
PEFP: Efficient k-hop Constrained s-t Simple Path
Enumeration on FPGA

Zhengmin Lai†, You Peng§, Shiyu Yang†, Xuemin Lin§, Wenjie Zhang§

†East China Normal University; §The University of New South Wales
zmlai@stu.ecnu.edu.cn; you.peng@unsw.edu.au;

syyang@sei.ecnu.edu.cn; {lxue, zhangw}@cse.unsw.edu.au

Abstract—Graph plays a vital role in representing entities and
their relationships in a variety of fields, such as e-commerce
networks, social networks and biological networks. Given two
vertices s and t, one of the fundamental problems in graph
databases is to investigate the relationships between s and t.
A well-studied problem in such area is k-hop constrained s-t
simple path enumeration. Nevertheless, all existing algorithms
targeting this problem follow the DFS-based paradigm, which
cannot scale up well. Moreover, using hardware devices like
FPGA to accelerate graph computation has become popular.
Motivated by this, in this paper, we propose the first FPGA-
based algorithm PEFP to solve the problem of k-hop constrained
s-t simple path enumeration efficiently. On the host side, we
propose a preprocessing algorithm Pre-BFS to reduce the graph
size and search space. On the FPGA side in PEFP, we propose
a novel DFS-based batching technique to save on-chip memory
efficiently. In addition, we also propose caching techniques to
cache necessary data in BRAM, which overcome the latency
bottleneck brought by the read/write operations from/to FPGA
DRAM. Finally, we propose a data separation technique to
enable dataflow optimization for the path verification module;
hence the sub-stages in that module can be executed in parallel.
Comprehensive experiments show that PEFP outperforms the
state-of-the-art algorithm JOIN by more than 1 order of mag-
nitude by average, and up to 2 orders of magnitude in terms
of preprocessing time, query processing time and total time,
respectively.

I. INTRODUCTION

Graph is a ubiquitous structure modeling entities and their
relationships in various areas like e-commerce networks, social
networks and biological networks [1], [2], [3], [4]. One of
the fundamental and important problems in graph databases
is k-hop constrained s-t path enumeration [5], [6]; that is,
given a directed and unlabelled graph G, source node s, target
node t, and hop constraint k, we aim to enumerate all s-
t paths such that the number of hops of each path is no
more than k. In this paper, same as many existing studies
on this problem, we only consider the simple path (i.e., a path
with no repeated nodes) since a path containing cycles is less
interesting and may significantly increase the total number of
s-t paths. Note that for presentation simplicity, we abbreviate
s-t k-hop constrained simple path as s-t k-path in this paper.

During s-t k-path computation, we have to frequently access
neighbors of vertices in the graph. Real-life graphs usually
follow power-law random distribution; that is, most vertices
have a small degree, while some have a large degree [7].
However, modern CPUs are not an ideal way to deal with
such data accesses: they do not offer high parallelism, and their
caches do not work effectively for irregular graph processing
that has little or no temporal and spatial locality. GPUs, on

the other hand, offer massive parallelism, but the performance
can be significantly affected when the internal cores do not
execute the same instruction (i.e., warp divergence), which is
common in graphs with varying degrees [8].

FPGA has shown its substantial advantages over multi-core
CPU in terms of parallelism [9]. For instance, one FPGA
card can easily parallelize a loop with 1,000 iterations, while
we have to find a host equipped with 1,000 CPU cores to
offer the same parallelism. In addition, compared with GPU,
FPGA is more energy-efficient, and can handle irregular graph
processing with more stable parallelism by fully exploiting
its pipeline mechanism [8]. Therefore, in this paper, we
reconsider the problem of s-t k-path enumeration on FPGA.
Applications. We introduce the applications of s-t k-path
enumeration on FPGA as follows.
• E-commerce Networks. A cycle in e-commerce networks

indicates that there might exist fraudulent activities among
the participants [10]. To detect such activities, Alibaba
Group has developed a system in [6]; that is, when a new
transaction is submitted from account t to account s, the
system will perform s-t k-path enumeration to report all
newly produced cycles. Since response time is very critical
to the fraud detection system, it is necessary to speed up the
s-t k-path queries in e-commerce networks. In this paper,
we choose FPGA due to its parallel and re-programmable
properties.

• Social Networks. For two users s and t in a social network,
we may wonder to what extent t is influenced by or similar
with s [11]. One can achieve this by enumerating all the
simple paths from s to t with hop constraint k. As querying
the s-t k-paths in a vast social network is very time-
consuming, it is essential to accelerate such queries using
FPGA.

• Biological Networks. It is known that s-t k-path enumeration
is one of the most important pathway queries in biological
networks [12]; that is, given two substances s and t, one
can figure out the chains of interactions from s to t by
enumerating all paths from s to t with hop constraint k. As
biological networks are quite sensitive to the response time
of pathway queries, it is necessary to accelerate s-t k-path
queries through FPGA.
We have to emphasize that, besides the hop constraint, we

can for sure impose other constraints to s-t path queries. For
instance, one can apply label constraints to the vertices in
social networks such that only specific types of users will
be considered. Note that although we study the problem of

ar
X

iv
:2

01
2.

11
12

8v
2

 [
cs

.D
B

]
 2

4
Fe

b
20

21

s-t k-path enumeration in unlabelled graphs in this paper,
our solutions can be easily extended to solve it in labelled
graphs; that is, we can deal with the label constraints in
preprocessing stage to filter out the vertices and edges that
satisfy the constraints.
Challenges. We present the challenges of solving the problem
of s-t k-path enumeration on FPGA as follows.
• Exponential Search Space and Expensive Verification Cost.

The main challenge of s-t k-path enumeration is the huge
search space even if k is very small, because the num-
ber of results grows exponentially w.r.t k. Moreover, the
tremendous number of intermediate results incurs expensive
cost for path verification, which ensures that there are no
repeated vertices along the path. It is inefficient in both
response time and memory usage to simply enumerate all
s-t k-paths with duplicate vertices, and then verify them.

• Non-trivial Implementation on FPGA. Due to the huge in-
termediate results using BFS-based framework, all existing
solutions follow the DFS-based paradigm for better perfor-
mance [5], [6], [13], [14]. However, DFS-based algorithms
cannot be pipelined on FPGA because of the data depen-
dencies among iterations. Thus existing algorithms cannot
be straightforwardly implemented on FPGA. In addition,
since CPU usually has an order of higher frequency than
FPGA, it requires careful design on FPGA to achieve better
performance than CPU.

• Limited FPGA on-chip Memory. Although BFS-based al-
gorithms can be pipelined on FPGA, there is very limited
FPGA on-chip memory (BRAM); hence, we have to fre-
quently transfer intermediate results between BRAM and
FPGA’s external memory (DRAM) when using BFS-based
paradigm, which significantly affects the overall perfor-
mance. Therefore, one of the biggest challenges of solving
this problem comes from how to deal with the huge interme-
diate data on FPGA efficiently to achieve good performance.
Consequently, it is rather challenging to design an efficient

s-t k-path enumeration algorithm on FPGA that tames both
computational hardness and on-chip memory bottleneck.
Contributions. Our contributions in this paper are summa-
rized as follows:
• To the best of our knowledge, none of the existing s-t k-

path enumeration algorithms can be directly adapted to the
FPGA side. Therefore, we are the first to propose an efficient
algorithm to solve this challenging problem on FPGA.

• On the host side, we develop a preprocessing algorithm Pre-
BFS that can not only greatly reduce the search space in
finding s-t k-paths, but also can finish in satisfactory time.

• On the FPGA side, we design an efficient algorithm PEFP.
In PEFP, we first propose a novel DFS-based batching tech-
nique Batch-DFS to overcome the FPGA on-chip memory
bottleneck. Then we further propose caching techniques to
improve the read/write latency by reducing memory accesses
to DRAM. Finally, we propose a data separation technique
to fully parallelize the path verification module.

• We conduct comprehensive experiments on 12 real datasets
to demonstrate the superior performance of our proposed al-
gorithm PEFP compared with the state-of-the-art algorithm
JOIN, where PEFP runs on the Xilinx Alveo U200 FPGA

card 1. More specifically, the experimental results show that
PEFP outperforms JOIN by more than 1 order of magnitude
by average, and up to 2 orders of magnitude in terms of
preprocessing time, query processing time and total time,
respectively.

Roadmap. The rest of the paper is organized as follows.
Section II surveys important related works. Section III gives
the formal definition of the problem studied in this paper,
and introduces the existing solutions. Section IV presents the
overall framework. We then propose our software prepro-
cessing algorithm in Section V and hardware implementation
details in Section VI. Extensive experiments are conducted in
Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

In this section, we review closely related works.

A. Simple Path Enumeration and Counting

There are many existing works studying the problem of
enumerating s-t simple paths (e.g., [15], [16], [17]). However,
what they focus on is how to construct a succinct presentation
of these simple paths, thus we can efficiently enumerate the
simple paths without explicitly storing each path. Note that
their algorithms are not competitive for the problem of s-t
simple path enumeration, and can only handle small graphs
with thousands of vertices. Birmele et. al studied the problem
of s-t simple path enumeration in [18], but the solution they
proposed can only handle undirected graphs.

The counting of s-t simple paths is also a well-known #P
hard problem, which has been extensively studied with differ-
ent approaches such as recursive expressions of an adjacency
matrix (e.g., [19], [20]). However, their counting approaches
cannot be extended to efficiently enumerate hop-constrained
simple paths in a trivial manner without materializing the paths
during the computation, which will easily blow up the main
memory even for a small k.

B. Shortest Path Enumeration

Given two vertices s and t in a graph, the end-to-end
shortest path computation from s to t is one of the most
important graph queries. In addition to the classical s-t shortest
path computation, there are several variants where a set of
paths are considered.

The problem of top-k′ shortest paths has been intensively
studied in the literatures (e.g., [21], [22]). To solve s-t k-
path enumeration problem, we can keep on invoking the
top-k′ shortest simple path algorithm by increasing k′ until
the shortest path detected exceeds the distance threshold k.
However, this naive method is not competitive because we
have to enforce the output order of the paths according to
their distances.

A considerable number of literatures have been pub-
lished studying the constrained shortest path problem recently
(e.g., [23], [24]). This problem can be defined as finding the
shortest path between two vertices on a network whenever
the traversal of any arc/vertex consumes certain resources.
The problem of diversified shortest path has been intensively

1https://www.xilinx.com/products/boards-and-kits/alveo/u200.html

Notation Definition
G,Grev a graph, its reverse graph
V,E graph vertex set, edge set
p, v v′ a path, a path from v to v′
s, t, k source and target vertex, hop constraint
s-t k-path k-hop constrained path from s to t
len(p) length of path p, where len(p) = |p| − 1
sd(v, v′) shortest distance from v to v′
sd(v, v′|p) shortest distance from v to v′ without touch-

ing any vertex in V (p)
bar[u] shortest distance from u to t
P path set of buffer area in BRAM
P ′ path set of processing area in BRAM
PD path set in DRAM
S[i] one hop successors of path P ′[i]

TABLE I
SUMMARY OF NOTATIONS

studied in the literatures as well (e.g., [25], [26]), which
consider both distance and diversity of s-t shortest paths.
However, due to their focus on identifying the shortest paths,
they cannot be adapted to s-t k-path enumeration in a trivial
manner.

C. Shortest Path Computation on FPGA
Recently there emerge many literatures aiming at accelerat-

ing shortest path computation on FPGA (see [8] for a survey).
Tommiska et al. [27] implemented single source shortest path
(SSSP) algorithm on FPGA using adjacency matrix stored in
BRAM, which limits its graph size that can be handled. Unlike
the previous approach, Zhou et al. [28] solved SSSP with the
graph stored in DRAM and the algorithm is fully pipelined.
Bondhugula et al. [29] proposed to solve all-pairs-shortest-
paths (APSP) problem on FPGA, which is to find shortest
path between all pairs of vertices in the graph. The graph is
stored in DRAM and only when the required slices of graph
are streamed to BRAM. Betkaoui et al. [30] studied APSP
for unweighted graphs by running BFS from each vertex,
and its key idea for optimizing memory accesses is to use
BRAM for random memory accesses and use DRAM for
sequential accesses. Nevertheless, none of these algorithms
can be directly adapted to s-t k-path enumeration problem
because they can only identify the shortest paths rather than
enumerate all s-t k-paths.

III. PRELIMINARY

In this section, we first give the formal definition of s-t
k-hop constrained simple path enumeration problem, then we
present a brief introduction to the existing solutions, namely
T-DFS [13], T-DFS2 [14], HP-Index [6], and JOIN [5]. We
summarize important notations in TABLE I.

A. Problem Definition
A directed graph G is represented as G = (V,E), where

V (G) is the vertex set of G, and E(G) ⊆ V (G) × V (G)
is the directed edge set of G. If the context is clear, we use
successor or neighbor to refer “out-going neighbor”. Let Grev

denote the reverse graph of G, where V (Grev) = V (G) and
for each edge (v1, v2) ∈ E(G), there is a corresponding edge
(v2, v1) ∈ E(Grev). We say G′ is an induced subgraph of G if
V (G′) ⊆ V (G) and E(G′) = {(v1, v2)|(v1, v2) ∈ E(G), v1 ∈
V (G′)∧v2 ∈ V (G′)}. A path p from vertex v to vertex v′ is a
sequence of vertices v = v0, v1, ..., vn = v′ such that for each

s
. . . t

u202 u203u1

u2

u101 u200

u3 u100. . .
u201

Trap

Fig. 1. Key Idea of BC-DFS with k = 7

i ∈ [0, n−1], (vi, vi+1) ∈ E(G). We use p(v, v′) or p(v v′)
to denote a path from v to v′. A simple path is a loop-free
path that contains no duplicate nodes. We use path to refer
“simple path” if the context is clear. The length of a path p
is denoted as len(p), where len(p) = |p| − 1. We say path p
is a k-hop constrained path if it satisfies len(p) ≤ k. Given
two vertices v, v′ ∈ V (G) and a path p, we use sd(v, v′) to
denote the shortest distance from v to v′, and use sd(v, v′|p)
to denote the shortest distance from v to v′ without touching
any vertex in V (p). We say u is a successor of path p if u is
an out-going neighbor of the last vertex in p.
Problem Statement. In this paper, we study the FPGA-
based k-hop constrained s-t simple path enumeration problem.
Specifically, given a directed and unlabelled graph G, source
vertex s, target vertex t, and hop constraint k, we use R to
represent the paths such that R = {p | len(p) ≤ k, p is a
simple path and p starts with s and ends with t}. We target
developing FPGA-based algorithms to efficiently enumerate
all paths in R.

B. Existing Solutions

T-DFS and T-DFS2. In [13], T-DFS is proposed to solve s-t k-
path enumeration problem in directed graphs. T-DFS carefully
explores the out-going neighbors of a vertex and ensures that
every search branch comes up with at least one s-t k-path,
which is the art of “never fall in the trap”. Specifically, given
a current path p, T-DFS aggressively computes the shortest
distance sd(u, t|p) for each successor u of p, and u will not
be explored if len(p) + 1 + sd(u, t|p) > k. T-DFS2 [14]
follows the same aggressive verification strategy as T-DFS,
while it can reduce shortest path distance computation by
skipping some vertices associated with only one output in
the following search. Nevertheless, T-DFS and T-DFS2 show
poor performance in practice due to the expensive verification
cost [5].
HP-Index. In [6], a novel indexing technique HP-Index is
proposed to continuously maintain the pairwise paths among
hot points (i.e., vertices with high degree). Enumerating all
s-t k-paths in HP-Index can be concluded as follows: (1)
Perform DFS from s with search depth at most k, and record
the path and backtrack when encountering a hot point; (2)
Perform a reverse DFS from t in the same way; (3) Find
the indexed paths among the hot points involved in the above
computation; (4) Concatenate the paths from steps (1), (2) and
(3) to identify s-t k-paths. It is reported in [5] that HP-Index
can only achieve good performance on the extremely skewed
graph dataset which has relatively small number of s-t k-paths.

DRAM

FPGA Card

BRAM

DRAM

FPGA Card

BRAM

CPU Main Memory

User

Host

Load Graph

Submit
Query

Graph Data

Parse Query Query Data

PCIe

77GB/s

Disk

CPU Main Memory

User

Host

Load Graph

Submit
Query

Graph Data

Parse Query Query Data

PCIe

77GB/s

Disk

DRAM

FPGA Card

BRAM

CPU Main Memory

User

Host

Load Graph

Submit
Query

Graph Data

Parse Query Query Data

PCIe

77GB/s

Disk

Processing Area

Fetch a Batch of Paths

 pi to pm

Expand Fetched

Paths and Validate

Expanded

Paths

Temp Path p1

Buffer Area

Temp Path pm

..

Write Back Valid Expanded

Paths pi’ to pm’ to Buffer

Temp Path pi

..

Temp Path p1

Buffer Area

Temp Path pm’

..

Temp Path pi’

..

FPGA BRAM

FPGA

DRAM

Flush

Read

Processing Area

Fetch a Batch of Paths

 pi to pm

Expand Fetched

Paths and Validate

Expanded

Paths

Temp Path p1

Buffer Area

Temp Path pm

..

Write Back Valid Expanded

Paths pi’ to pm’ to Buffer

Temp Path pi

..

Temp Path p1

Buffer Area

Temp Path pm’

..

Temp Path pi’

..

FPGA BRAM

FPGA

DRAM

Flush

Read

.
.
.

Valid[1]

true

true

Expansion

Module

Expansion

Module

.
.
.

Valid[n]

.
.
.

.
.
.Buffer

Area

Buffer

Area

.
.
.

DRAMDRAM

Flush

Read

Write

Write

Validity Check Module n

Target Checker n

Barrier Checker n

Visited Checker n

Validity Check Module n

Target Checker n

Barrier Checker n

Visited Checker n

Validity Check Module 1

Target Checker 1

Barrier Checker 1

Visited Checker 1

Validity Check Module 1

Target Checker 1

Barrier Checker 1

Visited Checker 1

Input Data 1

p1, s1

p1, b1

p1, s1

p1, s1

p1, b1

p1, s1

Input Data 1

p1, s1

p1, b1

p1, s1

Input Data n

pn, sn

pn, bn

pn, sn

pn, sn

pn, bn

pn, sn

Input Data n

pn, sn

pn, bn

pn, sn

Merge

Result

Module 1

Merge

Result

Module n

.
.
.

.
.
.

Valid[1]

true

true

Expansion

Module

.
.
.

Valid[n]

.
.
.

.
.
.Buffer

Area

.
.
.

DRAM

Flush

Read

Write

Write

Validity Check Module n

Target Checker n

Barrier Checker n

Visited Checker n

Validity Check Module 1

Target Checker 1

Barrier Checker 1

Visited Checker 1

Input Data 1

p1, s1

p1, b1

p1, s1

Input Data n

pn, sn

pn, bn

pn, sn

Merge

Result

Module 1

Merge

Result

Module n

.
.
.

Input Data 1

Input Data n

.
.
.

Target Checker 1 Barrier Checker 1 Visited Checker 1

Valid[1]

true

Validity Check Module

true

Target Checker n Barrier Checker n Visited Checker n

Expansion

Module

Expansion

Module

.
.
.

.
.
.

.
.
.

Valid[n]

.
.
.

.
.
.Buffer

Area

Buffer

Area

.
.
.

DRAMDRAM

Flush

Read

Write

Write

Input Data 1

Input Data n

.
.
.

Target Checker 1 Barrier Checker 1 Visited Checker 1

Valid[1]

true

Validity Check Module

true

Target Checker n Barrier Checker n Visited Checker n

Expansion

Module

.
.
.

.
.
.

.
.
.

Valid[n]

.
.
.

.
.
.Buffer

Area

.
.
.

DRAM

Flush

Read

Write

Write

s

len(p1) = 3

len(p2) = 4

bar[u2] = 2

t

u1u1 u2u2

s

path length = 3

path length = 4 tu2u2

u1u1 u3u3

u4u4

u100u100

s

path length = 3

t

u1u1 u3u3

s
. . . t

u202u202 u203u203
u1u1

u2u2

u101u101 u200u200

u3 u100u100
. . .

u201u201

Trap

1

Fig. 2. Overall Framework of CPU-FPGA System

JOIN. Peng et al. [5] proposed the state-of-the-art algorithm
JOIN to enumerate all s-t k-paths in a directed and unlabelled
graph. JOIN designs an efficient pruning technique BC-DFS
motivated by “never fall in the same trap twice through
learning from mistakes”. The idea of BC-DFS is shown in
Fig. 1, where the hop constraint k is set to 7. We regard the
current path p as a stack S. In Fig. 1, node s, u1 and u2 have
been pushed into S. After finishing DFS with S, we know
that there is no valid s-t k-path w.r.t S. Then BC-DFS will
set u2.bar = k + 1 − len(S), which is 6 in this example.
When u2 is unstacked and we push u3 into the stack, it will
not fall in the same “trap” like u2 did before because it will
check if len(S) + 1 + u2.bar ≤ k holds. In this example,
len(S) + 1 + u2.bar = 2 + 1 + 6 = 9 > 7, hence u2 will be
pruned by u3, ..., u100 when s and u1 are in the stack, which
significantly reduces the search space.

Given a path p = (u1, ..., un), its middle vertex is the dn2 e-
th vertex. To avoid duplicate search, JOIN follows “joining
two paths” framework by exploiting the middle vertices of
s-t k-paths. Its procedures can be concluded as follows: (1)
Compute all middle vertices of s-t k-paths, denoted byM; (2)
Add a virtual vertex t′ and put an edge (u, t′) for each u ∈M;
(3) Compute s-t′ (dk2 e+ 1)-paths Pl using BC-DFS; (4) Add
a virtual vertex s′ and put an edge (s′, u) for each u ∈ M;
(5) Compute s′-t (bk2 c+ 1)-paths Pr using BC-DFS; (6) Join
Pl and Pr to obtain the final results, where the join key is the
node u ∈M, and a result path is valid iff it is a simple path
and u is its middle vertex. Consequently, JOIN outperforms
all existing algorithms, namely T-DFS [13], T-DFS2 [14], and
HP-Index [6].

IV. FRAMEWORK OVERVIEW

In this section, we present our system’s overall framework
to solve the problem of s-t k-path enumeration. The overview
of the system architecture is illustrated in Fig. 2. The workflow
of the system can be concluded as follows:
1) On the host side, the user first specifies the graph file, then

the host loads the corresponding graph data and stores it in
main memory. Once the graph loading process is finished,
the host is ready to handle path queries submitted by user;

2) When a new query comes in, the host parses the query to
extract s, t and k;

3) The host starts its preprocessing computation (for further
details see Section V) to prepare the necessary data that
will be transferred to FPGA DRAM.

4) Based on the preprocessing, the host transfers the prepared
data to FPGA DRAM through PCIe bus in DMA mode;

5) Once all the input data arrive at DRAM, FPGA can start its
computation to find all valid s-t k-paths and return them
to the host side through PCIe. The computation details on
FPGA will be introduced in Section VI.

s

path length = 3

path length = 4 tu2

u1 u3

u4

u100

(a) Graph G

s

path length = 3

t

u1 u3

(b) Induced Subgraph after Remov-
ing Invalid Nodes with k = 5

Fig. 3. Example of Preprocessing

V. SOFTWARE PREPROCESSING

In this section, we present the preprocessing details on the
host side. We first give a brief introduction to the preprocessing
technique of the state-of-the-art algorithm JOIN. Then we pro-
pose our optimized preprocessing technique to further reduce
the search space for future path expansion and verification.

Preprocessing aims to compute and prepare necessary data
for a given algorithm. As for preprocessing in JOIN, a k-
hop BFS is first conducted from source vertex s to compute
sd(s, u) on G. Similarly, JOIN computes sd(u, t) by con-
ducting k-hop BFS from t on Grev . The shortest distance of
those vertices that have not been touched during BFS is set to
k+1. After finishing preprocessing, JOIN can start s-t k-path
computation, which is introduced in subsection III-B.

Having investigated the preprocessing idea of JOIN, we find
it can be optimized based on the following Theorem.

Theorem 1: Given shortest distance maps sds and sdt,
where sds[v] = sd(s, v) and sdt[v] = sd(v, t) for any
v ∈ V (G), performing s-t k-path enumeration on original
graph G is equivalent to doing it on subgraph G′ ⊆ G , where
G′ is induced by the node set N ⊆ V (G) such that for each
u ∈ N , sds[u] + sdt[u] ≤ k.

Proof: Suppose there exists a valid s-t k-path p that
contains a node u, where u is not in G′. Thus we have
sds[u]+sdt[u] > k, which contradicts the premise len(p) ≤ k.
Hence the theorem holds.

As illustrated in Fig. 3(a), when we set k = 5, 5-hop BFS
from s will include the whole graph G. Although u4, ..., u100

cannot reach t, they will still be visited in JOIN during BC-
DFS, which results in useless search. After we remove the
invalid nodes such that sds[u] + sdt[u] > 5, the induced
subgraph is shown in Fig. 3(b), where u2, u4, ..., u100 and
their corresponding edges are removed, hence the search space
is greatly reduced.

Next, we show that a (k − 1)-hop bidirectional BFS on G
is enough for preprocessing as follows.

We call a vertex u is valid in preprocessing iff sds[u] +
sdt[u] ≤ k. We use Gk−1 and Gk to denote the induced
subgraph after running (k − 1)-hop and k-hop bidirectional
BFS on G, respectively. We show that (k−1)-hop bidirectional
BFS is enough by proving V (Gk−1) contains all valid vertices.

Proof: Suppose there is a valid vertex u such that
u ∈ V (Gk) and u /∈ V (Gk−1). Let V ′ denote the vertices
that k-hop bidirectional BFS can touch while (k − 1)-hop
cannot. It is obvious that V ′ = {u|sds[u] = k or sdt[u] = k}.
Nevertheless, if u is a valid node and sds[u] = k, then we
have u = t, which contradicts the premise that u /∈ V (Gk−1)
because t ∈ V (Gk−1). Similarly, if u is a valid node and

sdt[u] = k, then we have u = s, which contradicts the premise
that u /∈ V (Gk−1) because s ∈ V (Gk−1). Thus, V (Gk−1)
includes all valid vertices.

Based on the above observataions, we propose our prepro-
cessing algorithm Pre-BFS which only needs to do (k − 1)-
hop bidirectional BFS to obtain the induced subgraph G′ as
follows.
1) Perform (k − 1)-hop BFS from s on G to compute sds.
2) Perform (k− 1)-hop BFS from t on Grev to compute sdt;
3) For each node u ∈ sds ∩ sdt, if sds[u] + sdt[u] ≤ k holds,

then we put it into node set N .
4) Return the subgraph G′ induced by N in G.

When the preprocessing procedure is finished, we will send
s, t, sdt and G′ to FPGA DRAM, where G′ is stored using
“Compressed Sparse Row” (CSR) format [31]. Note that we
call sdt as barrier (denoted as bar) in the rest of the paper.

VI. HARDWARE IMPLEMENTATION

In this section, we first introduce our proposed algorithm
PEFP to solve s-t k-hop constrained Path Enumeration on
FPGA. Then we present several optimizations to improve the
performance of PEFP by fully utilizing the characteristics of
FPGA.

A. PEFP
PEFP adopts the BFS-based paradigm, because BFS natu-

rally enjoys great parallelism such as performing concurrent
expansion for some intermediate results in a certain round.
Therefore, we can easily apply pipeline optimizations to BFS-
based algorithms to fully utilize the parallelism of FPGA.

In general, PEFP follows the expansion-and-verification
framework, which can be dissected into three steps: (1) Expand
the intermediate paths with one-hop successor vertices; (2)
Verify if each expanded path is a valid path; (3) Write back
the valid paths to the intermediate path set. The algorithm
terminates when the intermediate path set is empty.

The details of PEFP are shown in Algorithm 1. Given
source vertex s, target vertex t, hop constraint k, barrier bar
and graph G, the algorithm computes and outputs all s-t k-
paths. We first initialize intermediate path set P , P ′, PD,
and one-hop successors set S with empty set (Line 1), where
P ′ is a batch of paths fetched from P , PD represents the
intermediate path set in DRAM, and S[i] denotes the one-hop
successor vertex set of the i-th path in P ′ (denoted as P ′[i]).
Then we push a path into P ′ consisting of just one vertex s
(Line 2). If P ′ is not empty, for each path P ′[i] ∈ P ′, we get
its one-hop successors and put them into S[i] (Line 3-5). Next,
we verify each successor nbr ∈ S[i] for every P ′[i] ∈ P ′ using
Algorithm 2 (Line 6-9). If nbr is a valid successor for P ′[i],
a new intermediate path p will be generated and put into P
by concatenating nbr to P ′[i] (Line 10-12). Note that when
the size of P reaches our predefined threshold, we will flush
P to DRAM to avoid BRAM overflow (Line 13-14). After all
paths in P ′ have been processed in this batch, we fetch next
batch of paths into P ′ using Algorithm 3 (Line 15). PEFP
terminates when P ′ is empty (Line 3).

Given an intermediate path p, its one-hop successor u, target
vertex t, hop constraint k and its barrier bu, the verification
module of checking whether u is a valid successor for p

includes three stages, which is shown in Algorithm 2: (1)
The first stage is target check. If u equals to target vertex
t, then we output a new result path p′ by concatenating u to p
and return false (Line 1-4); (2) The second stage is barrier
check. If len(p) + 1 + bu > k, then we return false as it does
not satisfy the hop constraint (Line 5-6); (3) The third stage is
visited check. If u has already appeared in p, then we return
false (Line 7-8). If u passes the validity check of the three
stages, we can say u is a valid successor of p (Line 9).

Algorithm 1: PEFP(s, t, k, bar, G)
Input : s : source vertex

t : target vertex
k : hop constraint
bar : barrier array
G : graph

Output : All s-t k-paths
P ← ∅; P ′ ← ∅; PD ← ∅; S ← ∅;1
P ′.push({s});2
while P ′ 6= ∅ do3

forall P ′[i] ∈ P ′ do4
S[i]← one-hop successor vertices of P ′[i] in G;5

forall S[i] ∈ S do6
forall S[i][j] ∈ S[i] do7

nbr ← S[i][j];8
isV alid← Verify(P ′[i], nbr, t, k, bar[nbr]);9
if isV alid == true then10

p← P ′[i].push(nbr);11
P.push(p);12

if P is full then13
Flush P to PD;14

P ′ ← NextBatch(P,PD) ;15

Algorithm 2: Verify(p, u, t, k, bu)
Input : p : path p

u: a successor of path p
t : target vertex
k : hop constraint
bu : barrier of vertex u

Output : isV alid : if u is a valid successor of p
if u == t then /* Target Check */1

p′ ← p.push(u);2
output p′;3
return false;4

if len(p) + 1 + bu > k then /* Barrier Check */5
return false;6

if u is contained in path p then /* Visited Check */7
return false;8

return true;9

Correctness. In Section V, we have correctly calculated
barrier data bar for each vertex in the induced subgraph G
(recall that bar[u] = sd(u, t)). The expansion of P ′ starts with
the path only containing vertex s. Therefore, the correctness
of PEFP holds before the loop starts. For each iteration of
expansion, given path P ′[i] and its one-hop successor nbr,
there are three cases to check in total: (1) Whether vertex nbr
is the target vertex; (2) Whether the path P ′[i] exceeds the
hop constraint when concatenating nbr to P ′[i]; (3) Whether
vertex nbr has already appeared in P ′[i]. Only when nbr

Algorithm 3: NextBatch(P , PD)
Input : P: intermediate path set in BRAM

PD : intermediate path set in DRAM
Output : P ′ : a batch of intermediate paths
P ′ ← ∅;1
Θ1 ← batch size threshold of PD;2
Θ2 ← batch size threshold of P;3
if P 6= ∅ then4
P ′ ← Batch-DFS(P , Θ2);5

else6
if PD 6= ∅ then7
P ← fetch a batch of paths from PD with Θ1;8
P ′ ← Batch-DFS(P , Θ2);9

return P ′;10

passes all the three cases can we generate a new intermediate
path p = P ′[i].push(nbr). Therefore, we will not prune
any valid paths during the verification and the correctness
of each iteration holds. The algorithm terminates when P ′ is
empty, suggesting that all of the intermediate paths have been
processed. Hence the correctness of PEFP holds.

B. DFS-based Batch Processing with Caching

Intuitively, BFS-based path enumeration needs to store all
intermediate results, causing notorious memory overhead to
our system. To solve this challenging issue, we adopt the
buffer-and-batch technique. The general idea of buffer-and-
batch aims to store huge intermediate paths in FPGA’s external
memory (DRAM), then read and process the data from DRAM
by batch to avoid BRAM overflow.

Nevertheless, there exists another concern. Although
DRAM capacity is much larger than BRAM, the read latency
of DRAM takes 7-8 clock cycles while the read latency of
BRAM is only 1 clock cycle. Based on that observation, we
propose a caching-based technique to efficiently reduce the
read/write operations from/to DRAM, thereby lowering the
system latency.
(1) Caching Intermediate Paths. Targeting maximizing
FPGA on-chip memory usage and minimizing the number of
direct accesses to DRAM, we design two areas in BRAM,
namely buffer area and processing area. As shown in
Algorithm 3, the input P denotes the intermediate path set
in BRAM, which is the buffer area; the input PD denotes
the intermediate path set in DRAM, which is the external
memory area; the output P ′ represents a batch of intermediate
paths we need to process next, which is called processing
area. We first check the buffer area P . If P is not empty,
we fetch a batch of paths directly from P into P ′ (Line 4-5)
using Algorithm 4. Note that we use Θ2 to denote the batch
size threshold of P (Line 3), which is the capacity of P ′.
Otherwise, we check PD. If PD is not empty, we first fetch
a batch of paths from PD into P with batch size Θ1 (which
is defined in Line 2), then fetch a batch of paths from P into
P ′ using Algorithm 4, finally return P ′ (Line 6-10). Note that
when we fetch a batch of paths from PD, we simply fetch
from its tail with size Θ1 to avoid memory fragmentation; we
do the same for the write operation. Thanks to the buffer area,
we only need to read/write intermediate paths from/to DRAM
when the buffer area is empty/full. By caching intermediate

paths in BRAM, we can significantly reduce the data transfer
between BRAM and DRAM, hence the overall performance
is improved.
(2) Caching Data Graph and Barrier. From Algorithm 1
we know that we need to frequently access barrier data and
get one-hop successors from data graph G for a given path p.
Learning from the merits by caching, we also cache the data
graph and barrier information in BRAM. More specifically,
we have pre-allocated three fixed-size arrays vertex arr,
edge arr and bar arr to store vertex data, edge data and
barrier data, respectively. When initializing the three arrays, we
put as much data as possible into them from DRAM. When we
access vertex, edge or barrier data, we always check the local
BRAM array first instead of directly fetching it from DRAM.
Thanks to the preprocessing to extract induced subgraph, we
find that in most cases, we can fit the whole subgraph and
barrier data in BRAM.

Algorithm 4: Batch-DFS(P , Θ)
Input : P : intermediate path set

Θ : batch size threshold
Output : P ′ : a batch of intermediate paths
P ′ ← ∅;1
cnt← 0;2
i← index of the last path in P;3
while i 6= 0 do4

ptr1, ptr2 ← the end neighbor pointer of P[i];5
ptrlast ← the last neighbor pointer of P[i];6
if ptr1 + Θ− cnt < ptrlast then7

ptr2 ← ptr1 + Θ− cnt;8

else9
ptr2 ← plast;10

P ′.push(P[i]) with ptr1 and ptr2;11
update start and end neighbor pointer of P[i] with ptr1 and12
ptr2;
cnt← cnt + ptr2 − ptr1;13
if cnt < Θ then14

i← i− 1;15

else16
break;17

return P ′;18

(3) Batch-DFS. As mentioned before, only when the buffer
area P is full will it do write operations to DRAM. Therefore,
it is essential to design an efficient batching technique to save
the memory in buffer area. One alternative is to change the
batch size dynamically. For instance, one can reduce the batch
size according to the free space in P . Nevertheless, when there
is only little space left in P , the batch size will be set to a
rather small value. In this case, most space in the processing
area is wasted, which leads to a low level parallelism of PEFP.
Thus this naive technique is inefficient.

It is challenging to design an efficient batching algorithm
that both fully utilizes the space in processing area and saves
the memory in buffer area. To overcome this challenge,
we propose a novel DFS-based batching algorithm Batch-
DFS, which is shown in Algorithm 4. The motivation of this
algorithm comes from the following observation.

Observation 1: Given two paths p1 and p2 with len(p1) <
len(p2), suppose p1 and p2 have same number of successors,

then p2 will have a greater chance generating fewer interme-
diate paths than p1 during one-hop expansion.

The observation is illustrated in Fig. 5. Suppose the hop
constraint k is 6, p1 = s u1, p2 = s u2, len(p1) = 3,
len(p2) = 4, and path p1 and p2 have a same successor u3,
where bar[u3] = 2. Clearly, u3 will be pruned by p2 because
len(p2) + 1 + bar[u3] > 6, while it will not be pruned by
p1. Accordingly, when we process p2 prior to p1, it tends to
produce fewer intermediate paths for p2’s pruning power is
stronger than p1 in the barrier check stage. Specifically, when
we process a path p with len(p) = k − 1, it will generate
0 intermediate results. Fewer intermediate results indicate P
will have a smaller chance to be full and flushed to DRAM,
which can improve the overall performance.

Based on the above observation, Batch-DFS follows the
idea of DFS. In DFS, the intermediate results are stored in
a stack, and we always process its top element first. Similarly,
we regard the buffer area P as a stack, and we always fetch
a batch of paths from its top.

The details of Batch-DFS are shown in Algorithm 4. The
inputs of the algorithm include the buffer area P and batch size
threshold Θ, and its output is a batch of paths P ′ that are going
to be put into the processing area. We first initialize cnt with 0
(Line 2), where cnt denotes the number of intermediate paths
that will be processed next. Hence we must ensure cnt ≤ Θ.
Treating P as a stack, we use i to trace P from its top (Line 3).
We continuously fetch paths from P into P ′ until cnt reaches
the threshold Θ (Line 16-17). Due to the fact that there might
exist a “super node” whose degree is larger than Θ, it is
necessary to process its neighbors by batch, or it will blow the
processing area. We achieve this by maintaining two pointers
for each path’s successors (or out-going neighbors), namely
start neighbor and end neighbor pointer. The two pointers
are initialized as pointing to the path’s first neighbor. In Line
5, we declare two pointers ptr1, ptr2 and initialize them as the
end neighbor pointer of P[i]. Then we assign the last neighbor
pointer of P[i] to ptrlast (Line 6). If ptr1 +Θ−cnt < ptrlast
holds, then we set ptr2 to position ptr1 + Θ − cnt, which
indicates that the remaining space in the processing area is
not enough to hold all successors of P[i]. Thereby we can
only load a batch of its successors (Line 7-8). If processing
area has enough space, we just set ptr2 to ptrlast (Line 9-
10). Then we put P[i] into P ′ and update the start and end
neighbor pointer of P[i] with ptr1 and ptr2, respectively (Line
11-12). When we fetch P[i]’s successors (Algorithm 1, Line
5), we will perform this operation according to ptr1 and ptr2.

Overall, PEFP is a “hybrid” algorithm that combines the
merits of BFS and DFS. In other words, PEFP exerts the
parallel ability of FPGA through BFS and saves on-chip
memory through DFS-based batch processing. Consequently,
PEFP successfully tames both computational hardness and
FPGA on-chip memory bottleneck.

C. Basic Pipeline of Verification
The read/write path operation can be easily pipelined on

FPGA. The bottleneck remains in how to pipeline the ver-
ification of each expanded path. In this subsection, we will
demonstrate a basic pipeline technique for path verification.
Note that we call path verification and path validity check
interchangeably in this paper.

Processing Area

Fetch a Batch of Paths
 pi to pm

Expand Fetched
Paths and Validate

Expanded
Paths

Temp Path p1

Buffer Area

Temp Path pm

..

Write Back Valid Expanded
Paths pi’ to pm’ to Buffer

Temp Path pi

..

Temp Path p1

Buffer Area

Temp Path pm’

..
Temp Path pi’

..

FPGA BRAM

FPGA
DRAM

Flush

Read

Fig. 4. Overview of FPGA Batch Processing

s

len(p1) = 3

len(p2) = 4

bar[u2] = 2

t

u1 u2

1

Fig. 5. An Example for Processing Longer Path First with k = 6

As illustrated in Fig. 6, given an intermediate path P ′[i],
its one-hop successor nbr and barrier bar[nbr] (we call them
input data i in Fig. 6), the basic verification module consists of
three consecutively executed stages, namely (1) target check
stage, (2) barrier check stage and (3) visited check stage. The
input data of this module must include all the information
required by the three stages according to Algorithm 2. The
target check and barrier check can be finished in O(1) time,
while the visited check can be finished in O(k) time without
using hash set. We can unroll the visited check loop that has
constant loop bound k, thus the time cost of visited check on
FPGA can be reduced from O(k) to O(1).

In this design, the verification for each input data is
pipelined, while the three stages inside the module cannot be
executed in parallel, because only when the input data passes
the current stage can it move to the next stage.

D. Optimized Pipeline of Verification by Data Separation
For the basic design, although it can pipeline the input

data verification, the inner stages of the verification module
are executed one by one, which cannot exert the parallel

Input Data 1

Input Data n

...

Target Checker 1 Barrier Checker 1 Visited Checker 1

Valid[1]

true

Validity Check Module

true

Target Checker n Barrier Checker n Visited Checker n

Expansion
Module

...

...

...

Valid[n]

...

...Buffer
Area

...DRAM
Flush

Read

Write

Write

Fig. 6. Basic Pipeline of Path Verification on FPGA

...

Valid[1]

true

true

Expansion
Module

..
.

Valid[n]

...

...Buffer
Area

...DRAM
Flush

Read

Write

Write

Validity Check Module n

Target Checker n

Barrier Checker n

Visited Checker n

Validity Check Module 1

Target Checker 1

Barrier Checker 1

Visited Checker 1

Input Data 1

p1, s1

p1, b1

p1, s1

Input Data n

pn, sn

pn, bn

pn, sn

Merge
Result

Module 1

Merge
Result

Module n

..
.

Fig. 7. Optimized Pipeline of Path Verification with Data Separation on
FPGA

Dataset Name |V | |E| davg D D90

Reactome RT 6.3K 147K 46.64 24 5.39
soc-Epinions1 SE 75K 508K 13.42 14 5
Slashdot0902 SD 82K 948K 23.08 12 4.7

Amazon AM 334K 925K 6.76 44 15
twitter-social TS 465K 834K 3.86 8 4.96

Baidu BD 425K 3M 15.8 32 8.54
BerkStan BS 685K 7M 22.18 208 9.79

web-google WG 875K 5M 11.6 24 7.95
Skitter SK 1.6M 11M 13.08 31 5.85

WikiTalk WT 2M 5M 4.2 9 4
LiveJournal LJ 4M 68M 28.4 16 6.5

DBpedia DP 18M 172M 18.85 12 4.98

TABLE II
STATISTICS OF DATASETS

ability of FPGA. We observe that the bottleneck is caused
by data dependencies among the stages; that is, the current
stage cannot be executed until the previous stage is finished.
Motivated by this, we separate the input data according to
the stages so that each stage can do its own computation
independently. Then we merge the outputs of the three stages
to get the final verification result for each expansion.

More specifically, the input data of the path validity check
module is separated into path pi, successor si, and barrier
bi, as illustrated in Fig. 7. In this design, we send pi and
si to the target check and visited check stage, and send pi
and bi to the barrier check stage. Consequently, there are no
data dependencies among the stages. We also apply dataflow
optimization to the stages, suggesting that each stage can start
its computation once it receives input data without waiting for
the previous stage to finish. As a result, the three stages can be
executed in parallel. All we need to do is merge the validity
check results of the three stages, which improves the overall
performance of PEFP.

VII. EXPERIMENT

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of our proposed algorithm
PEFP. As discussed in Section II, none of the related FPGA
works can be directly adapted to solve s-t k-path enumeration

problem. Moreover, JOIN is the state-of-the-art algorithm
based on DFS paradigm, and it is non-trivial to implement
a parallel version of JOIN either on multi-core CPUs or
on FPGA. Therefore, in this paper, we address the original
JOIN algorithm as the baseline solution, and we compare the
performance of PEFP with JOIN on a wide range of datasets.

A. Experiment Setup

Settings. All experiments are conducted on a Ubuntu 16.04
machine, with 250GB memory, 10TB disk and 2 Intel Xeon
CPUs (E5-2620 v4 2.10GHz, 8 cores). The proposed FPGA-
based algorithm PEFP is implemented on Xilinx Alveo U200
card 2 using Xilinx SDAccel 3, where the FPGA card is
equipped with 4 × 16GB off-chip DRAMs and runs at
300MHz. The code of JOIN is obtained from the authors in [5],
which is implemented in standard C++ and compiled with g++
5.5.0 4.
Datasets. All datasets are downloaded from two public web-
sites: Konect 5 and SNAP 6. TABLE II demonstrates detailed
data descriptions. Note that davg denotes the average degree,
D denotes the diameter and D90 denotes the 90-percentile
effective diameter of the graph.
Metrics. We randomly generate 1,000 query pairs {s, t} for
each dataset with hop constraint k, where the source vertex
s could reach target vertex t in k hops. We then evaluate the
average running time of the 1,000 queries, where each query’s
running time is obtained from an average of three runs. Note
that for better presentation, we carefully set the range of k for
each dataset based on its topology. For instance, k is set from
8 for Amazon, which is a rather sparse graph. Moreover, for
each dataset, we have evaluated the time it takes to transfer
the 1,000 queries and their corresponding data graphs (after
preprocessing) from the host to FPGA DRAM at once, which
is around 100ms∼300ms. Hence, the average transfer time
for each query is around 0.1ms∼0.3ms, which can be ignored
as the preprocessing time in host and query processing time
on FPGA would dominate. We denote query preprocessing
time as T1, query processing time as T2, and total time as
T = T1 + T2. We evaluate T1, T2, and T for both PEFP
and JOIN, where the preprocessing of JOIN is introduced in
Section V.

B. Evaluate Query Processing Time

In this experiment, we evaluate the query processing time
of PEFP and JOIN on all 12 datasets by varying the hop
constraint k, which is illustrated in Fig. 8. The blue dotted
line in that figure represents the speedup of PEFP over JOIN,
which is same as the remaining experiments. We set the query
time of an algorithm to INF if it cannot finish in 10,000
seconds.
(1) Effect of k. The results shown in Fig. 8 indicate that
PEFP’s query processing time outperforms JOIN on all
datasets for fixed k. It is not surprising that the time grows

2https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
3https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
4JOIN’s source code: https://github.com/zhengminlai/JOIN
5http://konect.uni-koblenz.de/networks/
6http://snap.stanford.edu/data/

JOIN PEFP

8 9 10 11 12 13

100

101

INF
T(ms)

7

10

13

16

19
Speedup

(a) Amazon
3 4 5 6

100
101
102
103
104
105
106INF

T(ms)

60

220

380

540

700
Speedup

(b) WikiTalk
5 6 7 8 9

100

101
102
103

104
105INF

T(ms)

15

47

80

112

145
Speedup

(c) Skitter
5 6 7 8

100

101

102

103
INF

T(ms)

78

218

359

499

640
Speedup

(d) twitter-social

3 4 5 6 7

100

101
102
103

104
105INF

T(ms)

8

10

13

15

18
Speedup

(e) Baidu
5 6 7 8

100

101
102
103

104
105INF

T(ms)

8

11

15

19

23
Speedup

(f) BerkStan
3 4 5 6

100

101
102
103

104
105INF

T(ms)

13

44

76

107

139
Speedup

(g) soc-Epinions1
4 5 6 7 8

100

101
102
103

104
105INF

T(ms)

9
10

12

14

16
Speedup

(h) web-google

3 4 5 6

100

101

102

103

104
INF

T(ms)

13

56

99

142

186
Speedup

(i) LiverJournal
5 6 7 8

100

101
102
103

104
105INF

T(ms)

7

10

13

16

19
Speedup

(j) Reactome
3 4 5 6

100
101
102
103
104
105
106INF

T(ms)

33

84

136

188

240
Speedup

(k) Slashdot0902
3 4 5 6

100

101

102

103

104
INF

T(ms)

29

62

95

128

161
Speedup

(l) DBpedia

Fig. 8. Query Processing Time of Tuning k for All Datasets

JOIN PEFP

8 9 10 11 12 13

100

101

102

103
INF

T(ms)

492

493

495

496

498
Speedup

(a) Amazon
3 4 5 6

100

101

102

103

104
INF

T(ms)

5

28

52

76

100
Speedup

(b) WikiTalk
5 6 7 8 9

100

101

102

103

104
INF

T(ms)

12

24

36

48

60
Speedup

(c) Skitter
5 6 7 8

100

101

102

103
INF

T(ms)

21

54

88

121

155
Speedup

(d) twitter-social

Fig. 9. Preprocessing Time of Tuning k for Different Datasets

JOIN PEFP

8 9 10 11 12 13

100

101

102

103
INF

T(ms)

310

340

371

401

432
Speedup

(a) Amazon
3 4 5 6

100
101
102
103
104
105
106INF

T(ms)

31

56

82

107

133
Speedup

(b) WikiTalk
5 6 7 8 9

100

101
102
103

104
105INF

T(ms)

13

25

37

49

62
Speedup

(c) Skitter
5 6 7 8

100

101

102

103

104
INF

T(ms)

34

63

93

122

152
Speedup

(d) twitter-social

Fig. 10. Total Time of Tuning k for Different Datasets

exponentially w.r.t k as s-t k-path number grows exponentially
w.r.t k [5]. However, this does not hold for Amazon (Fig. 8(a))
– the time only grows marginally w.r.t k. An explanation would
be that Amazon is an extremely small and sparse graph, and
hence the number of reported results would be too small to
see significant changes of query time when tuning k. Note that
in BerkStan (Fig. 8(f)), the query time of k = 7 is almost the
same as the one of k = 8. This makes sense as we find their
reported number of paths are on the same order of magnitude,
which is 106. The same explanation can be applied to WikiTalk
(Fig. 8(b)) with k = 5 and k = 6.

From the perspective of the acceleration ratio (or speedup)
w.r.t k, there are some interesting findings from inspecting

Fig. 8. For most graphs like Amazon, Baidu, BerkStan and
Reactome, the acceleration ratio remains rather stable, which
is around 10× to 20× speedup. Note that the greatest differ-
ence between JOIN and PEFP is that JOIN is a DFS-based
algorithm with carefully designed pruning technique BC-DFS,
while PEFP is a BFS-based parallel algorithm on FPGA with
a less delicate pruning technique (e.g., barrier check shown
in VI). When k is small, query processing is dominated by
the expansion rather than the verification procedure, where
the expansion can be fully pipelined in PEFP. Therefore, a
substantial speedup can be observed when k is small in most
graphs (e.g., > 600× speedup in WikiTalk with k = 3).

Another intriguing fact, as illustrated in Fig. 8(d), is the

speedup of twitter-social tends to increase when k ranges from
5 to 8. This is because twitter-social is a graph with a very low
diameter, which is 4.96 for 90% of the graph as demonstrated
in TABLE II. Nevertheless, the minimal k set in twitter-social
is 5, thus the pruning power of both JOIN’s BC-DFS and
PEFP’s barrier check is almost zero. Under such condition,
the query time is dominated by expansion; hence PEFP shows
its considerable superiority over JOIN. We can explain the
dramatic upsurge of speedup in Skitter from k = 5 to k = 6
in similar way; that is, as the D90 of Skitter is 5.85, the pruning
power of BC-DFS becomes rather weak when k changes from
5 to 6.
(2) Effect of Dataset. It is apparent that for a given k, the
query processing time varies in datasets with different graph
topologies. What stands out in Fig. 8 is that twitter-social’s
query time is much more than Amazon’s (e.g., k = 8).
Although their numbers of vertices and edges are similar ac-
cording to TABLE II, the diameter of Amazon is 44 while the
diameter of twitter-social is only 8. This implies that twitter-
social is a graph with considerable local density. Consequently,
for a given k, the query time of twitter-social is much more
than that of Amazon. However, the speedup in Amazon is
significantly less than that in twitter-social. The reason is that
the number of intermediate results in Amazon is too low to
observe a substantial acceleration ratio. The same explanation
can be applied to Skitter with k = 5.

Baidu is a smaller dataset with similar average degree
compared to Skitter. Nevertheless, for a given k (e.g., k = 6),
the query time of Baidu is much more than Skitter’s. This is
because there exist some extremely dense subgraphs in Baidu.
In addition, the acceleration ratio of Baidu is less competitive
than Skitter’s, suggesting that PEFP tends to have a greater
speedup in sparse graphs than in dense graphs. A possible
reason is that the pruning power of JOIN is stronger in dense
graphs, which tames the acceleration ratio brought by the
parallelism of PEFP.

Overall, benefited from the huge parallelism offered by
FPGA and the reduced search space by induced subgraph,
PEFP outperforms JOIN by more than 1 order of magnitude
by average, and up to 2 orders of magnitude in query process-
ing time.

C. Evaluate Query Preprocessing Time

In Fig. 9, we evaluate the query preprocessing time of PEFP
and JOIN by varying the hop constraint k on four datasets
with different topologies, namely Amazon, WikiTalk, Skitter
and twitter-social.

Fig. 9 shows that PEFP outperforms JOIN in all datasets
w.r.t k. Particularly, in Fig. 9(a), PEFP is 495× faster than
JOIN by average, and the acceleration ratio does not change
dramatically as k increases. The main reason is that Amazon
is a very small and sparse graph, and minor tuning of k does
not affect the preprocessing time of both JOIN and PEFP
in such graphs. In addition, it is reported in Fig. 9(a) that
JOIN’s complicated preprocessing procedures are rather costly
in small and sparse graphs compared with PEFP.

As shown in Fig. 9(b), Fig. 9(c), and Fig. 9(d), we can
expect more than 10× acceleration ratio on average. Specif-
ically, PEFP can achieve more than 100× speedup when k

is small(e.g., k = 5 in Fig. 9(d)), since JOIN’s preprocessing
cost is much more expensive than PEFP’s in this case. Fur-
thermore, the acceleration ratio of the three datasets tends to
decrease w.r.t k, for JOIN’s preprocessing time w.r.t k is more
stable than PEFP in these datasets. Nevertheless, JOIN fails
to outperform PEFP as its preprocessing needs to perform k-
hop BFS and expensive set intersections in computing middle
vertices cut [5], while PEFP only needs to perform (k − 1)-
hop BFS as introduced in Section V. As a result, PEFP
outperforms JOIN by more than 1 order of magnitude by
average, and up to 2 orders of magnitude in preprocessing
time.

D. Evaluate Total Time
In this subsection, we evaluate the total running time of

a given query, where the total time is the sum of query
preprocessing and query processing time. As shown in Fig. 10,
we investigate the total time of PEFP and JOIN by varying the
hop constraint k on four datasets, namely Amazon, WikiTalk,
Skitter and twitter-social. Then we report the total time of all
datasets with k = 5 in Fig. 11, where the white part represents
query processing time, and the grey part denotes preprocessing
time.
(1) Effect of k. In Fig. 10, we report the total time of JOIN
and PEFP on four datasets by varying k. The acceleration
ratio of Amazon tends to decrease when k ranges from 10 to
13. This makes sense as PEFP’s total time w.r.t k grows faster
than JOIN’s in an extremely sparse graph. For the other three
datasets, a similar trend of speedup is observed. Particularly,
the speedup is substantial with a small k. Nevertheless, when k
increases, the speedup tends to first decrease, and then remain
stable. This is because when k is small, the total time of JOIN
is dominated by preprocessing time, and hence we can expect a
considerable speedup as discussed in Section VII-C. However,
this significant advantage brought by preprocessing will be
paid off by query processing when increasing k.
(2) Effect of Dataset. The total time of all datasets is
illustrated in Fig. 11. We set k = 8 for Amazon and twitter-
social to achieve similar performance with other graphs while
k = 5 for the remaining graphs. What stands out in Fig. 11
is that both JOIN and PEFP’s total time are dominated by
preprocessing time in sparse graphs like Amazon and Skitter,
while the total time of JOIN in twitter-social is dominated by
query processing time because of the dataset’s local density
topology. It is worth mentioning that the graph density is a
key factor influencing total time – when the graph is sparse,
the total time is dominated by preprocessing time, and vice
versa.

In short, the results in this experiment show that PEFP
outperforms JOIN by more than 1 order of magnitude by
average, and up to 2 orders of magnitude in total time.

E. Evaluate Efficiency of Pre-BFS

As demonstrated in Fig. 12, we evaluate the efficiency of our
proposed preprocessing algorithm Pre-BFS on BerkStan and
Baidu, where PEFP-No-Pre-BFS denotes the PEFP algorithm
without Pre-BFS. It is shown that Pre-BFS can achieve 3× to
9× speedup in the two datasets. As we mentioned in Section V
and Section VI, Pre-BFS can improve the performance of

JOIN PEFP

AM TS SK WG

100

101

102

103

104
INF

T(ms)

(a) Dataset Group 1
SE BD LJ RT

100

101
102
103

104
105INF

T(ms)

(b) Dataset Group 2
BS SD DP WT

100

101
102
103

104
105INF

T(ms)

(c) Dataset Group 3

Fig. 11. Average Total Time of All Datasets with k = 5

PEFP-No-Pre-BFS PEFP

5 6 7 8

100

101
102
103

104
105INF

T(ms)

3
4

6

8

10
Speedup

(a) BerkStan
5 6 7 8

100

101
102
103

104
105INF

T(ms)

33

4

5

66
Speedup

(b) Baidu

Fig. 12. Evaluation of Pre-BFS Technique Tuning k

Dataset l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
Baidu 3117 17346 10033 4522 1064 0

BerkStan 9374 14376 10678 7991 5114 0
WikiTalk 52498 103544 63935 13207 1198 0

LiveJournal 276802 351396 299003 165018 11027 0

TABLE III
NUMBER OF NEWLY GENERATED INTERMEDIATE PATHS WHEN DOING

ONE-HOP EXPANSION WITH 1,000 PATHS FOR DIFFERENT PATH LENGTH l
WITH k = 8

PEFP in two ways. First, it significantly reduces the search
space by removing invalid nodes that will not be contained
in any s-t k-path. Second, the subgraph it extracts is much
smaller than the original graph, making it possible for FPGA
to cache the whole subgraph on BRAM; thus, it is necessary
to apply Pre-BFS optimization for s-t k-path enumeration.

F. Evaluate Efficiency of Batch-DFS

(1) Number of Intermediate Paths. To better illustrate the
intuition of Batch-DFS, for each path length l ∈ [2, k − 1]
(we set k to 8 in this experiment), we randomly pick 1,000
paths to do one-hop expansion and evaluate the number of
newly generated intermediate paths on four datasets – Baidu,
BerkStan, WikiTalk and LiveJournal. The experimental results
are presented in TABLE III, which shows that given k = 8, for
two small path lengths l1 = 2, l2 = 3, the number of newly
produced paths tends to increase. We attribute this to the fact
that, when l is small, the pruning power of path length is rather
weak, while the chance of touching the high degree nodes

PEFP-No-Batch-DFS PEFP

5 6 7 8

100

101
102
103

104
105INF

T(ms)

3

5

7

9

11
Speedup

(a) BerkStan
5 6 7 8

100

101
102
103

104
105INF

T(ms)

11

2

3

44
Speedup

(b) Baidu

Fig. 13. Evaluation of Batch-DFS Technique Tuning k

PEFP-No-Cache PEFP

5 6 7 8

100

101
102
103

104
105INF

T(ms)

2

3

4

5

6
Speedup

(a) Reactome
5 6 7 8

100

101

102

103

104
INF

T(ms)

2222

3333
Speedup

(b) web-google

Fig. 14. Evaluation of Caching Technique Tuning k

tends to increase w.r.t l. Nevertheless, the pruning power of
hop constraint is getting stronger when l becomes large – the
number of newly generated paths tends to decrease when l >
3. Specifically, it will generate 0 intermediate paths when l =
k−1 = 7. Therefore, the experimental results demonstrate the
effectiveness of Batch-DFS which follows the art of “always
process a batch of the longest paths first” to save memory.
(2) Query Time. The efficiency evaluation of our proposed
Batch-DFS technique on BerkStan and Baidu is shown in
Fig. 13, where PEFP-No-Batch-DFS denotes the PEFP al-
gorithm without Batch-DFS. Instead, we use First-In-First-Out
(FIFO) batching order to replace Batch-DFS, which is “always
process a batch of the shortest paths first”. The results in that
figure show that Batch-DFS can achieve 2× to 10× speedup.
Moreover, we can see that the speedup for BerkStan is higher
than Baidu’s. This is reasonable as the number of intermediate
results of BerkStan is larger than Baidu’s, which brings more
I/O cost without Batch-DFS.

G. Evaluate Efficiency of Caching

In Fig. 14, we evaluate the efficiency of our proposed
caching techniques on Reactome and web-google, where we
use PEFP-No-Cache to denote the PEFP algorithm without
caching techniques. It is shown that caching can achieve more
than 2× speedup by average, and up to 6× speedup for PEFP-
No-Cache. It is worth mentioning that caching results in better
speedup in Reactome than in web-google. This makes sense
as Reactome is a much denser graph than web-google, which
incurs more vertex and edge data accesses to DRAM; hence
its performance is significantly affected.

H. Evaluate Efficiency of Data Separation

As illustrated in Fig. 15, we evaluate the efficiency of
our proposed data separation technique on Reactome and
web-google, where PEFP-No-DataSep denotes the PEFP
algorithm without data separation technique. The results in
that figure show that data separation can achieve up to 3×

PEFP-No-DataSep PEFP

5 6 7 8

100

101
102
103

104
105INF

T(ms)

11

22

33
Speedup

(a) Reactome
5 6 7 8

100

101

102

103

104
INF

T(ms)

11

22

33
Speedup

(b) web-google

Fig. 15. Evaluation of Data Separation Technique Tuning k

speedup. This is because data separation enables dataflow
optimization for the path verification module such that its inner
stages can be executed in parallel, which improves the overall
performance.

VIII. CONCLUSION

In this paper, we propose the first FPGA-based algorithm
PEFP to efficiently solve the s-t k-path enumeration problem.
On the host side, we develop the preprocessing algorithm Pre-
BFS to reduce the search space. On the FPGA side, we first
propose a novel DFS-based batching and caching technique to
improve the system latency by reducing read/write operations
from/to FPGA DRAM. Then, a data separation technique for
the path verification module is developed, which enables its
inner stages to be executed in parallel. We conduct extensive
experiments on 12 real-world datasets, whose results show
that PEFP outperforms the state-of-the-art algorithm JOIN by
more than 1 order of magnitude by average, and up to 2 orders
of magnitude in terms of preprocessing time, query processing
time and total time, respectively.

ACKNOWLEDGMENT

Zhengmin Lai is supported by The National Key R&D
Program of China under grant 2018YFB1003504. Xuemin
Lin is supported by The National Key R&D Program of
China under grant 2018YFB1003504, NSFC61232006, ARC
DP200101338, ARC DP180103096 and ARC DP170101628.
Wenjie Zhang is supported by ARC DP200101116 and
DP180103096. Shiyu Yang is supported by NSFC61802127
and Shanghai Sailing Program 18YF1406700.

REFERENCES

[1] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient proba-
bilistic k-core computation on uncertain graphs,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, 2018,
pp. 1192–1203.

[2] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient (α,
β)-core computation in bipartite graphs,” VLDB J., vol. 29, no. 5, pp.
1075–1099, 2020.

[3] Y. Peng, Y. Zhang, X. Lin, L. Qin, and W. Zhang, “Answering billion-
scale label-constrained reachability queries within microsecond,” Pro-
ceedings of the VLDB Endowment, vol. 13, no. 6, pp. 812–825, 2020.

[4] L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang, K. Hao, X. Lin, L. Qin,
W. Zhang et al., “Distributed subgraph matching on timely dataflow,” in
Proceedings of the VLDB Endowment, vol. 12, no. 10, pp. 1099–1112,
2019.

[5] Y. Peng, Y. Zhang, X. Lin, W. Zhang, L. Qin, and J. Zhou, “Towards
bridging theory and practice: hop-constrained st simple path enumera-
tion,” in International Conference on Very Large Data Bases. VLDB
Endowment, 2019.

[6] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou, “Real-
time constrained cycle detection in large dynamic graphs,” PVLDB,
vol. 11, no. 12, pp. 1876–1888, 2018.

[7] F. Chung, L. Lu, and V. Vu, “Eigenvalues of random power law graphs,”
Annals of Combinatorics, vol. 7, no. 1, pp. 21–33, 2003.

[8] M. Besta, D. Stanojevic, J. D. F. Licht, T. Ben-Nun, and T. Hoefler,
“Graph processing on fpgas: Taxonomy, survey, challenges,” arXiv
preprint arXiv:1903.06697, 2019.

[9] Xilinx, “https://www.xilinx.com/products/boards-and-kits/alveo.html.”
[10] D. Yue, X. Wu, Y. Wang, Y. Li, and C. Chu, “A review of data mining-

based financial fraud detection research,” in International Conference
on Wireless Communications, Networking and Mobile Computing, 10
2007, pp. 5519 – 5522.

[11] M. Kimura and K. Saito, “Tractable models for information diffusion in
social networks,” in European conference on principles of data mining
and knowledge discovery. Springer, 2006, pp. 259–271.

[12] U. Leser, “A query language for biological networks,” Bioinformatics,
vol. 21, pp. ii33–9, 10 2005.

[13] R. Rizzi, G. Sacomoto, and M. Sagot, “Efficiently listing bounded length
st-paths,” in IWOCA, 2014, pp. 318–329.

[14] R. Grossi, A. Marino, and L. Versari, “Efficient algorithms for listing k
disjoint st-paths in graphs,” in Latin American Symposium on Theoretical
Informatics. Springer, 2018, pp. 544–557.

[15] K. Böhmová, L. Häfliger, M. Mihalák, T. Pröger, G. Sacomoto, and
M.-F. Sagot, “Computing and listing st-paths in public transportation
networks,” Theory of Computing Systems, vol. 62, no. 3, pp. 600–621,
2018.

[16] D. E. Knuth, The Art of Computer Programming, Volume 4A: Combi-
natorial Algorithms. Addison-Wesley Professional, 2011.

[17] N. Yasuda, T. Sugaya, and S. Minato, “Fast compilation of s-t paths
on a graph for counting and enumeration,” in Proceedings of the 3rd
Workshop on Advanced Methodologies for Bayesian Networks, AMBN,
2017, pp. 129–140.

[18] E. Birmelé, R. A. Ferreira, R. Grossi, A. Marino, N. Pisanti, R. Rizzi,
and G. Sacomoto, “Optimal listing of cycles and st-paths in undirected
graphs,” in SODA, 2013, pp. 1884–1896.

[19] G. L. D. and K. N. P., “Identifying certain types of parts of a graph
and computing their number,” Ukrainian Mathematical Journal, vol. 24,
no. 3, pp. 313–321, 1972.

[20] P. Giscard, N. Kriege, and R. C. Wilson, “A general purpose algorithm
for counting simple cycles and simple paths of any length,” CoRR, vol.
abs/1612.05531, 2016.

[21] Z. Gotthilf and M. Lewenstein, “Improved algorithms for the k simple
shortest paths and the replacement paths problems,” Information Pro-
cessing Letters, vol. 109, no. 7, pp. 352–355, 2009.

[22] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
Management Science, vol. 17, no. 11, pp. 712–716, 1971.

[23] J. C. Rivera, H. M. Afsar, and C. Prins, “Mathematical formulations and
exact algorithm for the multitrip cumulative capacitated single-vehicle
routing problem,” European Journal of Operational Research, vol. 249,
no. 1, pp. 93–104, 2016.

[24] N. Shi, S. Zhou, F. Wang, Y. Tao, and L. Liu, “The multi-criteria
constrained shortest path problem,” Transportation Research Part E:
Logistics and Transportation Review, vol. 101, pp. 13–29, 2017.

[25] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k shortest paths
with diversity,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 3, pp. 488–502, 2017.

[26] L. Talarico, K. Sörensen, and J. Springael, “The k-dissimilar vehicle
routing problem,” European Journal of Operational Research, vol. 244,
no. 1, pp. 129–140, 2015.

[27] M. Tommiska and J. Skyttä, “Dijkstra’s shortest path routing algorithm
in reconfigurable hardware,” in International Conference on Field Pro-
grammable Logic and Applications. Springer, 2001, pp. 653–657.

[28] S. Zhou, C. Chelmis, and V. K. Prasanna, “Accelerating large-scale
single-source shortest path on fpga,” in 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop. IEEE, 2015, pp.
129–136.

[29] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff, and P. Sadayap-
pan, “Parallel fpga-based all-pairs shortest-paths in a directed graph,” in
Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium. IEEE, 2006, pp. 10–pp.

[30] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk, “Parallel fpga-based
all pairs shortest paths for sparse networks: A human brain connectome
case study,” in 22nd International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2012, pp. 99–104.

[31] Compressed sparse row, “https://en.wikipedia.org/wiki/sparse matrix.”

	I Introduction
	II Related Work
	II-A Simple Path Enumeration and Counting
	II-B Shortest Path Enumeration
	II-C Shortest Path Computation on FPGA

	III Preliminary
	III-A Problem Definition
	III-B Existing Solutions

	IV Framework Overview
	V Software Preprocessing
	VI Hardware Implementation
	VI-A PEFP
	VI-B DFS-based Batch Processing with Caching
	VI-C Basic Pipeline of Verification
	VI-D Optimized Pipeline of Verification by Data Separation

	VII Experiment
	VII-A Experiment Setup
	VII-B Evaluate Query Processing Time
	VII-C Evaluate Query Preprocessing Time
	VII-D Evaluate Total Time
	VII-E Evaluate Efficiency of Pre-BFS
	VII-F Evaluate Efficiency of Batch-DFS
	VII-G Evaluate Efficiency of Caching
	VII-H Evaluate Efficiency of Data Separation

	VIII Conclusion
	References

