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Abstract—With the rapid advances and the penetration of the
Internet of Things and sensors, a massive amount of trajectory
data, given by discrete locations at certain timestamps, have been
extracted or collected. Knowing the similarity between trajec-
tories is fundamental to understanding their spatial-temporal
correlation, with direct and far-reaching applications in contact
tracing, companion detection, personalized marketing, etc. In this
work, we consider the general and realistic sensing scenario
that the locations of the trajectories may be noisy, and that
these trajectories are sporadically sampled with randomness
and asynchrony from the underlying continuous paths. Most
of the prior work on trajectory similarity has not sufficiently
considered the temporal dimension, or the issues of location
noise and sporadic sampling, while others have limitations of
strong assumptions such as a fixed known speed of users or the
availability of a large amount of training data.

We propose a novel and effective spatial-temporal measure
termed STS (Spatial-Temporal Similarity) to evaluate the spatial-
temporal overlap between any two trajectories. In order to
account for the location noise and sporadic sampling, STS models
each location in a trajectory as an observable outcome drawn
from a probability distribution. With that, it efficiently reduces
the need for training data by estimating a personalized spatial-
temporal probability distribution of the object position from
its own trajectory. Based on that, it subsequently computes the
co-location probability and hence derives the similarity of any
two trajectories. We have conducted extensive experiments to
evaluate STS using real large-scale indoor (mall) and outdoor
(taxi) datasets. Our results show that STS is substantially more
accurate and robust than the state-of-the-art approaches, with
an improvement of 63% on precision and 85% on mean rank.

Index Terms—spatial-temporal trajectory similarity, spatial-
temporal data management, trajectory mining

I. INTRODUCTION

In recent years we have witnessed the rapid advances and

the penetration of the Internet of Things (IoT) and sensing

devices. Objects (e.g., users or their devices) may now know

their locations based on signals such as GPS, WiFi, Bluetooth,

video, etc. Besides, they may also leave their trails when using

different service platforms such as call detail records (CDR)

in telecommunication, smart cards in public transportation,

mobile payments (e.g., banks, Alipay, Apple Pay, etc.), and

O2O apps (e.g., bicycle-sharing, ride-hailing, etc.). Conse-

quently, many sensing systems nowadays have extracted a

massive amount of trajectories, each of which is a sequence of

positions indicated by spatial locations and their corresponding

timestamps sampled from a continuous path of the object.
A co-location occurs when two object paths are at the

same spatial grid concurrently, the so-called spatial-temporal

(S-T) overlap. The S-T similarity between two trajectories

measures their level of co-location, i.e., how much the two

trajectories overlap in the spatial and temporal dimensions.

Such a similarity measure has many important applications.

One is to match the trajectories of the same object in different

sensing systems [1] [2]. As an object may leave multiple

trajectories in different sensing systems, these trajectories need

to be correlated for applications such as contact tracing [1],

multimodal sensing [3], user re-identification [4], criminal

investigation [5], etc. Furthermore, spatial-temporal similarity

measure is also fundamental to companion detection for viral

marketing, promotion and advertising [6]–[10], etc.
We propose and study a novel and effective measure to

evaluate spatial-temporal similarity for trajectories. The prob-

lem is challenging, as we consider the following general and

realistic scenarios on the uncertain trajectories due to the issues

of location noise and sporadic sampling:

• Location noise: The process of location extraction and

estimation is fundamentally noisy [11], [12]. As a re-

sult, two physically co-located objects may not appear

so in their trajectories, or vice versa. We illustrate in

Figure 1(a) two co-located people whose estimated lo-

cations may be separated by a rather wide margin. Due

to location noise (estimation error), it would no longer

be sound to measure the spatial-temporal similarity for

trajectories by simply comparing their locations directly.

• Sporadic sampling: Due to the nature of sensing and

beaconing devices, object paths are often sampled spo-

radically, i.e., trajectories are asynchronous with their

locations collected randomly and independently with

possibly time-varying heterogeneous rates. As a result,

positions in an object path are not always observed

in its trajectory and two objects walking together may

not share overlapping trajectories, making it difficult to

measure the spatial-temporal similarity simply based on

co-locations in their trajectories. We show an example in

Figure 1(b), where the trajectories of two people walking

together are sampled at different times. Even without



(a) Issue of location noise. (b) Issue of sporadic sampling. (c) Co-location probability estimation.

Fig. 1. Illustrations of issues and intuition: (a) Co-located people may be estimated at different locations because of estimation noise. (b) People walking
along the same route (the dotted line) have different sampled locations because of sporadic and asynchronous sampling. (c) The spatial-temporal similarity of
two trajectories can be measured by estimating the co-location probabilities (the dotted box) at the locations of the two merged trajectories.

any location noise, their trajectories share no common

positions. Moreover, the trajectories may be very sparse

and irregular in some sensing systems (such as CDR,

mobile payments, and tap in/out using smart cards in

transportation systems), making the similarity comparison

for all the collected trajectories even more challenging.

Much of the prior study on trajectory similarity considered

only the spatial dimension [13]–[17]. They can hardly be

extended to the spatial-temporal case we consider here. For the

other works on spatial-temporal similarity, some form a pair-

wise alignment for positions of two trajectories and compare

their distance, without considering the general realistic issues

of location noise and sporadic sampling [18]–[21]. Others are

based on strong assumptions such as a fixed known speed of

users or the availability of a large amount of data for model

training [1], [2], [22], [23].

The co-location probability of two objects is defined as

the probability that their paths fall in the same spatial grid

at the same time. Two trajectories with high spatial-temporal

similarity should have high co-location probabilities in their

merged trajectory. We illustrate this in Figure 1(c), where

the trajectories of two people are merged, and their co-

location probability (the dotted box) at each of the positions

is computed.

Given the above observation, we propose STS, a novel and

effective Spatial-Temporal Similarity measure for trajectories

with location noise and sporadic sampling. Instead of just

calculating the point-wise distance for two trajectories (such

as [13]–[15], [18]–[21]), STS compares similarity of trajec-

tories by evaluating their co-location probability at different

timestamps. The STS of two trajectories, as derived by the

average of these co-location probabilities, would be high for

co-locating objects, and low otherwise. To this end, STS first

estimates the probability distribution of object position even

if the location at that time is not observed in its trajectory.

Then it compares the spatial-temporal similarity of any two

trajectories by evaluating their co-location probabilities at the

timestamps in their merged trajectory.

To tackle the challenges of location noise and sporadic

sampling, STS exploits a personalized transition probability
estimator to estimate the probability distribution of object

locations at any arbitrary time (i.e., spatial-temporal proba-
bility) based on its speed. While most existing approaches for

transition probability estimation focus on deriving a universal

distribution for all objects by considering the transitions in

the spatial space [24], [25], STS considers the transition

probability estimation in both spatial and temporal dimensions

for individual objects, i.e., transiting from one location at time

t1 to another location at time t2. The transition probability

estimated in STS is hence personalized and spatial-temporal
dependent.

In particular, STS uses a kernel density estimation (KDE)

to model the personalized speed probability distribution of an

object from its own trajectory, and uses its speed distribution to

denote the object transition probability between two locations

in a given time interval. Our speed distribution estimation is

fundamentally different from prior works [1] [26] [22] [23],

which learn the universal speed distribution for all objects

based on the assumptions that the form of the probability

distribution is known and a large amount of training data is

available.

Based on the spatial-temporal probability of objects, their

co-location probability at any time can then be computed.

The spatial-temporal similarity between any two trajectories

is hence given by the average co-location probability in the

merged trajectory.

We conducted an extensive experimental study to evaluate

STS and compare it with the state-of-the-art approaches.

Two real large-scale datasets — an outdoor taxi trajectory

dataset collected in a city and an indoor pedestrian trajectory

dataset collected in a large shopping mall — were used for

evaluation. Our experimental results demonstrate its effective-

ness and accuracy to measure spatial-temporal similarity in

both outdoor and indoor scenarios (with an improvement of

63% on precision and 85% on mean rank). The results also

demonstrate the robustness of STS against location noise and



sporadic data sampling.

The remainder of this paper is organized as follows. We

present related works in Section II, followed by the pre-

liminaries in Section III. We present the spatial-temporal

probability estimation in Section IV. After that, we introduce

the co-location probability and formulate the STS measure

in Section V. We then discuss the experimental settings and

results in Section VI. Finally, we conclude in Section VII.

II. RELATED WORKS

Trajectory similarity measures have been previously pro-

posed and studied in many works [27]. Most existing met-

rics consider the spatial closeness of trajectories, such as

DTW [13], EDR [14], and ERP [28], [29]. In these works,

a position in a trajectory is matched with another trajectory.

Approaches such as dynamic programming is used to find the

best alignment for these positions. After that, the distance

between the positions in these trajectories is computed as

their similarity. While these early works are impressive, they

only consider the observed positions in a trajectory. Since

trajectories are sporadically sampled, co-location in two paths

may not be observable in the two trajectories. As a result,

pairwise matching for positions in two trajectories fails to

reflect the closeness between two underlying paths. To tackle

the issues, t2vec [16] exploits a sequence-to-sequence model

to learn the latent representation to compute similarity. The

above works consider spatial similarity only, and they cannot

be extended to our spatial-temporal case directly.

Some other works consider trajectory similarity in both the

spatial and temporal dimensions. However, most of them are

usually based on some strong assumptions or manually pre-

defined parameters. For example, Fréchet distance [30] uses

the largest distance between locations of two trajectoies at

the same time to measure their similarity. Since locations

in two trajectories are not always sampled concurrently, and

noisy location is always far away from a trajectory, Fréchet

distance is very sensitive to noise and sporadic sampling.

STLIP [31] uses the in-between polylines distance and defines

a temporal distance to measure spatial-temporal similarity.

Nevertheless, it can only be applied to trajectories with two-

dimensional spatial data. WGM [19] and another work [20]

define similarity metrics based on the assumption that the

length of trajectories is the same. However, it does not make

sense for some scenarios where the length of trajectories

varies because of sporadic sampling. Moreover, LCSS [18] and

CATS [21] use manually defined thresholds to match positions

in the two trajectories. SST [32] is proposed in the work to

measure trajectory similarity based on the spatial-temporal

distance of matching point pairs across trajectories. Their

performance heavily relies on the parameter settings, which

are difficult to determine and are not flexible for sporadic and

heterogeneous sampling.

There has been some works focusing on trajectory link-

ing, which is one of the important applications of spatial-

temporal similarity measure. FTL [1] merges two trajectories

and defines the compatibility of a mutual segment based on

a predefined threshold for velocity. In FTL, a global velocity

threshold is used for all objects. Based on a similar concept

of FTL, ST-Link [22] and SLIM [23] restrict the matching

events to be within a window of a time units of each other,

and use a manually predefined maximum speed to determine

whether two objects are likely to have co-locations. Compared

with the above works, the method we proposed (STS) does

not require preknowledge of object speed. STS uses a per-

sonalized speed model to extract the speed distribution for

any individual object and estimate its transition probability,

which is more reasonable to consider the object mobility.

Furthermore, DPLink [2] proposes an end-to-end deep learning

based framework to link trajectories of the same users from

different data sources. It relies on a large amount of training

data to learn a feature extractor for extracting representative

features for trajectories.

To mitigate the impact of sporadic data sampling, some

works estimate the locations of an object for better similarity

measurement. EDwP [15] and STED [33] use linear interpo-

lation to model user mobility based on the assumption that

objects do not change their direction between two adjacent

sampled locations, which is too strong for some scenarios. Fur-

thermore, Markov model and Brownian Bridge are often used

to estimate an objecct location in-between two observations in

a trajectory. For example, APM [34] and some works (such

as [24], [25], [34]) utilize the Markov model to estimate user

location. Transition probability between two locations in these

works are based on the frequency of transitions in historical

data. However, the estimated probability in these works is

universal for all users, and these approaches may suffer from

the data sparsity problem and the over-fitting problem [35].

Instead, STS uses a personalized transition model to estimate

the transition probability for any individual user given its tra-

jectory without any need for historical data of other users. For

a Brownian Bridge, motion is also assumed to be a Gaussian

random walk, and the Brownian Bridge allows to estimate the

location in-between two discrete observations [36], [37]. In

STS, object motion is estimated based on its speed probability

distribution. It can be any arbitrary distributions and without

the assumption that the form of the probability distribution is

known. Brownian Bridge can be seen as a special case of our

estimation approach when the speed probability distribution is

assumed to be a Gaussian distribution.

III. PRELIMINARY

In this section, we first define path and trajectory in Sec-

tion III-A, and then overview the proposed Spatial-Temporal

Similarity (STS) in Section III-B.

A. Path and Trajectory

Definition 1: (Path) A path refers to the actual movement

of an moving object, which can be defined as a continuous

function f : T → L where T refers to time space and L is

the geographical space.

Definition 2: (Trajectory) A trajectory Tra is a sequence

of locations, each associated with a timestamp, describ-



Fig. 2. An overview of STS.

ing the movement of an object. It is defined as Tra =
{(�1, t1), (�2, t2), ..., (�n, tn)}, where �i is a location and ti
is the associated timestamp.

A trajectory is a discrete representation of an object path,

which can be viewed as a sampling process from this path.

With various settings of sampling rates and observed duration,

the length of trajectories is usually not the same.

B. STS Overview

We overview the proposed STS in Figure 2. STS contains

two important modules, the spatial-temporal probability esti-
mation and the spatial-temporal similarity measure.

Given the location noise distribution of any location in a

trajectory, STS uses the spatial-temporal probability estimation

approach to estimate the probability distribution of the object’s

locations at any time (i.e., spatial-temporal probability). The

estimation approach consists of two components: the spatial-
temporal (S-T) probability estimation under location noise and

the transition probability estimation.

• Spatial-temporal (S-T) probability estimation under lo-
cation noise: By taking the existence of location noise

in a trajectory into account, each location in a trajectory

is modeled as an observable outcome from a probability

distribution over some grids instead of a deterministic

point, i.e., location probability distribution. An object’s

spatial-temporal probability distribution is then estimated

from the location probability distributions in a trajectory

and the transition probabilities between the location prob-

ability distributions.

• Transition probability estimation: To estimate an object’s

transition probability between locations in a time interval,

we propose using the probability of the object’s speed to

denote its transition probability. To this end, we propose a

kernel density estimation approach to estimate an object’s

personalized speed probability distribution given her/his

trajectory. Based on that, an object’s transition probability

between any two locations in a time interval is then

defined. Note that the estimated speed probability distri-

bution is personalized for any individual user. Moreover,

only the location data in an object’s trajectory is used to

estimate its speed probability distribution, and no training

data from other objects is required.

Based on the estimated spatial-temporal probability, the

spatial-temporal similarity measure is then formulated.

• Co-location probability: Given the spatial-temporal prob-

ability of objects, the probability of them being concur-

rently located at a grid at time t can be estimated, even

if the location is not observed in a trajectory. Their co-

location probability at a timestamp t can hence be derived

as the sum of the co-location probability at all grids of

the spatial space at t.
• STS: It is formulated as the average co-location probabili-

ties at all timestamps in the two trajectories. For example,

given two trajectories Tra = {(�1, t1), (�2, t2), (�3, t3)}
and Tra′ = {(�′1, t′1), (�′2, t′2), (�′n, t′n)}, their spatial-

temporal similarity is measured by their average co-

location probabilities at times {t1, t2, t3, t′1, t′2, t′3}.

IV. SPATIAL-TEMPORAL PROBABILITY ESTIMATION

In this section, we propose the spatial-temporal (S-T) prob-

ability estimation to estimate how likely an object is to be

located at a grid at any time t given her/his trajectory Tra.

We first derive the S-T probability under location noise in

Section IV-A. Then, we propose an approach to estimate

an object’s speed probability distribution given its trajectory.

Based on that, we define the transition probability between

locations in Section IV-B, which is an important component

for S-T probability estimation.

A. S-T Probability Estimation under Location Noise

We first partition the entire spatial area of interest (e.g.,

a city or a shopping mall) into n disjoint but equal-sized

grids, denoted as R = {r1, r2, . . . rn}. Without loss of general,

we use the central of grids to denote their locations. Based

on these grids, we then estimate the probability P (ri, t|Tra)
that an object is located at ri at t given its trajectory Tra.

According to the definition of conditional probability, the

probability of an object being located at ri at time t can be

formulated as:

P (ri, t|Tra)
=
P ((�1, t1), ..., (�i, ti), (ri, t), (�i+1, ti+1), ..., (�n, tn))

P ((�1, t1), ..., (�i, ti), (�i+1, ti+1), ...(�n, tn))
,

(1)

where ti ≤ t ≤ ti+1.

User transition between locations has been usually modelled

with the Markov process in many prior works, such as [24],

[25], [34], [35]. Formally, P (�i, ti|�i−1, ti−1, ..., �1, t1) =



P (�i, ti|�i−1, ti−1) for all i = 2, 3, ..., n. Therefore, we can

simplify the conditional probability P (ri, t|Tra) into

P (ri, t|Tra) = P (ri, t|�i, ti)P (�i+1, ti+1|ri, t)
P (�i+1, ti+1|�i, ti) , (2)

where P (ri, t|�i, ti) denotes the transition probability that an

object moves from �i at ti to ri at t, which will be discussed

in Section IV-B.

Locations in a trajectory are usually noisy because of

signal fluctuation or estimation error. In reality, location noise

distribution of locations in a trajectory is available for some

localization techniques, like GPS1. To consider the effect

of location noise in S-T probability estimation, locations in

a trajectory should be regarded as having a probabilistic

distribution over the space instead of a deterministic spatial

point.

Given the noise distribution f at locations and an observed

position (�, t) in a trajectory Tra, the probability of the object

being located at a grid r at time t is denoted as f(r, �).
When an object is observed to be at � at t, f(r, �) reflects

the likelihood that the object’s ground-truth location at t is r.

Note that the given location noise distribution f can be

any arbitrary probability distribution. For ease of illustration,

we use Gaussian distribution as a special case in this paper,

as it has been widely used to model the location noise for

localization systems [38]. Given the location noise σ of the

localization system and an observed position (�i, ti) in a

trajectory Tra, the probability of the user actually being

located at a grid r at time t is

f(r, �i) =
1

σ
√
2π

exp

(
−dis(�i, r)

2σ2

)
, (3)

where dis(�i, r) is the distance between �i and r.

A trajectory can then be further represented as a sequence of

probability distributions: T̂ ra = {(D1, t1), (D2, t2), ..., (Dn,
tn)}, where Di = {(rj , f(rj , �i))|rj ∈ R} is the probability

distribution over grids for the observed location �i in the

trajectory Tra, and rj is any arbitrary grid in the space. Note

that the location probability form is a generalized form for a

trajectory since we can get the original trajectory if we set Di

as �i with probability 1.

By considering the location noise, (�i, ti) and (�i+1, ti+1)
in Equation (2) should be modeled as probability distributions

over the spatial space. Thus, the S-T probability estimation for

T̂ ra can be rewritten as

P (ri, t|T̂ ra)

≈
∑

rj∈R(f(rj ,�i)·P (ri,t|rj ,ti))·∑rk∈R(f(rk,�i+1)·P (rk,ti+1|ri,t))
∑

rj∈R

∑
rk∈Rf(rj , �i)· f(rk, �i+1) · P (rk, ti+1|rj , ti) ,

(4)

where t1 ≤ ti < t < ti+1 ≤ tn, R is a set of grids, f(rj , �i)
is the probability of the object being located at rj at ti given

the observed position (�i, ti) in its trajectory (Equation (3)),

1https://developer.mozilla.org/docs/Web/API/Geolocation/

and P (ri, t|rj , ti) is the transition probability of moving from

rj to ri in the time duration |ti − t|.
Given an observed position (�i, ti) in an object’s trajectory,

the object may be located at any grid rj with different

probabilities in the spatial space. Thus, considering the effect

of location noise, the transition probability term P (ri, t|�i, ti)
in Equation 2 is replaced by the term

∑
rj∈R(f(rj , �i) ·

P (ri, t|rj , ti)), which is the sum of probabilities over grids.

The terms P (�i+1, ti+1|ri, t) and P (�i+1, ti+1|�i, ti) in Equa-

tion 2 are also rewritten in Equation 4 to consider the location

noise based on the defined grids accordingly.

Above all, the S-T probability STP (�, t, T ra) of an object

being located at a grid rj at time t given a trajectory Tra can

be denoted as

STP (rj , t, T ra) =

⎧⎨
⎩

f(rj , �i), ∃ ti = t,

P (rj , t|T̂ ra), t1 ≤ ti < t < ti+1 ≤ tn,
0, otherwise.

(5)

If a position (�i, ti) is observed in the trajectory, we use

f(rj , �i) to calculate the S-T probability (Equation (3)); if no

position is observed at t but t1 < t < tn, we use P (rj , t| ˆTra)
for the computation (Equation (4)); and 0 otherwise.

B. Transition Probability Estimation

In our S-T probability estimation, the transition probability

P (�
′
, t

′ |�, t) refers to the probability of an object moving from

� to �
′

in a time interval |t − t
′ |. Hence, we propose using

the probability of the object’s speed of moving from � to �
′

to denote the transition probability, which integrates both the

spatial and temporal information in an object’s mobility.

As observed in a prior work [26], the probability distribution

of speed is distinct for different users, which is relevant to

many factors such as gender, age and scenario. Therefore,

instead of using a universal speed distribution for all users,

we propose to use kernel density estimation to model a speed

distribution for any individual object given its trajectory, i.e.,

each trajectory will have its personalized speed distribution.

Kernel density estimation is a non-parametric way to estimate

the probability density function of a random variable. It can be

used with arbitrary distributions and without the assumption

that the form of the probability distribution is known [39].

The kernel density estimation consists of two steps: speed

sample collection and probability density estimation. To esti-

mate the speed probability density of a trajectory, we firstly

compute the speed between any two consecutive positions

in the trajectory. Let S be the set of speed samples drawn

from some distribution with an unknown density Q. Its kernel

density estimator over a speed v using S is given as

Q̂(v) =
1

h|S|
∑
v′∈S

K

(
v − v

′

h

)
, (6)

where |S| denotes the number of samples, K(·) is the kernel (a

non-negative function), and h > 0 is a smoothing parameter

called the bandwidth. We exploit the most popular normal



kernel and the optimal bandwidth [40]: h =
(

4σ̂5

3|S|
)1/5

, where

σ̂ is the standard deviation of the samples. Therefore, the

transition probability of moving from a location � at t to

another location �
′

at t
′

is computed as:

P (�
′
, t

′ |�, t) = h · Q̂
(
dis(�, �

′
)

|t− t′ |

)

=
1

|S|
∑
v′∈S

K

(
v − v

′

h

)
,

(7)

where dis(�, �
′
) is the distance between � and �

′
, and v =

dis(�, �
′
)/(|t − t′|). It is worth noting that we only use the

location data in an object’s trajectory to estimate its speed

probability distribution, and no other historical data are needed

in our approach.

V. STS: SPATIAL-TEMPORAL SIMILARITY MEASURE

In this section, based on the estimated S-T probability

of objects, we propose the co-location probability estimation

approach in Section V-A. After that, we take the average

of the co-location probabilities at timestamps in the two

trajectories to denote their spatial-temporal similarity, which is

presented in Section V-B. Finally, we provide the computation

complexity analytics in Section V-C.

A. Co-location Probability Estimation

With the S-T probability estimation, the co-location prob-

ability of two trajectories at any time t can be estimated,

even if the location at t is not observed in a trajectory. Given

trajectories Tra1 and Tra2 of two objects, their co-location

probability CP (r, t|Tra1, T ra2) at a grid r at time t is defined

as

CP (r, t|Tra1, T ra2) = STP (r, t, T ra1) · STP (r, t, T ra2),
(8)

where STP (r, t, T ra1) and STP (r, t, T ra2) is the probability

of two objects being located at r at t given their trajectories,

respectively (Equation (5)).

Consequently, the co-location probability of Tra1 and Tra2
at a time t can be approximated as:

CP (t|Tra1, T ra2)
≈
∑
r∈R

CP (r, t|Tra1, T ra2)

=
∑
r∈R

(STP (r, t, T ra1) · STP (r, t, T ra2)) ,

(9)

where R is a set of grids.

Given two trajectories Tra and Tra′ with their noise dis-

tribution f(·) and f ′(·), and a set of grids R, the computation

of the co-location probability of two trajectories at a time ti
is presented in Algorithm 1. If the locations at ti are both

observed in Tra and Tra′ (Line 4), we compute the location

probability at each grid for both trajectories using Equation 3,

and normalize them (Line 5∼8). The co-location probability

at ti is calculated as the sum of the co-location probability

Algorithm 1: Co-location probability of two trajecto-

ries at a time ti.

1 Input: Two trajectories Tra, Tra′, their noise

distribution f(·), f ′(·), a time stamp ti, and a set of

grids R;

2 Output:The co-location probability CP of Tra and

Tra′ at ti .

3 CP = 0;

4 if ti in Tra and ti in Tra′ then
5 foreach r in R do
6 Compute f(r, �i) and f ′(r, �′i);
7 end
8 Normalize f(r, �i) and f ′(r, �′i);
9 foreach r in R do

10 CP+ = f(�, �i)× f ′(�, �′i);
11 end
12 else
13 if ti in Tra then
14 foreach r in R do
15 Compute f(r, �i) and P (r, t|T̂ ra′

);
16 end
17 Normalize f(r, �i) and P (r, t|T̂ ra′

);
18 foreach r in R do
19 CP+ = f(r, �i)× P (r, t|T̂ ra′

);
20 end
21 else
22 foreach r in R do
23 Compute f ′(r, �i) and P (r, t|T̂ ra);
24 end
25 Normalize f ′(r, �i) and P (r, t|T̂ ra);
26 foreach r in R do
27 CP+ = P (r, t|T̂ ra)× f ′(r, �′i);
28 end
29 end
30 end
31 return CP ;

at all grids (Line 10). Otherwise, if the location at ti is

observed in Tra but not in Tra′ (Line 13), we compute the

location probability at grids for Tra using Equation 3, and for

Tra′ using Equation 4, followed by the normalization (Line

14∼17). As the computation of the denominator in Equation

4 is the same for all grids at ti, we do not have to calculate

it due to the normalization. Based on these probabilities, the

co-location probability can then be calculated (Line 18∼20).

Similarly, if the location at ti is only observed in Tra′ but not

in Tra, the computation process is shown in Lines 22 to 31.

B. Spatial-Temporal Similarity

The spatial-temporal similarity STS of two trajectories is

defined as the average of co-location probabilities at all



timestamps in the two trajectories:

STS(Tra, Tra′)

=

∑|Tra|
i=1 CP (ti|Tra, Tra′) +

∑|Tra′|
j=1 CP (tj |Tra, Tra′)

|Tra|+ |Tra′| ,

(10)

where |Tra| and |Tra′| are the length of the two trajectories

respectively, and CP (ti|Tra, Tra′) is the two trajectories’ co-

location probability at ti (Equation 9).

As the length of different trajectories varies, the number of

co-location probabilities to be evaluated differs for different

trajectory pairs. To alleviate the impact of the length of differ-

ent trajectories, we use the average of co-location probabilities

as their spatial-temporal similarity.

C. Computation Complexity

We first discuss the complexity of computing the transition

probability (Equation 7), following the discussion on the

Algorithm 1 for Equation 8. Finally, we present the total time

for the computation of spatial-temporal similarity (Equation

10).

To calculate the transition probability (Equation 7), we first

traverse locations in a trajectory for speed sample collection,

the time complexity of which is O(|Tra|). Once the speed

sample is obtained, it takes O(|S|) to compute the transition

probability, where |S| = |Tra| − 1 is the size of the speed

samples.

As shown in Algorithm 1, there are three possible cases

for computing the co-location probability of two trajectories

at a time. The time complexity for the first case (Line 4

∼ 11) is O(|R|). In the second case (Line 13 ∼ 20), the

computation and nomalization of f(r, �i) take O(|R|) for all

r in R. As the computation of the denominator in Equation

4 is the same for all grids at ti, we do not have to calculate

it due to the normalization. The computation complexity is

hence O(|R|2 × |Tra′|). Thus, the time complexity of the

second case is O(|R|2 × |Tra′| + |R|). Similarly, it takes

O(|R|2 × |Tra| + |R|) for the computation for the third

case (Line 22 ∼ 28).

Thus, the worst cast of total time complexity for computing

STS using Equation 10 is O(|Tra|× (|R|2×|Tra′|+ |R|)+
|Tra′ | × (|R|2 × |Tra|+ |R|)) = O(|Tra| × |Tra′ | × |R|2).

VI. ILLUSTRATIVE EXPERIMENTAL RESULTS

We have conducted extensive experiments on two real

datasets to evaluate the performance of STS. In this section,

we first introduce the datasets and baselines in Section VI-A,

followed by the performance metrics (Section VI-B). Then,

we compare the performance of STS with the state-of-the-art

approaches on the task of trajectory matching for different

data sampling rates, heterogeneous data sample rates, location

noise and different components in Section VI-C. Furthermore,

we compare their performance on cross-similarity deviation

with respect to heterogeneous data sampling in Section VI-D.

Finally, we discuss the effect of grid sizes on STS in Section

VI-E.

A. Datasets and Baselines
We evaluate the performance of STS using trajectory data

collected outdoors and indoors. The description of the two

datasets used in our experiments is as follows.

• Taxi dataset: The taxi dataset2 DT was collected by all

the 422 taxis running in the city of Porto, in Portugal

over 12 months. These taxis operate through a taxi dis-

patch center, using mobile data terminals installed in the

vehicles to collect the location data. Each taxi reports its

location every 15 seconds. The trajectory dataset contains

1.7 million trajectories. In our experiments, we removed

trajectories the length of which was less than 20 so that

we could sample sub-trajectories with different sampling

rates to evaluate the effect of low and heterogeneous data

sampling rates.

• Shopping mall dataset: The shopping mall dataset DS

was collected by pedestrians in a large shopping mall.

We deployed a WiFi fingerprint-based sensing system

in a large shopping mall to collect pedestrians’ location

data [41]. The shopping mall consists of stores, corridors

and some open space. Locations of pedestrians whose

mobile devices have WiFi on would be collected by our

sensing system. A record in the system consists of the

device’s MAC address, the coordinate of the device’s

location, and the timestamp. To construct trajectories,

we group the location data based on the MAC address,

and sort them by the timestamp. In our experiment, we

collected 896, 900 records of location data of 12, 858
MAC addresses from 08:00 to 22:00 in one day, forming

12, 858 trajectories. For the purpose of the experiments,

we removed trajectories the length of which was less than

20, which yielded 1, 561 trajectories.

We compared our proposed model with the following state-

of-the-art models:

• CATS [21]: The Clue-Aware Trajectory Similarity

(CATS) is a metric for measuring trajectory similarity,

which aims to couple as many spatially and temporally

co-located data points between two trajectories. CATS

relies on two manually defined parameters to tackle

the challenges of location noise and heterogeneous data

sampling.

• EDwP [15]: Edit Distance with Projections (EDwP) is

a robust distance function to quantify the similarity be-

tween trajectories. It has been proved to be efficient for

similarity measurement under condition of inconsistent

and variable sampling rates. It uses the linear interpo-

lation to infer a user’s location to address the issue of

sporadic and heterogeneous sampling.

• APM [34]: APM uses a trajectory calibration process to

transform a heterogeneous trajectory dataset to one with

unified sampling strategies. In our experiments, we divide

the space into grids, and use the centrals of grids as the

anchor points for calibration. DTW [13] is used as the

similarity metric after calibration.

2http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html



Fig. 3. Sample two sub-trajectories Tra
(1)
i and Tra

(2)
i from a raw trajectory

Trai.

• KF: Kalman filter (KF) is an algorithm to estimate un-

known variables that tend to be more accurate than those

based on a single measurement. It is used to estimate

the object location at a given time in our experiments.

After the locations are estimated, we use DTW [13] for

similarity comparison.

• WGM [19]: WGM measures similarity as the arithmetic

mean of point-wise distances (e.g., origin vs. origin and

destination vs. destination), each achieved through the

weighted geometric mean of Euclidean similarity (spatial)

and their temporal similarity.

• SST [32]: SST measures the similarity by synchronously

matching the spatial distance against temporal distance.

It matches points of two trajectories using the strategy of

minimal point-to-segment similarity and maximal point-

to-point similarity.

We do not include traditional similarity metrics such as

DTW, LCSS, EDR in our experiments, since CATS and

EDwP have been proved to outperform them in many previous

works [15], [16], [21].

We implement STS, CATS, APM, KF, WGM and SST using

Python. EDwP is implemented by the authors of the work [15]

using Java, which is available online. The default grid sizes

are set as 100m ×100m and 3m ×3m for the taxi dataset

and the shopping mall dataset, respectively. The experiment

settings for baseline approaches are adopted as introduced in

prior works.

B. Performance Metrics

One of the most important applications for spatial-temporal

similarity measurement is trajectory matching [1], [16]. In a

space with various types of sensing systems, a user leaves

multiple trajectories for different sensing systems. Given two

sets of trajectories D(1) and D(2) collected by different

sensing systems, an effective similarity measure should match

correctly two trajectories of the same user, namely identifying

a user’s trajectory in D(1) as the most similar one to her/his

trajectory in D(2). Thus, we evaluate the performance of STS

and other baseline approaches on trajectory matching. The

experiment design is similar to that of prior works [15], [16].

Assume that Tra
(1)
i ∈ D(1) and Tra

(2)
i ∈ D(2) are tra-

jectories from the same objects. For each trajectory Tra
(1)
i in

D(1), we measure the similarity of Tra
(1)
i and any trajectories

from D(2). We sort the trajectories in D(2) with respect to the

similarity, and denote the rank of Tra
(2)
i as ri. Based on that,

two performance metrics, precision and mean rank, which have

been used to evaluate the performance of trajectory matching

in prior works, are used for evaluation.

• Precision: If ri = 1, we define pi for T
(1)
i as 1, and 0

otherwise. Thus, the precision P is defined as

P =
(
∑n

i=1 pi)

n
. (11)

• Mean rank: It is defined as the average of all ri:

MR =
(
∑n

i=1 ri)

n
. (12)

The performance of trajectory matching in terms of precision

and mean rank will be discussed in Section VI-C.

Furthermore, a good similarity measure should be able

to preserve the similarity between two different trajectories,

regardless of the data sampling strategy. Thus, we use the

metric cross-similarity deviation for evaluation, which is also

used in the previous works [16] and [34]. The cross-similarity

deviation is defined as follows:

|d(Tra1, T ra′
2)− d(Tra1 − Tra2)|

|d(Tra1 − Tra2)| , (13)

where Tra1 and Tra2 are two distinct trajectories, and Tra
′
2

is a sub-trajectory of Tra2 which is sampled from Tra2 with

a given sampling rate. A smaller cross-similarity deviation

indicates that the measured similarity is closer to the ground-

truth [16]. The comparison of cross-similarity deviation will

be presented in Section VI-D.

C. Performance of Trajectory Matching

We compare STS with other state-of-the-art methods on the

task of trajectory matching. We first introduce the construction

of datasets, and then discuss the effect of low data sampling

rates, heterogeneous data sampling rates, and location noise.

Furthermore, we also evaluate the effectiveness of each com-

ponent in STS on the trajectory matching.

Dataset construction To overcome the lack of ground-truth,

we construct the dataset following the prior work [16]. As

shown in Figure 3, for each trajectory Trai in a dataset, we

sample two sub-trajectories by alternately taking points from

it, denoted as Tra
(1)
i and Tra

(2)
i , and use them to construct

two new datasets D(1) = {Tra(1)i |i = 1, 2, . . . , n} and D(2) =

{Tra(2)i |i = 1, 2, . . . , n}. In the constructed dataset, Tra
(1)
i ∈

D(1) and Tra
(2)
i ∈ D(2) belong to the same object.

We perform the construction approach on the taxi dataset

DT and the bike dataset DS respectively, and obtain two pairs

of new datasets (D
(1)
T , D

(2)
T ) and (D

(1)
S , D

(2)
S ). After that, we

evaluate the performance of trajectory matching on these two

pairs of new datasets, respectively.

Effect of different data sampling rates: The similarity of

trajectories with a low data sampling rate will be challenging

to measure. To study the effect of different data sampling
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Fig. 5. Mean rank versus low data sampling rates.

rates, for each trajectory in D(1) and D(2), we sample a sub-

trajectory with a sampling rate, which is set to be 0.1 ∼ 0.9.

The precision versus different data sampling rates is shown

in Figure 4(a) (Shopping mall dataset) and Figure 4(b) (Taxi

dataset). From Figure 4(a), we learn that as the data sampling

rate increases, the precision of all approaches increases, be-

cause the location data become more dense in the trajectories.

Compared with the state-of-the-art methods, STS has the

highest precision for all data sampling rates. The difference

in the precision of STS and other approaches becomes larger

when the data sampling rate drops. STS makes a significant

improvement for trajectories with low data sampling rates

(e.g., around 12% for CATS and SST, and 38% for WGM

when the data sampling rate is 0.1 in our experiments), which

demonstrates the effectiveness of STS to tackle the challenge

of low data sampling rates. The result of the taxi dataset in

Figure 4(b) can lead to some similar findings. We present

the result of mean rank versus data sampling rate in Figure

5(a) (Shopping mall dataset) and Figure 5(b) (Taxi dataset).

Because the mean rank of EDwP, APM and KF is too large
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Fig. 7. Mean rank versus heterogeneous data sampling rates.

on the shopping mall dataset (from 9.28 to 90.75), we did

not plot it in Figure 5(a). As the data sampling rate increases

in Figure 5(a), the mean rank of all approaches decreases,

indicating that the performance is improved. STS always

outperforms other approaches, and the difference becomes

more significant when the data sampling rate becomes lower.

Similar results can be found from the mean rank of the taxi

dataset (Figure 5(b)). However, compared with the shopping

mall dataset, we find that precision is much lower and mean

rank is much larger for the taxi dataset when the data sampling

rates are low. The potential reason could be that there are

more trajectories in the taxi dataset. Moreover, when the data

sampling rate is extremely low (90% of data are filtered),

some of the trajectories become very sparse, i.e., only a

few locations in a trajectory. Consequently, the mean rank of

these trajectories in taxi dataset may become extremely high.

Meanwhile, EDwP has much better performance on the taxi

dataset than on the shopping mall dataset, which reveals the

limitation of EDwP in the indoor scenario due to its strong

assumptions of user mobility. The performance of APM and

KF also degrades significantly on the shopping mall dataset.

The reason could be that the impact of location noise and

sporadic data sampling becomes more severe in a narrow

site, and the performance of the frequency-based transition

estimation degrades significantly due to the more complex

topological structures in a shopping mall (e.g., walls, stairs,

etc.) Compared with other approaches, STS is more general

and robust in different scenarios.

Effect of heterogeneous sampling rates: To evaluate the

effect of sporadic sampling on the similarity measure, we

discuss the precision and mean rank versus heterogeneous data

sampling rates. For each trajectory in D(2), we sample a sub-

trajectory with a sampling rate α and compute the similarity

between the sub-trajectories and trajectories in D(1). A smaller

α indicates a larger difference between two trajectories in the

sampling rate. α is set as {0.1, 0.2, . . . 0.9} in the discussion.

Results of precision versus heterogeneous data sampling

rates of the shopping mall dataset are shown in Figure 6(a). As

the difference in sampling rate increases (the α decreases), the

precision of all approaches decreases. The precision of STS

is always higher than that of others. The improvement of STS

becomes more obvious when the difference in the sampling

rate increases (with an improvement of 20% on CATS and

40% on WGM). The result of mean rank is shown in Figure
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Fig. 9. Mean rank versus location noise.

7(a), from which we can draw the consistent conclusion to

the result of precision. We do not include the result of EDwP,

APM and KF since its values are too large to plot in the figure.

The results reveal that STS is effective to measure spatial-

temporal similarity for trajectories with heterogeneous data

sampling rates. A similar trend of the change can be observed

in the results on the taxi dataset, which are presented in Figures

6(b) and 7(b).

Effect of location noise: To study the effect of location noise,

we distort the location in trajectories from the datasets D(1)

and D(2) by adding a Gaussian noise with radius β meters as

follows

xi = xi + β · dx, dx ∼ Gaussian(0, 1),

yi = yi + β · dy, dy ∼ Gaussian(0, 1).
(14)

In our experiments, β is set to be [2m, 4m, 6m, 8m] for the

shopping mall dataset, and [20m, 40m, 60m, 80m, 100m] for

the taxi dataset. Precision and mean rank are used as evaluation

metrics.

Effect of location noise on precision and mean rank of the

shopping mall dataset is presented in Figures 8(a) and 9(a),

respectively. We take away the mean rank of EDwP, APM and

KF since it is too large to plot in Figure 9(a). As the location

noise increases, the precision of all approaches declines while

the mean rank increases, indicating that the performance of

all approaches declines when location noise becomes more se-

vere. However, STS performs better than other approaches for

different levels of location noise. Moreover, the performance

difference of our approach and other baselines becomes more

significant when the location noise becomes larger. Precision

and mean rank versus location noise on the taxi dataset are

presented in Figures 8(b) and 9(b), respectively. The result
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Fig. 11. Cross-similarity deviation of heterogeneous data sampling rates.

of WGM is taken away from Figure 9(b) as its value is too

large. Our proposed metric also outperforms other baseline

approaches on the taxi dataset. The results on the two datasets

illustrates that it is more robust against location noise than

others.

Effectiveness of each component: We evaluate the effective-

ness of different components in STS by comparing STS with

the following variants:

• STS-N: It does not consider location noise. Each location

in STS-N is regarded as a deterministic spatial point

instead of a probability distribution.

• STS-G: It does not consider personalized transition prob-

ability. Instead, it uses a constant global speed distribut

ion for all objects.

• STS-F: It uses a frequency-based approach to estimate

the transition probability between grids for all objects,

which is also used in prior work, such as [24], [25], [34].

Following the previous experiment, we also distort the

location in trajectories from the datasets D(1) and D(2).

The location noise is set as 6m and 20m for the shopping

mall dataset and the taxi dataset, respectively. The precision

and mean rank on the two datasets are presented in Figures

10(a) and 10(b). STS outperforms STS-N on both datasets,

indicating that the STS is effective in terms of considering

location noise. Moreover, STS achieves higher precision and

lower mean rank than STS-G and STS-F, which illustrates the

effectiveness of our proposal personalized transition probabil-

ity estimation approach.

D. Comparison of Cross-Similarity Deviation

We further evaluate the performance of STS in terms of

cross-similarity deviation. Since the performance of EDwP,
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APM and KF is poor in the above evaluation, we only

compare STS with CATS, WGM and SST in the following

discussion. In our experiment, we randomly selected 1000 pair

of trajectories (Tra1, T ra2) from a dataset. For each Tra2,

we down-sampled 9 sub-trajectories from it with a different

sampling rate α, where α is set to be from 0.1 to 0.9.

The average of cross-similarity deviation (Equation 13) for

different sampling rates is presented in Figure 11(a) (Shop-

ping mall dataset) and Figure 11(b) (Taxi dataset). From the

result of the shopping mall dataset, as the data sampling rate

becomes larger, the cross distance deviation becomes smaller.

That is because a larger sampling rate indicates a smaller dif-

ference between Tra2 and Tra
′
2, and the difference between

d(Tra1, T ra2) and d(Tra1, T ra
′
2) should be smaller. The

cross-similarity deviation of STS is always smaller than that

of other approaches. Although CATS has a good performance

on the metric precision and mean rank, its performance is not

as good as other approaches on the metric of cross-similarity

deviation. A comparison of the results indicates that STS is

able to preserve the distance between two different trajectories,

regardless of the data sampling strategy. Consistent experiment

results could be found on the taxi dataset, which is shown in

Figure 11(b).

E. Grid Size

A small grid size means a larger number of grids, leading

to a better probability approximation but higher time cost. We

discuss the effect of grid size on effectiveness and efficiency

for STS. The precision and mean rank are used as metrics

for effectiveness evaluation, and the running rime is used to

evaluate the efficiency.

The results on the shopping mall dataset are presented

in Figures 12(a), 13(a), 14(a). As the grid size increases,
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the precision and the running time decline while the mean

rank increases on both datasets, which is consistent with our

intuition. The decline in running time is not obvious for

the shopping mall dataset when the grid size is larger than

3m (Figure 12(a)). Meanwhile, precision drops and mean rank

increases dramatically when the grid size is larger than 3m. As

the location error of the localization technique used to collect

the shopping mall dataset is also around 3m, we suggest that

the grid size could be set to be the same as the location error

to balance the trade-off of the effectiveness and the efficiency.

As for the taxi dataset, a grid size of 100m ∼ 150m could be

a good choice considering the effectiveness and the efficiency.

VII. CONCLUSION

We propose STS, a novel and effective measure to evaluate

the spatial-temporal similarity between any pair of trajectories

with location noise and sporadic location sampling. STS

employs a spatial-temporal probability estimation approach to

compute the probability distribution of the object location at

any time. In the proposed estimation approach, each location

in a trajectory is modeled as a probability distribution over

space instead of a spatial point. Then the transition probability

of an object between any two locations is estimated based

on the personalized speed probability distribution drawn from

the trajectory itself. Based on the estimated spatial-temporal

probability of objects, their co-location probability can be

estimated. Finally, STS used the average co-location prob-

abilities of two trajectories to denote their spatial-temporal

similarity. We conducted extensive experiments using two real

datasets for taxis and a shopping mall. The results show that

STS is substantially more accurate and robust against location

noise and sporadic data sampling than the state-of-the-art

approaches, with improvements of 63% on precision and 85%
on mean rank. The excellent performance in the taxi and mall

datasets illustrated that our proposed STS can be applied in

both indoor and outdoor scenarios.
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[23] F. Bası̈k, H. Ferhatosmanoğlu, and B. Gedik, “Slim: Scalable linkage of
mobility data,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 2020, pp. 1181–1196.

[24] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Zufle, “Query-
ing uncertain spatio-temporal data,” in 2012 IEEE 28th international
conference on data engineering. IEEE, 2012, pp. 354–365.

[25] J. Niedermayer, A. Züfle, T. Emrich, M. Renz, N. Mamoulis, L. Chen,
and H.-P. Kriegel, “Probabilistic nearest neighbor queries on uncertain
moving object trajectories,” in Proceedings of the VLDB Endowment.
Springer, 2014, pp. Vol. 7, No. 3.

[26] S. Chandra and A. K. Bharti, “Speed distribution curves for pedestrians
during walking and crossing,” Procedia-Social and Behavioral Sciences,
vol. 104, pp. 660–667, 2013.

[27] H. Su, S. Liu, B. Zheng, X. Zhou, and K. Zheng, “A survey of trajectory
distance measures and performance evaluation,” The VLDB Journal,
vol. 29, no. 1, pp. 3–32, 2020.

[28] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,”
in Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30. Hangzhou, China: VLDB Endowment, 2004,
pp. 792–803.

[29] H. Wang, H. Su, K. Zheng, S. Sadiq, and X. Zhou, “An effectiveness
study on trajectory similarity measures,” in Proceedings of the Twenty-
Fourth Australasian Database Conference-Volume 137. Adelaide, South
Australia: Australian Computer Society, Inc., 2013, pp. 13–22.

[30] A. Ward, “A generalization of the frechet distance of two curves,”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 40, no. 7, p. 598, 1954.

[31] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. Andrienko, and
Y. Theodoridis, “Similarity search in trajectory databases,” in 14th
International Symposium on Temporal Representation and Reasoning
(TIME’07). IEEE, 2007, pp. 129–140.

[32] P. Zhao, W. Rao, C. Zhang, G. Su, and Q. Zhang, “Sst: synchro-
nized spatial-temporal trajectory similarity search,” GEOINFORMAT-
ICA, 2020.

[33] M. Nanni and D. Pedreschi, “Time-focused clustering of trajectories of
moving objects,” Journal of Intelligent Information Systems, vol. 27,
no. 3, pp. 267–289, 2006.

[34] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou, “Calibrating
trajectory data for similarity-based analysis,” in Proceedings of the 2013
ACM SIGMOD international conference on management of data. New
York,USA: ACM, 2013, pp. 833–844.

[35] H. Wu, J. Mao, W. Sun, B. Zheng, H. Zhang, Z. Chen, and W. Wang,
“Probabilistic robust route recovery with spatio-temporal dynamics,” in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. San Francisco, California:
ACM, 2016, pp. 1915–1924.

[36] T. W. Anderson and M. A. Stephens, “The continuous and discrete
brownian bridges: Representations and applications,” Linear Algebra
and its Applications, vol. 264, pp. 145–171, 1997.

[37] J. S. Horne, E. O. Garton, S. M. Krone, and J. S. Lewis, “Analyzing
animal movements using brownian bridges,” Ecology, vol. 88, no. 9, pp.
2354–2363, 2007.

[38] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On map-matching
vehicle tracking data,” in Proceedings of the 31st international con-
ference on Very large data bases. Trondheim, Norway: VLDB
Endowment, 2005, pp. 853–864.

[39] J.-D. Zhang and C.-Y. Chow, “igslr: personalized geo-social location
recommendation: a kernel density estimation approach,” in Proceedings
of the 21st ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. Orlando, Florida, USA: ACM, 2013,
pp. 334–343.

[40] B. W. Silverman, Density estimation for statistics and data analysis.
British: Routledge, 2018.

[41] S. He and S.-H. G. Chan, “Wi-fi fingerprint-based indoor positioning:
Recent advances and comparisons,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 466–490, 2015.


