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Abstract—The proliferation of advanced mobile terminals
opened up a new crowdsourcing avenue, spatial crowdsourcing,
to utilize the crowd potential to perform real-world tasks. In
this work, we study a new type of spatial crowdsourcing,
called time-continuous spatial crowdsourcing (TCSC in short).
It supports broad applications for long-term continuous spatial
data acquisition, ranging from environmental monitoring to
traffic surveillance in citizen science and crowdsourcing projects.
However, due to limited budgets and limited availability of
workers in practice, the data collected is often incomplete,
incurring data deficiency problem. To tackle that, in this work,
we first propose an entropy-based quality metric, which captures
the joint effects of incompletion in data acquisition and the
imprecision in data interpolation. Based on that, we investigate
quality-aware task assignment methods for both single- and
multi-task scenarios. We show the NP-hardness of the single-task
case, and design polynomial-time algorithms with guaranteed
approximation ratios. We study novel indexing and pruning
techniques for further enhancing the performance in practice.
Then, we extend the solution to multi-task scenarios and devise a
parallel framework for speeding up the process of optimization.
We conduct extensive experiments on both real and synthetic
datasets to show the effectiveness of our proposals.

Index Terms—Spatial Crowdsourcing, Time-continuous
Crowdsourcing, Quality

I. INTRODUCTION

Spatial crowdsourcing or crowdsensing refers to harnessing
human knowledge or sensors of participants’ smart phones to
retrieve qualitative or quantitative details related to physical lo-
cations of crowdsourced tasks. For conventional spatial crowd-
sourcing, task assignment and fulfillment are often “atomic”
in that either they are fully executed or not at all [1]–[6],
[6]–[11]. In this work, we consider a special type of spatial
crowdsourcing, called time-continuous spatial crowdsourcing
(TCSC in short). TCSC is different, due to its temporal
continuity, such that a spatial crowdsourced task takes long to
finish, necessitating the time-sharing collaboration of multiple
workers. It finds broad applications in capturing the presence
and duration of environmental features, e.g., air/water pollu-
tion monitoring [12] and traffic surveillance [13]- [14], which
are prevalent in citizen science projects [15].

For example, in Fig. 1, a crowdsourcer would like to
analyze the microbial content in the water for a period.
Upon receiving the task, the TCSC server looks up the
records of preregistered workers’ spatiotemporal information.

Fig. 1. General TCSC Framework

Indicating the undertaking of workers giving to the TCSC
server, the registered spatiotemporal information consists of
workers’ available time slots, working regions, and so on,
e.g., {worker1, 〈place A, 1−2pm〉, 〈place B, 7−8pm〉, . . . }.
The task is then decomposed into a set of subtasks. Each
subtask corresponds to a specific time slot and location.
Subtasks are assigned to appropriate workers according to
the assignment policy. Workers finish the assignment, e.g.,
probing environmental values, and send their results to the
server. The crowdsourced results are aggregated and delivered
to the crowdsourcer.

Quality is essential for such applications. It is infeasible
to accomplish a crowdsourced task for all time slots, due to
limited budgets and availability of workers. So, the probed data
in crowdsourced results is inherently incomplete. Interpolation
(or extrapolation) alleviates the data incompletion problem by
inferring unproved values with the probed ones. However,
the interpolation error may further affect the data precision,
incurring the so-called data deficiency problem. Ignorance of
the facts of data incompletion and data imprecision would
cause unreliable crowdsourced results. Thus, it is of paramount
importance to consider the data quality problem in the TCSC
setting. To this end, we propose a general entropy-based
metric for summarizing the amount of incompleteness and
impreciseness of the crowdsourced results, which enables
quality-aware TCSC assignment and balances the plannable
expense and observable essence.



There is a substantial difference between the TCSC problem
and existing task assignment problems in spatial crowdsourc-
ing. For example, existing works mostly focused on maximiz-
ing the total number of completed tasks [1], on maximizing
the number of performed tasks for an individual worker [2],
or on maximizing the reliability-and-diversity score of as-
signments [3]. These solutions cannot be directly applied, as
none of them look into the temporal continuous nature and
corresponding quality issues of the TCSC problem. To our
best knowledge, we are the first to study the TCSC problem.

Nevertheless, the computational overhead of quality-aware
TCSC assignment is high. Even a simplified version of the
problem, i.e., single TCSC task assignment, is NP-hard, as
shown in Section III. In this work, we study how the quality-
aware TCSC assignment can be handled in an efficient and
scalable way. For ease of presentation, we start with the
simplified version, single-task assignment, with the target of
maximizing the task quality under budget constraints. We
prove that the problem is NP-hard and further show that
it can be approximated by a polynomial-time solution with
guaranteed ratios. We also devise novel pruning and indexing
techniques for efficiency enhancement. Based on that, we
introduce the multi-task case, where technical challenges arise
in handling the correlations between a given set of single
tasks. We devise a parallel framework by distributing multiple
correlated tasks to independently running computation cores,
so as to maximally utilize the independence between tasks.

The main contributions of this paper are as follows.

• We propose and formalize the novel TCSC problem.
• We prove that the problem is NP-hard and therefore

study approximation algorithms for accelerating the task
assignment with quality guarantees, for both single- and
multi-task scenarios.

• We investigate novel indexing and pruning techniques for
the efficiency of the single-task case.

• We devise an efficient parallelization framework for the
multi-task case, by breaking ties of correlated task groups
with devised synchronization mechanisms.

• We conduct extensive experiments on synthetic and real
data to evaluate the efficiency and scalability.

The rest of this paper is organized as follows. Section
II introduces preliminaries, including concepts, quality met-
rics, and properties. Section III starts with the single-task
assignment. Section IV extends the solution to the multi-task
scenario. Section V evaluates our proposals with extensive
experiments. Section VI presents related works. Section VII
concludes the paper. Table I summarizes the symbols and
notations used.

II. PRELIMINARIES

In this section, we introduce basic concepts, propose the
quality metric, and investigate its properties. For ease of
presentation, we start with the single-task case (Sections II
and III), and extend it to the multi-task case (Section IV).

TABLE I
SUMMARY OF NOTATIONS

Symbol Meaning
T = {τi} a set of tasks

τi = {τ
(j)
i }

m
j=1 a set of m subtasks of task τi

τ
(j)
i a subtask of τi at j-th time slot

c(τ) and c(τ (j)) cost of task τ and subtask τ (j)

W = {wi}ni=1 a set of n workers
w

(j)
i worker wi at j-th time slot
m number of subtasks of a task
n number of workers
|a, b|i distance in time between slots a and b
q(.) quality metric function
p(.) subtask finishing probability function

ρerr(.) interpolation error ratio function

A. Basic Concepts

TCSC tasks and subtasks. A single TCSC task τ has
its location τ.loc and duration τ.dur. According to the batch
size that tasks arrive in, the duration consists of at most m
equal-sized time slots. Thus, τ can be represented by a set of
subtasks {τ (j)}mj=1 such that each subtask τ (j) takes τ.loc as
its location, and the corresponding time slot as its duration.
Formally, τ (j).loc = τ.loc and τ (j).dur = τ.dur

m .
Worker. Let W = {w1, w2, ..., wn} be a set of n workers.

Each worker is registered with a set of consecutive states to
the SC server, indicating whether s/he is online for providing
crowdsourcing services. A worker wi’s temporal state can be
represented by w

(j)
i , indicating the availability of worker wi

at time slot tj .
Task Assignment. Task assignment is the mapping of

workers to subtasks. In Fig. 2, there are 5 subtasks in τ . At
each time slot, there exist a set of workers. In this example,
workers w(2)

2 and w(4)
4 are assigned to subtasks τ (2) and τ (4),

respectively. τ (3) is not assigned to any worker as none are
available at that time slot. τ (1) is not mapped to any worker
because of cost and budget limits, e.g., workers at time slot 1
are far away from τ (1).

Fig. 2. An Example of TCSC Task Assignment (m = 5)

Cost. The cost of a subtask τ (j) is denoted as c(τ (j)).
Following the common setting of spatial crowdsourcing, we
assume the travel cost of a subtask c(τ (j)) is the Euclidean
distance from the location of a subtask τ (j) and the assigned
worker w1. For simplicity, we assume the unit cost of all

1If considering traveling distances as costs [4] [16], the nearest worker
is usually selected in order to minimize the cost of taking a subtask. It is
also possible to take the second nearest neighbor or the latter in multi-task
scenarios, as covered by Section IV.



workers is the same. Our work is general w.r.t. the type of
cost. The cost of a task is the summation of all its subtasks’
costs, i.e., c(τ) =

∑m
j=1 c(τ

(j)).

B. Quality Metric

Due to the limited budget or the availability of workers, it is
necessary to measure the quality of a TCSC task, given the fact
that a task cannot be fully assigned. There can be two possible
states for a subtask, executed and unexecuted, corresponding
to whether the subtask value is probed by assigned workers
or interpolated by other probed subtasks. For example, in
Fig. 2, τ (2) and τ (4) are executed subtasks, while the other
3 are unexecuted and need to be interpolated. Initially, all
subtasks are “null”. If some subtasks are assigned and probed,
their states are changed from “unexecuted” to “executed”.
Meanwhile, remaining unexecuted subtasks can be inferred
from the executed subtasks by interpolation (or extrapolation).
So, the quality metric of a TCSC task should, 1) distinguish
the quality between a probed item and an interpolated item;
2) be universal for covering the integrative action of different
stated subtasks for the overall quality measurement.

Quality Metric. For condition 1), we define the concept
of subtask finishing probability, based on the calculation of
potential interpolation errors. For condition 2), we utilize an
entropy function that returns a real-valued score for conve-
niently indicating the amount of inaccuracies in accordance
with specific assignment strategies, as shown below.

Definition 1 (Task Quality.) Let τ be a task consisting of m
subtasks, τ = {τ (j)}1≤j≤m. Each subtask τ (j) is associated
with a finishing probability p(j). The quality of τ , denoted by
q(τ), is:

q(τ) = −
m∑
j=1

p(j) log2

(
p(j)
)

(1)

Next, we introduce the finishing probability p(j) for subtask
τ (j), that serves as building blocks for the quality metric.

Subtask Finishing Probability. The finishing probability
of a TCSC task equals 1, if all its subtasks are done, in
correspondence to an ideal case that all subtasks are executed.
In practice, for a task consisting of m equally sized time slots,
the finishing probability p(j) for each subtask τ (j) is at most
1
m . Without losing generality, we can thus use an error ratio
ρerr to measure the amount of information loss caused by
interpolation errors.

p(j) =
1

m
(1− ρerr(τ (j))) (2)

Accordingly, the probability p(j) equals 0 for the “null” case,
representing the zero knowledge about the subtask, and equals
1
m for the executed case, representing the total information
gain of finishing the subtask. Next, we show the calculation
of error ratio ρerr for an interpolated subtask.

Interpolation Error Ratio. A common way of inferring a
missing value from a discrete set of known values is known as
inverse distance interpolation [17] [18] [19], which averages

the values of its k nearest neighbors, i.e., k nearest subtasks
on the timeline of a TCSC task.

Intuitively, the error ratio is proportional to the distances
between the interpolated value and its neighboring values [17]
[18]. Between two subtasks τ (i) and τ (j), the temporal dis-
tance is denoted as |τ (i), τ (j)|i, referring to the absolute
difference of τ (i) and τ (j)’s timestamps. For example, in
Fig. 2, we have |τ (1), τ (2)| = 1 and |τ (2), τ (4)| = 2. Then, the
interpolation error of an unexecuted subtask can be evaluated
by the distances from a set of executed subtasks. Assume
function SkNN (.) returns the set of k executed subtasks with
the smallest distances. An unexecuted subtask τ (j) can thus
be interpolated by SkNN (τ (j)), with the interpolation error
measured by the error ratio function ρerr as follows.

ρerr(τ
(j)) =

∑
e∈SkNN (τ(j)) |τ (j), e|i

k ·m
(3)

The value range of the error ratio ρerr is from 0 to 1. The
error ratio equals 100%, if none of the subtasks of a task is
executed. Accordingly, a lower error ratio value is achieved, if
the target subtask has more proximate executed subtasks (i.e.,
smaller interpolation distances). For example, in Fig. 2, τ (1)’s
2-NN results are τ (2) and τ (4), whose distances from τ (1)

are 1 and 3, respectively. So, ρerr(τ (1)) can be calculated as
1+3

2∗100 = 0.02. Since τ (2) is an executed subtask, its error ratio
equals zero 2. Similarly, we can derive the error ratios and the
subtask finishing probabilities for all the subtasks. Based on
that, we can calculate the task quality, by Equation 1.

In summary, the concept of entropy is adopted to quantify
the quality of crowdsourced results. The value of q(τ) ranges
from 0, i.e., the lowest information degrees (none of the
subtasks are executed), to log2m, i.e., the highest information
degree (all subtasks are executed).

Extension for Worker Reliability. Our quality metric, i.e.,
Equation 1, is general in addressing the reliability issues [3],
where workers are not assumed to be entirely trustable. In-
stead, each worker wi is assumed to have a reliability score,
represented by λi ∈ [0, 1]. Incorporating the reliability, the
subtask finishing probability can be defined by both worker
confidence and potential interpolation error. In particular, given
subtask e, the finishing probability of an assigned task is λe

m ,
where λe is the reliability of the worker assigned to subtask
e.

Due to the incorporation of worker reliability, for an in-
terpolated subtask τ (j), the maximum finishing probability
is no longer 1

m , but the product of 1
m and the average of

{λe}e∈SkNN (τ(j)). The extended form of subtask probability
is as Equation 4.

p(j) =
1

m
· [
∑
e∈SkNN (τ(j)) λe

k
− ρerr(τ (j))] (4)

Accordingly, the error ratio is determined by the summation of
interpolation distances weighted by the worker reliability λe

2It is possible that a subtask τ (j) has less than k nearest neighbors, e.g.,
at the starting stage of subtask assignment. If |SkNN | < k, we let |τ (j), e|i
be m, indicating the largest possible interpolation distance.



and then divided by k ·m, similar to Equation 5. The extended
form of error ratio is as Equation 5.

ρerr(τ
(j)) =

∑
e∈SkNN (τ(j)) λe · |τ (j), e|i

k ·m
(5)

Notice that probability p(j) equals 0, if SkNN (τ (j)) is an
empty set, meaning that null of subtasks are currently done.
The probability p(j) is

λ
τ(j)

m , if τ (j) is an executed subtask.
If τ (j) is interpolated, and the reliability of each worker for
executing SkNN (τ (j)) equals 1, Equation 5 degenerates into
Equation 3.

Summary. We have shown the effectiveness of the metric in
capturing the quality of various scenarios. In the sequel, we
show two important properties of the metric, submodularity
and non-decreasingness, enabling efficient task assignment
algorithms with approximation guarantees.

C. Properties

We derive the properties of the task quality metric. We first
recall the definition of submodular functions.

Definition 2 (Submodular Function [20].) Let S be a finite
set, and 2S be the power set of S. A submodular function is
a set function f : 2S → R, if for any X,Y ⊂ S satisfying
f(X ∩ Y ) + f(X ∪ Y ) ≤ f(X) + f(Y ).

Lemma 1 (Composite Submodular Functions [21].) As-
sume a set V and a function h : 2V → R that returns a
real value for any subset S ⊆ V . If h is a non-decreasing
submodular function and φ is a non-decreasing concave
function φ : R→ R, then function φ(h(S)) is non-decreasing
and submodular.

Lemma 2 Function q(τ) is non-decreasing and submodular.

Proof The quality metric function q(.) is a composite function
of the entropy function and the finishing probability function,
i.e., p(.). It can be proved that function p(.) is submodular and
non-decreasing, as proved by Lemmas 7 and 8, in Appendix
8.1. More, the entropy function is known as non-decreasing
and concave. According to Lemma 1, the quality metric
function q(.) is non-decreasing and submodular w.r.t. τ .

The submodularity property captures the effect of marginal
benefits decreasing in the measuring the TCSC quality. As
the number of workers on finishing a task is increasing,
the marginal value of adding a new worker is decreasing.
Also, the submodular property of the quality metric enables
efficient optimization, e.g., submodular function maximiza-
tion, where constant factor approximation algorithms are often
available [22]. In the sequel, we discuss how the property
is utilized and generalized for optimization problems in the
TCSC task assignment applications.

III. SINGLE TASK ASSIGNMENT

We proceed to study the single TCSC task assignment
problem. In particular, we consider maximizing the quality
of a single task with budget limits. We prove that the problem

is NP-hard. For efficient task assignment, we devise heuristic
algorithms that approximate the optimization targets in poly-
nomial time with quality guarantees. Nevertheless, we show
that the polynomial solution incurs overheads unaffordable for
the real-time task assignment scenarios. Therefore, we propose
novel indexing and pruning techniques to further enhance the
task assignment efficiency.

We formalize and analyze the problem in Section III-A. We
devise the approximation algorithm in Section III-B. We study
efficient indexing and pruning techniques in Section III-C.

A. Problem Definition and Analysis

Problem 1 Single-task Quality Maximization with Fixed
Budgets (sQM in short). Given a TCSC task τ and a fixed
budget b, the sQM problem is to find an assignment for τ , such
that the quality q(τ) is maximized, and the cost c(τ) does not
violate the given budget b.

Maximize q(τ)

subject to

m∑
j=1

c(τ (j)) ≤ b

To solve the sQM problem is equivalent to evaluate a task
assignment matrix yielding the maximum quality. To give a
sense of the size of the solution space, we assume a given set of
n workers and a task consisting of m subtasks/timeslots. Thus,
there could be an exponential number of possible worker-and-
subtask assignment pairs O(mn). Then, we prove that the
sQM problem is NP-hard, by Lemma 3.

Lemma 3 The sQM problem is NP-hard.

Proof It is well known that maximizing a submodular func-
tion under a cardinality constraint (i.e., selecting at most k
elements) is NP-hard [23]. If we consider the workers have
unit cost, the budget constraint in our problem becomes the
cardinality constraint. It has been proved in Lemma 2 that
the quality function q(τ) (i.e., the objective function to be
maximized) is submodular, and thus a special case of our
sQM problem is also NP-hard.

B. Approximation Algorithms

Hereby, we provide a suboptimal solution with guaranteed
approximation ratios, based on the submodular property of the
quality metric, as discussed in Section II-C. Since the problem
is of budgeted maximization for a submodular function, we can
have a heuristic algorithm, which repeatedly selects an element
(e.g. a subtask) that maximizes the quality increment until the
budget is exceeded. The process is detailed in Algorithm 1.

Hence, the heuristic value is defined as the quality increment
divided by the corresponding cost. Let the currently assigned
set of subtasks be Tcur. At each iteration, the algorithm
greedily selects a subtask τ (∗) from the set τ − Tcur, such
that the heuristic value is maximized. Formally, the greedy
rule is to find a subtask τ (∗) as follows.

τ (∗) = argmax
τ(j)

∆q(τ)

c(τ (j))
= argmax

τ(j)

q(Tcur ∪ τ (j))− q(Tcur)
c(τ (j))



Fig. 3. An Example. (k = 2, ts = 4, m = 100): (a) Current state Tcur ; (b) 2-Nearest Neighbors; (c) 1-dimensional Order-2 Voronoi Diagram; (d)
Tree-structured Index; (e) Auxiliary Information.

Algorithm 1: Single task assignment algorithm
Data: b > 0, a set of workers W , a task τ

1 Initialize the states of subtasks {τ (j) ∈ τ} as NULL
and initialize T ′cur and Tcur as two empty sets;

2 For each subtask τ (j) get the corresponding cost
c(τ (j));

3 Execute the subtask τ (h) yielding the highest quality
but not exceeding the budget, T ′cur ← {τ (h)};

4 while C(τ) ≤ b do
5 for τ (j) ∈ τ − Tcur do
6 Compute q(Tcur∪τ(j))−q(Tcur)

c(τ(j))
;

7 τ (∗) ← argmax
{

∆q(τ)
c(τ(∗))

: τ (∗) ∈ τ
}

;

8 Update τ (∗)’s state to Executed;
9 Tcur ← Tcur ∪ τ (∗);

10 return T ′cur or Tcur with the highest quality as the
final result;

We use an example to illustrate the process. As-
sume that there are 4 executed subtasks, i.e., Tcur =
{τ (2), τ (4), τ (7), τ (9)}, of a TCSC task, represented by shaded
slots, as shown in Fig. 3 (a). Algorithm 1 enumerates all
remaining slots/subtasks. At each iteration, a slot is selected
for tentative execution in order to find the one with the highest
heuristic value. If τ (1) is chosen and tentatively executed,
ρ(τ (1)) is reduced to 0 and the heuristic value increment is
0.0016. However, if τ (5) is tentatively executed, τ (6)’s 2-NN
result is changed from {τ (4), τ (7)} to {τ (5), τ (7)}. Therefore,
both ρ(τ (5)) and ρ(τ (6)) should be recalculated for getting the
quality and the heuristic values. The process is repeated for all
the unexecuted slots. Finally, τ (1) is selected, since it derives
the maximum heuristic value in this example.

By setting the greedy strategy as such, Algorithm 1 guar-
antees a (1−1/

√
e) approximation to the optimal solution, as

shown in [22].
Complexity Analysis. First, the number of iterations, i.e.,

the outer loop of Algorithm 1 (line 4), is at the level of

O(m). Second, the inner loop (line 5) is at the level of O(m),
since one needs to try all m subtasks and get their heuristic
values in order to find the one maximizing the overall quality.
Third, for each trial of a subtask, one needs to calculate the
corresponding heuristic value, i.e., the overall quality increase
of implementing the subtask, according to the quality metric
function. The overall quality increase is the summation of
individual quality increments of all other m − 1 subtasks, so
the complexity is O(m) (line 6). Fourth, for quality increment
of a individual subtask, k timeslots in the neighborhood should
be visited. In our implementation, we maintain a sorted list for
subtasks that are sorted in the ascending order of the corre-
sponding time slots. During the query evaluation, O(log(m))
cost is used for finding the nearest assigned subtask, and then
O(k) cost is used for refining the exact k-NN. Therefore, the
total time complexity is O(m3log(m)).

In summary, the approximation algorithm gives a polyno-
mial alternative for tackling the NP-hard optimization prob-
lem. However, the computational overhead makes it imprac-
tical in real-time task assignment scenarios. In the sequel,
we propose a series of techniques for better efficiency and
scalability.

C. Efficient Heuristic Value Calculation

The idea of accelerating the algorithm is in two parts. First,
for finding the maximum heuristic value, how to avoid unnec-
essary enumeration of all m subtasks. Second, the calculation
of a heuristic value refers to the summation of partial qualities
of all subtasks. For the heuristic value calculation, how to
maximally reuse the computation so as to avoid unnecessary
checking of all time slots.

Locality of k-NN Searching. We try to scale down the
problem by considering the locality of k-NN searching. We
observed from Fig. 3 (b) that if two slots are proximate, their
k-NN results tend to be similar. For example, τ (1) and τ (2)

share the same k-NN results, i.e., {τ (2), τ (4)}. Theoretically,
the solution space of k-NN searching over the m subtasks is a
one-dimensional order-k Voronoi diagram. The domain space
is a one-dimensional interval, i.e., from 1 to m. The diagram
splits m slots into disjoint intervals, called Voronoi cells, such



that the k-NN searching provides the same result if queries
are within the same Voronoi cell. In Fig. 3 (c), for example,
the Voronoi cell V (τ (2), τ (4)) covers slots from τ (1) to τ (4),
meaning that all slots from τ (1) to τ (4) take {τ (2), τ (4)} as
their 2-NN results.

Such a structure facilitates the algorithm evaluation in two
aspects. First, the time cost for k-NN searching can be reduced
from O(log(m)) to constant time O(1), as the diagram pre-
computes the solution space for the k-NN queries. Second,
the diagram accelerates the calculation of heuristic values.
For the tentative execution of a subtask, the heuristic value
is calculated by enumerating all other slots which takes O(m)
(Algorithm 1, line 6).

Recall that the finishing probability of an unexecuted sub-
task depends on its k-NN interpolation. So, the value of fin-
ishing probability of an unexecuted subtask does not change,
if the order-k Voronoi cell to which it belongs does change,
with the tentative execution. This way, the problem of quality
increment calculation is transformed to the reformulation of
Voronoi cells w.r.t. the tentative subtask execution, which can
be handled locally, since the diagram handles such updates
locally [24]. We cover more details below.

The technical challenge arising is that there could be a
large number of order-k Voronoi cells, making the gains of
local computation not worthy of the overhead of the Voronoi
diagram construction. In particular, the average number of
order-k cells is O(k(m− k)) [24].

Approximated One-dimensional Voronoi Diagram. To
handle that, we propose an approximate version of one-
dimensional order-k Voronoi diagram. The idea is to use an
aggregated binary tree for Voronoi cell indexing and Voronoi
diagram approximation (Fig. 3 (d)). In the tree, each node
represents a time segment [l, r], where l and r are for the two
slots on the segment’s left and right ends, respectively. The
root node is the interval of the entire m slots. For each node,
we store the auxiliary information in the form of a quadruples,
i.e., 〈k-set, knn(l), knn(r), q′〉, as shown in Fig. 3 (e).

The k-set of a node is the union of k-NN results for all its
offsprings. knn(l) and knn(r) are k-NN results of the two
end slots. The k-NN results are sorted in ascending order of
the distance to l (or r), so that the distance from l (or r) to its
k-th nearest neighbor can be fast retrieved, denoted by kmax(l)
(or kmax(r)). So, we can derive the influence range of a node
as [max(1, l− kmax(l)),min(m, r+ kmax(r))], such that the
quadruple of the node can be affected if a tentatively executed
slot is within the influence range. q′ is the partial quality
value of the node. For subtask τ (j), its partial quality equals
p(j)log(p(j)). The quality of a node is the summation of partial
qualities of all subtasks in its offspring. This way, the quality
value can be fast retrieved by querying the upper level nodes
of the tree structure. Upon updating, only necessary subtrees
are retrieved and revised, following the style of updating an
aggregated tree-structure.

Maximum Heuristic Value Calculation. With the tree
structure, it takes much less computational overhead than
enumerating all m slots. The process is implemented by

traversing the tree in a best-first manner with an associated
heap. The elements of the heap are tree nodes which are
sorted in descending order of the upper bounds. The higher
an element ranks in the heap, the more likely it corresponds
to the maximum heuristic value increment.

Next, we study how to upper bound the effect of a tentative
insertion. A tentative insertion affects the k-NN interpolation
results so the quality value varies. The effect can be catego-
rized into inter-node and intra-node cases3.

For the intra-node case, if an unexecuted slot is tentatively
executed, of the same node, another unexecuted slot’s k-th NN
distance is reduced to 1 at most. It corresponds to the extreme
case that the slot is next to the tentative executed slot, whereas
the distance between them is 1. So, the interpolation error ratio
can be lower bounded as follows.

ρerr(τ
(j)) ≥ 1

k ·m
[

∑
e∈S(k−1)NN (τ(j))

|e, τ (j)|i + 1] (6)

Therefore, the upper bound of a node’s quality can be
derived by the lower bound of ρerr (Equation 6), since the
value of q(.) is inversely proportional to that of ρerr(.). So,
the upper bound of a node’s heuristic value is calculated by
the maximum quality change divided by the minimum cost of
all unexecuted subtasks in the node.

For the inter-node case, a tentatively executed slot of a
node would also change the k-NN interpolation result of other
nodes. For example, in Fig. 3 (d), we have two leaf nodes, n1

and n2. If τ (3) ∈ n1 is tentatively executed, τ (5) ∈ n2’s second
nearest neighbor changes from τ (7) to τ (3). The corresponding
quality value change should also be incorporated and updated.

At each iteration, the top element of the heap is popped
up and the child nodes are inserted. If the top element is a
time slot/subtask, the exact heuristic value increase can be
obtained. Suppose the value is θ. Then, all other elements in
the heap whose upper bounds are below θ can be pruned. The
process repeats until the heap is empty. The slot that gives the
maximum heuristic value is then obtained.

The advantages of using the tree structure are two-fold.
First, using best-first searching for obtaining the slot with
the potentially maximum heuristic value is expected to take
O(log(m)) time. Second, the locality of k-NN searching is
reflected by the decomposition of tree leaf nodes. Suppose
that calculating the updated heuristic value of a leaf node
takes constant time. Then, instead of enumerating O(m)
slots for calculating the updated heuristic value, one takes
O(log(m)) time to retrieve and update the relevant leaf nodes,
reducing the corresponding computation overhead from O(m)
to O(log(m)). The overall cost is O(mlog3(m)).

Tree Construction. We consider the tree construction in
an incremental manner. Suppose that a time slot e is to be
tentatively executed, meaning that e is with the maximum
current heuristic value. The process of tree construction is

3We consider the leaf node for ease of presentation. The calculation of
upper bounds for non-leaf nodes can be done in a bottom-up manner, as the
construction process of an aggregated tree-structure.



triggered accordingly, and is revoked recursively. At each
iteration, we test if a subtree will be affected. If yes, we
update the associated quadruples and forward the updates to
the descendants. Otherwise, the entire subtree is skipped.

We summarize two cases to determine whether the current
node will be affected and therefore updated by the tentative
execution. Based on that, we can disqualify irrelevant nodes
at a higher level to save the overhead of the tree construction.
• Case 1. A node will be affected, if the tentatively exe-

cuted slot is within the influence range of the node.
• Case 2. A node will not be affected, if its parent node is

not affected, by e.
By doing so, we can find appropriate nodes for updating.

The updates can thus be propagated to the leaf level so that
the node splitting should be handled.

Splitting and Stopping Conditions. During splitting, a
node is decomposed into two sub-nodes, with its time segment
split into two equal sized sub-segments. The quadruple of
the node can thus be partially inherited by its sub-nodes. For
example, the left sub-node inherits the knn(l) of its parent,
because they share the same left end slot. In particular, we
consider two stopping conditions.
• Condition 1. For a node with segment [l, r], splitting

stops, if knn(l) = knn(r).
• Condition 2. If the length of a node’s segment is smaller

than a pre-specified threshold, ts, splitting stops.
Condition 1 guarantees that current segment belongs to the
same order-k Voronoi cell, so that there is no need for further
splitting. Condition 2 limits the depth of the tree structure to
dlogts(m)e. It serves as a knob for tuning the approximation
accuracies so as to control the construction overhead of the
tree structure. The correctness of Conditions 1 is guaranteed
by Lemma 8 (in Appendix VIII-B).

IV. MULTIPLE TASK ASSIGNMENT

The multi-task assignment problem is essential to the prac-
tical deployment of crowdsourcing platforms, where multiple
tasks are submitted, scheduled, and executed, simultaneously.
However, the computational overhead of multi-task assignment
is high, even its simplified version, i.e., single-task assignment,
is NP-hard. Even with the approximation solution, the algo-
rithm has to iteratively retrieve a subtask from all given |T |
tasks that maximizes the heuristic value, making the algorithm
scale quadratically with |T |, which is not scalable for handling
a large number of tasks. A practical way of handling multi-
task case is to fully exploit the hardware capabilities of the
TCSC server, with parallel computing techniques.

In this section, we study the multi-task assignment sce-
nario, by considering two variants regarding the settings of
optimization targets. The first variant evaluates the overall
quality by the summation of qualities of individual tasks, that
belong to the given task set. The second variant improves the
overall quality by reinforcing the “weakest” single task, i.e.,
maximizing the minimum single task quality. Both variants
are on improving the overall quality of the given set of tasks

with budget constraints4. In particular, we use qsum and qmin
to represent the optimization target functions, respectively.

A. Maximizing Summation Quality

The first optimization target is on maximizing the summa-
tion quality of all tasks. The problem is formalized with the
following.

Definition 3 Summation Quality. Given a set of tasks T =
{τ1, τ2, ...}, we define the summation quality as:

qsum(T ) =

|T |∑
i=1

q(τi
∣∣τi ∈ T ) (7)

Problem 2 Multiple-task Summation Quality Maximiza-
tion with Fixed Budgets (MSQM in short). Given a set
of tasks T = {τ1, τ2, ...}, the MSQM problem is to find an
assignment for the tasks in T , such that the summation quality
is maximized, and the overall cost

∑
c(τi) does not exceed the

given budget b.
Maximize qsum(T )

subject to

|T |∑
i=1

c(τi) ≤ b
(8)

We can prove that the MSQM problem is NP-hard, by reducing
it from the sQM problem, whose NP-hardness is proved by
Lemma 3.

Lemma 4 qsum(.) is submodular and non-decreasing.

Proof We have proved that q(.) is non-decreasing and sub-
modular, by Lemma 2. The summation function is known as
both convex and concave. The qsum(.) function is a composite
function of a summation function and q(.) function. So, the
lemma is proved, according to Lemma 1.

Based on the properties of submodularity and non-
decreasingness, the framework of single task assignment,
i.e., Algorithm 1, can be applied for handling the multi-task
assignment case. The heuristic value is set as the increase of
the summation quality divided by the corresponding cost (of a
tentatively selected subtask), following the same greedy strat-
egy. Then, the algorithm is to iteratively retrieve a subtask from
all given |T | tasks that maximizes the heuristic value, so that
the solution space is |T | times the size of the single task case,
making the algorithm scale quadratically with |T |. The time
complexity is O(|T |2mlog3(m)). To improve the scalability,
we aim to derive a parallelization framework for distributing
the calculation workload onto multiple computation cores.
Ideally, each task can be running independently on different
cores, so that the time cost would be |T |

# of cores times that of
running a single task, assuming the value of |T | is larger than
the number of cores. But, there occurs correlations between
tasks, if two subtasks running on different cores “compete” for
one worker at some time slot. It happens because it is possible
that two subtasks choose the same worker with lowest costs

4A dual version of our problem can be minimizing the task costs with
quality constraints. It can be handled with the primal-dual method [25], which
reduces the problem to the one studied in this work.



Fig. 4. Worker Conflicting and Group-level Parallelization: an example of considering travel distances between workers and subtasks as costs.

for minimizing the budget decrement. We call this worker
conflicting, as exemplified in Fig. 4 (a), where there are three
tasks (τ1 to τ3) and two workers (w1 and w2). There exist
conflicts between τ2 and τ3, since they both take w1 as the
worker with the lowest cost.

1) Group-level Parallelization.: We can have a graph of
independent groups, if taking each task as a node and drawing
an edge between any two conflicted tasks. If a group of
nodes do not have any connections with other groups, it is an
independent group. The optimization process of such a group
is independent of others and therefore independent groups can
be run in parallel. For example, in Fig. 4 (a), tasks can be
divided into two independent groups, {τ1} and {τ2, τ3}, if any
pair of tasks do not compete for workers with lowest costs.

Is it sufficient for considering the conflicts on the lowest
costs for deriving the independent groups? The answer is NO.
For example, in Fig. 4 (b), τ2 and τ3 have conflicts on w1,
so τ3 opts for w2, who ranks as the worker with the second
lowest cost. Unfortunately, τ3 further have conflicts with τ1,
which has w2 as the worker with the lowest cost. In general,
if two subtasks belonging to different tasks are to be executed,
one of them has to choose a worker with the second lowest
cost, or even the latter.

One may get the independence graph by gradually ex-
panding the searching regions. For example, assume costs
are calculated by the travelling distances from workers to
tasks [16] [4]. Then, a subtask takes the nearest worker as
the worker with the lowest cost. For a given task, we call
the circle centered at the task’s position with the distance
between the task and its nearest neighbor as its 1-NN bound.
The independence graph can be obtained by the following
steps. Initially, we draw 1-NN bounds for each task, as shown
in Fig. 4 (c). An edge between τ2 and τ3 is added, since
the two tasks share the same worker that causes conflicts.
Next, we draw 2-NN bounds for both τ2 and τ3, so that there
exist enough workers for being assigned to the two conflicting
tasks, as shown in Fig. 4 (d). However, it shows that another
worker is within τ1’s 1-NN bound and τ3’s 2-NN bound, so
the two tasks have conflicts and the edge between them is
added. After that, we draw 2-NN bound for τ1 and 3-NN
bound for τ3, as shown in Fig. 4 (e). In general, if a node
of the independence graph is with degree d, the (d+1)-NN
bound should be drawn. The process repeats until no conflicts
are detected. A drawback of the gradual expanding method is
on incurring large groups and heavyweight computation tasks,
deteriorating the parallelization performance.

2) Task-level Parallelization.: Hereby, we devise the task-
level parallelization framework, as depicted in Fig. 5. We set a
thread pool, with a master thread and a set of worker threads
waiting for tasks to be concurrently executed. The master
thread is for maintaining the thread pooling on heartbeat
monitoring, conflicting controlling, scheduling, and logging.
To support the functionalities of the master thread, there are
several associated data structures, Heartbeat Table, Conflicting
Table, and Logging Table.

Fig. 5. Task-level Parallelization: 1© Periodically Sending Heartbeats to
Master Thread; 2© Reporting to Master Thread that Conflicts Detected; 3©
Looking Up Conflicting Table and Heartbeat Table, then Ask Worker Thread
to Continue or Suspend; 4© Adjusting Priorities of Worker Threads.

Heartbeat Table stores periodically reported heuristic val-
ues from currently executed tasks. Logging Table traces the
historical records of Heartbeat table. Conflicting Table stores
a series of records for breaking the ties of conflicts. Assume
three tasks, τ1, τ2, and τ3, are conflicted at time slot t. The
information, including the conflicting task sets and correspond-
ing conflicting time slot, is stored at the Conflicting Table of
the master thread. In this example, a tuple 〈{τ1, τ2, τ3}, t, 1〉
is recorded in the conflicting table. Here, 1 means the three
tasks are to compete for the worker of 1-NN. Then, during
the task processing, if τ1 is to execute conflicting slot t, its
associated thread sends a message to inform the master thread.
Upon receiving the message, the master thread looks up the
Conflicting table and the Heartbeat table to retrieve the current
heuristic values of τ1, τ2, and τ3. If τ1’s current heuristic value
is higher than τ2 and τ3, it continues with the execution of
slot t. Meanwhile, the master thread checks the availability of
workers and updates the record on the conflicting table, by
changing the field “k-th NN” from 1 to 2, so that τ2 and τ3
would compete for the worker with the 2nd lowest cost next
time, because the first one has been taken by τ1. Otherwise τ1
is suspended and the process continues.

Discussion. The task-level parallel approach is determin-
istic, meaning that the parallelized task assignment plan is



consistent with the non-parallel plan. The master thread peri-
odically stores and descendingly sorts the heuristic values that
are collected in Heartbeat Table, so that the derived plan is the
same as the serialized task execution (Algorithm 1). This way,
the parallel algorithm follows the approximation framework
with guaranteed ratio. On the other hand, in the parallel
environment, it is hard to strictly control the stopping con-
dition, i.e., the timeline when the given budget is exhausted.
It is unavoidable that threads with lower heuristic values are
executed earlier than those with higher values. But this can
mostly be alleviated with our priority settings. We set priorities
in accordance with the heuristic values of worker threads
dynamically, so that the tasks with higher heuristic values
are more likely to be processed. This is also consistent with
the greedy strategy of Algorithm 1. The priorities of worker
threads are initialized as infinity to avoid thread starvation.

B. Maximizing Minimum Quality

The second optimization target is on maximizing the min-
imum quality of all tasks, so that the overall quality is
optimized. The problem is formalized.

Definition 4 (Minimum Quality) Given a set of tasks T =
{τ1, τ2, . . . }, we define the minimum quality as:

qmin(T ) = min
{
q(τi)

∣∣τi ∈ T } (9)

Problem 3 Multi-task Minimum Quality Maximization
with Fixed Budgets (MMQM). Given a set of tasks T =
{τ1, τ2, . . . }, the MMQM problem is to find a task assignment
for each task τi ∈ T , such that the minimum quality is
maximized, and the overall cost

∑
c(τi) does not exceed the

given budget b.
Maximize qmin(T )

Subject to

|T |∑
i=1

c(τi) ≤ b

We can prove the NP-hardness of the MMQM problem by
reducing it to the sQM problem. The submodularity and non-
decreasingness of qmin(.) function can be proved by Lemma 5.
Hence, the (1−1/

√
e) approximation ratio of qmin is achieved

by iteratively executing the selected subtask from the task
yielding the minimum quality. The subtask execution follows
the framework of Algorithm 1. To fast retrieve the task with
minimum quality, we maintain a heap for T tasks. Notice that
there is no worker conflict issues for the MMQM problem,
since the subtasks are executed in a sequence. So, the total
time complexity is O(mlog3(m)log(|T |)).

Lemma 5 qmin(T ) is submodular and non-decreasing.

Proof We have proved that q(.) is non-decreasing and sub-
modular, by Lemma 2. The minimization function is known
as a concave function. The qmin(.) function is a composite
function of a minimization function and q(.) function. So, the
lemma is proved, according to Lemma 1.

V. EXPERIMENTS
We cover the experimental setup in Section V-A, and report

the performance of our proposals in Sections V-B and V-C.

A. Experiment Setup

Dataset.5 We use a real dataset6 of 10, 357 worker trajec-
tories for representing workers’ movements. For each worker
trajectory, we randomly cut out a set of pieces, ranging from
1 to 5 time slots, as a worker’s active slots. We use a public
data generator7 to generate a series of datasets to simulate the
locations of TCSC tasks, following uniform, Gaussian, and
Zipfian distributions. For parameters of Gaussian distribution,
the mean is set as the domain center and the sigma is set as
the 1/6 of the domain sidelength, so that most of generated
data are within the domain space. For Zipfian distribution,
the exponent is set to 1, which is a common setting, and
the only option of the generator. We also use a Beijing
POI dataset for representing tasks’ locations8. We set the cost
for an assignment to be the distance that a worker moves to
the assigned task, following the common setting of spatial
crowdsourcing [16] [4]. We vary the number of TCSC tasks
to test the scalability of our proposals by setting the number of
tasks as 100, 300, and 500, respectively. For each TCSC task,
we set the task length (i.e., the number of subtasks) to 300,
500, and 1000, respectively. The budget is set to $50, $100,
$200, corresponding to about 12.5%, 25%, and 50% of the
average cost of a TCSC task in the default setting. By default,
k is set to 3 for the k-NN interpolation, ts is set to 4. and the
number of cores is set to 10 for multi-task parallelization.

Implementation. All algorithms are implemented in Java
and run a PC with Intel(R) Xeon(R) CPU E5-2698v4 @
2.20GHz and 256GB main memory. By default, we use 12
cores for running experiments on multi-task assignment. Each
reported value is the average of 20 runs.

B. Results on Quality

We test the effectiveness of our quality-aware task assign-
ment method in Figure 6. We compare the quality of our
method, Approx, with two competitors, OPT and Rand. OPT
offers the optimal result by traversing the solution space. Rand
accomplishes a task by randomly assigning a subtask to its
nearest worker. The results with different data distributions is
shown in Fig. 6 (a). In all testing, Approx achieves a high
quality result which is: 1) close to the optimal result; 2)
better than randomized heuristic algorithms. The randomized
heuristic algorithm does not offer a deterministic solution,
and therefore incurs fluctuations in terms of quality. The gap
between Approx and Rand is bigger, if the budget is smaller, as
shown in Fig. 6 (b), which is the essential scenario considered
in TCSC problem.

We further test the results for the multi-task case in Fig. 7
(a-d). In Fig. 7 (a) and (c), it can be observed that the quality of
Approx is much better than its competitors, for both qsum and

5Default parameters are bolded.
6https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-

data-sample/
7http://chorochronos.datastories.org/sites/default/files/algorithms

/SpatialDataGenerator.zip
8https://ieee-dataport.org/documents/beijing-poi-datasets-geographical-

coordinates-and-ratings
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Fig. 6. Quality of Single-task Case

qmin cases. We also examine how the quality change w.r.t. the
budget in Fig. 9 (b) and (d). In all cases, Approx gives much
better quality than baselines. The gap between them can be
smaller, if the budget is sufficiently large, which is consistent
with the problem setting.

In summary, Approx offers a high quality task assignment
solution, with a deterministic output and theoretical guaran-
tees, which outperforms the baselines.

C. Results on Efficiency

We examine the efficiency and scalability of our proposal,
by comparing two variants Approx and Approx*. The Approx
solution is described by Algorithm 1, but without optimization
techniques in Section III-C. Approx* improves Approx by:
1) using tree-structured order-k Voronoi diagrams to avoid
redundant k-NN pre-computation; 2) using best-first searching
and upper bound pruning for identifying the one with largest
heuristic value. We test the efficiency in single-task assignment
in Fig. 8 and multi-task assignment in Fig. 9.

Single task assignment. First, we test the efficiency of
Approx and Approx*, by varying the number of subtasks
(m) in Fig. 8 (a). Approx* improves over Approx by two
orders of magnitude. As m increases, the improvement is more
significant. It shows that the optimization techniques, i.e., the
tree-structured order-k Voronoi diagram (Section III-C), bring
in good scalability to the approximation framework. Second,
we test the efficiency by varying the number of workers in
Fig. 8 (b). The time cost keeps stable and increases only
slightly w.r.t. |W |. The reasons are two-fold: 1) the increasing
trend is moderate due to the good scalability of best-first NN
searching algorithm; 2) the slight increase shows that, with
larger |W |, the completion ratios of tasks increase, and are
with higher costs. In all cases, Approx* outperforms Approx
by at least two orders of magnitude, showing good efficiency
and scalability in terms of m and |W |.

To understand how the efficiency is achieved, we make
detailed analysis in Fig. 8 (c-e). The improvements made
by Approx* are in two parts, as shown in Fig. 8 (c). First,
Approx* utilizes the implementation of the approximation
of order-k Voronoi diagram, and thus maximally reuses the
computation of k-NN results. It can be observed that the cost
of the interpolation (i.e., finding k nearest subtasks) can be
reduced by 4 orders of magnitude. Second, the tree-based
pruning techniques can further reduce the cost of heuristic
value calculation by more than an order of magnitude. It shows
that the little extra cost for Approx* on the tree-structure is
well-spent, given the remarkable efficiency gained in the total
execution time.

To examine the pruning effects supported by the tree
structure, we report the pruning ratios, by varying m on
different task distributions in Fig. 8 (d). The ratio is calculated
by the dividing the number of slots executed with pruning
(Section III-C) by the one without pruning. It can be observed
that our methods prune away more than 70% subtask execution
and therefore effectively accelerate the entire task processing.
Similar trend is observed for the result on the real data. We
report the time cost spent on the tree-structure construction by
varying the value of fanout of the tree structure, ts, in Fig. 8
(e). In all testing, the construction time is no more than 25
ms. Also, the time decreases w.r.t. the increase of ts, since a
larger ts corresponds to a smaller number of tree nodes and
therefore less construction time.

We continue to examine the effects of other factors on the
efficiency. In Fig. 8 (f), we compare the two solutions by
varying the distributions of tasks’ locations. In all cases, the
performance of Approx* dominates that of Approx by more
than two orders of magnitude. More, the time cost of Approx*
remains relatively stable with tasks’ location distributions. We
also test the effect of parameter k for data interpolation, in
Fig. 8 (g). The time cost increases with k, since the cost
of k-NN interpolation is higher for a bigger k. We study
the effect of budgets in Fig. 8 (h). The time cost increases
moderately w.r.t. b, since the number of executed subtasks
also increases w.r.t. b. Zipfian distribution has the lowest
construction time. A task tends to incur higher cost under
skewed distributions, so that the number of executed subtasks
is reduced and the corresponding time cost is less. In summary,
Approx* dominates Approx in different parameter settings,
and has better adaptivity to the skewness of data distributions.

Multiple task assignment. We study the results on the
summation quality case in Fig. 9 (a-f) and the results on the
minimum quality case in Fig. 9 (g-h).

First, we compare the performance of the three competitors,
group-based parallelization, task-based parallelization, and the
basic solution without parallelization in Fig. 9 (a). It shows
that parallelization with smaller granularity achieves better
efficiency. The task-based parallelization outperforms the other
two. In particular, when the number of cores equals 10, the
task-based parallelization solution takes about two orders of
magnitude less running time than the basic solution and the
group-based parallelization solution, which is consistent with
the analysis in Section IV-A.

We then compare the two parallelization methods by varying
task location distributions in Fig. 9 (b). We can see that
the Gaussian and Zipf distributions have higher costs. It is
because that skewed datasets tend to incur larger numbers of
worker conflicts. The cost increases moderately because of the
good scalability achieved by the optimization techniques of
indexing and scheduling. Also, the number of worker conflicts
increases with the number of tasks, as reported in Fig. 9
(c). Compared with group-based parallelization, the task-based
parallelization saves orders of magnitude costs. We then report
the scalability of our proposal w.r.t. the number of tasks in
Fig. 9 (d). It can be observed that the task-based parallelization
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Fig. 9. Results of multi-task assignment

solution outperforms its competitors. When the number of
tasks equals 300, the task-based method takes about two orders
of magnitude less time. More, the task-based parallelization
method increases moderately w.r.t. the number of tasks. We
examine the performance of the algorithm by varying the
parameter m, in Fig. 9 (e). All methods increase moderately,
where Zipfian and Gaussian distributions take longer than
the uniform case. The result is consistent with our analysis,
because skewed task distributions have a larger chance for
incurring worker conflicts. We then make more analysis with
the task-based parallelization method. We test the effect of
thread priority setting in Fig. 9 (f). It reflects that threads
with lower heuristic values are scheduled to execute earlier
by the priority adjustment module, which effectively break
the ties of blocked threads and improves the performance of
parallelization. In particular, when 16 cores are used, about
half of the cost can be saved.

We show the results on the minimum quality metric in
Fig. 9 (g) and (h). First, we examine the time costs by
varying |T | in Fig. 9 (g). It can be observed that the time
cost increases w.r.t. the increases of the number of tasks.

The time costs for calculating the heuristic value is higher
if the number of tasks is larger. Second, we test the result by
varying m in Fig. 9 (h). It can be observed that the running
time increases as m increases. In both experiments, Approx*
steadily outperforms Approx, demonstrating better scalability
in terms of the number of tasks and subtasks.

VI. RELATED WORK

There are many studies in spatial crowdsourcing, requiring
workers traveling to locations of spatial tasks and performs
tasks, such as taking photos/videos, repairing a house, and
waiting in line at shopping malls. These works focused on
assigning available workers to tasks with distinct goals, such
as maximizing the number of assigned tasks [1] [5] [26], mini-
mizing the total travel costs of all workers [7] [8], maximizing
the quality score [3] [5] [27], maximizing quality task assign-
ment by considering both present and future workers/tasks [6],
or minimizing maximum task assignment delay [9]. Existing
works cannot be directly used to handle the quality issues of
the TCSC problem. According to our comprehensive survey
[16], TCSC is related to the categories of data collection,



and of task matching with quality constraints. We thus review
existing works in the two categories.

Regarding applications of data collection, there exist papers
on floorplan generation [28], traffic anomalies detection [29],
and geo-spatial linked open data postprocessing [30], etc. They
mostly collect data in a specified spatiotemporal context, and
do not address the issues in long-term data acquisition. Our
work can support extending these works for the continuous
data acquisition, e.g., monitoring routing behaviours, by in-
corporating the quality-aware crowdsourcing framework.

Regarding quality constraints, most existing papers are on
the quality of task responses, based on the workers’ expertise,
reputation, or reliability [32] [10] [3] [31]. They usually
involve a pre-task qualification test [32], or the assignment
based on the expertise [10], or abilities [3] [31] of the worker.
These papers are similar to the TCSC problem in the sense
that they require data aggregation from multiple workers, but
the aggregation methods are totally different. To our best
knowledge, the most relevant work is [3], which considers the
diversity (or distribution) of spatial and temporal tasks. Dif-
ferently, they do not consider the mutual interaction between
the interpolated and crowdsourced data. So, the optimization
target and corresponding techniques are totally different.

To summarize, a TCSC task has a temporally continuous
nature, and requires time-sharing collaboration of multiple
workers, necessitating quality-aware data management.

VII. CONCLUSION

In this paper, we study the problem of TCSC, which enables
time-sharing collaboration among multiple workers towards
long-term continuous spatial crowdsourcing applications. We
propose an entropy-based quality metric for measuring the
incompleteness of the crowdsourced results. Based on that, we
study quality-aware task assignment algorithms with budget
constraints for both single- and multi-task cases. For both vari-
ants, we prove its NP-hardness and submodularity of quality
functions, so that a unified approximation framework can be
applied. We devise novel indexing and parallel mechanisms
for accelerating the processing. Extensive experiments on real
and synthetic datasets show that our proposals achieve good
efficiency and scalability. In the future, we will extend the
approximation framework and optimization techniques from
supporting temporal interpolation to spatiotemporal interpola-
tion scenarios.
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VIII. APPENDIX

(To be included in an online technical report)

A. Submodularity and Non-decreasingness of p(j)

We show Lemmas 6 and 7, which are on the properties of
finishing probability functions. Assume a set S of executed
subtasks, and a to-be-executed subtask e, satisfying S∩{e} =
∅. We define pS(τ (j)) as the finishing probability of subtask
τ (j) given that the subtasks in S are executed.

Similarly, we define ρSerr(τ
(j)) and IS(τ (j)) as the er-

ror ratio and the interpolation distance (i.e., IS(τ (j)) =∑
e∈SKNN |τ

(j), e|i) of subtask τ (j), respectively, given that all
subtasks in S are executed. Without causing any ambiguities,
in the proofs, we simplify ρSerr(τ

(j)) and IS(τ (j)) as ρSerr and
IS , respectively.

Lemma 6 The function p(j) is submodular.

Proof To prove function p(j) is submodular, it is equivalently
to prove the following.

pS∩{e}(τ (j)) + pS∪{e}(τ (j)) ≤ pS(τ (j)) + p{e}(τ (j)) (10)

By substituting it with Equation 2, we can rewrite it as
ρ
S∩{e}
err + ρ

S∪{e}
err ≥ ρSerr + ρ

{e}
err .Equivalently, it is sufficient

to prove that

ρS∩{e}err + ρS∪{e}err − ρSerr − ρ{e}err ≥ 0 (11)

From Equation 3, we know that ρerr’s value is dependent on
the τ (j)’s k-NN set, SKNN , which must be a subset of S. Next,
we show the correctness of Equation 11, by enumerating all
three possible case of S.

Case 1. When S = ∅, we have ρS∩{e}err + ρ
S∪{e}
err − ρSerr −

ρ
{e}
err = 0, and thus Equation 11 holds.
Case 2. When 0 < |S| < k, we have ρ

S∩{e}
err = 1 and

ρ
{e}
err = 1− 1

k+ I{e}

km . Here, ρS∪{e}err has two subcases, depending
on |S|.

The subcase (a) refers to |S| = k−1. In that case, there are
k finished subtasks after executing e. Then, ρS∪{e}err = IS∪{e}

km ,
and ρSerr = IS

km + 1
k . We can have ρS∩{e}err + ρ

S∪{e}
err − ρSerr −

ρ
{e}
err = IS∪{e}

km − IS

km −
I{e}

km = 0. Equation 11 holds.
The subcase (b) means that the total number of finished

subtasks does not exceed k, after executing subtask e. Thus,
we have ρS∪{e}err = 1− |S|+1

k + IS∪{e}

km and ρSerr = 1− |S|k + IS

km .
Then, ρS∩{e}err +ρ

S∪{e}
err −ρSerr−ρ

{e}
err = IS∪{e}

km − IS

km−
I{e}

km = 0.
Equation 11 holds.

Case 3. When |S| ≥ k, ρS∩{e}err = 1, we have ρ{e}err = 1 −
1
k + I{e}

km , ρSerr = IS

km , and ρS∪{e}err = IS∪{e}

km . Based on whether
the execution of subtask e changes SKNN (τ (j)’s k-NN set),
there can be two subcases.

If SKNN is not affected by e, we have that ρS∪{e}err = ρSerr.
So, ρS∩{e}err +ρ

S∪{e}
err −ρSerr−ρ

{e}
err = ρ

S∩{e}
err −ρ{e}err = 1

k−
I{e}

km .
As the interpolation distance I{e} is less than m, we have
1
k −

I{e}

km > 0. So, Equation 11 holds.
If SKNN is affected by e, it implies that a subtask in

SKNN is updated by e. Suppose the replaced subtask in

original SKNN be e′, and the updated interpolation distance
be IS∪{e} = IS − I{e

′} + I{e}. We can have ρ
S∩{e}
err +

ρ
S∪{e}
err − ρSerr− ρ

{e}
err = IS∪{e}

km − IS

km + 1
k −

I{e}

km = 1
k −

I{e
′}

km .
As the interpolation distance I{e

′} is less than m, we have
1
k −

I{e
′}

km > 0. Equation 11 holds.
In summary, Equation 11 holds in all three cases. The

lemma is proved.

Lemma 7 The function p(j) is non-decreasing.

Proof We prove the finishing probability function p(j) is non-
decreasing by showing that the error rate function ρerr(τ (j))
is non-increasing. Or, equivalently,

ρS∪{e}err − ρSerr ≤ 0 (12)

There can be two possible cases for set S, 0 ≤ |S| < k and
|S| ≥ k. We hereby prove the correctness of Equation 12 by
considering the two cases.

Case 1. When 0 ≤ |S| < k, ρS∪{e}err have two subcases,
depending on the size of set S.

The first subcase is for |S| = k − 1, and thus the total
subtasks number is k after adding the executed subtask e.
Then, ρS∪{e}err = IS∪{e}

km , and ρSerr = IS

km + 1
k . So, we have

ρ
S∪{e}
err − ρSerr = IS∪{e}

km − IS

km −
1
k = I{e}

km −
1
k . As the

interpolation distance I{e} is less than m, Equation 12 holds.
The second subcase is for |S| < k − 1, meaning that the

total number of subtasks is less than k after the execution of
e. We can thus have ρS∪{e}err = 1− |S|+1

k + IS∪{e}

km , and ρSerr =

1− |S|k + IS

km . So, ρS∪{e}err −ρSerr = IS∪{e}

km − IS

km−
1
k = I{e}

km −
1
k .

Equation 12 holds.
Case 2. When S ≥ k, we can have ρSerr = IS

km and ρS∪{e}err =
IS∪{e}

km . Based on whether the execution of subtask e changes
SKNN , there can be two subcases.

If SKNN is not affected by e, we have ρS∪{e}err = ρSerr, so
that Equation 12 holds.

If SKNN is affected by e, it means that a subtask in
SKNN is updated by e. We denote the replaced subtask in
original SKNN as e′, and the updated interpolation dis-
tance as IS∪{e} = IS − I{e

′} + I{e}. Then, we can get
ρ
S∪{e}
err − ρSerr = IS∪{e}

km − IS

km = I{e}

km −
I{e
′}

km . More, the
fact that e′ is replaced by e implies that I{e} < I{e

′}. So,
Equation 12 holds.

In summary, Equation 12 holds in all possible cases. Hence,
the lemma is proved.

B. Proof of Lemma 8

Lemma 8 For a time segment [l, r], if knn(l) = knn(r), it is
true that ∀e ∈ [l, r], knn(e) = knn(l) = knn(r).

Proof We prove that by contradiction. Assume a time segment
[l, r], NN(l) = NN(r), and a slot e on the segment, e ∈
[l, r], NN(l) 6= NN(e). We use a and b denote NN(l) and
NN(e), a 6= b, |b, e|t < |a, e|t, and b is in the range of (e−
|a, e|t, e+ |a, e|t)(It doesn’t include two endpoints). According
to the position of a, it can be divided into three cases:



Fig. 10. Spatiotemporal Interpolation (Executed subtasks are shaded.)

The first case is for l ≤ a ≤ r. As a is the NN of l and
r, there is no other executed subtask within the time segment
[l−|l, a|t, r+ |r, a|t]. It has e−|a, e|t− (l−|l, a|t) = |l, e|t−
|a, e|t + |l, a|t ≥ 0 and r + |r, a|t − (e + |a, e|t) = |r, e|t −
|a, e|t + |r, a|t ≥ 0, then the range of b is within the range
[l − |l, a|t, r + |r, a|t]. The case can not exist.

The second case is for a < l, and the range of b is (e, e+
|a, e|t). As a is the NN of l and r, there is no other executed
subtask within the time segment (a, r+ |a, r|t), then the range
of b is within the range (a, r+ |a, r|t). The case can not exist.

The third case is for a > r, then the range of b is (e −
|a, e|t, a). As a is the 1 − nn of l and r, there is no other
executed subtask within the time segment (l − |a, l|t, a), then
the range of b is within the range (l−|a, l|t, a). The case can
not exist.

C. Extension to Spatiotemporal Interpolation

Spatiotemporal Interpolation. Suppose a set of tasks T =
{τ1, τ2, ...}. Each task τi consists of a set of m subtasks, τi =

{τ (j)
i }1≤j≤m. If a subtask τ (j)

i is not probed, it can either be
temporally interpolated by the executed subtasks belonging
to the same task τi, or be spatially interpolated by subtasks
satisfying that: 1) being executed at the same time slot j; 2)
belonging to other tasks than {τi}. For example, in Fig. 10,
subtask τ

(5)
i can either be temporally interpolated by τ

(3)
i or

spatially interpolated by τ (5)
j .

Extensions on Quality Metrics. The spatial interpolation
error is proportional to the spatial distances between the
interpolated values and their neighboring values. The error
ratio function ρserr(τ

(j)
i ) for spatial interpolation can thus be

written as follows.

ρserr(τ
(j)
i ) =

∑
e∈SskNN (τ

(j)
i )
|τ (j)
i , e|e

k · |D|
(13)

Here, e represent an executed subtask, and |τ (j)
i , e|e represents

the spatial distance between subtask τ
(j)
i and e. Function

SskNN (.) returns the k executed subtasks with the smallest
spatial distances. |D| in the denominator represents the spatial
domain size so that the value range of the spatial interpolation
error ratio ρserr is from 0 to 1, to be consistent with the form
of temporal interpolation error ratio function.

We can use a weighted summation function to combine the
interpolation errors of both spatial and temporal domains.

ρerr = ws · ρserr + wt · ρterr (14)

Here, ws and wt are weights of the two components, whose
sum equals 1. ρterr represents the temporal interpolation error
(Equation 3 in the manuscript). So, the subtask finishing
probability p(j)

i can be written as:

p
(j)
i =

1

m
(1− ρerr(τ (j)

i ))

=
1

m
(1− wt · ρterr(τ

t(j)
i ))︸ ︷︷ ︸

The temporal interpolation part

+
1

m
(1− ws · ρserr(τ

s(j)
i ))︸ ︷︷ ︸

The spatial interpolation part

− 1

m

Both temporal and spatial interpolation parts can be proved
to be submodular and non-decreasing, following the proofs of
Lemmas 6 and 7. So, the summation of the two parts pre-
serves the submodularity and non-decreasingness, according
to the properties of composite submodular functions (Lemma
1 in the manuscript). Similarly, quality function q(τi) =

−
∑m
j=1 p

(j)
i log2

(
p

(j)
i

)
can be proved to be submodular and

non-decreasing, since the entropy function is known as con-
cave and non-decreasing.

Extensions on Multiple Task Assignment. Since the spatial
interpolation process refers to the interactions between multi-
ple TCSC tasks, we hereby examine the two variants of multi-
task assignment scenarios, with aggregated quality metrics
qsum and qmin as the maximization targets, respectively.

Problem 4 Spatio-Temporal Continuous Crowdsourcing
(STCC in short) Given a set of tasks T = {τ1, τ2, ...}, the
problem is to find a task assignment for τi ∈ T , such that
the summation quality qsum(T ) =

∑|T |
i=1 q(τi

∣∣τi ∈ T ), or
the minimum quality qmin(T ) = min

{
q(τi)

∣∣τi ∈ T } can be
maximized with given budgets.

In the settings of spatiotemporal interpolation, we can prove
that the summation quality and minimum quality functions are
still submodular and non-decreasing with Lemma 1, because
1) SUM and MIN are concave functions; 2) the extended quality
function is proved to be submodular and non-decreasing.
Therefore, the approximation framework of Algorithm 1 can
be applied for handling the multi-task assignment scenario.
The heuristic value is set as the increase of the quality metrics
divided by the corresponding cost (of a tentatively selected
subtask), following the same greedy strategy and approxi-
mation ratio. To this end, the framework of approximation
algorithm can be preserved.

Experimental Results. We conduct experiments with the
updated quality metric in Fig. 11, following the default setting
of the manuscript. SApprox refers to the results with spa-
tiotemporal interpolation and Approx refers to the results with
only temporal interpolation. By default, we set ws and wt to
0.3 and 0.7, respectively, for SApprox. For Approx, the ws is
set to 1, since it does not do spatial interpolation.

Fig. 11 (a) reports the quality values w.r.t. data distributions.
It can be observed that both SApprox and Approx are very
close to the optimal result, OPT. SApprox is better than
Approx, because of the quality improvement made by spatial
interpolation. We also test how the quality varies w.r.t. the



 1

 2

 3

 4

 5

Uniform Gaussian Zipfian

Q
u
a
lit

y
task distribution

RandMin
RandMax

Approx
SApprox

Opt

(a) Quality vs. Distributions

 1.5

 2

 2.5

 3

 3.5

 3  5  7

Q
u
a
lit

y

b

Approx
SApprox

Opt
RandAvg

(b) Quality vs. Budgets

 2.2

 2.3

 2.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Q
u
a
lit

y

temporal ratio

Gaussian

(c) Quality w.r.t. Gaussian Distribution

Fig. 11. Results with Spatiotemporal Interpolation

budgets. In all testing, SApprox is better than Approx, and
both the two have significant improvement over the baselines.
To examine the effect of parameter tuning on ws and wt, we
plot Fig. 11 (c), where X-axis is for the value of wt. It shows
that when wt equals 0.7 the highest quality value is achieved.
Therefore, in our experiments, wt is set to 0.7, by default.

Extensions on Indexing. To support efficient evaluation of
STCC, current indexing techniques need to be redesigned.

For TCSC, the index structure is based on a one-dimensional
Voronoi diagram. For STCC, the index structure is based on
a multi-dimensional weighted order-k Voronoi diagram. We
should study how to approximate such a diagram with indexing
structures, including node splitting and stopping conditions,
index-based maximum heuristic value calculation, etc.
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