the effectiveness of
using durable k-skyband to identify promising candidates. On
the other hand, we can see that S-Hop and S-Band ask fewer
top-k queries than T-Hop, demonstrating the pruning power of
blocking mechanism in score-prioritized solutions. This figure
also explains why S-Band runs slightly faster than S-Hop and
T-Hop on NBA-2 in this case, as S-Band requires the least
number of top-k queries and the overhead cost on sorting
candidate set C is relatively small on two-dimensional data.
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(1) Performance on NBA-2 as |I| varies.

(2) Performance on Network-2 as |I| varies.
Fig. 10: Performance comparison as |I| varies.

Again, similar trends can be found in Figure 8-2-(b).

Comparison of Algorithms when Varying k. Next, we
study the effect of k on efficiency. Results are shown in
Figure 9. When we increase k, not only need we ask more
top-k queries (see Figure 9-1-(b) and Figure 9-2-(b)), but
a top-k query itself also becomes more expensive. Thus
in both Figure 9-1-(a) and Figure 9-2-(a), we can see that
all algorithms (except S-Base) are slower when k is larger.
Especially when k reaches 50, top-k computations become
the dominant factor on overall efficiency, and the differences
among the various algorithms diminish. Still, S-Band and S-
Hop have slight advantages over T-Hop on larger k, as they
use blocking mechanism to prune candidate records and are
more conservative in asking expensive top-k queries.

Comparison of Algorithms when Varying |I|. In Fig-
ure 10, we compare the performance of proposed algorithms
as we vary the query interval length |I|. In terms of efficiency,
Figure 10-1-(a) and Figure 10-2-(a) show that T-Hop/S-Hop/S-
Band is much faster than baseline solutions T-Base and S-
Base, especially on the large dataset Network-2. On the other
hand, we also find that our proposed algorithms scale better
with |I| than with k (recall Figure 9). The reason is that the
time complexities of T-Hop/S-Hop and S-Band are quadratic
in k but only linear on |I| (recall Lemma 4 and Lemma 5).
In terms of number of top-k queries, in Figure 10-1-(b) and
Figure 10-2-(b), it is not surprising to see that all proposed
solutions ask more top-k queries as |I| increases. The relative
performance of various algorithms is consistent with previous
experiments where we varied τ or k.

Comparison of Algorithms when Varying d. In this
section, we study the effect of data dimensionality d on
algorithm performances. Since the sorting-based S-Base is
clearly inferior to other algorithms, here we only test T-
Base, T-Hop, S-Band and S-Hop on Network-X with varying
dimensions. Results are shown in Figure 11. Let us first take

(1) (2)
Fig. 11: Performance comparison on Network-X as d varies.

(1) IND

(2) ANTI
Fig. 12: Scalability test on IND and ANTI Syn-X.

a look on Figure 11-2. We can see that the number of top-k
queries for all proposed algorithms stays stable as we increase
dimensionality. This finding again confirms our theoretical
analysis that the number of top-k queries (or, answer size)
depends only on k |I|τ and is independent of dimensionality d.
On the other hand, we can see that the size of candidate set
C for S-Band rockets in high dimensions, and can be up to 4
orders of magnitude larger than the size of actual promising
records. The sorting overhead on such huge candidate sets is
already too big. Then, let us go back to Figure 11-1. The
query time of T-Base, T-Hop and S-Hop slowly increases as
we increase dimensionality, because top-k queries on high-
dimensions become more expensive, yet they ask roughly the
same number of top-k queries regardless of dimensionality.
While S-Band still performs well on low-dimensional data
(less than 5 dimensions), in higher dimension S-Band becomes
dramatically worse, even taking as much time as T-Base on
Network-37.

Scalability. Finally, we use the two-dimensional synthetic
dataset Syn-X to test the scalability of the proposed algorithms
as we vary the input size from 1 million to 50 million.
Figure 12 summarizes the results. As the input size increases,
we also increase the query interval length proportionally (so
it remains at a fixed percentage of the data size). As shown in
Figure 12-1, we can see that T-Hop, S-Hop and S-Band scale
well on large IND datasets, and S-Band again performs slightly
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Fig. 13: Runtime distribution on 5d NBA data.

better than T-Hop and S-Hop. The running time of S-Base
increases on larger datasets simply because we are also making
the query interval longer. Figure 12-1-(b) further illustrates that
the total number of top-k queries asked by different algorithms
is also independent from the data size. A larger dataset only
makes top-k queries more expensive. Although the size of
candidate set |C| increases on larger IND datasets, its growth
rate here is much lower than its growth rate when varying
dimensionality d in Figure 11. Overall, on IND synthetic data,
|C| is only about 4-5 times bigger than the actual answer
size, which will not incur a big sorting overhead for S-Band.
However, the situation is much different for ANTI Syn-X. As
shown in Figure 12-2, in terms of query efficiency, T-Hop
and S-Hop still scale well, but S-Band now becomes much
more expensive because of the data distribution of ANTI. Most
records in ANTI data would gather in k-skyband, resulting in
C up to 3 orders of magnitude larger than the actual answer
size (see Figure 12-2-(b)), which hurts the performance of S-
Band. The efficiency of S-Band has a strong dependency on
the candidate set C, or more generally, the data distribution.
In contrast, the performance of T-Hop and S-Hop in this case
is nearly independent of both size and distribution of data; it
is only linear to the answer size.

Query Time Distribution over Different Real Datasets.
Figure 12 already clearly illustrates the performance difference
of S-Band on IND and ANTI synthetic data, demonstrating
the effect of data distributions on S-Band’s query efficiency.
Here, we further compare T-Hop, S-Hop and S-Band on real
data, and study how data distributions would influence their
performance in practice. We use NBA as the main data source,
and select 20 combinations of 5 dimensions randomly chosen
out of the 15 attributes, e.g., (points, assits, rebounds, steals,
blocks), (points, assits, steals, blocks, 3-pointers-made), etc.
These resulting 20 datasets have the same dimensionality (5)
but exhibit different distributions. We run queries with default
settings on each dataset, and plot the running time distribution
for all datasets. Results are shown in Figure 13. We can see
that S-Band takes longer time on average, and also has a wide
span on query time. This finding again confirms that S-Band
is highly sensitive to underlying data distributions. In contrast,
running times of T-Hop and S-Hop are centered in narrower
value ranges, showing their robustness to data distributions
and further demonstrating their advantages over S-Band on

TABLE IV: Query time (in seconds) comparison on NBA-2
when varying τ . PostgreSQL backend.

τ (as % of |T |) 10% 20% 30% 40% 50%
T-Hop 0.46 0.28 0.18 0.12 0.1
T-Base 2.2 1.9 1.8 1.7 1.7

TABLE V: Query time (in seconds) comparison on NBA-2
when varying |I|. PostgreSQL backend.

|I| (as % of |T |) 10% 20% 30% 40% 50%
T-Hop 0.1 0.16 0.17 0.2 0.26
T-Base 0.46 0.93 1.3 1.6 2

real data.
In sum, we conclude that the Hop-based algorithms, T-Hop

and S-Hop, are the best solutions for answering durable pref-
erence top-k queries. They scale well on large datasets as well
as to high dimensions, and most importantly, their query time
complexity is proportional to the answer size. This property
makes T-Hop and S-Hop run even faster when the query is
highly selective; i.e., smaller k or larger τ , which tend to be
the more practical and meaningful query settings that people
would use in real-life applications. While S-Band is also a
reasonable approach, its performance depends highly on the
data characteristics (faring poorly in high dimensions and for
certain distributions). S-Band also requires additional offline
indexing for finding durable k-skyband candidates. Overall,
as demonstrated by experiments on both real and synthetic
data, efficiency and robustness of Hop-based solutions make
them more attractive solutions. Even on very large and high-
dimensional datasets, T-Hop/S-Hop only need less than a
second to return durable top records for any given preference,
which enables interactive data exploration.

C. DBMS-Based Implementations

To demonstrate the generality of proposed solutions and its
possibility of integrating into a DBMS, we further test the
algorithms utilizing PostgreSQL [23] as the backend DBMS.
More specially, we load the datasets NBA-2, Syn-500M (IND)
and Syn-500M (ANTI) into PostgreSQL tables. The table
schema consist of numeric attributes of the records and an
additional column representing arriving time instant. For algo-
rithm implementations, we code T-Hop and T-Base as stored
procedures using PL/Python with PostgreSQL’s native support
operators.10Besides data tables, we also create corresponding
index tables to support efficient top-k records retrieval. The
index table is similar to the tree-based index as we used
for previous experiments, providing sufficient data reduction
for answering range top-k queries. Again, the top-k module

10The other proposed solution, S-Hop, requires a more delicate query
procedure and data structures (recall Algorithm 3). Hence it is more suitable
to implement S-Hop as a wrapper function outside the DBMS.

TABLE VI: Query time (in seconds) comparison on different
datasets. Dataset size (measured by DBMS storage size) is
shown in parentheses. PostgreSQL backend.

Dataset NBA-2 (0.05 G) Syn-IND (30 G) Syn-ANTI (30 G)
T-Hop 0.28 1.9 2.3
T-Base 1.9 773 787

14



can be replaced by more sophisticated indexes with better
performance, without affecting the rest of our solution.

Tables IV and V show the results of testing T-Hop and
T-Base on the smaller NBA-2 dataset with the same query
setting as before, varying durability τ and query interval length
|I| to compare query efficiencies. Similar conclusions can be
drawn here. T-Base always pays linear cost (continuous sliding
windows) to visit all records in the query interval. Thus, the
running time is linear to |I| (Table V), and nearly independent
of τ (Table IV). In comparison, T-Hop’s complexity is linear
to the answer size, which makes it run faster as query becomes
more selective (smaller |I| or larger τ ). Overall, T-Hop is at
least 10× faster than T-Base.

In Table VI, we increase the dataset size up to 500M
records, which takes around 30 Gigabytes of disk space in
PostgreSQL. Running default queries in such cases, we can
see that T-Hop is more than 100× faster than T-Base, bringing
down the query time from nearly 12 minutes to just 2 seconds.
T-Hop also apparently scales well on large datasets, since the
complexity is mostly linear to the answer size. The query
time increase solely comes from the more expensive top-k
module. On the contrary, the continuous sliding-window nature
of T-Base makes it prohibitively slow when dealing with large
amounts of temporal data.

D. Summary of Experiments

In sum, we conclude that the Hop-based algorithms, T-Hop
and S-Hop, are the best solutions for answering durable pref-
erence top-k queries. They scale well on large datasets as well
as to high dimensions, and most importantly, their query time
complexity is proportional to the answer size. This property
makes T-Hop and S-Hop run even faster when the query is
highly selective; i.e., smaller k or larger τ , which tend to be
the more practical and meaningful query settings that people
would use in real-life applications. While S-Band is also a
reasonable approach, its performance depends highly on the
data characteristics (faring poorly in high dimensions and for
certain distributions). S-Band also requires additional offline
indexing for finding durable k-skyband candidates. Overall,
as demonstrated by experiments on both real and synthetic
data, efficiency and robustness of Hop-based solutions make
them more attractive solutions. Even on very large and high-
dimensional datasets, T-Hop/S-Hop only need less than a
second to return durable top records for any given preference,
which enables interactive data exploration. Finally, T-Hop can
be efficiently implemented inside a DBMS; for large datasets
(tens of Gigabytes), it brings down the query time to just
a couple of seconds, from more than 10 minutes required
without our solution.

VII. RELATED WORK

The notion of “durability” on temporal data has been studied
by previous works, but they consider different definitions of
durability and/or different data models from ours. In [24]
and [25], authors implicitly considered “durability” in the
form of prominent streaks in sequence data, and devised

efficient algorithms for discovering such streaks. Given a
sequence of values, a prominent streak is a long consecutive
subsequence consisting of only large (small) values. Their
algorithms can also be extended to find general top-k, multi-
sequence and multi-dimensional prominent streaks. Jiang and
Pei [26] studied Interval Skyline Queries on time series, which
can be viewed as another type of “durability” when segments
of time series dominate others.

Another line of durability-related work on temporal data
is represented by [27]–[29] and [30]. Consider a time-series
dataset with a set of objects, where the data values of each
object are measured at regular time intervals; i.e., stock
markets. At each time t, objects are ranked according to their
values at t. The definition of “durability” therein is the fraction
of time during a given time window when an object ranks
k or above. This line of work mainly focused on how to
efficiently aggregate rankings (rank ≤ k or not) over time. [30]
applied durable top-k searches in document archives, finding
documents that are consistently among the most relevant to
query keywords throughout a given time interval. In that
setting, the challenge is how to merge multiple per-keyword
relevance scores over time efficiently into a single rank.

Durable queries also arise in dynamic or temporal graphs,
typically represented as sequences of graph snapshots. For
example, in [31] and [32], authors considered the problem
of finding the (top-k) most durable matches of an input graph
pattern query; that is, the matches that exist for the longest
period of time. The main focus is on the representations and
indexes of the sequence of graph snapshots, and how to adapt
classic graph algorithms in this setting.

Besides durability, Mouratidis et al. [11] studied how to
continuously monitor top-k results over the most recent data
in a streaming setting. Our baseline solution used in Section VI
shares the same spirit as algorithms in [11] for incrementally
maintaining top-k results over consecutive sliding windows.

VIII. CONCLUSION

In this paper, we have initiated a comprehensive study into
the problem of finding durable top records in large instant-
stamped temporal datasets by running durable top-k queries.
We proposed two types of novel algorithms for efficiently solv-
ing this problem, and provided in-depth theoretical analysis
on the complexity of the problem itself and of our algorithms.
As demonstrated by experiments on real and synthetic data,
our best solutions, Time-Hop and Score-Hop, find interesting
durable top records in under a second on large and high-
dimensional datasets, and can be up to 2 orders of magnitude
faster than existing baselines.
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APPENDIX

A. Implementation Details

For simplicity and usability, we adopt a more straightfor-
ward tree-based implementation that better serves our purpose
for answering a preference top-k query in a time window.

Algorithm 4: Tree Index Construction
Input: Dataset P
Output: A Tree Index T for Preference Top-k Query

1 Def BuildTree(t1, t2):
2 if t1 > t2 then
3 return null;

4 else if t1 == t2 then
5 create a leaf node n;
6 n.skyline← P [t1];
7 n.interval← [t1, t2];
8 return n;

9 else
10 create a node n;
11 tm ← t1 + (t1 + t2)/2;
12 n.left child← BuildTree(t1, tm);
13 n.right child← BuildTree(tm + 1, t2);
14 n.interval← [t1, t2];
15 n.skyline←

S1
(
S1
(
P ([t1, tm])

)
∪S1

(
P ([tm + 1, t2])

))
;

16 return n;

Consider a query time W decomposed into n non-empty
disjoint time intervals W =

⋃n
i=1 Ii. Assume for each interval

Ii we know the highest score (with respect to u) among P (Ii),
referred to as interval max score. It is sufficient to use at
most k out of n intervals 11 to answer a preference top-k
query Q(u, k,W ) if the chosen intervals have the k highest
interval max scores. Based on this idea, our implementation
takes advantages of two important properties of skyline [33]
to improve the efficiency of index construction and query
procedure.

As shown in Algorithm 4, the tree index is built upon the
dimension of arriving time of all points in P in a bottom-
up manner. Each leaf node corresponds to a single timestamp
(Line 6) and each internal node represents a time window
(Line 14). Each tree node also contains a skyline of points
arriving during its window. Skylines in all internal nodes can
be efficiently computed from bottom to up (Line 15).

Algorithm 5 specifies the query procedure using the tree
index. Starting from the canonical intervals (nodes) of query
window I (Line 4), we recursively split long intervals 12

into smaller ones (Line 10-13), and use a priority queue to

11Using all records in P that arrive during these k time intervals to compute
the top-k results.

12The pre-determined value of LENGTH THRESHOLD controls the gran-
ularity of the chosen k intervals for preference top-k computations. By default,
we set LENGTH THRESHOLD=128.
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Algorithm 5: Preference Top-k Query Q(u, k, I)

Input: P , T ,u, k, and I
Output: π≤k(u)I

1 Def PreferenceTopK(I, u, k):
2 candidates ← ∅;
3 Q (priority queue in descending order of key)

← ∅;
4 N ← a set of canonical nodes from T that covers

I;
5 for ni ∈ N do
6 Compute interval max score vi using

ni.skyline;
7 Q.push(vi, ni);

8 while |candidate| < k and !Q.empty() do
9 v, n← Q.top(), Q.pop();

10 if |n.interval| > LENGTH THRESHOLD then
11 nl ← n.left child, nr ← n.right child;
12 Compute vl, vr from nl, nr using skylines;
13 Q.push(vl, nl), Q.push(vr, nr);

14 else
15 candidate.push(n);

16 Compute π≤k(u)I using candidates;
17 return π≤k(u)I;

remember at most k intervals that have the highest interval
max scores (Line 15). Finally, a preference top-k result is
computed using at most k such intervals and all corresponding
records in P (no more than k∗LENGTH THRESHOLD in
total). We can efficiently compute the interval max score for
any interval I (Line 6 and 12).

B. Missing Proofs of Section III

Proof of Lemma 1. Let I = [a, b] and ρ = [b−τ, b]. Let Sρ =
S ∩ρ, i.e., the set of durable records with timestamp in ρ. We
show that the number of false checks in ρ is O(|Sρ| + k).
Without loss of generality, assume that for any pair of records
pi, pj with i < j, pi.t < pj .t.

We consider two types of false checks in ρ. If the algorithm
finds a false check immediately after a durable record then
this is a type-1 false check. Otherwise it is a type-2 false
check. From the definition, the number of type-1 false checks
is bounded by O(|Sρ|). Next we show that the number of
type-2 false checks in ρ is bounded by O(k). If the number
of records in ρ is less than k then the result follows, so we
assume that |P [b− τ, b]| > k.

Recall that if the algorithm visits a record p it computes the
top-k elements in [p.t− τ, p.t]. Let Up be the list of the top-k
items in [p.t − τ, p.t]. Let Zp = Up ∩ ρ, be the list of these
top-k elements that lie in ρ. Generally we refer to Zp as a Z
list. At the beginning of the algorithm assume that we find the
top-k elements in a window of length τ from the rightmost
item in ρ, so we have a list Z with |Z| ≤ k. We show the
following two observations. i) Each time that the algorithm

finds a type-2 false check the new Z list of top-k records in ρ
has cardinality at least one less than the previous list. ii) The
cardinalities of the Z lists as we run the algorithm in ρ are
never increasing. If we show (i), (ii) we could argue that after
the algorithm finds k type-2 false checks in ρ, the Z list will
be empty and the algorithm will visits a record out of ρ.

Without loss of generality, assume that the rightmost record
in ρ was a type-2 false check. Let Zr be the current list as
defined above. The algorithm visits the record with the largest
timestamp in Zr, say p, which is a type-2 false check. Let
Zp = Up ∩ ρ be the new list. We compare the new list Zp
with the old list Zr. Notice that every record q /∈ Zr with
time q.t ∈ [b − τ, p.t] has fu(q) < fu(p) (1), otherwise Zr
would not be in the correct top-k list. Furthermore, p is a false
check because there are at least k records in [p.t−τ, p.t) with
score larger than the score of p, (2). From (1), (2) it follows
that Zp ⊂ Zr. Hence, the cardinality of the new Z list is less
than the cardinality of the previous Z list. In addition, notice
that there are at least k− |Zp| records in [p.t− τ, b− τ ] with
scores greater than the score of p, and generally greater than
the score of any record in P [b− τ, p.t] \ Zp, (3).

In order to complete the proof we need to show what is
the new Z list when the algorithm visits a series of durable
records. Assume that Zp is the current list (or the initial one)
and the algorithm visits Zp’s record with the larger timestamp.
Assume that the algorithm finds a series of durable records,
where j of them belong in Zp. Notice that j ≥ 1. Let q be the
type-1 false check that the algorithm visits (after the series
of durable records) and let Zq be the new list. We need to
show that |Zq| ≤ |Zp|. We assume that q /∈ Zp (if q ∈ Zp
then notice that Zq ⊂ Zp so the result follows). Recall from
(3) that there are at least k − |Zp| records with timestamp
[p.t− τ > q.t− τ, b− τ ] and with score greater than the score
of q. We call these records A. Moreover, there are |Zp| − j
records in Zp with timestamp in [b − τ, q.t) and with score
greater than the score of q. We call these records B. We have
|Zq| ≤ |B| + (k − |A| − |B|) = k − |A| ≤ |Zp|. Hence, we
conclude that there are O(k) type-2 false checks and the total
number of false checks in ρ is O(|Sρ|+ k).

There are
⌈
|I|
τ

⌉
intervals of length τ in I so the total number

of false checks is O(|S|+ k
⌈
|I|
τ

⌉
).

C. Missing Proofs of Section IV

We first introduce some useful notation. Let dens(t) be the
density of a timestamp t, i.e., the number of blocking intervals
that contain t. Notice that dens(t) is changing as we execute
the algorithm. If a record pi is blocked by at least k records,
i.e., dens(pi.t) ≥ k, at line 7 of Algorithm 3 then we call it
an auxiliary record. Overall, we have that a record can be a
durable record, a false check (we run a top-k query but the
record does not belong in the solution), or an auxiliary record.

We first start with a lemma that will be useful later.

Lemma 6. Let Mi be a set that is empty after the algorithm
considering a (auxiliary) record from Mi with density at least
k, and let [li, ri] be its corresponding sub-interval. Then one of
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the two cases hold: The density of each timestamp in [li, ri] is
at least k or the algorithm has visited all records in P ([li, ri]).

Proof. If |P ([li, ri])| ≤ k then the algorithm visits all records
in P ([li, ri]), since we always consider the top-k records in
[li, ri]. If |P ([li, ri])| > k then we show that when Mi is
empty every timestamp in [li, ri] has density at least k.

We prove the following argument by induction: When the
algorithm visits a new auxiliary record pj in a set Mj then any
timestamp in [lj , tj ] has density at least k. Let p1 be the first
auxiliary record that the algorithm finds and let Mi1 be the
set that it belongs to. Since p1 is an auxiliary record we have
that dens(p1.t) ≥ k at the moment we visit p1. Furthermore,
notice that the algorithm did not consider any other record
in [li1 , p1.t] in a previous iteration so we can argue that the
density of every record in [li1 , p1.t] is at least k. In addition,
notice that it is not possible to find any durable record or any
false check in [li1 , p1.t] in the future. As a result, if we visit p1

again in the future it will be an auxiliary record in a set with
left endpoint the same li1 timestamp. Let ph−1 be an auxiliary
record that the algorithm visits in set Mih−1

and let assume
that any record in [lih−1

, ph−1.t] has density at least k. Let
ph be the next auxiliary record that the algorithm visits and
let assume that it belongs in a set Mih . First assume that the
algorithm has visited ph in a previous iteration. Let Mf be the
set that contained ph when the algorithm first visited ph. At
the moment when the algorithm first visited ph, we had that
dens(ph.t) ≥ k and from the induction hypothesis we have
that every timestamp in [lf , ph.t] had density at least k. Hence,
there was no other durable record or false check in [lf , ph.t]
in the future. That means that lf = lih and so it holds that
every record in [lih , ph.t] has density at least k. Next, assume
that this is the first time that we visit the auxiliary record
ph. If this is the first auxiliary record in Mih we have that
the density of every record in [lih , ph.t] has density at least k
because dens(ph.t) ≥ k and there is no subinterval that starts
in [lih , ph.t]. Then, we study the case where ph is not the first
auxiliary record that the algorithm finds in set Mih . Let pu
be the auxiliary record in Mih with the largest timestamp just
before the algorithm found ph. From induction hypothesis we
know that the density of every record in [lih , pu.t] is at least
k. If ph.t ≤ pu.t then [lih , ph.t] ⊆ [lih , pu.t] so any record
in [lih , ph.t] has density at least k. The last case to consider
is when ph.t > pu.t. Since dens(ph.t) ≥ k, and since there
is no sub-inerval that starts in (lu, ph.t) we have that every
record in [lu, ph.t] has density at least k. We conclude that
the density of every timestamp in [lih , ph.t] is at least k.

Now we are ready to prove our lemma. If |P ([li, ri])| > k
and Mi is empty it means that the algorithm has already con-
sidered k auxiliary records in [li, ri]. Let pu be the auxiliary
record in Mi with the largest timestamp. From the induction
we have that the density of every record in [li, pu.t] is at least
k. Furthermore, the algorithm has visited k auxiliary records
and hence it has added at least k blocking intervals with left
endpoint in [li, pu.t]. All the intervals we add have length τ
and ri− li ≤ τ so all timestamps in the interval [pu.t, ri] have

density at least k. We conclude that the density of each record
in [li, ri] is at least k.

Proof of Lemma 2. Let S∗ be the durable records in I . We
show that S ⊆ S∗ and S∗ ⊆ S showing that S = S∗. The
algorithm always checks by running a top-k query if a record
should be in the solution (line 8 of Algorithm 3) so S ⊆ S∗.

Next we show the other direction. The algorithm visits the
records in descending (on score) order so it is not possible that
a record p ∈ S∗ is blocked by at least k records before the
algorithm visits p. Before we argue that S∗ ⊆ S we also need
to make sure that the algorithm does not miss any durable
record in a sub-interval [lj , rj ] that corresponds to an empty
set Mj . In Lemma 6 we showed that all timestamps in [lj , rj ]
have density at least k so there is no additional durable record
in this sub-interval. Hence S∗ ⊆ S, and overall we conclude
that S = S∗.

Let pi be a false check that the algorithm just found, and
let P ′i be the top-k records in [pi.t − τ, pi.t), as we had in
the algorithm. Let p′i be the record in P ′i with the largest
timestamp. We say that pi is assigned to p′i. If pi.t′ < a, where
a is the timestamp such that I = [a, b], then pi is assigned to
a. The next lemma follows from the definition.

Lemma 7. Assume that the algorithm just found the false
check pi. After adding all the blocking intervals from P ′i we
have that the density of every timestamp in [p′i.t, pi.t] is at
least k.

We show the next lemma which is useful to bound the
number of false checks.

Lemma 8. Let pi be a false check and p′i be the record
that it is assigned to. Before adding the k blocking intervals
from all records in P ′i (as defined above) we have that either
dens(p′i.t) ≥ k, or p′i ∈ S and dens(p′i.t) < k, or p′i = a.

Proof. If p′i.t < a then from the definition p′i is a. (Notice
that if we find more than one false checks that are assigned to
a then dens(a) > k, so this case can be considered the same
as dens(p′i.t) > k.)

Next, we assume that p′i.t ≥ a. We prove the lemma by
contradiction. Let p′i be a record that does not belong in S
and dens(p′i.t) < k. Notice that fu(p′i) > fu(pi). Since p′i is
not in S it can be either: a false check, an auxiliary record,
or a record that the algorithm has not visited before. If p′i is a
false check then from Lemma 7 we have that dens(p′i.t) ≥ k
at the moment that we found p′i for first time, which is a
contradiction. If p′i is an auxiliary record then from Lemma 6
we have that dens(p′i.t) ≥ k, which is a contradiction. If p′i
is a record that the algorithm has not considered before then
there are two cases: a) p′i belongs in an interval [lj , rj ] of
a set Mj that we have removed from M because we have
already visited its top-k records. From Lemma 6 we know
that dens(p′i.t) ≥ k, which is a contradiction. b) p′i belongs
in an interval [lj , rj ] of a set Mj that there still exists in H .
Since fu(p′i) > fu(pi) it means that pi is not the record with
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the highest score among the sub-intervals that are not removed
from M , which is a contradiction.

In any case we proved that either p′i has density at least k,
or p′i has density less than k and p′i ∈ S, or p′i = a.

Proof of Lemma 3. If a false check pi is assigned to a durable
record with density less than k then we call it type-1 false
check. Otherwise, it is a type-2 false check.

Let pi be a type-1 false check so we have that p′i ∈ S
and dens(p′i.t) < k. After adding all the k segments from
P ′i we have that dens(p′i.t) ≥ k. The next time that p′i will
be assigned by another false check the density of p′i will be
at least k so it will be a type-2 false check. Hence, it is
straightforward to bound the number of type-1 false checks,
which is at most O(|S|).

Next we focus on type-2 false checks. Let [l, r] be one of the
initial disjoint τ -length windows from line 2 of Algorithm 3.
We show that after finding k type-2 false checks in [l, r] the
density of all timestamps in [l, r] is at least k. If that is the
case then the algorithm will not find any other false check in
[l, r].

Let t be any timestamp in [l, r]. We show that dens(t) ≥ k
after finding k type-2 false checks in [l, r]. If one of the false
checks in [l, r] lies on t then we already have that dens(t) ≥ k.
Let assume that the algorithm finds k1 type-2 false checks in
[l, t) and k2 type-2 false checks in (t, r], where k1 +k2 = k. If
k1 ≥ k then dens(t) ≥ k, so the interesting case is when k1 <
k and k2 ≥ 1. Let χ be the total number of blocking intervals
that the algorithm has added having their right-endpoint in
[t, r] after finding all the k type-2 false checks in [l, r], and let
X be the set of those intervals. We have that dens(t) ≥ k1+χ.
We show that k1 + χ ≥ k or equivalently k2 ≤ χ.

Let pi be a type-2 false check that the algorithm just found
in (t, r]. Let p′i be the record that pi is assigned to, as we
defined above. If p′i.t ≤ t then we immediately have that
dens(t) ≥ k after adding the at most k new segments from
the set P ′i (Lemma 7), so this case is not interesting. (Notice
that if p′i.t < a, before p′i is set to be a, then this is always
the case since t ≥ a).

Now, we assume that for each pi which is a type-2 false
check in (t, r], it holds that p′i.t ∈ (t, pi.t). The main idea
to prove that k2 ≤ χ is the following: Each time that the
algorithm finds a type-2 false check in (t, r] we find an
unmarked interval in X and we mark it. In particular, we
show that there always be such an unmarked segment in X
with its right endpoint in [p′i.t, pi.t). Since pi is a type-2 false
check we have that dens(p′i.t) ≥ k and dens(pi.t) < k, at
the moment that the algorithm visits pi (before adding the at
most k segments from P ′i ). Let Z1 be the current blocking
intervals with right endpoint in [p′i.t, pi.t) and z1 = |Z1|.
Let Z2 be the current blocking intervals with left endpoint
in (p′i.t, pi.t], and z2 = |Z2|. Let B be the current blocking
intervals with left endpoint in [pi.t − τ, pi.t]. We have that
dens(pi.t) < k ⇔ |B| < k, (1). We also have dens(p′i.t) ≥
k ⇔ |B| − z2 + z1 ≥ k, (2). From (1), (2), we have that
z1 > z2 ⇔ z1 ≥ z2 + 1. By definition, notice that the false

checks with time instance ≤ p′i.t cannot mark a segment in Z1.
Furthermore, a previous false check with timestamp at the right
of pi.t cannot mark a segment in Z1: Let pj be a false check
that the algorithm found in a previous iteration in (pi.t, r]
and let p′j be the record that it is assigned to. If p′j .t > pi.t
then the marking process does not mark any segment in Z1.
Otherwise, if p′j .t ≤ pi.t then the density of all records in
[p′j .t, pi.t]∪ [pi.t, p

′
j .t] would be at least k after the algorithm

adds the segments from P ′j , which is a contradiction because
dens(pi.t) < k when we visit pi. Hence only false checks
in (p′i.t, pi.t] can mark segments in Z1. Recall that Z2 are
the current segments with left endpoints in (p′i.t, pi.t]. Even
if all segments in Z2 were created by type-2 false checks and
even if all of them mark segments from Z1, we showed that
z1 ≥ z2 + 1, so we can always find a new unmarked segment
in Z1. Notice that any segment in Z1 has its right endpoint
in [p′i.t, pi.t) and since all the segments have length τ , they
contain t and hence they belong in X . Each time that we find
a type-2 false check in (t, r] we mark a new segment in X ,
so k2 ≤ χ and we conclude that dens(t) ≥ k.

Recall that t can be any record in [l, r], so we showed that
after finding k type-2 false checks in [l, r] the density of every
timestamp in [l, r] is at least k. As a result, the algorithm will
not find any other false check in [l, r]. There are at most

⌈ |I|
τ

⌉
disjoint τ -length windows in I so the number of type-2 false
checks is bounded by O(k

⌈ |I|
τ

⌉
) The overall number of false

checks along with the durable records is O(|S|+k
⌈ |I|
τ

⌉
).

D. Missing Proofs of Section V

Proof of Lemma 5. We show the result extending the main
ideas from [15]. Let P (I) = {pj+1, . . . , pj+L}. For pi ∈
P (I), let Xi be a random variable which is 1 if pi ∈ C,
and 0 otherwise. From linearity of expectation we have
that E [|C|] = E

[∑j+|I|
i=j+1Xi

]
=

∑j+|I|
i=j+1 E [Xi] =∑j+|I|

i=j+1 Pr [Xi = 1 ]. We focus on computing Pr [Xi = 1 ].
Let Pi = P ([pi−τ .t, pi.t]) = {pi−τ , . . . , pi−1, pi}. By in-
dependence we have that the probability of each point in
Pi to be in the k-skyband of Pi is the same, so we can
compute Pr [Xi = 1 ] by first finding the expected size of the
k-skyband in Pi and then divide it by the number of points,
τ + 1.

Let Bi be the k-skyband of the τ+1 points Pi. Let Vj ⊂ N
for 1 ≤ j ≤ d, with |Vj | = τ + 1 such that Vj contains the
values that are assigned to the j-th coordinate of the points
in Pi. We compute E [|Bi| | V1, . . . , Vd]. Let A(τ + 1, d) be
the expected size of the k-skyband of a set P̄ with τ + 1
points in Rd in the d-dimensional random permutation model.
Notice that A(τ + 1, d) = E [|Bi| | V1, . . . , Vd]. We compute
A(τ + 1, d) as follows. From linearity of expectation we
can compute the probability that a point in P̄ belongs in
the k-skyband and take the sum of them, A(τ + 1, d) =∑
p̄∈P̄ Pr

[
p̄ ∈ k-skyband of P̄

]
. Assume that a point p̄ ∈ P̄

has the g-th largest first coordinate among the points in P̄ .
Notice that this can happen with probability 1

τ+1 . Since the
first coordinate of the g-th point (p̄) is greater than the first
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coordinates of g − 1 points it cannot be dominated by any of
those. Therefore, the g-th point belongs in the k-skyband if and
only if its remaining d−1 coordinates belong in the k-skyband
among the points in P̄ with the g-th through the (τ + 1)-th
largest first coordinate. The probability that the g-th point is
in the k-skyband is, by independence, the expected number of
the k-skyband in the remaining points and coordinates, which
is A(τ + 1 − g + 1, d − 1), divided by the total number of
the remaining points in the set which are τ + 1 − g + 1.
Notice that A(k′, y) = k′ for k′ ≤ k and any y. Hence,
we have A(τ + 1, d) =

∑τ+1
j=1

∑τ+1
g=1

1
τ+1

A(τ+1−g+1,d−1)
τ+1−g+1 =

1
τ+1

∑τ+1
j=1

∑τ+1
J=1

A(J,d−1)
J =

∑τ+1
J=1

A(J,d−1)
J . Notice that

A(x, y) is monotonically increasing in x, so if x1 ≤ x2, then
A(x1, y) ≤ A(x2, y) for any y. Furthermore, we note that
A(τ+1, 1) = k since in one dimension the top-k points belong
in the k-skyband. We have, A(τ + 1, d) =

∑τ+1
J=1

A(J,d−1)
J ≤

A(τ + 1, d− 1)
∑τ+1
J=1

1
J ≤ A(τ + 1, d− 1)O(log τ). Iterating

this recurrence on d until A(τ + 1, 1) = k gives the upper
bound A(τ + 1, d) = O(k logd−1 τ).

We conclude that E [|Bi| | V1, . . . , Vd] = O(k logd−1 τ).
Notice that Pr [V1, . . . , Vd ] = 1

( n
τ+1)

d and all possible

sets of V1, . . . , Vd are
(
n
τ+1

)d
so we have that E [|Bi|] =

O(k logd−1 τ), and Pr [Xi = 1 ] ∼ O(k logd−1 τ)
τ+1 . Over-

all we conclude that E [|C|] =
∑j+|I|
i=j+1 Pr [Xi = 1 ] =

O(k|I|τ logd−1 τ).

20


	I Introduction
	II Problem Statement and Preliminaries
	III Time-Prioritized Approach
	III-A Time-Baseline Algorithm
	III-B Time-Hop Algorithm
	III-C Complexity Analysis of T-Hop

	IV Score-Prioritized Approach
	IV-A Score-Baseline Algorithm
	IV-B Score-Band Algorithm (Monotone f- .4  Only)
	IV-C Score-Hop Algorithm
	IV-D Complexity Analysis of S-Hop

	V Expected Complexity
	V-A Expected Answer Size
	V-B Expected size of durable k-skyband

	VI Experiments
	VI-A Experiment Setup
	VI-B Algorithm Evaluations
	VI-C DBMS-Based Implementations
	VI-D Summary of Experiments

	VII Related Work
	VIII Conclusion
	References
	Appendix
	A Implementation Details
	B Missing Proofs of Section III
	C Missing Proofs of Section IV
	D Missing Proofs of Section V


