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Abstract—Viral marketing on social networks, also known
as Influence Maximization (IM), aims to select k users for the
promotion of a target item by maximizing the total spread of their
influence. However, most previous works on IM do not explore
the dynamic user perception of promoted items in the process. In
this paper, by exploiting the knowledge graph (KG) to capture
dynamic user perception, we formulate the problem of Influence
Maximization based on Dynamic Personal Perception (IMDPP)
that considers user preferences and social influence reflecting
the impact of relevant item adoptions. We prove the hardness of
IMDPP and design an approximation algorithm, named Dynamic
perception for seeding in target markets (Dysim), by exploring the
concepts of dynamic reachability, target markets, and substantial
influence to select and promote a sequence of relevant items. We
evaluate the performance of Dysim in comparison with the state-
of-the-art approaches using real social networks with real KGs.
The experimental results show that Dysim effectively achieves
up to 6.7 times of influence spread in large datasets over the
state-of-the-art approaches.

Index Terms—influence maximization, multiple promotions,
item relationships, dynamic personal perceptions

I. INTRODUCTION

Social influence [1], [2], [3] refers to the impact of a social
environment on people’s behavior. By exploiting the social
influence of users, a wide spectrum of applications (e.g.,
item promotion and viral marketing) have been formulated
as various research problems, such as influence maximization
(IM) [1], revenue maximization (RM) [2], and profit maxi-
mization (PM) [3]. Among them, IM selects k users as the
seeds to promote one target item to maximize the number of
influenced users. Nevertheless, in real life, companies often
promote relevant items in multiple events, e.g., Apple Inc.
usually promotes iPhones, AirPods, and iPads in September,
followed by a series of subsequent promotions.1 In this work,
we address a new IM problem formulated for a sequence of
promotions on relevant items.2

For multiple promotions, exploring the dynamic changes in
personal perceptions on promoted items is important, since
users’ perceptions of item relationships may vary according

1https://www.apple.com/apple-events/.
2After the influence propagation of the seed group for the first promotion

finishes, the second follows, and so on.

to the changes in users’ demand indicated by research in the
marketing field [4]. First, the complementary and substitutable
relationships between items affect users’ preferences on items
[4], [5], [6]. In economics, cross elasticity of demand [7] indi-
cates that adopting complementary items of an item increases
the preference for it, while adopting its substitutable items has
the opposite effect. For example, users who own iPhones with
no headphone jack may be interested in AirPods (due to its
complementary relationship with iPhones),3 while users who
have iPhones may have less interest in iPads (due to their
substitutable relationship). Second, the association between
items may trigger extra adoptions without promotions [8], [9].
For example, AirPods may be directly adopted together with
iPhones due to their complementary relationship.

Third, the perceptions of these relationships between items
are usually personal and dynamic [4], [10], [11], as the items
got newly adopted usually bring fresh experiences to users.
For example, users who care more about large screens than
mobility may treat iPhones as substitutable items of iPads;
when these iPad users start to care about the mobility, they may
tend to regard iPhones as complementary items of iPads. In
turn, the changes in personal perceptions of item relationships
lead to changes in users’ preferences. Fourth, the dynamic
personal perceptions of item relationships also affect users’
social influence strength over friends, since friends adopting
similar items and sharing similar perceptions tend to become
closer [12], [13], [14], [15]. To address IM in a sequence
of promotions on relevant items, it is essential to carefully
examine dynamic personal perceptions of item relationships,
together with their ripple effect on personal preferences for
items, social influence strength, and item associations.

Knowledge graph (KG) (along with weighted meta-graphs)
to capture the relationships (e.g., the complementary and
substitutable relationships) has been well-explored in recom-
mendation systems [16], [10], [11], [17], [18]. As illustrated
in Fig. 1, KG represents facts (e.g., ITEM iPhone and ITEM
AirPods SUPPORT the FEATURE Bluetooth in Fig. 1(a)), while
meta-graphs capture relationships in the KG (e.g., m1 in

3A real example is in https://amzn.to/2Zl23oT.
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Fig. 1. (a) A tiny KG describing facts about the iPhone, AirPods, wireless
charger, and charging cable. (b) Three meta-graphs specifying the comple-
mentary relationship. (c) Bob’s initial personal item network, where a dotted
edge denotes a complementary relationship. (d) Update of Bob’s personal item
network: after adopting iPhone and AirPods, Bob’s weightings on m1 and
m2 grow, which increases the relevance scores between iPhone, AirPods, and
the wireless charger.

Fig. 1(b) describes two ITEMs SUPPORTing the same FEATURE
are complementary). Note that these meta-graphs can be used
to reflect the perception of item relationships, in forms of
personal item network, for each individual. The personal
weighting on each meta-graph describes the significance of
this meta-graph to an individual (e.g., the values next to
m1, . . . ,m3 in Fig. 1(c)), while the relevance scores between
items describe the strength of their relationships in the mind
of this individual [10], [11] (e.g., the values on dotted edges
in Fig. 1(c)). By adjusting the weightings on meta-graphs
according to previous adoptions [10], [11], dynamic personal
perceptions of item relationships in individual users can be up-
dated (in Fig. 1(d)). In this paper, we aim to leverage dynamic
personal item networks for a sequence of IM promotions.

Following up the example in Fig. 1, Fig. 2 illustrates the
IM process considering dynamic personal perceptions of item
relationships, personal preferences for items, social influence
strength, and item associations. As shown, the number of
hearts indicates Bob’s preference for a not-yet-adopted item,
and a solid arrow represents the social influence between users
(thickness implies strength). After Bob is promoted iPhone
by Alice, Bob’s purchase decision depends not only on the
influence strength from Alice but also on his own preference
for iPhone (in Fig. 2(a)). Meanwhile, item associations usually
trigger extra adoptions of relevant items, such as AirPods,
according to Bob’s item network (in Fig. 1(c)). After Bob
purchases iPhone and AirPods, his perception of the comple-
mentary relationship changes (i.e., he becomes to regard items
supporting common features or belonging to the same brand
as complementary), which increases the relevance between
iPhone, AirPods, and the wireless charger (in Fig. 1(d)).
After that, as Bob has adopted iPhone and AirPods, and their
relevance to the wireless charger increases, Bob’s preference

Adopted
Alice
Bob

Cindy

Bob

Alice

Cindy

(a)

Adopted
Alice
Bob

Cindy

Bob

Alice

Cindy

(b)

Fig. 2. Illustration of the IMDPP problem. (a) The states before Bob adopts
iPhone and AirPods. (b) The states after Bob adopts iPhone and AirPods.

for the wireless charger grows accordingly.4 Moreover, if
Cindy acts as a seed to promote the wireless charger, as Bob
and Cindy have similar adopted items (in Fig. 2(b)) (indicating
Bob shares a similar perception of item relationships with
Cindy and tends to behave similarly with Cindy), the influence
strength from Cindy to Bob thus becomes stronger. It is easier
for Cindy to promote the wireless charger to Bob now, since
both Cindy’s influence strength to Bob and Bob’s preference
for the wireless charger increase.

To incorporate factors depicted in the example above, sev-
eral new challenges arise. (i) Propagation of item impact (i.e.,
impact due to item adoption): Item adoptions change users’
personal perceptions of item relationships, their preferences for
other items, their strength of social influence among friends,
and the item associations. In other words, the promotion of an
item may affect the adoptions of subsequent items and thereby
the planning for the next promotions. The order of items
being promoted matters. (ii) Antagonism of the substitutable
relationship: Promoting an item after adopting a substitutable
item is not beneficial when the first item has met the users’
needs. It is thus vital to avoid promoting substitutable items to
the same users in consecutive promotions. (iii) Determination
of promotional timing: As the promotions are dependent on
previous ones, a seed in early promotions should facilitate
subsequent promotions, while a seed in later promotions
should focus on potential adoptions benefited from previous
promotions. Therefore, determining the proper promotional
timing for each seed is essential.

In this work, we formulate a new problem, named Influence
Maximization based on Dynamic Personal Perception (referred
to as IMDPP). In contrast to most previous works [19], [20],
[21] focusing on one item, given the social network, KG, and
meta-graphs for different item relationships, IMDPP targets
on multiple promotions to maximize the overall spread of
influence by choosing items and selecting seed users for
promotion at proper timings under a total budget, where
users have different costs as seeds [3], and each promotion
allows multiple items to be promoted. We exploit personal
item networks to capture dynamic personal perceptions of
complementary and substitutable relationships between items.
The adoptions of items dynamically adjust users’ weightings
on meta-graphs, reflecting dynamic personal perceptions and
updating personal item networks. Also, users’ preferences for
other items, their social influence strength over friends, and
the item associations change accordingly, in turn affecting
other users’ adoptions, their personal weightings on meta-

4A real example is in https://amzn.to/3fW7JLC.

https://amzn.to/3fW7JLC


graphs, their preferences for other items, their social influence
strength, and the item associations in a ripple effect.

We prove that IMDPP is NP-hard and inapproximable
within O( 1

|V |1−ε ), where |V | is the number of users and ε

is an arbitrarily small constant. We design an approximation
algorithm, named Dynamic perception for seeding in target
markets (Dysim), to tackle the above challenges of IMDPP.
For the first challenge in the propagation of item impacts,
Dysim introduces dynamic reachability to evaluate the impacts
from previously promoted items on the currently chosen item,
as well as the potential impact from the current item on
any candidate item in subsequent promotions. For the second
challenge in the antagonism of the substitutable relationship,
Dysim identifies target markets to promote complementary
items to socially close users in consecutive promotions. For the
third challenge in determining the promotional timing, Dysim
introduces substantial influence to evaluate both immediate
and subsequent adoptions under the impact of a candidate
seed (assigned at some promotional timing). We evaluate the
performance of Dysim on real social networks with KGs, i.e.,
Amazon, Yelp, Douban, and Gowalla. The contributions of
this work include:
• To the best of our knowledge, IMDPP is the first attempt

to study the IM problem under a sequence of promotions
on relevant items, where the personal perceptions of
item relationships are dynamically captured from users’
previously adopted items by KG and meta-graphs, and
the changes in preferences for items, social influence
strength, and item associations are considered as a ripple
effect in the diffusion process.

• We prove that IMDPP is inapproximable within
O( 1
|V |1−ε ) even for a simple case with only the com-

plementary relationship and only one promotion.
• We design an approximation algorithm Dysim, which

plans a distinct effective promotional strategy for each
target market to avoid antagonism between substitutable
items. Dysim carefully examines the dynamic reachability
of items to prioritize the promotion of relevant items, and
evaluates the substantial influence of candidate seeds to
properly determine the promotional timing.

• Via real social networks and real KGs, experimental
results demonstrate that Dysim effectively achieve up to
6.7 times of the influence spread over the state-of-the-arts.

II. RELATED WORK

Influence maximization (IM) aims at maximizing the num-
ber of influenced users by selecting seed users. It was first
formulated as a discrete optimization problem and proved as
NP-hard by Kempe et al. [1]. In the work [1], they prove the in-
fluence maximization is NP-hard under the triggering models,
i.e., the Linear Threshold (LT) and Independent Cascade (IC)
diffusion models. The LT model considers a user’s threshold
and the weighted fraction of her all influenced friends as the
criterion to be influenced while the IC model treats every
influence independently with a probability. An influenced user
can then propagate influence to her friends, and the influence

thus diffuses until no user is newly influenced. Since then,
various issues in IM have been actively studied. To address
the inefficiency in computing influence spread, some exploit
the submodular property and certain heuristics [22], [23].
Recent works further introduce the reverse influence sampling
to approximate the influence with guarantees [24], [25]. In
addition, extensive research efforts study the maximization
of influence on target users [3], [26], at specified locations
[27], [28], for specific contents [29], [30], or at specific
time [31], [32]. IM for target users [3], [26] focuses on a
subset of users and even allows users to contribute different
benefits to the company. The location-based IM [27], [28]
takes locations of users and the promoted event into account.
As the geographical distance is an important constraint for
users, the probability to influence a user is affected by her
distance to the promoted event’s location. Different from [28]
focusing on the IC model, a variant of the IC model is
employed in [27], which considers the login event so that
the influence can be propagated to a friend only after she is
online with a login probability. In [33], [34], the reachability-
based diffusion process is regarded as generating a branching
tree from the seed to be the egocentric influence rings of the
root node (i.e., the seed). The influence is assumed to decay
along the path, and it is less likely to reach the nodes that
are farther away from the root. Recently, Huang et al. [19]
point out that users’ adopting probabilities of the promoted
item should depend on users’ previously adopted complemen-
tary and substitutable items (which is modeled as dynamic
preferences for items in IMDPP). However, [19] targets only
on a specified item in only one promotion with fixed item
relationships, whereas IMDPP explores multiple promotions
on relevant items and carefully examines the dynamic user per-
ceptions of item relationships. Although various issues, e.g.,
target audience, scalability, and complementary/substitutable
items, are studied, previous works [1], [3], [19], [23], [24]
promote only one target item in only a single promotion,
instead of multiple target items in multiple promotions, and
the phenomenon of dynamic personal perceptions of item
relationships together with its ripple effect are not considered.
By contrast, IMDPP aims at a sequence of promotions on
relevant items modeled by Knowledge Graph, where the item
relationships and promotional timings are able to alter users
adoption decisions.

Some studies investigate IM on promoting multiple target
items, e.g., making exclusive adoption among items [35],
avoiding spamming seeds by overwhelming promotions [36],
learning diffusion probabilities of different items [37], and
maximizing utility-based adoption among desired items [38].
However, they focus on a single promotion and do not con-
sider multiple promotions to promote a sequence of relevant
items modeled by KG and meta-graphs. Moreover, they study
the problems under simpler scenarios without capturing the
dynamic changes in personal perceptions of item relation-
ships, personal preferences for items, social influence strength,
and item associations. By contrast, in IMDPP, the adoption
of items dynamically changes the personal perceptions of



complementary and substitutable relationships between items.
The changed perceptions of item relationships affect users’
preferences for items and users’ social influence strength over
time, in turn affecting other users’ adoptions, their preferences
for other items, and their social influence strength as a ripple
effect. Therefore, the above works have limitations to IMDPP,
since the promotional timing is critical as users’ perceptions
of item relationships, preferences for items, and influence
strength on friends are dynamic.

Research on adaptive IM [39], [40], [41] aims to select
the seeds adaptively based on the adoptions in the previous
influence diffusion. However, although multiple promotional
timings are considered, they consider only one item in the IM
problem and ignore multiple target items, item relationships,
and dynamic preference for items. Moreover, adaptive IM
requires a predefined budget allocation to different promo-
tions, and it does not have the adaptive monotonicity and
the adaptive submodularity (or even the adaptive bounded
weak-submodularity).5 By contrast, IMDPP does not require
a predefined budget allocation to promotions and can be
solved by Dysim with an approximation guarantee (detailed
in Sec. IV-C).

Knowledge graph (KG) is employed to describe facts in
a wide spectrum of applications, e.g., relevance measures
and search [11], [17], and recommendation [10], [18]. Shi et
al. [10] present a new similarity measure through personal
weighted meta-paths to include different semantics of simi-
larity. Users’ own preferences can thus be derived from these
meta-paths. Gu et al. [11] point out that a user may have
different perceptions of similarity due to the change in her
interests. They propose to automatically pick up meta-paths
to best characterize the similarity by user-provided examples.
Huang et al. [17] further extend meta-paths to meta-graphs
to measure similarity with more complex connections. Note
that these works focus on predicting the ratings of unknown
items for users, which is essentially different from the IM
problem. Inspired by the above research, we first attempt
to incorporate the above relevance measurements and adopt
the above meta-graphs with dynamic personal weightings in
influence diffusion of multiple relevant items.

III. PROBLEM FORMULATION

To study various issues in multiple promotions of relevant
items, we first introduce four important factors, which can
be easily incorporated into existing diffusion models6 by
extending the diffusion process, to consider dynamic changes
in personal perceptions of item relationships [4], [10], [11]
and the ripple effect on personal preference for items [4], [5],
[6], [7], social influence strength [12], [13], [42], and item
associations [8], [9]. (1) Relevance measurement [10], [11],

5The adaptive monotonicity is a property that conditional expected marginal
adoptions of any item are non-negative. The adaptive submodularity (or
the adaptive bounded weak-submodularity) is the property that conditional
expected marginal adoptions of any fixed item do not increase (or boundedly
increase) as more items are selected and their states are observed.

6For example, triggering models [1], [39] and reachability-based influence-
diffusion models [34].

Adopted items

Personal item network
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(1) relevance measurement)

(4) Item associations

Preferences for items
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(2) preference estimation)

Social influence strength
(updated by 

(3) influence learning)

Fig. 3. Illustration of the two dependent factors.

[17], [18]: KG is leveraged to measure the relevance between
two items and find personal item networks, by learning the
personal weightings on meta-graphs from users’ previously
adopted items.7 (2) Preference estimation [16], [38], [47]:
Users’ preferences for not-yet-adopted items are derived and
updated based on previously adopted items and personal item
networks. (3) Influence learning [48], [49], [50]: The strength
of social influence between two users is inferred and updated
according to their similarity in adopted items and personal
item networks, since friends with similar backgrounds and
intentions usually become closer and more easily influence
each other [14], [15]. (4) Item associations [16], [37], [18],
[47]: When users are promoted and preferring the promoted
item, extra adoptions of relevant items are usually triggered
due to item associations based on users’ personal item net-
works and the probability of being promoted and preferring the
promoted item. The dependency of these factors is illustrated
in Fig. 3, while the discussion of deriving and updating them
is detailed in Sec. V-A. For ease of discussion, we summarize
the notations in Table I.

Accordingly, we elaborate on the diffusion process as fol-
lows. A campaign includes T promotions. The t-th promotion
contains multiple steps ζt = 0, 1, . . ., where each step rep-
resents an influence propagation from users adopting items
to their friends that haven’t adopted those items yet.8 As a
promotion depends on previous promotions, the initial state of
a user in the t-th promotion (i.e., adopted item, perceptions,
preference, and influence strength at ζt = 0) is the same as the
state at the end of the (t− 1)-th promotion, while the seeded
users in the t-th promotion newly adopt the promoted items
at ζt = 0. When the diffusion starts at step ζt ≥ 1, a user
u may be promoted x by any friend u′ who newly adopted
x at ζt − 1 only if u has not adopted x yet. The probability
that u will adopt x is derived according to the social influence
strength from u′ (denoted as pu′,u) and u’s preference for x
(denoted as Ppref(u, x, ζt − 1)), i.e., pu′,u × Ppref(u, x, ζt − 1)
[51]. In addition, being promoted x, u may further adopt x’s
relevant item y (not previously adopted by u) due to (4) item
associations, according to the probability of u being promoted

7Instead of KG, some lightweight alternatives, such as Tagging algo-
rithm [43], Sceptre [44], PMSC [45], and DecGCN [46] can also be adopted
to learn item relationships. Since the above works derive the item relationships
according to all users’ adoption history, the item network is no longer
personalized. When they are adopted in our problem, all personal item
networks will be identical.

8Note that ζt − 1 ≡ ζ last
t−1 if ζt = 0, where ζ last

t−1 is the last step of the
(t− 1)-th promotion.



and preferring x and the relationships between x and y.9

Then, at the end of this step, u’s personal perceptions of
item relationships (i.e., personal item network) are updated by
(1) relevance measurement (detailed in Sec. V-A) if u newly
adopts any item, while her preferences for not-yet-adopted
items and the influence strength also change accordingly by
(2) preference estimation and (3) influence learning (detailed
in Sec. V-A), respectively. If there is any new adoption at ζt,
the next step ζt + 1 starts with users having new adoptions at
ζt to promote their newly adopted items to their friends (who
have not yet adopted those items). In other words, the diffusion
of t-th promotion stops when no new adoptions happen since
users cannot be promoted the adopted items again. Thus, the
diffusion of the (t+ 1)-th promotion follows.

Based on the above diffusion process for relevant items in
multiple promotions, we aim to choose a number of items,
seed suitable users, and decide the proper timing, such that
the influence spread (defined below) is maximized. Formally,
S = {(u, x, t)} is a seed group, where a seed (u, x, t) indicates
that an item x is chosen for promotion starting at a seeded
user u in the decided t-th promotion.10 Let St ⊆ S denote
a subgroup of seeds chosen for the t-th promotion. We first
define the influence spread and then formulate the problem as
follows.

Definition 1 (Importance-aware influence function). Let wx
be the importance of an item x and T denote the num-
ber of promotions.11 For a seed group S, the influence
spread in the social network GSN = (V,E), denoted as
σGSN(S), is the expected adoptions (weighted by item impor-

tance) in all T promotions, i.e., σGSN(S) =
T∑
t=1

σGSN
t (St |

S1, S2, . . . , St−1) =
T∑
t=1

∑
x∈I

wxnx(St | S1, S2, . . . , St−1),

where nx(St | S1, S2, . . . , St−1) is the expected new adoptions
of x for St in the t-th promotion conditioned on S1, . . . , St−1

in previous promotions.12 (When GSN is clear from context, we
write σ(S) for short.)

Definition 2 (Influence Maximization based on Dynamic
Personal Perception (IMDPP)). Let mC and mS denote the
meta-graphs for describing the complementary and substi-
tutable relationships between items, respectively. Based on
the diffusion process described earlier, given a social network
GSN = (V,E), a KG GKG = (V, E ,Φ,Ψ), two sets of meta-
graphs {mC} and {mS}, a target item set I = {x} together
with its importance set W = {wx}, the cost cu,x of hiring a
user u ∈ V to promote an item x ∈ I , the budget b, and

9Note that the extra adoptions of x’s relevant items can be independent of
the adoption of x since item associations are inspired by the promotion of x
rather than the purchase decision of x.

10An item x can be assigned to multiple seeded users at multiple promo-
tions; each promotion can promote multiple chosen items by multiple seeded
users.

11Importance reflects how much items are valued in this campaign, e.g.,
higher-quality items in product lines usually have a greater importance [52].

12Following [1], [23], σ is estimated by the Monte Carlo method, which
simulates the influence diffusion of seeds according to the probabilities.

TABLE I
SUMMARY OF NOTATIONS.

Notation Description
Sec. III
ζt Step ζ of the t-th promotion
Ppref(u, y, ζt) u’s preference for y updated at ζt
Pact(u, v, ζt) u’s influence strength on v updated at ζt
Pext(u, u

′, x, y, ζt) u’s extra adoption probability of y (when
being promoted x by u′) at ζt

(u, x, t); (u, x) Seed; nominee
S = {(u, x, t)};
St

Seed group; subgroup of seeds in the t-th
promotion

wx; W Importance of x; set of item importance
σGSN (S); T Importance-aware influence; number of pro-

motions
{mC} / {mS} Sets of meta-graphs for describing comple-

mentary/substitutable relationships
Sec. IV
τ ; G Target market; set of target markets with

common users
r̄Cx,y / r̄Sx,y Average complementary/substitutable rele-

vance between x and y per user (the timing
is specified from context)

DRW,τ (SG , x) x’s dynamic reachability of τ ’s users given
SG and W

SIτ (SG , (u, x, t), T ) Substantial influence of (u, x, t) in τ given
SG and T

t̂ Latest promotional timing in SG

Sec. V
Wmeta(u,m, ζt) u’s weighting of meta-graph m at ζt
s(x, y | m) Relevance between x and y defined by

meta-graph m
rC(u, x, y, ζt) /
rS(u, x, y, ζt)

The complementary/substitutable relevance
between x and y in u’s perception updated
at ζt

GPIN(u, ζt) u’s personal item network updated at ζt
A(u, ζt) u’s adoption set of items updated at ζt
PIW,τ (SG , x, d);
RIwx,τ (SG , x, d);
dτ

x’s proactive impact of τ ’s users propagated
within d hops given SG andW; x’s reactive
impact of τ ’s users propagated within d
hops given SG ; diameter of τ

LC,τ (x, y, SG) /
LS,τ (x, y, SG)

Likelihood of regarding x and y as com-
plementary/substitutable for each user in τ
given SG

MAτ (SG , (u, x, t));
MLτ (SG , (u, x, t))

Marginal adoption of (u, x, t) in τ given
SG ; marginal likelihood of (u, x, t) in τ
given SG

πτ (SG) Likelihood of not-yet-adopted items being
adopted in τ in future promotions given SG

the total number of promotions T , the IMDPP problem is
to find the seed group S =

⋃T
t=1 St such that the influence

spread σ(S) is maximized within the budget constraint b, i.e.,∑T
t=1

∑
(u,x,t)∈St

cu,x ≤ b.

Theorem 1. IMDPP cannot be approximated within
O( 1
|V |1−ε ) in polynomial time unless P = NP , even with

only the complementary relationship and Pext ≡ 0 in only one
promotion.

Proof. We prove the theorem with the gap-introducing reduc-
tion from the decision problem of Set Cover. Given a set
cover instance, by constructing a corresponding special case of



IMDPP, we can prove that if there is a set cover solution with
at most k sets, there is a feasible solution of IMDPP with the
total influence at least |U |c+2|U |+2, where |U | is the size of
the ground set of set cover instance, and c is a large constant.
Otherwise, if there does not exist a set cover solution with at
most k sets, the optimal value of IMDPP is at most 2|U |+k+2.
Then, we assign c suitably to satisfy |V |1−ε ≤ |U |c+2|U |+2

2|U |+k+2 ,
where |V | and ε are related to |U | and c. Consequently, if
there is a |V |1−ε approximation algorithm of IMDPP, we can
solve the decision problem of set cover in polynomial time,
which implies P = NP , which is a contradiction.

Specifically, given a ground set U consisting of elements
and a sub-collection S on 2U consisting of sets, an element is
covered by a set if the set contains the element. The decision
problem of Set Cover asks whether there are at most k sets to
cover all the elements. Given a Set Cover instance (U,S), we
construct an instance of IMDPP as follows. First, we construct
the topology structure of the special case. Let each element and
each set correspond to a user node in the social network. We
number each element node by 1, 2, . . . , |U |. Denote the sets
of element nodes and set nodes by Ve = {ve1 , ve2 , . . . , ve|U|}
and VS = {vS1

, vS2
, . . . , vS|S|}, respectively. For each pair of

set node vSj and element node vei , we construct a directed
edge from vSj to vei if set Sj covers element ei. We add a
new node vb to connect each element node vei ∈ Ve by |U |
new disjoint directed paths with length 2 from vb to each vei
(1 ≤ i ≤ |U |). We also add a new directed path PC with
length |U | − 1 and number each node of the path from one
end node to another by 1, 2, . . . , |U |. Denote the node set of
path PC by VPC = {vp1 , vp2 , . . . , vp|U|}. Then, we copy PC
by |U |c times, where c is a large constant. Moreover, we sort
the |U |c copied paths by an arbitrary ordering and label them
by 1, 2, . . . , |U |c. We add a new node va to connect the same
end node vp1 of all the |U |c paths. Afterwards, we connect
each element node vei (1 ≤ i ≤ |U |− 1) to the corresponding
node vpi of all the |U |c paths, by |U |c new disjoint directed
paths from vei to vpi with corresponding length 2i − 1. In
particular, when i = |U |, we connect the element node ve|U|
to the corresponding end node vp|U| of the first path by a
directed path from ve|U| to vp|U| with length 2 |U | − 1. Last,
we connect each end node vp|U| of the |U |c paths by exact one
directed path PT from the end node vp|U| of the first path to
the corresponding end node of the last path. Note that PT has
|U |c nodes since it consists of |U |c end nodes vp|U| of |U |c
copies of path PC . The illustration of the constructed special
case is shown in Figure 4.

Second, we set the parameter of each edge and node
in both the social network and KG. Assume the influence
strength of each edge in social network is equal to 1, i.e.,
Pact ≡ 1, and the budget b = k. We construct |U | + 1
items numbered by 1, 2, . . . , |U | + 1. Denote the item set
by I = {x1, x2, . . . , x|U |+1}. For each user, except users
corresponding to nodes va, vb, and set nodes in VS , we set
their costs for promoting any item as a large constant M0 > k.
Moreover, we set both va’s and vb’s cost for promoting all

the items as 0 and each set node vSj ’s (vSj ∈ VS) cost
for promoting all the items as 1. In other words, nodes va
and vb can be chosen as seeds with all the items for free.
We set wxi = 0 for i = 1, . . . , |U | and wx|U|+1

= 1. That
is, only promoting item x|U |+1 directly or promoting users
to adopt item x|U |+1 can bring influence. Assume that there
is only the complementary relationship between items. For
each element node vei , we set Ppref(vei , x1) = 1;13 otherwise,
Ppref(vei , xj) = 0 where j 6= 1. That is, each element node
vei can only initially adopt item x1. Assume after vei adopts
item x1, its preference for item xi+1 increases from 0 to 1.
For each mid-node vi of corresponding directed path Pvbvivei
from vb to element node vei (i = 1, 2, . . . , |U |), we set
Ppref(vi, xi+1) = 1 and the preferences for other items as 0.
For each mid-node vj of the corresponding directed path with
length 2i− 1 from element node vei (i = 1, 2, . . . , |U |) to the
corresponding node vpi of PC , we set Ppref(vj , xi+1) = 1
and the preferences for other items as 0. For each node
vpi (i = 1, 2, . . . , |U |) of PC , we set Ppref(vpi , xi) = 1,
and Ppref(vpi , xj) = 0 for j 6= i; after vpi adopts item xi,
Ppref(vpi , xi+1) = 1.

Next, we show the relation between any feasible solution of
Set Cover and that of the constructed special case of IMDPP.
For any feasible solution of Set Cover, we construct a feasible
solution of IMDPP by 1) letting the chosen set nodes promote
items arbitrarily and 2) seeding users corresponding to nodes
va and vb to promote all the items without violating the budget
constraint k. On the other hand, for any feasible solution of
IMDPP, we construct a corresponding feasible solution of Set
Cover by 1) discarding those seeding nodes that are not set
nodes in the solution of IMDPP and 2) regarding the seeding
set nodes in the solution of IMDPP as the corresponding
chosen sets. Note that the constructed solution is still a feasible
solution of Set Cover, i.e., the number of chosen set is not
larger than k.

Finally, we derive the gap. If there is a Set Cover solution
with at most k sets, in order to maximize the influence of
adopting item x|U |+1, we let each set node in VS choose
item x1 as seeds, and let nodes va, vb choose all the items
as seeds satisfying the budget constraint k. As a consequence,
all the nodes in path PT adopt item x|U |+1, implying that
at least |U |c + 2 |U | + 2 users adopt item x|U |+1 with total
influence at least |U |c + 2 |U | + 2. To see this, assume that
the initial seeding step is 0 and each step is one-hop influence
propagation. After initial seeding, at step 1, each set node vSi
(i = 1, 2, . . . , |U |) adopts item x1, and their preferences for
item xi+1 are increased from 0 to 1. At step 2, vb propagates
influence to make vSi adopt item xi+1 at step 2. On the
other hand, vp1 first adopts item x1 and its preference for
item x2 is increased from 0 to 1 at step 1. Afterwards, vS1

continues to propagate influence to make vp1 adopt item x2

at step 3 because Ppref(vp1 , x2) = 1 at step 2. Similarly, each
vSi (i = 2, 3, . . . , |U |) continues to propagate influence to

13For simplicity, in this paper, when ζ and t are clear or have little impact
on the proof, we ignore them in the presentation of Pext, Ppref and Pact.



vb

va

ve1

ve2

ve3

ve4

ve|U |

ve|U|−1

vS1

vS2

vS3

vS|S|

vp1

vp2

vp3

vp4

vp|U |−1

vp|U |

vp1

vp3

vp|U |−1

vp2

vp4

vp|U |

vp1

vp2

vp3

vp4

vp|U |−1

vp|U |

|U |c

Fig. 4. Illustrative example of hardness proof.

make vpi of directed path PC adopt item xi+1 at step 2i+ 1
after each vpi adopts item xi at step 2i. Moreover, all the
end nodes vp|U| of PC (i.e. all the nodes of PT ) will adopt
item x|U | at step 2 |U |. Notice that, at step 2 |U | + 1, the
preferences for item x|U |+1 of all the end nodes vp|U| in PC
(i.e. all the nodes of PT ) have been increased from 0 to 1.
Consequently, the first end node of PT adopts item x|U |+1 at
step 2 |U |+ 1 after its in-neighbor adopts item x|U |+1 at step
2 |U |. Then, all the left nodes of PT adopt item x|U |+1 at step
2 |U |+ 2, 2 |U |+ 3, . . . , 2 |U |+ |U |c.

Otherwise, if there does not exist a Set Cover solution with
at most k sets to maximize the influence of adopting item
x|U |+1, then at most 2 |U |+k+2 users (consisting of va, two
paths Pvbv|U |ve|U| and Pve|U| , . . . , vp|U| , and any k set nodes
in vS) adopt item x|U |+1 with total influence at most 2 |U |+
k+ 2. By setting c sufficiently large, we construct the special
case of IMDPP with user node size |V | such that |U |c+2 |U |+
2 ≥ |V |1−

ε
2 and 2 |U |+k+2 ≤ |V |

ε
2 , respectively, where ε is

an arbitrarily small constant. Notice that the total nodes of the
newly constructed graph can be partitioned into two parts: one
is the nodes in the |U |c paths; the other is the left nodes. It
can be seen that the number of the left nodes is polynomial on
|U |. Thus, assume that the total left nodes is |U |c1 , where c1 is
a constant. Since each path has |U | nodes, the total number of
nodes of |U |c paths is |U |c+1. Then, |V | = |U |1+c

+ |U |c1 =
|U | · |U |c + |U |c1 . Thus, given an arbitrarily small constant ε,
there exists a large enough constant c such that |U |c+2 |U |+
2 ≥ |V |1−

ε
2 . Note that 2 |U | + k + 2 = O(|V |

1
1+c ) ≤ |V |

ε
2

when c is sufficiently large. Therefore, if there is a |V |1−ε =
|V |1−

ε
2

|V |
ε
2
≤ |U |

c+2|U |+2
2|U |+k+2 approximation algorithm, then we can

solve the decision problem of Set Cover in polynomial time,
which implies P = NP , leading to a contradiction.

In addition, when Ppref ≡ 1 and Pext ≡ 0, assume there is
only one item, which implies a single user can be regarded as
a seed directly. A user’s adoption decision of an item is thus
equivalent to checking whether the user is influenced, which
simply depends on the influence strength Pact. Therefore,
IMDPP is reduced to the conventional influence maximization
problem that is to find k users as seeds to maximize the
influence spread. Since the influence maximization problem

cannot be approximated within 1− 1
e + ε, the special case of

IMDPP cannot, either.

IV. APPROXIMATION ALGORITHM

A. Algorithm Overview

To efficiently solve IMDPP, we design an approximation
algorithm, namely Dynamic perception for seeding in target
markets (Dysim), which embodies a number of ideas. (i) To
tackle the challenge in the propagation of item impacts, Dysim
introduces Dynamic Reachability (DR) to measure the impact
made by an item promotion and the impacts resulted from the
promotions of other items based on users’ dynamic perceptions
of item relationships (detailed later in Eq. (1)). Specifically,
DR evaluates both proactive and reactive impacts for each
item. For an item, the proactive impact is the probability for
this item to result in an increase of users’ preferences on other
items. The reactive impact is the probability to increase users’
preferences on this item resulted from other items promoted
previously. The item with the highest DR is prioritized for
promotion. Previous works [35], [37], [38] select users only
and do not consider the items in IM.

(ii) To avoid antagonism between substitutable items, Dysim
identifies target markets, each of which consists of socially
close users to promote complementary items in consecutive
promotions. Specifically, it identifies some nominees (where
a nominee is a user-item pair (u, x)) as candidate seeds,
denoted by (u, x, t), for an incoming promotion at time t
(decided later). Note that a target market targets on a cluster of
nominees in order to promote complementary items to socially
close users. Since different target markets may share some
common users, it is important to avoid promoting substitutable
items to them. Accordingly, Dysim prioritizes the target market
promoting items with the least substitutable relevance to items
in the overlapping target markets (i.e., the target markets
sharing many common users). By contrast, prior works [35],
[37], [38] consider only one relationship and thereby may
promote substitutable items to the same users.

(iii) To find the promotional timing, Dysim introduces
Substantial Influence (SI) for each candidate seed (u, x, t)
to evaluate immediate and subsequent adoptions if nominee
(u, x) is assigned as the seed in the t-th promotion. Specifi-
cally, SI derives the marginal adoption and marginal likelihood
of (u, x, t), where the former is the difference of the total
adoptions with and without (u, x, t), and the latter is the
difference of the likelihood with and without (u, x, t) for
not-yet-adopted items to be adopted after the t-th promotion.
(u, x, t) with the highest SI is selected as a new seed at
each iteration. In contrast, previous works [35], [37], [38] are
designed for only one promotion and do not leverage item
impacts at different timings.

Equipped with the above strategies, Dysim includes three
phases: Target Market Identification (TMI) and Dynamic
Reachability Evaluation (DRE).14 Since users in social net-

14Our proposed algorithm can deal with adaptive IM (even without a
predefined budget allocation to different promotions), detailed in Sec. V-D.



Algorithm 1: DPSP
Input: Social network GSN = (V,E); knowledge graph

GKG = (V, E ,Φ,Ψ); item set I; item importance set
W; total budget b; total number of promotions T

Output: Seed group
/* TMI phase */

1 U ← {(u, x) | u ∈ V, x ∈ I}
2 {Nτ} ← clusterNominees(N)
3 for each Nτ do
4 Identify the target market τ by Nτ

5 CG← prioritizeTargetMarket({τ})
6 for each G in CG do
7 SG ← ∅
8 for each τk ∈ G, where k = 1, 2, . . . do

/* DRE phase */

9 Nτk ← nominees in τk
10 T τk ← b |Nτk |·T∑

τi∈G
|Nτi |c

11 Iτk ← {x | (u, x) ∈ Nτk}
12 while Iτk 6= ∅ do
13 xp ← argmaxx∈Iτk DR

W,τk (SG , x)
14 Iτk ← Iτk \ {xp}
15 Np ← {(u, xp) | (u, xp) ∈ Nτk}

/* TDSI phase */

16 while Np 6= ∅ do
17 if SG 6= ∅ then
18 t̂← max{t | (u, x, t) ∈ SG}
19 else
20 t̂← 1

21 C ← ∅
22 for t← t̂ to t̂+ 1 do
23 if t ≤

∑
i≤k T

τi then
24 for (u, xp) ∈ Np do
25 C ← C ∪ {(u, xp, t)}
26 (us, xp, ts)← argmax

(u,xp,t)∈C
SIτk (SG , (u, xp, t), T )

27 Np ← Np \ {(us, xp)}
28 SG ← SG ∪ {(us, xp, ts)}

29 return
⋃
G S
G

works usually have different needs and diverse purchase inten-
tions, a promotional strategy is planned more sophisticatedly
if the target users are identified first. Intuitively, intensively
promoting a few items within a short period can better draw
users’ attention. Hence, Dysim first exploits TMI to identify
target markets and then leverages DRE and TDSI to plan the
distinct effective promotional strategy for each target market.
Specifically, TMI selects and clusters nominees to promote
complementary items to each target market and prioritizes
target markets with fewer substitutable items to the nominees
in the overlapping target markets. For each target market, DRE
finds the item with the highest DR to exploit item impacts and
suggests the corresponding nominees as candidate seeds. TDSI
decides the promotion timing t for the candidate seed (u, x, t)
with the highest SI and adds it to the seed group. Algorithm 1
presents the pseudo-code of Dysim.

B. Algorithm Description

1. Target Market Identification (TMI): TMI selects the
nominees that exert large influence spread, clusters select
nominees to identify each target market for promoting com-
plementary items to socially close users, and prioritizes the
target market with fewer substitutable items to the nominees
in the overlapping target markets.

For nominee selection, TMI carefully examines the marginal
gain of influence for each nominee. It’s crucial to select a cost-
effective nominee due to different costs of nominees and a lim-
ited budget. Therefore, we propose marginal cost-performance
ratio (MCP) to jointly consider the above factors and ensure
the approximation ratio of Dysim in Theorem 5. Specifically,
given a set N of selected nominees, MCP of a nominee
(u, x) is f(N∪{(u,x)})−f(N)

cu,x
, where f is the importance-aware

influence spread σ with the nominees placed in the first
promotion as the seeds and Ppref, Pact, and Pext assigned at
the beginning of this promotion. For the nominees with the
costs satisfying cu,x < b −

∑
(u′,x′)∈N cu′,x′ , TMI iteratively

extracts the one with the highest MCP into N .
Afterward, TMI identifies the target markets by clustering

the nominees. To promote complementary items to the users in
a target market, TMI first clusters the nominees in N (e.g., by
clustering methods POT [53] and FGCC [54])15 according to
the social distances between the nominees and the relevance
between their promoting items, i.e., r̄Cx,y − r̄Sx,y , where r̄Cx,y
and r̄Sx,y are the average complementary and substitutable
relevance between x and y over all users, respectively.16

Larger complementary and smaller substitutable relevance are
encouraged. For each cluster, a target market τ is identified
by exploring the influenced users from the nominees Nτ (e.g.,
by MIOA [23]).17 Note that with TMI, the budget allocation
of Dysim is realistic since a larger target market is inclined
to have a larger budget to promote items. In TMI, the target
markets are identified by the influence of nominees, where
more nominees and influential nominees lead to a larger target
market. As more nominees and influential nominees usually
incur a larger cost [3], Dysim allocates larger budgets to those
target markets accordingly.

Afterward, TMI prioritizes the target market with fewer
substitutable items to the nominees in the overlapping target
markets. Let G denote a set of target markets with common

15POT discovers social communities according to users’ opinions. TMI
employs POT by treating the opinions of a community as items of a target
market. Accordingly, TMI regards the detected item-based user communities
as the clusters of nominees, where the users in the same detected community
are socially close to each other, and their promoting items have larger
complementary relevance than substitutable relevance. On the other hand,
FGCC identifies the clusters for two types of related objects simultaneously.
TMI employs FGCC by constructing the incidence matrix of users and items
to identify their clusters. TMI clusters the nominees together if their users
and items belong to the same user and item clusters, respectively.

16The derivation of relevance is described in Sec. V-A.
17MIOA identifies an influence region from a source node, and other

nodes in the region can be reached from the source with sufficient influence
probabilities on the maximum influence paths. TMI employs MIOA to identify
all users that can be effectively influenced by the users of the nominees as
the users in the target market.
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Fig. 5. An example of Dysim. (a) A social network. (b) Average relevance
over all users in the whole social network. (c) Average relevance over all
users in τ3.

Procedure 2: selectNominees
1 Procedure selectNominees(U, b)
2 N ← ∅; c← 0
3 U ← U \ {(u, x) | cu,x > b− c}
4 while U 6= ∅ do
5 s← argmax(u,x)∈U

f(N∪{(u,x)})−f(N)
cu,x

6 N ← N ∪ {s}; c← c+ cs
7 U ← U \ ({s} ∪ {(u, x) | cu,x > b− c})
8 return N

users. A target market τi is in G if there is another target mar-
ket τj ∈ G with the common user number above a threshold
θ.18 TMI arranges the promoting order for the target markets
in each G by deriving Antagonistic Extent (AE) of each target
market τi according to the substitutable relationship between
every promoting item x and the items of other target market τj ,
i.e., AE(τi) =

∑
x∈τi,y∈τj r̄

S
x,y , where τi, τj ∈ G, i 6= j. The

target market (and the items in the corresponding nominees)
with a smaller AE is promoted earlier in G.19

Example 1. Figs. 5(a) and 5(b) present an example of TMI
with a social network and the average relevance over all users
in the whole social network, where the dotted and dashed
edges are the complementary and substitutable relationships,
respectively. The number beside each edge is the relevance.
Assume N = {(u1, iPad), (u2, AirPods), (u4, iPhone), (u6,
AirPods), (u7, iPad)} by TMI according to MCP. Then, TMI
finds three clusters Nτ1 = {(u1, iPad)}, Nτ2 = {(u7, iPad)},
and Nτ3 = {(u2, AirPods), (u4, iPhone), (u6, AirPods)} from
Figs. 5(a) and 5(b), and identifies τ1, τ2, and τ3 accordingly,
as shown in Fig. 5(a). Assume θ = 1. Then, τ1, τ2, and τ3
belong to the same G since τ1 and τ3 have two common users,
and τ2 and τ3 have two common users. After that, according
to the substitutable relevance in Fig. 5(b), AE(τ1) = 0.5 since
iPad promoted in τ1 is substitutable to iPhone promoted in τ3.

18The sensitivity of Dysim to θ is evaluated in Sec. VI-G.
19Alternatively, according to research in the marketing field, the profitabil-

ity [55] of a target market is also a good metric to prioritize target markets.
The comparison of different marketing orders is presented in Sec. VI-D.

Procedure 3: clusterNominees
1 Procedure clusterNominees(N)
2 {τ} ← clusters of N according to social distances

and relevance between promoting items
3 return {τ}

Procedure 4: prioritizeTargetMarket

1 Procedure prioritizeTargetMarket({τ})
2 CG← ∅
3 for each pair (τi, τj) do
4 V τi ← users in τi
5 V τj ← users in τj
6 if |V τi ∩ V τj | > θ then
7 Put τi and τj in the same G ∈ CG
8 for each G ∈ CG do
9 for each τi ∈ G do
10 AE(τi) =

∑
x∈τi,y∈τj r̄

S
x,y , where

τi, τj ∈ G, i 6= j

11 Arrange the promoting order of τ ∈ G according to
AE(τ) ascendingly

12 return CG

Similarly, AE(τ2) = 0.5 and AE(τ3) = 0.5 + 0.5 = 1. TMI
thereby promotes τ1, τ2, and τ3 sequentially. �

2. Dynamic Reachability Evaluation (DRE): For each target
market τk ∈ G selected by TMI, DRE evaluates Dynamic
Reachability (DR) of each item in τk, and the nominees (in
Nτk ) promoting the item with the highest DR serve as the
candidate seeds. In other words, after TMI has identified target
markets with socially close users to promote complementary
items and has prioritized the target markets using AE, DRE
allows each target market to prioritize its promoting items
differently and lets the nominees promoting items with higher
DR be the seeds earlier.20 Specifically, let dτk denote the
diameter of the target market τk, and SG is the seed group
determined so far for all the target markets in G. Let Iτk denote
the items that have not yet been promoted in τk. DR of an item
x ∈ Iτk is

DRW,τk(SG , x) = PIW,τk(SG , x, dτk) +RIwx,τk(SG , x, dτk).
(1)

The proactive impact PIW,τk(SG , x, dτk) is the probability
of x to increase the preferences of users in τk for other items.
The reactive impact RIwx,τk(SG , x, dτk) is the probability to
increase the preferences of users in τk for x under the impact
from other items in SG .21 The derivations of the proactive

20That the nominees are not in Nτk implies that they do not promote
complementary items to the users in τk (based on the identification strategy
in TMI). Moreover, if the noominees not in Nτk have not served as seeds
yet when DRE finds the candidate seeds for τk , they must belong to some
target markets posterior to τk . Accordingly, considering such nominees as
candidate seeds for τk may imply to neglect the design of TMI and cause the
antagonism of the substitutable relationship, which is expected to be avoided
by TMI.

21dτk appears in PI and RI to restrict the item impact propagation to the
users at most dτk away in τk .
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Fig. 6. An example of DRE: an illustration of the dynamics in u5’s personal
item network. (a) Initially. (b) After u5 adopts iPad. (c) Expectation.

impact and the reactive impact are detailed in Sec. V-B to
capture the probability of increasing users’ preferences for
items based on their dynamic perceptions of item relationships.

Consequently, for each τk selected by TMI, DRE extracts
the nominees {(u, xp) | xp = argmax

x∈Iτk
DRW,τk(SG , x),

(u, xp) ∈ Nτk} with the highest DR as the candidate seeds
iteratively, and this property (i.e., the highest DR) is important
to approximate the optimal solution in Theorem 5.

Example 2. Following Example 1, this example shows how
the DRE of Dysim works based on the diffusion model to solve
IMDPP. Assume that the seed group becomes SG = {(u1,
iPad, 1)} after τ1 is promoted. To update the complementary
and substitutable relevance in each user’s dynamic perception,
Dysim employs the Monte Carlo method to generate different
cases of users’ adoption decisions according to their pref-
erences for items and the influence strength. For example,
suppose that, due to the seed u1’s promotion at t = 1, u2

adopts iPad and promotes to u5 by her social influence. For
the case that u5 adopts iPad, the update of her adopting item
(referring Fig. 3) in turn changes her personal item network
from Fig. 6(a) to Fig. 6(b). Meanwhile, u5’s preference for
AirPods increases due to the adopted item {iPad} and her
changed personal item network (Fig. 6(b)), where the comple-
mentary relevance between iPad and AirPods increases from
0.05 to 0.1. By contrast, for the case that u5 does not adopt
iPad at t = 1, her personal item network and her preference
for AirPods remains unchanged. Based on the number of times
these cases being observed, Dysim computes the expectation
of u5’ personal item network, as shown in Fig. 6(c).

After that, assume that SG = {(u1, iPad, 1), (u7, iPad, 2)}
after τ2 is also promoted. Dysim now concentrates on τ3,
where Nτ3 = {(u2, AirPods), (u4, iPhone), (u6, AirPods)},
dτ3 = 3, and Iτ3 = {iPhone, AirPods} (due to the items
not yet promoted by the nominees in Nτ3 ). Given W =
{wiPhone = 1, wiPad = 1, wAirPods = 0.5}, DRE calculates the
DR for iPhone and AirPods as DRW,τ3(SG , iPhone) = 0.7 +
1 = 1.7 and DRW,τ3(SG , AirPods) = 1.2 + 0.85 = 2.05, re-
spectively, according to the updated (same as above) personal
item networks.22 Therefore, DRE extracts {(u2, AirPods), (u6,
AirPods)} for promotion first. �

3. Timing Determination by Substantial Influence (TDSI):
After a set of nominees Np = {(u, xp)} are generated by
DRE, TDSI iteratively extracts the nominee and finds a proper
promotional timing t with the largest substantial influence (SI),

22Detailed calculations are presented in Example 4.

where SI is exploited to measure the impact of assigning a
nominee at some timing under the impact of the seed group
SG . In other words, with SI, TDSI can find some (u, xp, t)
(by assigning some nominee (u, xp) at some timing t) that
has the largest impact under SG . TDSI then adds it to SG and
looks for the next seed repeatedly until all nominees in Np are
assigned some timings and added to SG .

Specifically, for each (u, xp, t), SI represents its impacts
for immediate and subsequent adoptions according to the
marginal adoption MAτk(SG , (u, xp, t)) and marginal likeli-
hood MLτk(SG , (u, xp, t)), respectively. The marginal adop-
tion is the increment of the total adoptions after (u, xp, t)
is added into SG , whereas the marginal likelihood is the
increment of the likelihood for not-yet-adopted items to be
adopted in the future promotions if (u, xp, t) is added into SG .
Let τ1, τ2, . . . , τk−1 ∈ G denote the target markets promoted
prior to τk. Note that the seeds in τi (i < k) have been
determined since TMI has arranged the promoting order of
target markets. Similar to DR, SI of (u, xp, t) is also derived
under the impact of the seed group SG as follows.

SIτk(SG , (u, xp, t), T ) (2)

= MAτk(SG , (u, xp, t)) +
T − t+ 1

T
·MLτk(SG , (u, xp, t)),

where the marginal likelihood is weighted by the ratio of the
remaining number promotions to the total number promotions,
as more remaining promotions indicate more chances for
future adoptions. To derive SI, TDSI simulates the influence
diffusion with SG and SG ∪ {(u, xp, t)}, respectively, by
the Monte Carlo method. MA is the difference of adoptions
between whether to have (u, xp, t) as a seed. Likewise, ML is
the difference of likelihood for adopting not-yet-adopted items
in the future between whether to have (u, xp, t) as a seed. To
estimate the likelihood, for each case simulated by the Monte
Carlo method, TDSI examines the probability for every user in
τk to adopt each not-yet-adopted item in the next promotion.
Accordingly, TDSI estimates the expectation of likelihood. De-
tailed derivations of marginal adoption and marginal likelihood
are presented in Sec. V-C. They capture the changes in social
influence strength and personal preferences, which is crucial
to improve the lower bound in Theorem 5.

TDSI iteratively extracts the nominees, finds the time
leading to the largest SI, and adds it to the seed group
SG , i.e., SG = SG ∪ {(u, xp, t)}, where (u, t) =
argmaxu′,t′ SI

τk(SG , (u′, xp, t
′), T ). Instead of exploring ev-

ery possible t to maximize Eq. (2) for each nominee, TDSI
only needs to search t ∈ [t̂,min{t̂+1,

∑
i≤k T

τi}], where t̂ is
the latest promotion in SG (i.e., t̂ = max{t | (u, x, t) ∈ SG}),
T τk is the promotional duration of τk, proportional to the
number of nominees in τk (i.e, T τk = |Nτk |·T∑

τi
|Nτi | , where Nτi

is the set of nominees in τi and τi, τk ∈ G). The limitation is
satisfactory for the following reasons. On one hand, since 1)
the target markets have been arranged in a promoting order
(by TMI), 2) the items with higher DR have been promoted
with priority (by DRE), and 3) the nominees with higher SI
have become seeds (by TDSI), t is required to be no earlier



than the seeds in SG , i.e., t ≥ t̂. On the other hand, since
the importance-aware influence function is non-monotonically
increasing (proved in Sec. IV-C), it is not necessary to explore
the later timings for nominees if the seeds of any previous
promotion have not been examined entirely. Thus, evaluating
only the timing right after t̂ is sufficient, because later promo-
tional timings only reduce the extent of the marginal likelihood
considered in SI. Moreover, since promoting items of different
target markets in G are substitutable to each other (which will
not be promoted simultaneously), each market τi is allowed
a promotional duration T τi , and t̂+ 1 cannot exceed the last
promotional timing of τk, i.e.,

∑
i≤k T

τi . Thus, the search of
t is upper bounded by min{t̂+ 1,

∑
i≤k T

τi}.

Example 3. Following Example 2, SG = {(u1, iPad, 1), (u7,
iPad, 2)} and (u2, AirPods) and (u6, AirPods) are extracted
by DRE. Given T = 5, T τ1 = 1, T τ2 = 1, and T τ3 = 3, since
the latest promotional timing is t̂ = 2 in SG , TDSI searches
the promotional timings for the nominees in [2,min{2 +
1, 1 + 1 + 3}] = [2, 3]. Regarding the two nominees, TDSI
computes SIτ3(SG , (u2, AirPods, 2), 5) = 1.2, SIτ3(SG , (u2,
AirPods, 3), 5) = 1.1, SIτ3(SG , (u6, AirPods, 2), 5) = 2.3,
and SIτ3(SG , (u6, AirPods, 3), 5) = 1.9. TDSI thus updates
SG = {(u1, iPad, 1), (u7, iPad, 2), (u6, AirPods, 2)}. Next, as
SG is updated, TDSI also updates the search of promotional
timings in [3,min{3 + 1, 1 + 1 + 3}] = [3, 4] and com-
putes SIτ3(SG , (u2, AirPods, 3), 5) = 1.1 and SIτ3(SG , (u2,
AirPods, 4), 5) = 1 regarding the nominee (u2, AirPods).
SG = {(u1, iPad, 1), (u7, iPad, 2), (u6, AirPods, 2), (u2,
AirPods, 3)} are updated accordingly. Consequently, as both
nominees have become seeds, TDSI stops. �

After deriving the promotional timing for a nominee (u, xp),
Dysim selects the next item with DRE and finds the timing
with TDSI. After all nominees in τk are assigned their promo-
tional timings as the seeds, TMI moves on to the next target
market τk+1 ∈ G. It returns the seed group S =

⋃
G S
G as the

solution after all target markets are examined.23

C. Theoretical Results

In the following, we first present several good properties
of the importance-aware influence function σ under some
conditions.

Definition 3 (Submodular function [56]). Given a ground set
U , a set function ρ : 2U 7→ R is submodular if for any subset
X ⊆ Y and any element e ∈ U \ Y ,

ρ(Y ∪ {e})− ρ(Y ) ≤ ρ(X ∪ {e})− ρ(X). (3)

Lemma 1. The importance-aware influence function σ is non-
monotone increasing but submodular for Ppref, Pact, and Pext

assigned at the beginning of all promotions.

Proof. Firstly, we first analyze the case with a single promo-
tion. It is obvious that the importance-aware influence function

23SG of different G can be derived in parallel due to the independency of
different G.

σ is monotone increasing even if we add a seed that promotes
an item with importance 0 and no longer promote any other
user to adopt items. That is, σ does not decrease. For each
user-item pair, the preference Ppref(u, y) is regarded as the
probability of the edges from user-item pair (u′, y) to user-
item pair (u, y), where u′ denotes u’s in-neighbors. Likewise,
the extra adoption probability Pext(u, u

′, x, y) is also regarded
as the probability of the edge from user-item pair (u′, x) to
user-item pair (u, y). When Ppref, Pact and Pext do not change,
all the events of evaluating preference Ppref and influence
strength Pact, and extra adoption Pext happen independently.
Then, the proof of the submodularity of σ can be reduced to
the proof of its submodularity in every arbitrary realization
(i.e. a deterministic graph) of the stochastic graph. Therefore,
σ is a coverage function, which is submodular [57].

Our proof can be generalized to the triggering model easily
by sampling the corresponding in-neighbor edge set of each
user independently. For better understanding of the process
of influence propagation, we first show the proof for the IC-
based models. Following [1], the proof of the submodularity
of importance-aware influence function on the IC model is
reduced to that in every arbitrary realization of the stochastic
graph. Specifically, the realization is determined by flipping a
coin on every edge independently according to its probability.
We show the submodularity of σ(St) in a deterministic real-
ized graph G′SN(V,E′) by flipping the edge coin Pact(u

′, u)
of GSN with the probabilities of influence strength and the
edge coin Pext(u, u

′, x, y) with the extra adoption probabilities
independently first. If the edge coin Pact(u

′, u) of GSN is
up, i.e., the event of influence happens, then we flip the
edge coin Ppref(u, y) with the probabilities of preference.
Then, The process of adoption propagation can be regarded
as the influence propagation process. Upon the deterministic
graph G′SN, a user u can be successfully influenced by its
in-neighbor u′ who has adopted x, if and only if it does
not adopt the item x or the relevant item y of x (i.e. the
item y with Pext(u, u

′, x, y) > 0 has not been purchased).
Notice that the two events happen independently. Thus, for any
nominee (u, x), its influence propagation becomes a connected
subgraph of G′SN rooted by u, which is regarded as the
influence of seeding u to promote item x. Note that each path
of the connected subgraph may consist of different items due
to the happening of the two events (e.g. Px1x2x2x4...), and
each user in the path may adopt more than one item. For each
seed group St in the t-th promotion, a realization of σ(St)
is exactly the union of the connected subgraphs that combine
the influence produced by each nominee (u, x) together.

Next, we analyze the case of multiple promotions. Even
when Ppref, Pact and Pext are static, there are some cases show-
ing that the monotone increasing property of the importance-
aware influence function σ does not hold. This is because if a
user u successfully adopts item x, it cannot adopt item x again
in the later promotions, i.e., it cannot propagate influence of
item x again. As a consequence, putting a seed to promote u
to adopt item x early may result in the influence of u adopting
x not propagating in later promotions to increase the adoption
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Fig. 7. Illustrative example of non-monotone increasing of σ, where
(s1, y, 1) and (s2, y, 2) are seeds, and the weight of each edge is the
influence strength.

of other users. Now we show the non-monotone increasing
property by the following observation.

Assume there are exactly two candidate items y and x. We
let wx = 1, wy = 0, cu,x > b, cu,y > b, cv,x > b for any v 6= u
(i.e., only (v, y) can be nominees for any v 6= u), Ppref(v, y) ≡
1, Pext(v, y, x) = Pext(v, x, y) ≡ 0 24, Ppref(v, x) ≡ 0 for
any v 6= u (i.e., v can only adopt item y for any v 6= u),
Ppref(u, x) ≡ 0, and Pext(u, y, x)) ≡ 1 (i.e., u can only adopt
item x after its in-neighbor adopts item y). As a consequence,
the total influence focuses on computing the probability of user
u adopting item x. Assume there are exactly two promotions
of influence propagation. Given a seed group S, we denote the
probability of user u adopting item x in the first and second
promotions as Pr1 and Pr2, respectively, according to the
seed group S. Note that σ(S) = Pr1 + (1 − Pr1)Pr2 and
Pr2 is conditioned on Pr1. If we add any nominee (v, y) to
the first promotion, the probability of u adopting x in the first
promotion becomes Pr′1, where Pr′1 ≥ Pr1. However, the
probability of u adopting x in the second promotion becomes
Pr′2, which is at most Pr2. This is because some nodes on
the existing promoting paths, which make u adopt x, in the
second promotion cannot propagate influence since they have
been promoted by (v, y) in the first promotion, and the new
nodes promoted the adopted items by (v, y) cannot improve
the probability of u adopting x in the second promotion. It
implies σ(S) = Pr1 + (1 − Pr1)Pr2 is larger than σ(S ∪
{(v, y, 1)}) = Pr′1 + (1 − Pr′1)Pr′2 under the condition of
(1−Pr1)Pr2−(1−Pr′1)Pr′2 > Pr′1−Pr1. By letting Pr1 =
0 (e.g. no seed in the first promotion), the condition becomes
Pr2 − (1− Pr′1)Pr′2 > Pr′1. If a sufficiently large Pr2 (e.g.
almost 1) is achieved, then choosing Pr′2 slightly smaller than
1 is sufficient to satisfy the condition. The illustrative example
is shown in Figure 7. Note that Pr1 = 0, Pr′1 = 0.74, Pr2 =
0.96 and Pr′2 = 0.48 imply σ({(s2, y, 2)}) = Pr1 + (1 −
Pr1)Pr2 = 0.96 > σ({(s1, y, 1), (s2, y, 2)}) = Pr′1 + (1 −
Pr′1)Pr′2 = 0.74 + (1− 0.74)× 0.48 = 0.8648, which is not
monotone increasing.

The realization of σ(S) is not the union of total adopted
items in each promotion directly. However, the submodularity

24The simplified symbol Pext(v, y, x) ≡ 0 represents that it holds for
arbitrary in-neighbors of v.

can still be proved in a realized deterministic graph, which
is a specific disjoint union of each graph corresponding to
a different promotion, and each graph is similar to the one
in single promotion. Hence, The importance-aware influence
function is also a coverage function, which is submodular [57].
Specifically, in the first promotion, we first flip the edge coin
Pact(u

′, u) of GSN with the probabilities of influence strength
and the edge coin Pext(u, u

′, x, y) with the extra adoption
probabilities independently. If the edge coin Pact(u

′, u) of
GSN is up, then we flip the edge coin Ppref(u, y) with the
probabilities of preference independently. Afterward, we ob-
tain the connected subgraphs of the deterministic graph rooted
at each seed of S1. After the first promotion, the promoted
nodes in this promotion cannot be promoted the adopted items
again, and it propagates the corresponding the influence later.
Therefore, after flipping edge coins for the second promotion
again, we obtain those connected subgraphs of the determin-
istic graph rooted at each seed of S2 to avoid reaching each
promoted user-item pair (u, x) in the connected subgraphs
rooted at each seed of S1.25 In addition, if S2 has some
nominees in the first promotion, these nominees can still try
to promote their neighbors in the second promotion since they
are chosen as new seeds again. Similarly, we repeat the same
process until all the random edges over the T promotions are
realized. Notice that we flip edge coins of all the T promotions
before seeding since the probability of each edge in the later
promotions is independent of that in the previous promotions.
After the above realization, let σ̄(St | S0, S1, . . . , St−1) denote
the influence of seeding St conditioned on seeding St′ for
t′ = 0, 1, . . . , t − 1, where S0 = ∅. Let σ̄(S) denote the
importance-aware influence of a realization of σ(S). Then,

σ̄(S) =
T
∪
t=1

σ̄(St | S0, S1, . . . , St−1). To prove the submodu-
larity, it is sufficient to show that the function σ̄ under each
realization satisfies Inequality (3) based on the property that
a user cannot be promoted again by another path, if it is
promoted by some realized path rooted at some nominee in an
early promotion. For any seed group set SX ⊆ SY and any
seed (u, x, t) ∈ U \ SY , where U consists of all the possible
seeds, it is sufficient to prove that the marginal decreased
influence of seed (u, x, t) conditioned on the larger seed group
is more than the smaller one. It is equivalent to show that all
the users, who can be promoted by (u, x, t) but have been
promoted by SX earlier than (u, x, t), can also be promoted
by SY earlier than (u, x, t) to adopt the same item. Since
SY contains SX , for each (v, y, t′) ∈ SX , it can either block
(u, x, t) similar to those in SY or be replaced by some seed
(v′, y′, t′′) ∈ SY \SX that does not have smaller influence than
(v, y, t′) in SX (i.e. (v′, y′, t′′) may promote users earlier or
promote more users). Therefore,

σ̄(SY ∪{(u, x, t)})− σ̄(SY ) ≤ σ̄(SX ∪{(u, x, t)})− σ̄(SX).
(4)

The lemma follows.
25A user may have several candidate user-item pairs and the promoting

path can reach the user-item pair which is not promoted in the first promotion
through the living edges.



Note that the general importance-aware influence function
is not submodular. The reason is that, in some case, some
users’ Ppref or Pext in an early promotion can be increased by
seeds, but these seeds cannot bring the immediate adoption in
this promotion. For a later promotion, however, the seeds can
bring more immediate adoptions due to the increased Ppref or
Pext. As a consequence, the sum of immediate adoptions under
the influence of respective seeds in each promotion is smaller
than the overall adoptions under the influence of all seeds in all
promotions. It makes the importance-aware influence function
non-submodular, i.e, violating the submodular Inequality (3).

According to Lemma 1, based on the approximation algo-
rithm for the non-monotone increasing submodular maximiza-
tion with knapsack constraint problem (SMK), we have the
following theorem.

Theorem 2. For Ppref, Pact, and Pext assigned at the beginning
of all promotions, there is an α− ε–approximation algorithm
for IMDPP, where α is the performance ratio of the approxi-
mation algorithm for SMK and ε > 0 is the evaluation error.

Although there is an improved 1
e − ε –approximation algo-

rithm for SMK by continuous greedy strategy [58] (implying
1
e − ε–approximation for IMDPP for the current user pref-
erences, social influence, and extra adoption probabilities), it
takes much more time than O(n5) (roughly O(n8)). Due to
the high complexity of the above approximation algorithm for
SMK, we design a fast and simple approximation algorithm
within O(n2) function calls, where n is the size of the ground
set. So far, for SMK, there is a 1

6 –approximation algorithm
[59] taking O(n5) by enumeration of at most three potential
solutions with the greedy strategy, where n is the size of the
ground set. Inspired by the work [59], following a similar
frame, our algorithm does not involve the enumeration, and the
time complexity can be reduced to O(n2). More specifically,
there are two steps to achieve the goal. First, instead of finding
a solution satisfying the condition of Lemma 3 combining the
enumeration and greedy strategy, we find the desired solution
satisfying the condition by TMI. TMI iteratively adds an
element with the maximum marginal cost-performance ratio
(i.e., MCP) into the solution until the budget is just violated
or negative marginal influence occurs. Second, to achieve the
desired approximation, following a similar approach in [59]
by calling the greedy process with O(n2) function calls and
a linear time algorithm [60] for unconstrained submodular
maximization problem (USM), we can obtain a solution with
a good approximation ratio. However, the achieved solution
may be not feasible. We find the feasible solution by deleting
the violating element to obtain a new candidate solution. Then,
the algorithm finds another seed group consisting of a single
element that has the maximum importance-aware influence,
and chooses the better one between them. To analyze the
performance ratio, we first derive the following two key
lemmas. In the following, for better comparison with [59]
and understanding, we still use f as the importance-aware
influence function of SMK.

Lemma 2 (Lemma 2.2 in [59] ). Given a submodular function,
sets C, S1 ⊂ U , let C ′ = C \ S1, and S2 ⊂ U \ S1. Then
f(S1 ∪ C) + f(S1 ∩ C) + f(S2 ∪ C ′) ≥ f(C).26

The following lemma shows that TMI can find a solution
with a good approximation ratio.

Lemma 3. For any feasible set C, TMI returns a set S (just
violating the budget constraint) disjointing with C that satisfies
f(S) ≥ 1

2f(S ∪ C) within O(n2) calls of function f , where
n is the size of the ground set.

Proof. Case 1: TMI stops when just violating the budget
constraint.

In this case, no negative marginal influence occurs in TMI.
Let S = {e1, e2, . . . , el} be the output, where the elements
are numbered in the order added into S in TMI. Note that S
just violates the budget constraint after element el is added,
i.e, c(S) =

∑
e∈S ce > b. We let C = {e′1, e′2, . . . , e′k} and

denote S[: i] = {e1, e2, . . . , ei} and C[: j] = {e′1, e′2, . . . , e′j}
for i = 1, 2, . . . , l and j = 1, 2, . . . , k, respectively. Note that
S[: l] = S. On one hand, for any i < j, since

f(S[: i])− f(S[: i− 1])

cei

≥ f(S[: i− 1] ∪ {ej})− f(S[: 1], . . . , S[: i− 1])

cej

by TMI and f(S[: i − 1] ∪ {ej}) − f(S[: i − 1]) ≥ f(S[:
j − 1] ∪ {ej})− f(S[: j − 1]) by submodularity, we have

f(S[: i])− f(S[: i− 1])

cei
≥ f(S[: j])− f(S[: j − 1])

cej
.

Thus

f(S[: i])− f(S[: i− 1])

cei
≥ f(S[: l])− f(S[: l − 1])

cel
(5)

for any i < l.
On the other hand, by TMI,

f(S[: l])− f(S[: l − 1])

cel

≥
f(S[: l − 1] ∪ {e′j})− f(S[: l − 1])

ce′j

for any j = 1, 2, . . . , k. Furthermore, by submodularity,

f(S[: l − 1] ∪ {e′j})− f(S[: l − 1])

≥ f(S[: l] ∪ C[: j])− f(S[: l] ∪ C[: j − 1])

for any j = 1, 2, . . . , k. Therefore,

f(S[: l])− f(S[: l − 1])

cel

≥ f(S[: l] ∪ Cj)− f(S[: l] ∪ C[: j − 1])

ce′j

26For detailed definition of S1 and S2, please refer to Theorem 2.3 in [59].



for any j = 1, 2, . . . , k. By Inequality (5), we have

f(S[: i])− f(S[: i− 1])

cei
(6)

≥ f(S[: l] ∪ C[: j])− f(S[: l] ∪ C[: j − 1])

ce′j
(7)

for any i = 1, 2, . . . , l and j = 1, 2, . . . , k. After summing
up the numerator and the denominator separately of the left-
hand-side with l terms and the right-hand-side with k terms
in Inequality (6), respectively, we have27

f(S[: l])∑l
i=1 cei

≥ f(S[: l] ∪ C[: k])− f(S[: l])∑k
j=1 ce′j

. (8)

Moreover, since
∑l
i=1 cei > b ≥

∑k
j=1 ce′j due to the

feasibility of C, by Inequality (8), f(S[: l]) ≥ f(S[: l] ∪ C[:

k]) − f(S[: l]). Hence f(S[: l]) ≥ f(S[:l]∪C[:k])
2 . Recall that

C[: k] = C and S[: l] = S, we have f(S) ≥ f(S∪C)
2 .

Furthermore, note that TMI needs at most O(n2) function
calls.

Case 2: TMI stops when the negative marginal influence
occurs.

In this case, assume f(S[: i]∪{ei})−f(S[: i−1]) < 0 just
after ei is added. By Inequality (6), we have f(S[: l] ∪ C[:
j]) − f(S[: l] ∪ C[: j − 1]) ≤ f(S[: i]) − f(S[: i − 1]) ≤ 0
for any j = 1, 2, . . . , k. Thus, f(S[: l] ∪C[: k])− f(S[: l]) =∑k
j=1(f(S[: l]∪C[: j])−f(S[: l]∪C[: j−1])) < 0, implying

f(S[: l] ∪ C[: k]) − f(S[: l]) < 0 achieving a strong result.
Following both cases, the lemma follows.

Based on Lemma 2 and 3, we have the following theorem.

Theorem 3 (adapted from Theorem 2.3 in [59]). There is a
1
12 –approximation algorithm for SMK within O(n2) calls of
function f .

Proof. Let S∗ be the optimal solution with f(S∗) = opt.
Note that S∗ \ S1 and S∗ \ S1 \ S2 are both feasible so-
lutions disjointing with S1 and S2, respectively. By Lemma
3, f(S1) ≥ 1

2f(S1 ∪ (S∗ \ S1)) = 1
2f(S1 ∪ S∗) and

f(S2) ≥ 1
2f(S2 ∪ (S∗ \ S1 \ S2)) = 1

2f(S2 ∪ (S∗ \ S1)),
respectively. If f(S1 ∩ S∗) ≥ c · opt, then the 1

2 -approximate
algorithm of USM on the ground set S1 in linear time [60]
implies the approximation ratio is at least c

2opt. Otherwise,

f(S1) ≥ 1

2
f(S1∪S∗) ≥

1

2
f(S1∪S∗)+

1

2
f(S1∩S∗)−

c

2
opt.

27In fact, even if the negative marginal influence occurs, we can continue
to run the algorithm until the budget is just violated. Although the marginal
influence may be negative, Inequality (8) still holds only if the corresponding
denominator (i.e. cost function) is more than zero, implying the lemma still
holds.

Combing with f(S2) ≥ 1
2f(S1 ∪ (S∗ \ S1)), we have

2 max{f(S1), f(S2)} ≥ f(S1) + f(S2)

≥ 1

2
(f(S1 ∪ S∗) + f(S1 ∩ S∗)

+ f(S1 ∪ (S∗ \ S1)))− c

2
opt

≥ 1

2
f(S∗)− c

2
opt

=
1− c

2
opt,

where the last inequality comes from Lemma 2. Thus,

max{f(S1), f(S2)} ≥ 1

4
(1− c)opt.

Combining with the case f(S1 ∩ S∗) ≥ c
2opt, the approxi-

mation ratio becomes min{ c2 ,
1−c

4 }opt. By setting c = 1
3 , we

achieve a 1
6 –approximation solution, denoted by S̄. However,

S̄ may be infeasible since all of S1, S2, and S1∩S∗ may just
violate the budget constraint by the same element e1 added
into both S1 and S1 ∩ S∗, and e2 added into S2 defined in
Lemma 3.

In the following, we construct a feasible solution with
the guaranteed performance ratio. We denote emax =
argmaxe f({e}) and Ŝ = argmaxS̄\{e},{emax}{f(S̄ \
{e}), f({emax})} as the output of the algorithm, where e is the
corresponding element of S̄ that violates the budget constraint.
Consequently,

f(Ŝ) = max{f(S̄ \ {e}), f({emax})}
≥ max{f(S̄ \ {e}), f({e})}

≥ 1

2
(f(S̄ \ {e}) + f({e}))

≥ 1

2
(f(S̄ \ {e} ∪ {e}) + f(∅))

=
1

2
f(S̄) ≥ 1

12
opt,

where the third inequality is based on the submodularity. The
theorem follows.

Afterwards, we apply the proposed algorithm to the special
case. Note that f becomes the importance-aware influence
function σ with |V | |I|T variables, for seeding some users
and choosing some items to be promoted at some promotional
timings. Let kmax denote the maximum size of a feasible
solution. Since we study the strategy between the multiple
promotions and the single promotion under the same budget,
we assume kmax of the multiple promotions and the single
promotion is the same, which is bounded by |V | |I| without
the budget constraint. Notice that kmax can be computed in
linear time by iteratively adding the minimum cost seed until
the budget constraint is violated.

Theorem 4. For Ppref, Pact, and Pext assigned at the beginning
of all promotions, there is a 1

12 − ε–approximation algorithm
in O(M |V | |I|T ·kmax) time for IMDPP, where M is the time
to evaluate σ depending on the evaluation error ε > 0, and
kmax is the maximum size of a feasible solution.



Proof. By Theorem 2 and 3, the approximation ratio follows.
We analyze the time complexity as follows. Let M be the
time to evaluate σ by Monte Carlo sample depending on
the evaluation error ε > 0. By lemma 3, it needs at most
O(n2) function calls in TMI. For IMDPP, n = |V | |I|T
and it needs at most kmax iterations to use all the budget,
i.e., stop the algorithm. Thus, the number of function calls
is O(|V | |I|Tkmax) in TMI. Note that TMI brings the main
function calls. Thus, the total number of function calls of the
designed algorithm becomes O(|V | |I|Tkmax), implying the
time complexity is O(M |V | |I|Tkmax).

Next, let us analyze the performance ratio of Dysim in the
following more general case.

Theorem 5. Dysim is a (1 − 1√
e
− ε)(min{P cminpref ·

P cminact, P
c
minext}) approximation algorithm for IMDPP in

O(M |V | |I| kmax) time, where Pminpref > 0, Pminext > 0 and
Pminact > 0 are the minimum preference, extra adoption prob-
ability and influence strength, respectively. c is the maximum
hop of influence propagation, M is the time to evaluate σ
depending on the evaluation error ε > 0, and kmax is the
maximum size of a feasible solution.

Proof. Since the importance-aware influence function of the
general problem is neither monotone increasing nor submodu-
lar, we first find the relation between the general problem and
a restricted problem (defined later) whose importance-aware
influence function is monotone increasing and submodular.
Consequently, a solution found by the algorithm in the re-
stricted problem can be regarded as an approximation solution
to the general problem. We first prove that the output value of
Dysim is at least β−ε (defined later) times of the value of the
restricted problem . Afterwards, according to the evaluation of
the range of parameters changing, we derive the importance-
aware influence function gap between the restricted problem
and original problem is at most γ (defined later), implying the
total gap is (β − ε)γ.

Specifically, let γ = min{P cminpref · P cminact, P
c
minext}. Let

Ŝt and S∗t denote the seeds in the t-th promotion of the
optimal solution of the restricted problem (i.e., Ppref ≡ Pminpref,
Pext ≡ Pminext, Pact ≡ Pminact, and c-hop influence propagation)
and the optimal solution of the general problem, respec-
tively. First, we construct an auxiliary solution N̄ such that
σ(N̄) = max{σ(Nfirst), σ({emax})}, where Nfirst consists of
all nominees in N promoting items in the first promotion, i.e.,
Nfirst = {(u, x, 1) | (u, x) ∈ N}, and emax is the seed bringing
the maximum expected importance-aware influence. Note that
σ(
⋃
G S
G) ≥ σ(N̄) since the solution N̄ has been considered

by Dysim. Hence, our goal is to prove σ(N̄) ≥ (β−ε)γσ(S∗)
sufficiently by two stages, where β will be decided later.
Before presenting the formal proof, we first consider the
case that each seed user can adopt each item once in all
the promotions. Notice that if Ppref, Pext and Pact do not
change, it is not necessary to assign the seeds in different
promotions; it may decrease the probability of adoption for
the multiple promotions since the promoted users in early

promotions cannot propagate the influence in later promotions,
where these users may become the bridges to promote the
items with larger importance to others. Thus, if Ppref, Pext and
Pact do not change in the restricted problem, there exists an
optimal solution for the restricted problem such that only the
first promotion has seeds (i.e., Ŝt = ∅ for t > 1).

For the first stage, when Ppref, Pact and Pext are static, by
the above observation, we can focus on the single promo-
tion. Moreover, by the proof of Lemma 1, the importance-
aware influence function is monotone increasing submodular.
Consequently, if there exists a β–approximation algorithm for
monotone increasing submodular maximization with knapsack
constraint problem (MSMK), then σ(N̄) ≥ (β − ε)σ(Ŝ1) if
Ppref ≡ Pminpref, Pext ≡ Pminext and Pact ≡ Pminact do not
change for the single promotion, where ε is the evaluation
error of Monte Carlo sampling. Furthermore, when Ppref, Pext
and Pact can change, σ(N̄) is no smaller than σ(N̄) with
Ppref ≡ Pminpref, Pext ≡ Pminext and Pact ≡ Pminact unchanged,
since higher Ppref, Pext and Pact lead to more influence for
a single promotion. Therefore, if Ppref, Pext and Pact can
change, σ(N̄) is at least (β − ε)σ(Ŝ1) with Ppref ≡ Pminpref,
Pext ≡ Pminext and Pact ≡ Pminact unchanged. For the sec-
ond stage, it is sufficient to prove when Ppref ≡ Pminpref,
Pext ≡ Pminext and Pact ≡ Pminact do not change, σ(Ŝ1) is
at least γσ(S∗) with varying Ppref, Pext and Pact. Note that,
if Ppref ≡ Pminpref, Pext ≡ Pminext and Pact ≡ Pminact do
not change, σ(Ŝ1) ≥ σ(S∗first), where S∗first consists of all
nominees of S∗ and assigns them in the first promotion, i.e.,
S∗first = {(u, x, 1) | (u, x, t) ∈ S∗}, and it is a feasible solution
of the restricted problem. Moreover, σ(S∗first) with Ppref ≡ 1,
Pext ≡ 1 and Pact ≡ 1 is no smaller than σ(S∗) with varying
Ppref, Pext and Pact, since Ppref, Pext and Pact can be increased
to at most 1 for the multiple promotions. Therefore, we only
need to prove that, σ(S∗first) is no smaller than γσ(S∗first) with
Ppref ≡ 1, Pext ≡ 1, and Pact ≡ 1, if Ppref ≡ Pminpref,
Pext ≡ Pminext and Pact ≡ Pminact do not change. To prove
it, for each promoted user-item pair, it can be promoted by
the promoting paths from different influence propagation hop
j (j ∈ {1, 2, . . . , c}). Then, we denote Xj as the probability
that all the promoting paths succeed to promote the user-
item pair in the j-th hop with varying Ppref, Pext and Pact.
For each influence propagation hop j, when Ppref ≡ Pminpref,
Pext ≡ Pminext and Pact ≡ Pminact do not change, the total
adoption probability of paths in hop j is at least min{P jminpref ·
P jminact, P

j
minext}Xj . Thus, the total adoption probability of

paths with Ppref ≡ Pminpref, Pext ≡ Pminext and Pact ≡ Pminact
unchanged is at least min{P cminpreft · P cminact, P

c
minext} of that

with Ppref ≡ 1, Pext ≡ 1 and Pact ≡ 1. Thus, σ(S∗first) is no
smaller than γσ(S∗first) with Ppref ≡ 1, Pext ≡ 1 and Pact ≡ 1,
if Ppref ≡ Pminpref, Pext ≡ Pminext and Pact ≡ Pminact do not
change. As mentioned above, the approximation ratio of the
case depends on the approximation β of MSMK. In particular,
Dysim can guarantee the performance ratio for MSMK by
Nominee Selection and checking all possible single candidate
seed in a subroutine of Dysim, i.e., the algorithm in [61]



which has 1−e−1

2 approximation [62] for MSMK. In fact,
this approximation can be further improved to 1 − 1√

e
by

an analysis similar to that in [63] for MSMK. Furthermore,
since the improvement of other subroutines in Dysim does
not worsen the result, the approximation holds, implying
β = 1− 1√

e
.

Last, we analyze the time complexity. Recall that M is the
time to evaluate σ by Monte Carlo sample depending on the
evaluation error ε > 0. It is sufficient to show the total number
of σ function calls. Note that Nominee Selection and TDSI
take the main function calls. In Nominee Selection, it involves
at most |V | |I| kmax function calls. In TDSI, the primary cost
is finding the promotional timing for each nominee. If there
are at most

∣∣Ī∣∣ items chosen in Nominee Selection,
∣∣Ī∣∣ items

are distributed to at most kmax nominees chosen in Nominee
Selection. We assume the i-th item is associated with ki users,
where

∑
i ki ≤ kmax. For the i-th item, it takes at most k2

i

function calls since TDSI searches at most two promotional
timings for each nominee associated with the item. Therefore,
TDSI involves at most (k2

1 + k2
2+, . . . , k2

|Ī|) ≤ (
∑
i ki)

2 ≤
k2

max ≤ |V | |I| kmax. Thus, the total number function calls
of Dysim is O(|V | |I| kmax), implying the time complexity is
O(M |V | |I| kmax). The theorem follows.

V. DETAILED DERIVATION FOR THE DYNAMICS

A. Update Mechanism of Main Factors in IMDPP

The details of deriving and updating each factor are elabo-
rated as follows.

(1) Relevance measurement. KG and meta-graphs with per-
sonal weightings are exploited to find the personal relevance
between two items [10], [11], [17], [18]. KG [11], [18] is
a heterogeneous information network GKG = (V, E ,Φ,Ψ)
with node and edge sets (V and E) and two type-mapping
functions (Φ and Ψ), e.g., Φ(iPhone) = ITEM and
Ψ((iPhone,Bluetooth)) = SUPPORT. A meta-graph is a
schema represented as a graph of node types with certain
connections (e.g., Fig. 1(b)) specified by users [17] or learned
from historical data of users [11]. For a meta-graph m, its
instances are the subgraphs of KG that exactly match the
schema of m. The relevance between item x and item y
as defined by meta-graph m, i.e., s(x, y | m) ∈ [0, 1], is
correlated to the number of m’s instances with end items x and
y (e.g., SCSE [17]). For example, in Fig. 1(b), s(x, y | m1) is
correlated to the number of common FEATUREs supported by
x and y in KG.

As each relationship can be captured by various meta-graphs
with different connections between ITEMs, we realize the
personal item networks using the meta-graphs with personal
weightings [10]. Formally, let Wmeta(u,m, ζt) denote a user
u’s weighting on a meta-graph m at the end of step ζt, i.e.,
the significance of m to u for describing an item relationship.
According to [44], [16], [10], [11], adopted items usually
change users’ perceptions of item relationships. Therefore, we
update u’s weightings on meta-graphs (e.g., by SemRec and
RelSUE [10], [11]) after all adoption decisions at step ζt are

made. Then, the complementary and substitutable relevance
between x and y in u’s perception, denoted as rC(u, x, y, ζt)
and rS(u, x, y, ζt) respectively, are immediately derived (e.g.,
by SemRec [10]) according to s(x, y | mC) and s(x, y | mS)
of every meta-graph mC and mS, respectively.28 Consequently,
u’s personal item network is deduced as GPIN(u, ζt) =
(V ITEM, EC, ES), where V ITEM is the item set, and an edge
(x, y) ∈ EC (or ES) exists and carries the complementary (or
substitutable) relevance between x and y if rC(u, x, y, ζt) > 0
(or rS(u, x, y, ζt) > 0). When u and ζt are clear from context,
we write rCx,y and rSx,y for short.

(2) Preference estimation. Following [16], [38], [47], u’s
preference for x depends on her adopted items and personal
item network. Thus, after all adoption decisions are made
and the personal item network is changed, the preferences for
not-yet-adopted items are updated to reflect users’ interests
in those items. Previous works derive users’ preferences for
not-yet-adopted items by learning the embedding of users and
items (e.g., RSC and RCF [16], [47]) or by statistics inference
[38]. Thus, let A(u, ζt) be the set of items that u has adopted
so far after all adoption decisions are made at step ζt. Equipped
with A(u, ζt) and GPIN(u, ζt), we follow the above research
to derive u’s rating on each not-yet-adopted item y as u’s
updated preference for y at ζt, i.e., Ppref(u, y, ζt).

(3) Influence learning. The influence strength is correlated
to the similarity of users, i.e., their personal item networks
and their adopted items, since similar users are inclined to
become closer and easier to influence each other. Therefore,
after users’ personal item networks and adopted items update,
the influence strength changes according to statistic models
[48] and user embedding (e.g., DeepInf and DANSER [49],
[50]). Following the above works, after the sets of adopted
items A(u, ζt) and A(v, ζt) are obtained and personal item
networks GPIN(u, ζt) and GPIN(v, ζt) are updated, we update
the influence strength from u to v at step ζt as Pact(u, v, ζt).

(4) Item associations. When users are promoted an item
x by social influence, an extra adoption of a relevant item
y is triggered due to item associations according to the
probability of u being promoted and preferring x as well as
the relationships and relevance between x and y, by learning
and comparing the embedding of u, x, and y (e.g., CKE, RSC,
and RCF [16], [18], [47]). As a result, when u is promoted
an item x by u′, at step ζt, u’s extra adoption probability for
x’s relevant item y is Pext(u, u

′, x, y, ζt), derived according to
Pact(u

′, u, ζt − 1), Ppref(u, x, ζt − 1), and u’s personal item
network GPIN(u, ζt − 1).

B. Derivation of DR in DRE of Dysim

As formulated in Eq. (1), for an item x to be promoted
in τk ∈ SG , its DR consists of x’s proactive impact (PI)
and reactive impact (RI). The former is the probability of
increasing users’ preferences for other items by x, while the

28In this paper, we aim to study IM with dynamic personal perceptions
of item relationships modeled by KG and meta-graphs. The computation of
relevance is not our focus. Interested readers are referred to previous studies,
e.g., [10], [11].



latter is the probability of increasing users’ preferences for
x by other items. The adoption of x increases (decreases)
the preferences for the items complementary (substitutable)
to x [7]. Given SG , the likelihood of regarding x and y as
complementary (substitutable) for each user is proportional to
the complementary (substitutable) relevance between x and
y, i.e., LC,τk(x, y, SG) =

r̄Cx,y
r̄Cx,y+r̄Sx,y

and LS,τk(x, y, SG) =
r̄Sx,y

r̄Cx,y+r̄Sx,y
, where r̄Cx,y and r̄Sx,y are the average complementary

and substitutable relevance between x and y over all users in
τk after the promotion of SG , respectively.29 Therefore, PI is
recursively formulated as follows.

PIW,τk(SG , x, d) (9)

=
∑
y

(
LC,τk(x, y, SG)r̄Cx,ywy − LS,τk(x, y, SG)r̄Sx,ywy

+ PIW,τk(SG , y, d− 1)
)
,

where y represents each item relevant to x, and W is the set
of item importance. The first two terms are the likelihood to
increase and decrease the preferences of the users in τk for
y (weighted by the corresponding relevance between x and y
and y’s item importance). The last term PIW,τk(SG , y, d−1)
recursively captures the likelihood to increase or decrease the
preferences (of users in τk) for other items via item impact
propagation from y, where PIW,τk(SG , y, 0) = 0.30

Similarly, RI evaluates the item impact propagation from
any other item z to x according to r̄Cz,x and r̄Sz,x as follows.

RIwx,τk(SG , x, d) (10)

=
∑
z

(
LC,τk(z, x, SG)r̄Cz,xwx − LS,τk(z, x, SG)r̄Sz,xwx

+RIwx,τk(SG , z, d− 1)
)
,

where z is each item relevant to x and RIwx,τk(SG , y, 0) = 0.
Note that RI is derived from wx (rather than W in PI), since
RI only focuses on the preferences for x.

Example 4. For Example 2, we show the detailed calculation
of the DR of iPhone as follows.

DRW,τ3(SG , iPhone)

=
(0.2 · 0.2 · 1

0.4 + 0.2
− 0.4 · 0.4 · 1

0.4 + 0.2
+ PIW,τ3(SG , iPad, 2)

)
+
(
1 · 0.4 · 0.5 + PIW,τ3(SG ,AirPods, 2)

)
+
(0.2 · 0.2 · 1

0.4 + 0.2
− 0.4 · 0.4 · 1

0.4 + 0.2
+RIwiPhone,τ3(SG , iPad, 2)

)
+
(
1 · 0.4 · 1 +RIwiPhone,τ3(SG ,AirPods, 2)

)
= 0.7 + 1 = 1.7. �

29The update of relevance is described in Sec. V-A.
30Here it is d− 1 because item impact has propagated 1-hop from x to y.

C. Derivation of SI in TDSI of Dysim

As formulated in Eq. (2), SI of a candidate seed (u, xp, t)
is measured by the marginal adoption (MA) and the marginal
likelihood (ML). The marginal adoption of (u, xp, t) after the
promotion of SG is

MAτk(SG , (u, xp, t)) = στk(SG ∪ {(u, xp, t)})− στk(SG),
(11)

where στk(SG) is the importance-aware influence in τk under
SG . The marginal likelihood of (u, xp, t) after the promotion
of SG is

MLτk(SG , (u, xp, t)) = πτk(SG ∪ {(u, xp, t)})− πτk(SG),
(12)

where πτk(SG) is the likelihood of all users in τk to adopt the
rest of not-yet-adopted items in the future under SG . As the
probability for a user to adopt an item depends on the social
influence strength she receives and her preference for the item,
πτk(SG) is derived from the sum of probabilities of all u ∈ τk
to adopt their not-yet-adopted items y.

πτk(SG) =
∑
v∈τk

∑
y/∈A(v,ζ last

t̂
)

AIS(v, y, ζ last
t̂

) · Ppref(v, y, ζ
last
t̂

),

(13)

where ζ last
t̂

is the last step of the latest promotion t̂ in SG (i.e.,
t̂ = max{t | (u, x, t) ∈ SG}). A(v, ζ last

t̂
) is the set of items

adopted by v so far after the promotions of SG . AIS(v, y, ζ last
t̂

)
is the aggregated influence probability for y to be promoted
to v in the next promotion after the promotions of SG .31

Ppref(v, y, ζ
last
t̂

) is v’s preference for y after the promotions
of SG .32

D. Dysim for Adaptive IM

For the adaptive IM without a predefined budget allocation,
Dysim carefully determines the current promotion budget
by avoiding the antagonism of the substitutable relationship.
Specifically, to find St after the propagation of the (t − 1)-
th promotion is observed, for t < T , TMI is modified by
selecting only one nominee with the largest MCP at a time.
Accordingly, Dysim exploits TMI multiple times to gradually
find nominees and target markets until the identified overlap-
ping target markets promote substitutable items. Then, Dysim
rejects the latest identified nominee that causes the antagonism
of the substitutable relationship. Next, Dysim exploits DRE
and TDSI alternatively to determine whether the identified
nominees for each G are suitable for the t-th promotion. Note
that the search for possible promotional timings in TDSI is
limited to t and t+1. Once the candidate seed with the largest
SI is assigned to t+ 1, Dysim ends the searching of SGt since

31For example, under the IC, AIS(v, y, ζ last
t̂

) = 1 −∏
v′∈N in(v)∧y/∈A(v′,ζlast

t̂
)

(
1 − Pact(v′, v, ζ last

t̂
)
)
, while under the LT,

AIS(v, y, ζ last
t̂

) =
∑
v′∈N in(v)∧y∈A(v′,ζlast

t̂
) Pact(v′, v, ζ last

t̂
), where

N in(v) is the set of v’s in-neighbors.
32The updates are described in Sec. V-A.



TABLE II
THE STATISTICS OF DATASETS.

Dataset Douban Gowalla Yelp Amazon
# of node types 3 3 6 6

# of nodes 7.6M 3.2M 251K 260K
# of users 5.5M 407K 17K 1.6M
# of items 2.1M 2.8M 22K 20K

# of edge types 3 3 6 6
# of edges 100M 42M 1.6M 1.4M

# of friendships 86M 4.4M 140K 30.6M
Directed friendship? No No No Yes

Avg. initial influence strength 0.011 0.092 0.121 0.050
Avg. item importance 2.1 0.5 1.6 1.8

the remaining nominees in S are suitable for later promotions
as well. After all G are examined, St =

⋃
G S
G
t is found as the

seeds for the t-th promotion. On the other hand, for t = T ,
Dysim exploits TMI to select the best nominees under the
remaining budget and assigns them to T as ST .

VI. EXPERIMENTS

A. Experiment Setup

The experiment includes four datasets, where each one
consists of a KG and a social network:33 i) Douban [37],
ii) Gowalla [64], iii) Yelp [65], and iv) Amazon [65]. Since
there are no social relationships in Amazon, we supplement it
with Pokec34 according to the user profiles [66]. To capture
the complementary and substitutable relationships between
items, the meta-graphs are generated according to [44], and
the relevance of a certain relationship regarding a meta-graph
is derived according to [17]. For the diffusion models, the
four factors, relevance measurement (including the learning
of personal weightings on meta-graphs and the constructions
of personal item networks), preference estimation, influence
learning and item associations are learned and updated based
on [10], [16], [48], and [16], respectively. To set up the IMDPP
problem, the item importance of Douban, Yelp, and Amazon is
distributed following the prices on their websites, while that of
Gowalla is randomly assigned (since its website is no longer
online). The statistics of the datasets are listed in Table II.
Following [3], [67], the costs of hiring users to promote items
are set proportional to users’ out-degree and their preferences
for items, since users who are more influential and who
prefer the item less may need more incentive to be seeds. In
the implementation of Dysim, we exploit the submodularity
(similar to CELF++ [22]) to speed up the nominee selection,
and follow [53] and [23] to cluster nominees and explore
influenced users, respectively, in TMI.

We compare Dysim with OPT (derived from a brute-force
approach) and four state-of-the-art approaches: BGRD [38],
HAG [37], PS [35], and DRHGA [19] as the baselines.35

We extend [19], [35], [37], [38] to consider different costs
of selecting a user to promote an item by selecting from

33The KGs are heterogeneous information networks (HINs) in the datasets,
where the HINs contain diverse node types like items, categories, brands, etc.
Please refer to [37], [64], [65] for more details.

34https://snap.stanford.edu/data/soc-Pokec.html.
35Codes and datasets are available on https://tinyurl.com/y26fx2mp.
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Fig. 8. Comparisons with optimal solutions.

the user-item pairs or the users that satisfy the remaining
budget. Furthermore, since they cannot be directly applied
to our problem, we augment [19], [35], [37], [38] with CR-
Greedy [39] to support multiple promotions and determine the
promotion timings of the user-item pairs as the seeds in each
baseline. The performance metrics include the 1) influence
spread σ (Def. 1)36 and 2) execution time. We perform a series
of sensitivity tests in terms of the budget b and the number
of promotions T . To verify our algorithm, we further conduct
an empirical study on course promotion in viral marketing for
the course selection system. We conduct all experiments on
an HP DL580 server with an Intel 2.10GHz CPU and 1TB
RAM. Each simulation result is averaged over 100 samples
(i.e., M = 100).

B. Performance Comparison

First, we compare all approaches and OPT on small datasets
sampled from Amazon with 100 users. Fig. 8(a) shows the
importance-aware influence under different budgets. Dysim
has the closest performance to OPT, and outperforms BGRD,
HAG, PS, and DRHGA, because TMI of Dysim carefully
selects influential nominees by MCP, and DRE of Dysim then
prioritizes nominees based on dynamic perceptions of item
relationships. In contrast, the baselines neglect the changes
in item relationships and do not promote items beneficial
to each other over time. Fig. 8(b) compares the importance-
aware influence under various numbers of promotions. Dysim
creates a larger influence spread as T increases because TMI
avoids promoting substitutable items to the same users in
near promotions, and TDSI finds the promotional timings by
carefully evaluating the subsequent adoptions. All baselines do
not incorporate the item impact propagation to achieve a larger
influence spread as T grows even a sophisticated algorithm
based on CR-Greedy [39] is employed to schedule promotions
at different timings.

Figs. 9(a)-9(c) compare the importance-aware influence
in large datasets under different budgets.37 For all datasets,
Dysim achieves the largest influence spread, followed by
DRHGA, BGRD, HAG, and PS, because Dysim is able to

36As IMDPP is an optimization problem (instead of a learning problem) to
maximize the influence spread, we follow previous Influence Maximization
(IM) research [1], [3], [23], [24] to compare different algorithms in the
experiment, by deriving the influence spread according to the diffusion models
(instead of learning the influence spreads) when evaluating different sets of
seeds.

37Fig. 9(c) doesn’t include HAG due to execution time longer than 12 hours.

https://snap.stanford.edu/data/soc-Pokec.html
https://tinyurl.com/y26fx2mp
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exploit the changes in users’ preferences and social influence
strength. PS fails to obtain a large influence spread because
it only estimates the influence of a seed alone and cannot
utilize the impact of items from other promotions to find seeds.
BGRD usually achieves smaller than half of the importance-
aware influence compared with Dysim, because it neglects the
substitutable relationship and regards all items as a bundle to
be promoted. Although DRHGA also promotes all items, it
is usually better than BGRD since DRHGA is able to select
appropriate users to promote each item, instead of regarding
all items as a bundle in BGRD. However, as DRHGA does
not choose items to be promoted, it still generate a smaller
influence spread compared with Dysim. HAG outperforms
BGRD in Yelp with low budgets and in Amazon when the
budget is relatively low to the social network size. This is
because HAG greedily selects the most influential combination
of user-item pairs as the seeds, instead of the most influential
user to promote a bundle of items, making the solutions
of HAG more cost-effective. BGRD fails to achieve a large
influence spread for a large b in Douban since items (e.g.,
songs and books) in Douban are usually complementary, but
BGRD still allocates the budget to the same users to promote
a bundle of complementary items.

Figs. 9(e)-9(f) present the importance-aware influence in
large datasets under different numbers of promotions with the
maximal T as 40 (following [39]). Dysim achieves the largest
influence spread for all T with significant increments as T
grows, because TMI of Dysim first arranges the promoting
order of target markets, and Dysim then exploits SI (aware
of the changes in preferences and social influence strength) to
determine proper promotional timings of nominees for each
target market. In contrast, the influence spreads grow slowly
for the baselines, especially when T ≥ 20, because they cannot
arrange the promoting order holistically and fail to utilize more
promotions to properly gain more adoptions.

Figs. 9(d) and 9(g)-9(h) compare the execution time un-
der different budgets and different numbers of promotions,
respectively. As shown in Fig. 9(d), when b varies, Dysim
requires the least execution time for most cases. HAG suffers
from finding numerous combinations of seeds for a large
budget. PS requires much time to search for maximum in-
fluence paths to evaluate the influence of a user. Although
DRHGA only selects users, it takes more time than BGRD
since the selection process is repeated for each item. As b
becomes larger, the execution time of Dysim only slightly
increases since TMI quickly selects influential nominees by
MCP according to the cost and increment on important-aware
influence for each candidate nominee. PS is less sensitive to
b since it employs a discounting strategy to estimate a seed’s
influence under the impact of selected seeds. On the other
hand, as shown in Fig. 9(g), Dysim requires a low overhead
to find promotional timings due to an efficient search with
pruning in TDSI, whereas the baselines greedily assigning the
promotional timings tend to suffer from larger T . To show the
scalability of Dysim, Fig. 9(h) compares the execution time
of Dysim on different datasets (in the order of the number of
users in the social network). The time increases not only as the
number of users increases but also as that of items increases
(e.g., so the time on Gowalla and Amazon are similar) due to
the propagation of item impact.

C. Ablation Study
Fig. 10 compares Dysim, Dysim without target markets

(i.e., w/o TM), and Dysim without item priority (i.e., w/o IP).
We have the following three observations. First, the influence
spread is smaller when target markets are not identified, since
the selected nominees may promote substitutable items to the
same users in consecutive promotions, which detracts from
users’ preferences for the posterior items to be promoted.
By contrast, Dysim effectively avoids the antagonism of the
substitutable relationship by identifying and prioritizing the



target markets. Second, the influence spread of Dysim without
item priority is also smaller than that of Dysim, because all
items in a target market are promoted simultaneously, and
therefore the promotion of an item is hardly facilitated by
promoting its complementary items first. In contrast, Dysim
determines the item priority by exploiting DR, which carefully
measures the impact from previously promoted items on an
item and also the potential impact from this item on other
items in subsequent promotions. Third, as T increases, the
gaps between Dysim and Dysim w/o TM/IP increase. This
is because the number of promotions in Dysim w/o TM/IP
is limited, i.e., at most the number of items/target markets,
implying that more promotions are not beneficial for a larger
influence spread. By contrast, Dysim effectively schedules the
promotional timings of different target markets and different
items to exploit the propagation of item impacts.

D. Comparison of Different Market Orders

To compare with Antagonistic Extent (AE), we leverage the
following metrics to evaluate additional promotional orders
of target markets: profitability (PF) [55], size of the market
(SZ) [55], relative market share (RMS) [68], and random
(RD). PF and SZ are two of the most common criteria
to prioritize target markets in the marketing research field.
PF is the expected adoptions under the promotion from the
corresponding nominees minus the cost of the nominees. SZ is
the number of customers in the target market. A target market
with a larger PF or SZ is preferred to be promoted earlier.
RMS is widely used to assess the value of a firm’s item in the
product management field. RMS of an item x is defined as
the ratio of x’s market share to the largest market share of its
substitutable item, where the market share is evaluated by the
number of users preferring the item most. The target market
that promotes items with a higher RMS is prioritized.

Fig. 11 manifests that AE and PF usually achieve the largest
influence spread, followed by SZ, RMS, and RD. AE and PF
outperform the others since AE prioritizes the target markets
that have less substitutable relationship on the subsequent
target markets, while PF prioritizes the target markets with
more profits to ensure their influence spread. When there exist
excessively large target markets (e.g., identified by plenty of
nominees), PF is suggested as the ordering metric, since PF
can accurately prioritize these large target markets to maximize
the influence. In general cases, AE is usually a better metric to
prioritize the target markets since the impact from the substi-
tutable items promoted by prior target markets is minimized.
By contrast, SZ, RMS, and RD, without carefully examining
the relationships of items promoted in other target markets,
cannot avoid the antagonism of the substitutable relationship.
The results manifest that promoting target markets with a
smaller AE or a larger PF earlier in TMI is beneficial to
achieve a larger influence spread.

E. Empirical Study

In this study, we have recruited five classes for promoting
courses by viral marketing to evaluate the effectiveness of

Dysim in real-world settings. There were 30 elective courses
for computer science college students, including artificial
intelligence (AI), objective-oriented programming (OOP), and
big data, to name a few. The goal of the campaigns is to
encourage the students in Taiwan University to select those
courses, i.e., maximizing the total number of students selecting
the elective courses. The statistics of all classes are presented
in Table III.

To construct KG of these courses, we crawled their syl-
labuses from Taiwan University, and extracted keywords of
courses, related compulsory courses, and research fields of
teachers. The meta-graphs were defined according to the
curriculum guidelines in Taiwan.38 Following [3], the costs
of hiring users to promote courses are set as users’ out-degree
over their initial preferences for courses, since users who are
more influential and who prefer the course less may need more
incentive to be the seeds.

To evaluate the effectiveness of different approaches, we
have launched campaigns based on the following approaches:
1) Dysim, 2) BGRD [38], 3) HAG [37], and 4) PS [35]. In
this study, the budget and the number of promotions were set
to 50 and 3, respectively. For Dysim, relevance measurement
(including the learning of personal weightings on meta-graphs
and the constructions of personal item networks), preference
estimation, influence learning and item associations are learned
and updated based on [10], [16], [48], and [16], respectively.
TMI of Dysim follows [53] and [23] to cluster nominees and
explore influenced users, respectively.

Fig. 12 reports the total number of students selecting the
elective courses for different approaches in each class. For all
classes, Dysim induces the most students who selected those
courses, followed by BGRD, HAG, and PS. These results
validate that Dysim is able to encourage students to select
those courses by carefully evaluating the dynamic changes in
the relationships between courses. For instance, we observe
that a student in Class A initially regarded the complementary
relevance between AI and software design for cloud computing
(SDCC) as 0.1. After he selected AI and big data, the
complementary relevance between AI and SDCC increased
to 0.6 (derived according to [10]). He then selected SDCC
accordingly. In Class D, another student initially reported that
the influence from one of her classmates is 0.2. During the
promotions, both of them selected cloud computing and IoT,
which increased the classmate’s influence to this student to
0.7 (derived according to [48]). Then, this student selected big
data after being informed that the classmate selected big data
as well. By contrast, BGRD, HAG, and PS do not capture the
dynamic changes in the relationships between courses and the
ripple effect, resulting in fewer students selecting the elective
courses in the end.

Besides, although BGRD is able to select influential stu-
dents in each class, all courses are promoted as a bundle
without considering their relationships. For example, in Class
B, BGRD selects a student to promote python and C++

38https://cirn.moe.edu.tw/Upload/file/32077/83646.pdf.

https://cirn.moe.edu.tw/Upload/file/32077/83646.pdf
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Fig. 11. Comparisons of different market orders.

TABLE III
THE STATISTICS OF RECRUITED CLASSES.

Class ID A B C D E
# of users 33 26 22 20 20
# of edges 293 420 387 227 308

in a bundle, but the two courses were usually regarded as
substitutable for most students (i.e., the average substitutable
relevance between python and C++ was 0.7). We observe that
more than two-thirds of the students who selected python
did not select C++ when they were promoted C++ by their
classmates. Similar to BGRD, HAG does not examine the
substitutable relationship when promoting courses. In Class B,
HAG also promoted OOP and C++ to the same set of students.
However, more than half of the students selected only one of
OOP and C++, indicating the waste of simultaneous promo-
tions for substitutable items. PS induces the fewest students to
select the elective courses, since it does not facilitate students
to promote multiple courses and cannot properly utilize the
course promotion from other seeds. For example, in Class C,
PS selected a student to promote deep learning (DL) to a set
of students who were very interested in DL (i.e., their average
initial preference for DL was 0.9). As DL and natural language
processing (NLP) were regarded as highly complementary for
this set of students (i.e., the average complementary relevance
between DL and NLP was 0.75), a good strategy is to let the
students selected by PS to promote NLP as well. However,
PS did not promote any other course to this set of students in
Class C. The above results lead to conclusions consistent with
the experiments in Sec. VI-B, indicating that exploring the
dynamic personal perceptions of item relationships, dynamic
preference for items, dynamic social influence strength, and
item associations is the cornerstone of influence maximization
under a sequence of promotions on relevant items.
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F. Case Study

From the experiments, we find several interesting cases in
Amazon and study them in detail as follows.

1) For b = 500 and T = 20, we find that User #277 inclines
to adopt items with greater importance via item associations.
She is promoted and adopts a cinema camera Canon EOS
C500 and two of its lenses in the 5th, 6th, and 9th promotions,
respectively. Then, in the 13th promotion, if she is promoted a
camera Premier DS-3081S, she adopts another camera Canon
EOS M via item associations (instead of Premier DS-3081S)
with a very high probability. We observe that the average
substitutable relevance between Premier DS-3081S and Canon
EOS M is increased from 0.7 to 0.93 if she adopts the two
lenses in separate promotions after adopting Canon EOS C500,
since she may regard the lenses with similar functions as
substitutable. Her perception of the substitutable relationship
triggers the adoption of a more expensive camera Canon EOS
M, as cameras are high-end items, and users usually adopt only
one among the substitutable items. The changes in perceptions
facilitating item associations indeed lead to larger importance-
aware influence in subsequent promotions.

2) For b = 200, User #16900 has different purchase



decisions between settings T = 1 and T = 10. We observe that
her preferences for Kindle and Kindle Unlimited service are
0.61 and 0.32, respectively, before any promotion. For T = 1,
she usually adopts only Kindle if she is promoted both items
at the same time. For T = 10, she is likely to be promoted and
adopt Kindle in the 2nd promotion. We find that as Kindle and
Kindle Unlimited service are complementary to each other,
the adoption of Kindle increases her preference of Kindle
Unlimited service to 0.58 on average. If she is then promoted
Kindle Unlimited service in the 3rd promotion, she adopts it
with a high probability. Exploiting the item relationships and
the changes in personal preferences in multiple promotions is
able to achieve more adoptions.

3) For b = 300 and T = 10, we find two different results
when User #2236 promotes some item to User #186644. If
User #2236 attempts to promote Kindle to User #186644 in
the 2nd promotion, she probably fails. If both users adopt
Garmin nuvi 50 promoted by their common friend in the 5th
promotion, User #2236 is very likely to successfully promote
Kindle Voyage to User #186644 in the 7th promotion. In the
case that User #2236 and User #186644 both adopt Garmin
nuvi 50 in the 5th promotion, they become more similar and
socially closer accordingly. This makes the influence strength
from User #2236 to User #186644 increased from 0.39 to 0.47
on average, which further helps User #2236 promote Kindle
Voyage to User #186644 in the 7th promotion.

G. Sensitivity Tests

Fig. 13 compares the importance-aware influence under
different numbers of meta-graphs. With more meta-graphs,
Dysim achieves larger importance-aware influence by better
capturing users’ perceptions, demonstrating the importance
of modeling item relationships via KG and meta-graphs for
a sequence of promotions. Fig. 14 shows the sensitivity to
the threshold θ for identifying target markets with common
users in TMI. A large θ slightly reduces the importance-aware
influence since target markets may promote substitutable items
to their common users. Nevertheless, a small θ also slightly
deteriorates the performance because the promotional duration
of a target market may be insufficient (when there are too
many target markets in the same G) to foster the promotion
of complementary items properly.

VII. CONCLUSION

To the best of our knowledge, this paper makes the first
attempt to study the problem of influence maximization under
a sequence of promotions for multiple relevant items. By
exploring KG and meta-graphs to capture dynamic personal
perceptions of item relationships, we formulate a new problem,
named IMDPP, to choose items and select seed users for
promotions at proper timings. We prove the hardness of
IMDPP and design an approximation algorithm Dysim to solve
IMDPP. Dysim first identifies nominees and target markets to
promote complementary items to socially close users in con-
secutive promotions. For each target market, Dysim prioritizes
the items to be promoted by dynamic reachability of items.

Then, Dysim determines proper promotional timings with the
highest substantial influence for each nominee. Experiments
on real social networks and KGs demonstrate that Dysim can
effectively achieve up to 6.7 times of the influence spread.
Furthermore, the empirical study validates that exploring the
dynamic personal perceptions of item relationships, dynamic
preference for items, dynamic social influence strength, and
item associations is crucial for influence maximization under
a sequence of promotions on relevant items.
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