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Abstract
A log structured store uses a single write I/O for a number
of diverse and non-contiguous pages within a large buffer
instead of using a write I/O for each page separately. This
requires that pages be relocated on every write, because
pages are never updated in place. Instead, pages are dy-
namically remapped on every write. Log structuring was
invented for and used initially in file systems. Today, a
form of log structuring is used in SSD controllers because
an SSD requires the erasure of a large block of pages be-
fore flash storage can be reused. No update-in-place re-
quires that the storage for out-of-date pages be reclaimed
(garbage collected or “cleaned”). We analyze cleaning
performance and introduce a cleaning strategy that uses
a new way to prioritize the order in which stale pages are
garbage collected. Our cleaning strategy approximates an
“optimal cleaning strategy”. Simulation studies confirm
the results of the analysis. This strategy is a significant
improvement over previous cleaning strategies.

1 Introduction

1.1 LFS and FTL Similarities
The cost of executing I/O and the maximum number of
I/Os that are provided in a system is important for both
system cost and performance. Log structured file systems
(LFS) [23, 24] were introduced both to reduce the cost of
I/O and to increase the number of blocks that could be
written by exploiting batching. An LFS writes batches
of diverse pages to secondary storage using large buffers.
Further, because the buffer must be written to contigu-
ous secondary storage, LFS’s unit of reclaimed storage
is a buffer size area on secondary storage. (In a RAID
setting [21], the large buffer is striped across an array of
disks.)

An SSD controller, in implementing its flash transla-
tion layer (FTL) [2], needs also to reclaim large storage
units. It writes pages to SSD storage within an erase
block, which is the unit of erasure for flash storage. Pages
must be erased between writes, so the unit of reclaimed

Figure 1: Checkboard segment containing current and ob-
solete pages, and the cleaning process.

storage is the erase block. How efficiently it does this
helps to determine how many IOPS and cost/IOPS that it
can provide.

So for both LFS and FTL, the unit of reclaimed storage
(which we refer to subsequently as a “segment”) must be
an area that contains a number of pages. However, it is the
pages themselves that are the unit of obsolescence. That
is, an update to a page replaces the page’s prior version,
while the rest of its containing segment is unchanged by
the update. Several updates can, of course, make other
pages in the segment obsolete as well. This leads to seg-
ments that have a “checkerboard” pattern of over-written
(and hence obsolete) pages and pages that continue to rep-
resent the current content of their respective pages. Fig-
ure 1 illustrates this.

1.2 Cleaning
Whether it is an LFS or an SSD’s FTL, neither do update-
in-place, and both require that out-of-date versions of
pages be garbage collected (called “cleaning” in [23]).
Without cleaning, secondary storage fills up with partially
overwritten segments, i.e. segments in which some of the
pages are current versions and some are obsolete (empty
of current versions) and hence garbage. And importantly,
new storage for writes needs to be acquired in segment
size units to ensure the system’s ability to continue writ-
ing new versions of pages to storage.

Obviously, it would be great if we could find a seg-
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ment in which all pages have been over-written and are
hence empty. Then we could simply select this segment
for re-use, and erase it if it is a flash erase block. But this
is incredibly unlikely as we are usually dealing with seg-
ments capable of storing a few hundred pages or more.
So we have to deal with segments that have a checker-
board of current and empty pages. The strategy to do this
entails writing the still current pages to a new segment.
Once these pages are written elsewhere (somewhat as if
they were being updated by users), all pages in the seg-
ment are then empty. This cleaning process has emptied
the pages that were current when cleaning began for the
segment. Figure 1 shows how segments become increas-
ingly dirty, and how cleaning moves the still current pages
to another segment so that there are no remaining current
versions of pages in the original segment.

How efficiently we can perform cleaning is an impor-
tant factor in how well these systems perform. This cost
is measured in the number of page moves required to per-
form cleaning, which is the number of pages that still con-
tain current data. There are two reasons why this “effi-
ciency” matters.

1. The number of page moves is directly related to the
execution cost of garbage collection. Execution cycles
spent on cleaning are cycles that are unavailable for
tasks more directly related to user I/O operations.

2. For SSDs, the number of page moves is related to what
is called “write amplification” [3]. This is a measure
of how many writes result from a single page user
write. The larger the write amplification, the more
wear on the flash memory, which is limited in the num-
ber of writes that it can provide.

1.3 This Paper and our Contributions
The remainder of the paper is organized as follows.

• Section 2 starts by providing an algebraic derivation
of cleaning cost, originally derived in [23]. Following
that is a derivation of simple round robin, age-based
cleaning costs, previously derived in [15, 4, 7, 8]. This
age based cleaning analysis is used later.

• Section 3 contains one of the significant contributions
of this work. We present an analysis demonstrating
that a skewed data and update distribution with hot
and cold data of different sizes can be exploited to re-
duce cleaning cost. While this is known [23], our new
analysis convincingly demonstrates this and provides
a lower bound on cleaning cost for various skews.

• How to order segments for cleaning so as to pro-
duce the lowest cost is the subject of Section 4. Here
we introduce the major contribution of the paper, the
“optimal” approach to choosing the order of cleaning
among the in-use segments. This analysis produces a

formula that can be evaluated to determine the clean-
ing order for segments that are in-use.

• The analysis of the prior section needs to be converted
into an executable cleaning program. This is described
in Section 5 and is another contribution of the paper.

• Our cleaning simulation is described in Section 6.
This, our last contribution, demonstrates that our
cleaning order produces the lowest cost cleaning of
the major competing strategies.

• The last two sections contain related work and a short
discussion.

2 Cleaning Segments

In order to reuse empty pages of a segment, the segment
is cleaned. The cleaning process consists of reading the
segment and re-writing, hence relocating, its still current
(non-empty) pages. The segment can then be re-used in
its entirety for writing new versions of pages. The effi-
ciency of this process depends on the number of empty
pages, i.e., pages containing out-of-date versions, a seg-
ment being cleaned contains. The more empty pages, the
lower the cleaning cost per page, since these empty frames
represent the gain achieved by the cleaning process.

The number of empty pages in a segment increases
with time. Whenever a page is updated, it is re-written
to a new location. The storage (sometimes called the
page frame) that contained the page’s prior version be-
comes empty. Only cleaning, which empties all pages of
a segment, results in empty pages being usable for future
writes. Otherwise, segments become increasingly empty
with time. Note that without cleaning, there is no guaran-
tee that some segments will ever consist of entirely empty
pages.

2.1 The Cost of Cleaning

We want to know how many I/O accesses, including those
for cleaning, are required to write a segment of new pages
to the disk. This will be a function of how empty segments
are when cleaned, as once used segments fill the allotted
storage, space for new data must be reclaimed from pre-
viously written segments.

Let E denote the fraction of a segment that is empty.
The reading of a segment for cleaning produces E ∗ S
empty pages, where S is the number of pages per seg-
ment. In order to write S page frames of new data, 1/E
segments must be cleaned, i.e. read. Further, for each
segment read, (1−E) ∗ S pages must be written to move
these still alive pages to a different segment. Finally, the
cleaned segment, now completely available, must be writ-
ten with the S new pages. Thus, the total I/O cost of writ-
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ing that segment, which we denote as Costseg is

Costseg =
1

E
reads+

1

E
(1− E)writes+ 1 =

2

E
(1)

Also of importance is the write amplification Wamp,
which is the number of buffer writes performed compared
with the number of buffer writes that the user herself per-
forms. In theCostseg formula in 1, this is the second term
on the right. Thus,

Wamp =
1

E
(1− E) (2)

We report our simulation results in Section 6 where our
graphs are in terms of Wamp.
E is affected by the fraction of the disk used to store

current versions of user data. We call this fraction the
fill factor, F . The apparent size of the disk for users
is F times the real physical size of the disk. Cleaning
efficiency depends strongly on F . The lower F is, the
higher the amount of empty space we are likely to find
when cleaning segments. In particular, we can find seg-
ments for which E ≥ (1 − F ), as (1 − F ) is the average
amount of empty space over the entire disk when users
have completely filled their storage allocation. We should,
on average, be able to find larger values of E in segments
we clean by careful choice of segments. For example,
with a fill factor F = .8, on average E ≥ .2, leading to
IO/seg ≤ 10. Hence, in this case, once segment size ex-
ceeds 10 pages, an LFS performs fewer writes per page
than a conventional block-at-a-time system.

We want to order the cleaning of segments so as to min-
imize Costseg . Given equation 1, it is clear that this cost
is minimized when we maximize the average value for E
at the time a segment is cleaned. Section 4 concerns
how we prioritize (order) the segments for cleaning, and
the impact of that priority ordering on the average E that
we see when cleaning segments.

2.2 Age Based Cleaning
A particularly simple cleaning priority is to always clean
the oldest segment, i.e. the one that was written the
longest time in the past. This means that we first clean
the segment with the largest age. It is more convenient
for subsequent discussion to think of this as cleaning first
the segment with the smallest value of 1/age. Age-based
cleaning leads to a very simple implementation where seg-
ments can be organized in a circular buffer. The segment
written at the earliest time is the one to be cleaned next.

A uniform distribution analysis using age based clean-
ing priority gives a worst case bound on cleaning effi-
ciency which is more accurate than simply using the fill
factor F . A similar analysis was done earlier [7]. The
disk is assumed to be full, i.e. up to its fill factor F . Each

page is assumed equally likely to be updated, i.e. have the
same probability of update. That is, the update frequency
for all pages is Upf = 1. (Note that regardless of update
distribution, where Upf may be greater for some pages
than for others, average (Upf ) = 1 over the entire disk is
normalized to 1.)

Let P be the number of pages of the user visible disk.
Let N be the number of page writes between the time that
a segment is written and when it is cleaned. Then E is
the probability that a page written subsequently “collides”
with a page in the segment. That is

E = 1− (
P − 1

P
)N (3)

We are given P. The difficulty is in determining the
value for N since N depends upon write cost, i.e. how ef-
ficient cleaning is. The physical disk contains P/F pages,
and hence (P/F )/S physical segments. For age based
priority, we will have written all the physical segments
(less one) before cleaning a segment. Each of those seg-
ments will have E ∗ S pages available for writing new
data. Hence,

N =
(P/F )

S
ES =

PE

F

Then, we have

E = 1− (
P − 1

P
)P

E
F

The above equation is recursive, but a fixpoint can
be found numerically. Once P is sufficiently large, e.g.
greater than 30, this result depends almost entirely on the
value of F . In fact, in the limit, as P goes to infinity,

E = 1− (
1

e
)

E
F (4)

because
lim

P→∞
(
P − 1

P
)P =

1

e

The results for some values for F are presented in Table 1.
This table, all columns except MDC-opt1 derived from

Equation 4, suggests that modest increases of slack space,
i.e., (1 − F ), have a very substantial positive effect on
cleaning efficiency. This impact declines as the fraction
of slack space increases. As 1 − F increases, it is in-
creasingly probable that a page will have more than one
out-of-date version. These versions are already empty, so
another update of their page does not increase the empti-
ness of their containing segment. A fill factor in the range
of .70 to .9 has high effectiveness, with E in the range of
about .2 to .5 and cost in the range of 10 to 3.9.

1MDC-opt is the simulation result for the minimum declining cost
(MDC) algorithm proposed later in the paper. This column can be ig-
nored for now.
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F 1-F E MDC-opt Cost R=E/(1-F) Wamp
.975 .025 .048 .048 41.7 1.94 19.8
.95 .05 .094 .097 21.3 1.92 9.64
.90 .10 .19 .192 10.5 1.92 4.26
.85 .15 .29 .283 6.90 1.90 2.45
.80 .20 .375 .370 5.33 1.88 1.66
.75 .25 .45 .453 4.44 1.80 1.22
.70 .30 .53 .532 3.78 1.77 .887
.65 .35 .60 .606 3.33 1.71 .666
.60 .40 .67 .675 2.99 1.68 .493
.55 .45 .74 .738 2.70 1.64 .351
.50 .50 .80 .796 2.50 1.60 .250
.45 .55 .85 .847 2.35 1.55 .176
.40 .60 .89 .892 2.24 1.49 .124
.35 .65 .93 .929 2.15 1.43 .075
.30 .70 .96 .959 2.08 1.37 .042
.25 .75 .98 .980 2.04 1.31 .020
.20 .80 .993 .993 2.014 1.24 .007

Table 1: Fill Factor F and 1- F vs Segment Emptiness
When Cleaned

3 Skewed Update Distributions

3.1 Gedanken Analysis
It is unusual for updates to be uniformly distributed over
all the data. In this section, we show that update rate dif-
ferences can be exploited to reduce cleaning costs. Our
analysis for this is artificial, and the way we set things up
is all but impossible to realize “in real life”. But this anal-
ysis shows the potential if we are able to treat data with
different update rates differently.

Assume that we have two different sets of pages, each
with uniformly distributed updates, but with the number
of pages and update frequencies different for each set. Our
analysis goal is to show that if we manage each of these
sets of pages completely separately in their own spaces,
the write cost for the two sets can be made less than the
write cost for the union of the two sets, with uniformly
distributed updates. A similar analysis was done in [26].
We hold constant the total page set size and slack space
fraction. But we allocate the slack space where it is most
useful in reducing write cost. We assume age based clean-
ing for each set and will use the results of the preceding
analysis, as captured in Table 1 to determine E.

The total cost for managing the two sets of data sepa-
rately is the weighted cost for the two sets. Let Di be the
fraction of total data size in set i, and Ui be the relative
frequency of updates in set i. Then weighted average cost
for updates is

CostTotal =

2∑
i=1

Costi ∗ Ui

We need to relate cost to F , rather than simply to E
because we want our result to be a function of how we

Figure 2: How space is named and allocated when sepa-
rating data by update frequency.

divide the “slack” space between the two sets. For this we
use E = R ∗ (1 − F ), where R is simply the ratio we
observe between E and (1−F ). We have computed R in
Table 1. Thus, our cost becomes

Cost =
2

E
≈ 2

R ∗ (1− F )

and total cost for our two separate sets of pages becomes

CostTotal =

2∑
i=1

2

Ri ∗ (1− Fi)
∗ Ui

3.2 Dividing Slack Space
We want to determine, for a given overall fill factor F ,
how to divide the slack space (1−F ) so as to minimize the
combined cleaning cost of our two data sets with differing
update frequencies. We divide total space into two parts,
each part devoted to managing either data set 1 or data set
2. F = D1 +D2 and slack space (1−F ) = S1 +S2. See
Figure 2.

We are interested in dividing slack space so we set Si =
(1− F ) ∗ gi where g1 + g2 = 1. Then we have

Fi =
Di

Di + Si
=

F ∗Disti
(1− F ) ∗ gi + F ∗Disti

where Disti = Di/(D1 + D2). We are normalizing our
distribution and our computation here. For example, if we
are dealing with an 80 : 20 data distribution where 80%
of updates go to 20% of the data, then Dist1 = 0.8 and
Dist2 = 0.2.

Plugging Fi back into our cost equation yields

Costi =
2

Ei
=

2

Ri
∗ (1 +

F ∗Disti
(1− F ) ∗ gi

) ∗ Ui

We want to find the minimum for Costtotal, so we take
the derivative of cost and set it to zero. We want cost in
terms of a single variable g1, so we replace g2 by 1 − g1.
We now make an important simplification- i.e. we assume
that Ri are constant. This is not true, but is a useful sim-
plification as Ri does not vary greatly. We hold update
rate Ui, F , and Disti constant. The total cost equation is
then, abstractly, of the form

CostTotal = A
1

g1
+B

1

(1− g1)

4



where all quantities in A and B as constants. This
form permits us to easily see how to compute
d(CostTotal)/d(g1).

d(CostTotal)

d(g1)
= −A

1

(g1)2
+B

1

(1− g1)2
= 0

Replacing A and B by their update frequency and size
and replacing (1− g1) with g2 results in

(
2 ∗ U1

R1
) ∗ (F ∗Dist1

1− F
)(

2

g21
) = (

2 ∗ U2

R2
) ∗ (F ∗Dist2

1− F
)(

2

g22
)

We will solve the above equation for g1/g2. But we will
simplify the equation for a special set of distributions so
that we can clearly see a pattern in managing hot and cold
data separately. The special set of distributions and update
frequencies is the very frequently used m : 1−m, where
m% of the updates go to 1−m% of the data. An example
of this is the 80:20, where 80% of the updates go to 20%
of the data. For these special distributions, U1 ∗Dist1 =
U2 ∗ Dist2. Canceling out these quantities as well as F
and (1− F ) yield

g1
g2

= (
R2

R1
)

1
2

Importantly, slack space division is not related to the size
of data being accommodated.

Simplifying things even more, we note that
(R2/R1)1/2) ≈ 1, so that, for these distributions,
g1 ≈ g2 and hence we simply share the slack space
equally. But remember, this approximation applies only
to our special set of distributions.

3.3 Minimum Cost
We can now capture what would be the minimum cost
for our two distributions, based on using the derived way
above of sharing the slack space equally between hot and
cold data. This is a very large, multi-parameter space. So
we restrict ourselves to using a fill factor for the SSD of
.8, and hence the slack space is .2. Dividing slack space
equally has a differential impact on the fill factors for hot
and cold data, with the hot data having a lower fill fac-
tor than the cold data. Said differently, we wait for hot
segments to be emptier than cold segments. Thus, when
update rates differ, we should not necessarily clean the
emptiest segment first.

In Table 2, we show the resulting minimum cost values
for a number of distributions that are commonly used to
evaluate performance. While we found the minimum cost
to be achieved by splitting the slack space equally, the
cost does not change very much over a range of space
divisions. We include in Table 2 columns showing costs
when the space is divided by giving hot data 60% and

F Cold-Hot MinCost Hot:60% Hot:40% MDC-opt
0.8 90:10 2.96 3.06 2.99 2.96
0.8 80:20 4.00 4.12 4.11 3.99
0.8 70:30 4.80 4.90 4.86 4.76
0.8 60:40 5.23 5.38 5.38 5.23
0.8 50:50 5.38 5.46 5.46 5.38

Table 2: Minimum Cost When Managing Hot and Cold
Data Separately

cold data 40%, and the reverse. This produces only very
modest changes in cost, with cost values slightly higher
than the minimum.

What we have shown here is that, if we can take into ac-
count the hot and cold data distribution, that we can clean
more efficiently than if we have uniformly distributed up-
dating. This leads us, in the next section, to how we might
efficiently clean data to exploit this opportunity.

4 Cleaning Order

4.1 Minimum Declining Cost

Section 2 demonstrated how well we can do assuming a
uniform distribution of page writes and a circular buffer.
But as demonstrated in Section 3, we can do better if there
is a non-uniform distribution of page writes as we can then
effectively give more of the slack space to the hot data,
improving overall cleaning efficiency even as we reduce
cleaning efficiency for cold data. To exploit this, we need
to separate hot data and cold data by clustering data into
segments based on its update rate.

We exploit a concept that we call declining cost to es-
tablish cleaning priority among segments with differing
update rates. If cleaning cost per page of a segment can
be expected to decline greatly over some time period if
we are willing to wait, then we should wait. Instead, we
should clean a segment from which we expect very little
decline in per page cleaning cost. Indeed, we should clean
the segment from which we expect the smallest decrease
in cleaning cost, so long as we can reclaim some space.

The segment cleaning cost is related to the number of
empty page frames in the segments. From Equation 1 we
know that the cleaning cost per page frame declines as
more page frames become empty due to update activity.

The general problem is to determine the optimal pro-
cessing order for items whose processing costs decline
with time. We assume that object i has processing cost
ci(tn) at time tn. We further assume that the rate of
change in cost of processing is constant, i.e., dci(t)/dt
is a constant. This is not true for cleaning segments, but
over a modest interval, it is a useful approximation.

Thus, at t0, i’s cost to clean is ci(t0). Then for any time

5



ti, the cost of cleaning object i is given by

ci(ti) ≈ ci(t0) +
dci(t0)

dt
(ti − t0)

The total cost of processing a collection of k objects, in
some particular order is

CostTotal =

k∑
i=1

ci(ti) ≈
k∑

i=1

ci(t0)+

k∑
i=1

dci(t0)

dt
(ti−t0)

The derivative dc(t)
dt will be negative for segment clean-

ing. It eases the discussion to talk about cost decline,
which is captured by −dc(t)

dt . Thus, we rewrite CostTotal

as

CostTotal ≈
k∑

i=1

ci(t0)−
k∑

i=1

−dci(t0)

dt
(ti − t0)

CostTotal is minimized when the second sum on the
right hand side is maximized. We want to show that this
is true when the largest cost declines are multiplied by the
largest time intervals.

Maximality Lemma: Given two sets of positive num-
bers X and Y, with ||X|| = ||Y ||,

k∑
i=1

xiyi

is maximized when X = {xi} and Y = {yi} are both
ordered in the same way, i.e., xi ≥ xj iff yi ≥ yj .

Proof: See the “Maximality Lemma” in the appendix.
Hence, it is best to process the objects experiencing the

largest rates of cost decline last, and conversely, to pro-
cess first the objects with the smallest rates of decline.
The intuition here is that it pays to wait for the large cost
declines, and to process objects whose costs won’t decline
much more first.

4.2 Segment Cleaning
The preceding result will apply only approximately as the
rate of decline in cleaning cost per page is not constant.
Thus, this is a first order approximation. We need to dif-
ferentiate the cost per segment function. As before, E
denotes the fraction of the segment page frames that are
empty. Further, Upf denotes the frequency of updates to
pages in the segment. Recall that the cost of writing a
segment is:

Cost =
2

E
= 2E−1

and hence that cost decline is

d(Cost)

du
= (
−2

E2
)(
dE

du
)

We measure time not in clock time but in update count,
where the “clock” has one ”tick” per update. We will re-
fer to ”time” subsequently, but it should be understood
that our clock is an update counter. Rate of change with
respect to updates is unaffected by variations in system
load, outages, etc. In particular, update frequency differ-
ences would be reduced by a system outage were we to
use clock time, since that would add outage time to age
computations, which would reduce the ratio between up-
date frequencies.

We need to determine the value for dE/du. To get the
rate at which E is changing in a segment, we need to mul-
tiply the number of non-empty pages by the segment up-
date frequency. Let Upf denote the update frequency per
page. The update frequency per segment is then the num-
ber of current pages times Upf . Then,

dE

du
α (1− E)Upf∆E

where ∆E is the change in E produced by one update.
Hence

d(Cost)

du
α
−2(1− E)

E2
Upf∆E

4.3 Update Frequency
The big picture of our cleaning approach, like earlier ef-
forts, is to separate pages into segments based on update
frequency. To do this, we need a simple way to estimate
update frequency. Keeping extensive statistics on page
updates is expensive. So, similar to [23], we use some
form of “age” as an approximate (and highly uncertain)
estimate of a page’s update frequency.

We want to know what fraction of updates are updates
for a given segment. This will determine update frequency
as a function of overall update rate. We define unow as
the current update count, up1 as the time of the ultimate
(last) segment update,and up2 as the time of the penulti-
mate (next to last) update.

We have found that using unow − up1 as the update
period (inverse of update frequency) is very inaccurate.
Instead, we want to take a sample of two intervals instead
of one as the the average interval between updates for a
segment. Then, for our segment of interest,

Upf =
2

unow − up2

That is, there are two updates to our segment over an up-
date interval of unow − up2.

It is possible to extend this to include a larger interval
containing more updates, e.g.

Upf =
n

unow − upn

6



but Upf may change, and we want to track these changes,
so we should not average over too many updates. Subse-
quently, we average Upf over two update intervals. Then
our estimated cost decline function is

−d(Cost)

du
α

2(1− E)

E2
∗ 2

unow − up2
∗∆E

4.4 Updates and ∆E

∆E is the change in emptiness E produced by an update
to a page in the segment. For a fixed size page, this change
in E is 1/P where P is the number of pages in the seg-
ment. This yields a minimum cost decline function

−d(Cost)

du
α

2(1− E)

E2
∗ 2

unow − up2
∗ 1

P

Since 1/P is a constant, it does not impact the cleaning
order of segments.

The situation is more complicated when pages can be
of variable size. Assume that a segment is B bytes long.
What is the impact of an update to page P on emptiness.
It is something like SizeP /B. But what do we use for
SizeP ? Since we do not know the next page to be up-
dated, we cannot know its size. However, we can approx-
imate the size by computing the average size of the re-
maining pages that have not yet been updated. This is a
value for ∆E averaged over the remaining valid pages of
the segment.

Let C be the number of pages that have not yet been
updated. Further let A be the amount of available free
space in our segment of size B. Then, the average size
of the remaining un-updated pages is (B − A)/C. This
yields a more general form for declining cost of

−d(Cost)

du
α

2(1− E)

E2
∗ 2

unow − up2
∗ (B −A)/C

B

4.5 Uniformly Distributed Updates
Subsection 4.3 discussed how to estimate update fre-
quency. However, if we know that updates are uniform,
then Upf = c, i.e. constant. Taking this into account, with
declining cost, we have for our minimum declining cost
(MDC)

Priority[MDC] α
2(1− E)

E2
∗∆E

We define Priority[greedy] as ordering segments for
cleaning based on how much empty space they have. Es-
sentially, “greedy” cleans the segment with the highest
value of E first, which is the lowest value of 1/E when
defining high priority by low number as we have been do-
ing. Greedy priority is what age based cleaning yields

when applied to a uniform distribution. That is, cleaning
the oldest first will have the same result as cleaning the
emptiest first because, at least with high probability, the
oldest segment is also the emptiest.

For a uniform update distribution, Priority[MDC] or-
ders the segments for cleaning in exactly the same order
as Priority[greedy]. This is seen by noting that

1− E
E2

=
1

E
(

1

E
− 1)

The factor (1/E) − 1) is ordered in the same way as
(1/E). Both of these factors are positive. Thus their prod-
uct is ordered as (1/E). Hence, for a uniform distribution,
Priority[MDC] α Priority[greedy].

5 How to Clean

5.1 Cost Information
5.1.1 Segment Related Information

Given the analysis for declining cost in the prior section,
we can identify information that we will need to realize
cleaning based on an MDC strategy. Some of this infor-
mation will be system determined and constant, like B
above. However, some of it changes over time and will
be different for each segment. This is the information that
we need to capture for each segment:

• A: Available (free) storage in a segment.
• C: Number of pages containing current page state.
• up2: The next to last time of update of pages in the

segment.

5.1.2 Global Information

There is also global information that we need also to be
aware of. It consists of:

• B: the size in bytes of each segment.
• unow: the current time as measured by update count.

5.1.3 Transformed Declining Cost Equation

Using the quantities above and the definitions of E =
A/B and average page size, we can compute our declin-
ing cost function as:

−d(Cost)

du
α

2(1−A/B)

(A/B)2
∗ 2

unow − up2
∗ (B −A)/C

B

We can factor out and then drop constant factors as they
do not impact the cost decline ordering. Then simplifying
this equation yields

−d(Cost)

du
α (

(B −A)

A
)2 ∗ 1

C ∗ (unow − up2)
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5.2 Maintaining Segment Information

5.2.1 Easy Quantities

Some information is easy to maintain, regardless of
whether the segment was created by user updates or by
garbage collection.

• Available space A is set to an initial value when the
segment is first filled. Every time a page of the seg-
ment is updated such that a current page in the seg-
ment is over-written, the size of the page is subtracted
from A.

• Number of pages C containing current state is set to
an initial value when the segment is first filled. Every
time a page of the segment is updated such that a cur-
rent page in the segment is over-written, the count C
is reduced by one.

5.2.2 Update Frequency

Maintaining update frequency is more challenging than
other segment related information. Our goal when re-
sponding to events like garbage collection or processing
a new user write is to carry forward the update history as
accurately as possible.
Garbage Collection Writes. Each page to be GC’d
comes from a segment where we have maintained up2.
This is the value we use for the page. When we include
the page in a new segment that contains re-written pages
from other segments, the value for up2 for the new seg-
ment is the average up2 for all pages written to it. How
crude this is depends in part on how we organize the pages
to be separated by update frequency (see subsection 5.3).
New User Writes. There are two cases to deal with:

Non-first Write: The old state of each re-written page
has a up2 that can be found from its containing seg-
ment. We start by assuming that the prior up1 is mid-
way between the current unow and up2. With a new
update, the prior up1 then becomes the new up2. Thus

new(up2) = old(up2) + .5 ∗ (unow − old(up2))

First Write: up2 will be assigned a relatively arbitrary
value since we have no update history to guide us.
Since pages mostly contain cold data, assigning a up2
that makes the page “coldish” is usually appropriate.
Thus we set its up2 to the oldest value of up2 in the
batch of pages we are processing for new user writes.
As additional updates are made (see above), this start-
ing point for up2 will approach the update frequency
the page is experiencing.

5.3 Separating by Update Frequency

As we have seen in Section 3, cleaning performance is im-
proved when we can separate data by update frequency,
i.e. separate hot from cold data. Thus, we try to group to-
gether pages from segments as much as possible by their
values for up2. Since up2 is maintained in our segment
summary information, or is assigned to each newly up-
dated page, we have the information needed for doing this.
Thus, when assigning pages to segments, we first sort the
collection of pages by their value of up2. This is similar
to what the Berkeley paper [23] proposed, though their
technique used up1 instead of up2. Sorting permits us to
cluster pages by up2 when assigning the pages to new seg-
ments, both for user and GC writes. Thus, it is a technique
for separating pages into segments by update frequency.

Note that the sorted ordering of page moves to new seg-
ments may be slightly different from the minimum declin-
ing cost order. However, minimum declining cost order
determines the set of candidate segments to clean. The
sorting by up2 is within this candidate set.

6 Cleaning Evaluation
In this section, we experimentally evaluate the proposed
MDC cleaning algorithm and compare it against other al-
gorithms. We first describe the experiment setup followed
by the detailed evaluation results.

6.1 Experiment Setup

6.1.1 Simulation Setup

As in prior work [23, 26], we built a simulator to evalu-
ate the various cleaning algorithms. The major difference
between the simulator and an actual system is that the for-
mer only writes page IDs instead of page contents. Since
we only care about the cleaning cost in the evaluation, the
actual page contents do not matter here. For all experi-
ments, the page size was set at 4KB and the segment size
was set at 2MB (with 512 pages). The size of the sim-
ulated system was set at 100GB2. Cleaning is triggered
when the number of free segments falls below 32. Un-
less otherwise noted, each cleaning cycle cleans 64 in use
segments. This amortizes the cost of running the cleaning
algorithm over a batch of segments, and also enables more
effective separation of pages by update frequency.

6.1.2 Performance Metric

We measured the comparative effectiveness of vari-
ous cleaning algorithm, in terms of write amplification

2The actual size does not impact the write amplification.
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Wamp, as defined in equation 2. A good cleaning algo-
rithm should have a low write amplification. For example,
if write amplification is 0, then all of the I/O bandwidth
can be used for user writes. In contrast, if the write am-
plification is 1, then only half of the I/O bandwidth can be
used for user writes, while the other half is used for clean-
ing. This added toll of extra writes reduces the lifetime of
the flash storage.

6.1.3 Evaluated Algorithms

We evaluated the following cleaning algorithms in our ex-
periments. The age-based algorithm (denoted as “age”)
always selects the oldest segment for cleaning. The
greedy algorithm (denoted as “greedy”) always cleans the
segment with the most available free space. The cost-
benefit algorithm [23] (denoted as “cost-benefit”) cleans
segments with the largest cost benefits, which are defined
as (1−E)×age

E .
The multi-log algorithm [26], which is the current state-

of-the-art cleaning algorithm, separates pages into multi-
ple logs so that pages within each log have similar up-
date frequencies. We further evaluated two variations of
the multi-log algorithm. The first variation (denoted as
“multi-log”) estimates the page update frequency using
the previous update timestamp. The second variation (de-
noted as “multi-log-opt”) uses the exact page update fre-
quency to measure the best possible write amplification
of the multi-log algorithm. For both variations, we only
cleaned one segment at a time in order to be consistent
with the evaluation conducted by [26].

Similarly, we evaluated two variations of our proposed
MDC algorithm. The first variation (denoted as “MDC”)
uses update timestamps to estimate page update frequen-
cies and sorts pages to group pages with similar update
frequencies together. The second variation (denoted as
“MDC-opt”) also uses the exact page update frequency
for cleaning, as in multi-log-opt.

6.1.4 Workloads

We used two sets of workloads in the evaluation. First, we
used a synthetic workload where page writes were gener-
ated following a random distribution. Second, we used the
I/O traces collected from running the TPC-C benchmark
on a B+-tree-based storage engine. The detailed setup of
these two workloads are further described below.

6.2 Synthetic Workloads
We first used synthetic workloads to evaluate various
cleaning algorithms, where page writes were generated
following predefined distributions as discussed below. For
each experiment, we wrote 10TB data, which is 100 times
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Figure 3: Experimental Results on Hot-Cold Distributions
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Figure 4: Cleaning Impact of Sort Buffer Size

the size of the simulated log-structured system, so that
the write amplification stabilized. Throughout this evalua-
tion, we focus on the following two questions: First, what
is the effectiveness of each optimization used in the pro-
posed MDC algorithm? Second, how well the proposed
MDC algorithm performs compared to other cleaning al-
gorithms? In the remainder of this section, we answer
these two questions through our evaluation.

6.2.1 Breakdown Analysis.

To understand the effectiveness of each optimization used
in the MDC algorithm, we carried out a breakdown anal-
ysis by removing these optimizations one by one as fol-
lows. Here we used the same hot-cold distribution dis-
cussed in Section 3 where pages are divided into two
groups with different sizes and update frequencies. The
fill factor was set at 0.8. The optimal write amplification
(denoted as “opt”) for this distribution has been shown in
Table 2. In addition to MDC and MDC-opt, we further
included the following variations by removing some opti-
mizations from MDC:

• MDC-no-sep-user: the variation of MDC that does not
separate user writes by their update frequencies;

• MDC-no-sep-user-GC: the variation of MDC that
does not separate both user and GC writes by their up-
date frequencies.
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Figure 5: Experimental Results on Synthetic Workload

Finally, we further included the greedy algorithm in this
evaluation. Note that the only difference between greedy
and MDC-no-sep-user-GC is that they use different crite-
ria for selecting segments to clean.

The resulting write amplifications under different skew-
ness are shown in Figure 3. When the workload is not
skewed (50-50), the greedy algorithm achieves the opti-
mal write amplification, which is also the same as the opt
algorithm. In this case, the MDC and its variations incur
some additional overhead due to estimation errors. How-
ever, note that most practical workloads do not have uni-
form update distribution. When the workload is skewed,
the MDC and its variations start to outperform the greedy
algorithm because the greedy algorithm always cleans the
segment with the most available space, which will leave
cold segments uncleaned for a long time [23].

The performance differences among the MDC and its
variations also illustrate the effectiveness of each opti-
mization. By comparing MDC-no-seg-user and MDC-no-
seg-user-GC under skewed workloads, e.g., 80-20, we can
see that separating user writes is more effective that sepa-
rating GC writes. This is because most of the GC writes
are cold pages but user writes contain a mix of cold and
hot pages. Moreover, the write amplification of MDC-opt
also aligns with that of the opt algorithm as obtained via
theoretical analysis. This confirms the optimality of the
proposed MDC algorithm.

We further carried out an experiment to evaluate the
impact of the buffer size for sorting user writes on the
cleaning cost of the MDC algorithm. Here we used the
80-20 Zipfian update distribution with the Zipfian factor
0.99. Note that the Zipfian distribution is more complex
and realistic than the hot-cold distribution because under
the Zipfian distribution all pages have unique update fre-
quencies. The fill factor was again set at 0.8. The resulting
write amplifications under different buffer sizes (in terms
of the number of segments) are shown in Figure 4. As the
figure shows, it is important to separate page writes based
on their update frequencies, as sorting page writes by their
update frequencies significantly reduces the write ampli-

fication. Moreover, using a write buffer with 16 segments
(32MB in our evaluation) already achieves near-optimal
write amplification.

6.2.2 Comparison with Other Cleaning Algorithms.

We used the uniform and Zipfian update distributions to
evaluate the write amplification of various cleaning al-
gorithms. For the Zipfian distribution, we further evalu-
ated two Zipfian factors representing different skewness,
namely the 80-20 Zipfian distribution (Zipfian factor 0.99)
and the 90-10 Zipfian distribution (Zipfian factor 1.35).

The write amplification of the evaluated cleaning algo-
rithms under different fill factors are shown in Figure 5.
Under the uniform distribution (Figure 5a), both the age-
based and greedy algorithms have the optimal write am-
plification. Moreover, both multi-log-opt and MDC-opt
have achieved lowest write amplification as well. In both
algorithms, all pages are placed into one group because
they all have the same update frequency. It should be
noted that the multi-log-opt algorithm always cleans the
oldest segment within this group, which behaves exactly
as the age-based algorithm. However, without the exact
page update frequency, both multi-log and MDC incur
some additional overhead due to estimation errors. More-
over, the multi-log leads to a higher write amplification
than MDC because it creates a large number of of logs
during runtime, even though all pages have the same up-
date frequency. Finally, the cost-benefit algorithm has
a much higher write amplification because it is purely a
heuristic approach only optimized for skewed workloads.

Under the skewed Zipfian distributions (Figures 5b and
5c), the age-based algorithm produces a very high write
amplification because it does not consider the update fre-
quency of each page. Moreover, the greedy algorithm also
does not work well as discussed before. The cost-benefit
algorithm uses a heuristic to clean cold segments more ag-
gressively by considering both the available space and the
age, which reduces the write amplification.

By grouping pages with similar update frequencies, the
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Figure 6: Experimental Results on TPC-C Workload

multi-log algorithm further reduces the write amplifica-
tion. However, the multi-log algorithm still exhibits a high
write amplification when the fill factor becomes larger. Fi-
nally, the MDC algorithm achieves the lowest write am-
plification compared to all evaluated algorithms and has a
similar write amplification as MDC-opt.

6.3 TPC-C Workloads

To evaluate the cleaning algorithms on a somewhat more
realistic workload, we carried out experiments using the
I/O traces collected from running the TPC-C benchmark
on a B+-tree-based storage engine. The buffer cache size
was set at 4GB. We varied the fill factor from 0.5 to 0.8,
which corresponds to TPC-C scale factors 350 to 560. It
should be noted that the storage size under the TPC-C
benchmark increases over time. Thus, for each scale fac-
tor setting, we first loaded the TPC-C tables and ran the
TPC-C benchmark until the fill factor increased by 0.1.
After collecting the I/O traces, we replayed them using the
simulator to evaluate the cleaning algorithms. The write
amplification was measured during running phase, which
contains about 250GB writes.

Figure 6 shows the resulting write amplifications on the
TPC-C traces. In general, the TPC-C traces also con-
tain hot pages and cold pages, and its skewness is close
to 80-20 [26]. Thus, both the age-based and greedy al-
gorithm do not work well, which is consistent with the
results under the synthetic workloads. By pre-analyzing
page update frequencies, both multi-log-opt and MDC-
opt achieve much lower write amplifications. Moreover,
MDC-opt further reduces the write amplification com-
pared to multi-log-opt.

Without knowing page update frequencies in advance,
both multi-log and MDC perform worse than their optimal
alternatives. Specifically, we saw that multi-log performs
even slightly worse than the cost-benefit algorithm. One
reason is that multi-log initially places all pages into one
log and adjusts the number of logs as the system runs.
Thus, its cleaning cost decreases over time but requires
many writes before converging. However, the number of

pages written in this experiment is much smaller than the
previous experiment with synthetic workloads.

The TPC-C workload also has a shifting pattern where
hot pages become cold over time [26]. Since both algo-
rithms use past update timestamps to estimate page update
frequencies, this shifting pattern reduces the accuracy of
the estimation. Even so, MDC has a much lower write
amplification compared to other cleaning algorithms un-
der all fill factors.

7 Related Work

7.1 Log Structured Stores.
In addition to FTL in SSD controllers, log structured
stores have been widely used in various data manage-
ment components and systems. Examples include key-
value stores [11, 12], NoSQL systems [1, 25], in-memory
stores [19, 20], log structured variants of B+-trees [13,
22], and the key-value separation design [5, 14, 16] for
LSM-trees [17, 18]. In these systems, cleaning is often
the new bottleneck because of the expensive write ampli-
fication incurred by the cleaning process. By minimizing
the cleaning cost for log-structured stores, the proposed
MDC algorithm will be able to further improve the per-
formance of these systems.

7.2 Cleaning Algorithms.
The original LFS work [23] recognized the relationship
between age and update rate. They also recognized that
low update rate (old) segments should be cleaned at a
lower value of E than the more active update rate (young)
segments. To capture this, they proposed a heuristic-based
cleaning approach, called cost-benefit, that cleans cold
segments more aggressively. However, as we have seen in
Section 6, the cost-benefit algorithm still fails to minimize
the cleaning cost. The LFS design and its cost-benefit al-
gorithm has been adopted and refined by subsequent re-
search [6, 9, 10, 27]. However, these cleaning algorithms
are mainly based on heuristics, which fail to minimize the
overall cleaning cost [26].

Desnoyers [8] proposed an analytical model to divide
pages into a hot pool and a cold pool, which is similar
to our discussion in Section 3. In contrast, our MDC al-
gorithm does not predefine the number of page groups. It
instead sorts pages to group pages with similar update fre-
quencies together and selects the cleaning segments glob-
ally to minimize the overall cleaning cost. Stoica and Ail-
amaki [26] proposed a multi-log approach to minimize the
cleaning overhead, which is the state-of-the-art cleaning
algorithm. Its key idea is to separate pages into multiple
logs so that pages within each log have similar update fre-
quencies. When writing to a log L causes the system to
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be nearly full, the algorithm selects a local-optimal log to
clean from L and its two neighbors. However, the multi-
log approach has a few drawbacks, as shown in our evalu-
ation. First, it requires a lot of page writes to converge to
its optimal state. Moreover, it may not achieve the min-
imum cleaning cost, as its selects cleaning segments lo-
cally. The proposed MDC algorithm addresses these two
problems and further reduces the cleaning cost.

8 Discussion

8.1 Analysis-Simulation Agreement
Simulations can give you results that may be difficult or
impossible to fully confirm. However, when analysis can
be applied to the same conditions as were used for a sim-
ulation, we want to be able to confirm that the results
produced from simulations agree with those produced by
analysis. We have done this for the results from conditions
that we were able to analyze.

Uniform Distribution: From Table 1, we can compare
column E, our analysis results (for age based cleaning,
which is optimal for uniform distribution, and column
MDC-opt, the results produced by simulation using
MDC. These columns agree to two significant digits.
Figure 5a graphs the simulation results, and shows that
MDC produces the lowest costs among the cleaning
methods we compare.

Hot:Cold Separation: From Table 2 we can compare
our analysis of minimum cost cleaning for distribu-
tions divided between hot and cold data in the Min-
Cost with our simulation under the same conditions
using MDC, the MDC-opt column. Again, the results
are in agreement to at least two significant digits, a
confirmation that MDC achieves the best possible re-
sults under the admittedly contrived conditions. Fig-
ure 3 shows that MDC achieves the optimal results and
has lower cleaning costs than the other methods.

The above agreement between analysis and simulation
reinforce the confidence we can place in our overall re-
sults, including those under more general experimental
conditions which we were unable to analyze. These con-
firmations strongly suggests that it will be very difficult to
improve on MDC.

8.2 Conclusions
Cleaning efficiency is critical to the efficiency of any log
structured store, whether it be a software system such as
a log structured file system [23] or a “firmware” system
in an SSD controller’s FTL. For an FTL, there is the ad-
ditional incentive to reduce the write amplification so as

to reduce flash storage wear. Our approach described here
is intuitive, and produces results when we simulated its
use that matched optimal results derived via our analy-
sis. While it may be possible to improve the details of
the approach, there is only limited room for subsequent
improvements if update frequency changes only slowly.
However, knowledge of workload may make it possible
to better predict update frequency changes, and knowing
update frequency, as shown in our simulations, can often
improve results further.

A Appendix
Maximality Lemma: Given two sets of positive numbers
X and Y, with ||X|| = ||Y ||,

k∑
i=1

xiyi

is maximized when X = {xi} and Y = {yi} are both
ordered in the same way, i.e., xi ≥ xj iff yi ≥ yj .

Proof: By contradiction.
Assume that the lemma is not true. Then there exists at

least two element pairs such that xi > xj with yi < yj
for some i and j. Note that the sum of the products of all
other x’s and y’s with these two entry pairs removed is
unchanged regardless of how we order these two pairs.

The contradiction maintains that the sum is maximal
with the old order. Thus if we pair xi with yj and xj with
yi, we expect that:

(xi ∗ yi + xj ∗ yj)− (xi ∗ yj + xj ∗ yi) ≥ 0

Clustering the y terms by factoring out the x terms gives:

xi ∗ (yi − yj)− xj ∗ (yj − yi) ≥ 0

or, xi ∗ (yi − yj) + xj ∗ (yi − yj) ≥ 0

But yi < yj , so the term (yi − yj) < 0. Hence, the
product of it times the positive x values is also less than
zero, a contradiction.
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