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Abstract—Due to the wide applications in recommendation
systems, multi-class label prediction and deep learning, the
Maximum Inner Product (MIP) search problem has received
extensive attention in recent years. Faced with large-scale datasets
containing high-dimensional feature vectors, the state-of-the-art
LSH-based methods usually require a large number of hash
tables or long hash codes to ensure the searching quality, which
takes up lots of index space and causes excessive disk page
accesses. In this paper, we relax the guarantee of accuracy for
efficiency and propose an efficient method for c-Approximate
Maximum Inner Product (c-AMIP) search with a lightweight
iDistance index. We project high-dimensional points to low-
dimensional ones via 2-stable random projections and derive
probability-guaranteed searching conditions, by which the c-
AMIP results can be guaranteed in accuracy with arbitrary prob-
abilities. To further improve the efficiency, we propose Quick-
Probe for quickly determining the searching bound satisfying the
derived condition in advance, avoiding the inefficient incremental
searching process. Extensive experimental evaluations on four
real datasets demonstrate that our method requires less pre-
processing cost including index size and pre-processing time. In
addition, compared to the state-of-the-art benchmark methods,
it provides superior results on searching quality in terms of
overall ratio and recall, and efficiency in terms of page access
and running time.

Index Terms—Maximum Inner Product Search, Probability-
Guaranteed, Lightweight Index

I. INTRODUCTION

Given a dataset D of n data points and a query point

q in d-dimensional space Rd, a Maximum Inner Product

(MIP) search returns the point o∗ ∈ D maximizing the inner

product with q. Mathematically, it is represented as o∗ =
argmaxo∈D〈o, q〉. The so-called MIP search is a fundamental

problem and it has been widely applied in various domain

areas, such as matrix factorization based recommendation
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systems [2], [5], [22], [26], multi-class label prediction [10]

and deep learning [37]. Typically, in matrix factorization based

recommendation systems, the vectors q and o are viewed as

latent features for a user and a product, respectively. The inner

product between q and o reflects the user’s interest in the prod-

uct. Therefore, MIP search is an important concern in these

recommendation systems to recommend popular products to

users.

The phenomenon of the “Dimensionality Curse” makes

exact MIP search in high-dimensional space very expensive.

Therefore, many researchers set their sights on the approxi-

mate version of the MIP search problem [1], [2], [15], [17],

[30], [34], [35], [41], [44], which is called c-Approximate

MIP (c-AMIP) search problem. Mathematically, given an

approximation ratio c (0 < c < 1) and a query point q, c-AMIP

search returns a point o ∈ D such that 〈o, q〉 ≥ c〈o∗, q〉, where

o∗ is the exact MIP point of q. In this way, a good accuracy-

efficiency trade-off can be provided where the efficiency can

be improved significantly while only a small amount of errors

occur.

At present, the state-of-the-art methods for c-AMIP search

are transformation-based. In these methods, a MIP search is

converted into a Nearest Neighbor (NN) search or a Maximum

Cosine-similarity (MC) search by transforming the given data

points and the query point asymmetrically or symmetrically,

and employ Locality-Sensitive Hashing (LSH) to solve the NN

or MC search problem. These LSH-based methods improve the

searching efficiency, but to achieve satisfactory accuracy, they

require more hash vectors to project high-dimensional points

onto more hash values, indexed by heavyweight structures in

terms of massive hash tables. These heavyweight structures re-

quire more maintenance overhead, which increases linearly as

the number of hash tables increases. Especially in commonly

used mobile devices or IoT devices, a huge amount of data
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will be frequently inserted or deleted in a short time, where the

heavyweight index requiring more maintenance overhead may

cause delays. Besides, hundreds or thousands of hash tables

may also lead to more disk page accesses which degrades the

efficiency when storing data points on disks.

Motivated by these existing restrictions, we attempt to de-

sign an efficient method for c-AMIP search with a lightweight

index. A recent method, SRS [38], which can be considered as

a special version of LSH technique, projects high-dimensional

points onto low-dimensional ones via 2-stable random pro-

jections to reduce high-dimensional c-ANN search to low-

dimensional NN search, and perform the low-dimensional

search through a lightweight index in terms of R-tree. Com-

pared to the standard LSH, SRS can directly project high-

dimensional points onto lower-dimensional ones with fewer

projections, avoiding the heavyweight index. Although it’s

designed for Euclidean distance, it presents a new angle to

solve c-AMIP search problem since the Euclidean distance

between two points can be computed by their inner product

and 2-norms. Even though, it’s still challenging to follow

the direction of SRS to solve c-AMIP search problem. Since

inner product isn’t a metric measurement, some basic neces-

sary properties such as non-negativity and triangle inequality

are not satisfied. Without these properties, we can’t derive

the probability-guaranteed searching conditions for c-AMIP

search directly like SRS.

Inspired by SRS, we also project high-dimensional points

onto low-dimensional ones via 2-stable random projections.

Based on the projection and the properties of inner product,

we theoretically derive two conditions specifically for c-
AMIP search. According to the conditions, we perform an

incremental NN search in low-dimensional space to collect

the candidate points until a point satisfying either of the

conditions is searched. And the required c-AMIP point is

guaranteed to appear among these candidate points with the

given probability. However, during the incremental NN search,

every time a point is returned, it is required to determine

whether it satisfies the condition, which is a time-consuming

procedure. To avoid the procedure, we come up with a quick

method named Quick-Probe for directly locating the point

satisfying the searching condition to determine the searching

range, which enables us to replace the incremental NN search

with a range search without testing each returned NN point.

Meanwhile, based on Quick-Probe, we can also compute an

optimized projected dimension to pursue a more efficient

searching process. With respect to the index used for search,

since the optimized dimensions are usually greater than 3, R-

tree used in SRS isn’t applicable. Hence, in order to search

in higher-dimensional space, we adopt iDistance [18], which

is an efficient index, and design a new partition pattern for

it. Compared to LSH-based methods, iDistance is a typical

lightweight index, which only requires a single B+-tree to

orderly organize points on disks, rather than a large number

of hash tables or long hash codes.

As can be seen from the above descriptions, we pro-

pose an efficient method for the probability-guaranteed high-

dimensional c-AMIP search with a lightweight index. Our

contributions are summarized as follows:

• We employ 2-stable random projections to project high-

dimensional points onto low-dimensional points and the-

oretically derive two searching conditions for c-AMIP

search. Relying on the conditions, the c-AMIP result can

be guaranteed in accuracy with arbitrary probabilities.

• Quick-Probe is proposed for quickly locating the point

to determine the searching range, which avoids testing

each returned point repeatedly to accelerate the searching

process. Besides, an optimized projected dimension can

be computed based on Quick-Probe.

• Extensive experimental evaluations on four real datasets

show that our method occupies a smaller index size and

requires less pre-processing time compared to benchmark

methods. Furthermore, our method is also superior in ac-

curacy measured by overall ratio and recall, and efficiency

measured by page access and running time.

The rest of the paper is structured as follows. Section II

presents the preliminaries. We introduce the overall frame-

work in Section III. The searching conditions are presented

in Section IV. We propose Quick-Probe in Section V. In

Section VI, we describe the indexing technique. The time and

space complexities are theoretically analyzed in Section VII.

Experimental evaluations are discussed in Section VIII. The

related works are introduced in Section IX. Finally, we con-

clude our work in Section X.

II. PRELIMINARIES

A. Problem Definition

Given a dataset D containing n data points in a d-

dimensional space Rd, the inner product 〈o, q〉 between two

points o = (o1, o2, ..., od) and q = (q1, q2, ..., qd) can be

computed as 〈o, q〉 = Σd
i=1oiqi. Inner product is widely used

in real applications where the MIP search problem plays an

important role. For example, in recommender systems, o and

q are used as a user vector and an item vector, respectively. A

higher inner product between o and q indicates that the item

better suits the user’s preference [2].

In this paper, to handle the high-dimensional cases, we allow

a trade-off between accuracy and efficiency, and focus on c-
AMIP search problem formally defined as follows:

Definition 1 (c-AMIP search problem). Given a query point

q ∈ Rd and an approximation ratio c (0 < c < 1), c-AMIP

search is to find a point o ∈ D such that 〈o, q〉 ≥ c〈o∗, q〉,
where o∗ is the q’s exact MIP point in D.

Similarly, c-k-AMIP search is to find k points oi ∈ D (1 ≤
i ≤ k) such that 〈oi, q〉 ≥ c〈o∗i , q〉, where o∗i is the ith exact

MIP point of q in D.

B. 2-Stable Random Projection

Definition 2 (2-Stable Random Projections). Given a d-

dimensional point o, which can be considered as a vector −→o ,

and a d-dimensional vector −→v , whose entries are i.i.d. random
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variables following the standard normal distribution N(0, 1),
2-Stable Random Projections is to compute f(o) = −→v · −→o .

Based on 2-stable random projections, we can obtain the

following Lemma [31].

Lemma 1. For any o1, o2 ∈ Rd, f(o1) − f(o2) follows the

normal distribution N(0, dis2(o1, o2)).

In our method, the projected dimension of each point is

m. Therefore, we perform m 2-stable random projections to

obtain m-dimensional projected points.

C. IDistance

IDistance is an efficient index based on B+-tree for the

exact similarity search [18], which is illustrated in Fig. 1. In

iDistance, the whole indexing space is divided into several

partitions centered at their reference points. In these partitions,

points are transformed into a single dimensional value based

on their distances to their corresponding reference points and

these values are indexed by a B+-tree. Based on the B+-tree,

similarity search can be performed. For example, in Fig. 1,

given a query point and a searching radius, the grey area in the

B+-tree will be searched, so that the points in the gray areas

of the space are fetched for determining the final searching

results. In this paper, we utilize iDistance as the index to

accelerate the searching process.

We summarize the frequently-used symbols in Table I.

III. OVERALL FRAMEWORK

In this paper, to solve the probability-guaranteed c-AMIP

search problem in high-dimensional space, we project high-

dimensional points onto low-dimensional ones via 2-stable

random projections. Since the ratio of points’ Euclidean dis-

tance in high-dimensional space and low-dimensional space

follows the chi-square distribution, and points’ Euclidean

distance is related to their inner product, we can derive two

searching conditions. Based on these conditions, we perform

incremental NN search in low-dimensional space for the

probability-guaranteed c-AMIP point. In detail, every time a

point is returned, we test if the point satisfies either of the

conditions to determine whether to terminate the incremental

NN search. If satisfied, the c-AMIP point exists in the searched

points with the given probability at least. The searching

conditions are elaborated in Section IV.

TABLE I
FREQUENTLY USED SYMBOLS

Symbol Explanation

D dataset
n number of data points
o, q data point, query point
P (o), P (q) projected data point, projected query point
d original dimensionality of each point
m projected dimensionality of each point
o∗, o∗

i
the MIP point, the i-th MIP point of q

N(a, b) the normal distribution with mean a
and variance b

dis(o1, o2) the Euclidean distance between o1 and o2
‖o‖ the norm of point o
oM the point with the maximum norm

in the original space
〈o1, o2〉 the inner product between o1 and o2
χ2(m) the chi-square distribution with m degrees

of freedom

Ψm(x) cumulative distribution function of χ2(m)

Ψ−1
m (p) inverse function of Ψm(x)

k number of the returned points
c approximation ratio
p guaranteed probability

However, it is time-consuming to perform the incremental

NN search and test each returned point one by one. To avoid

it, we propose a method to quickly locate the point satisfying

the searching condition, called Quick-Probe. The method

quickly locates the point through binary transformation and

data norm’s properties. In this way, the searching range is

directly determined by the located point and we can perform

range search instead of the incremental NN search elaborated

in Section IV, to collect the candidate points. Benefiting from

Quick-Probe, we no longer do any incremental NN search and

the time-consuming process of testing the returned point one

by one can be avoided. Quick-Probe is elaborated in Section V.

In addition, we adopt iDistance as the index and design a new

partition pattern for it for performing searching tasks more

efficiently in low-dimensional space, which is elaborated in

Section VI.

Based on the searching conditions and Quick-Probe, our

method is described in two parts including the pre-process

and the searching process. In the pre-process, the original

high-dimensional points are projected onto projected low-

dimensional ones. In the low-dimensional space, the index

structure is constructed for performing the searching tasks

and the low-dimensional points and their corresponding high-

dimensional ones are organized on disks. In addition, the

projected points are also converted into binary codes and each

point’s norms are computed, for determining the searching

range according to Quick-Probe. In the searching process,

Quick-Probe is applied to find the point satisfying the con-

dition and determine the searching range, by which the range

search is performed in the projected space to find the candidate

points. These candidate points are verified using their inner

products in the original space for returning the c-AMIP search

results. To clearly summarize our method’s overall framework,

we give Fig. 2 to describe it.



Fig. 2. Overall Framework

IV. SEARCHING CONDITIONS

Our method aims to guarantee the c-AMIP search in accu-

racy with arbitrary probabilities by proposing two searching

conditions. In this section, we will introduce the conditions

and prove their validity.

A. Condition A

As stated above, we perform incremental NN search in the

projected space. During the searching process, we fetch every

returned point as the candidate points. If the current returned

P (q)’s i-th NN point P (oi) satisfies:

‖oM‖2 + ‖q‖2 −
2〈oi, q〉

c
≤ 0, (1)

a c-AMIP point must exist among these candidate points, and

the searching process can be terminated, where o and q are

the corresponding original points of P (o) and P (q), oM is the

point with the maximum norm in the original space. Formula 1

is considered as Condition A and the following Theorem 1

proves its validity.

Theorem 1. If the current returned NN point satisfies For-

mula 1, a c-AMIP point must exist among the points having

been returned.

Proof. We assume that o∗ is the exact MIP point of the query

point q. If ‖oM‖2 + ‖q‖2− 2〈oi,q〉
c
≤ 0, since oM is the point

with the maximum norm, we have ‖o∗‖2+‖q‖2− 2〈oi,q〉
c
≤ 0.

Since ‖o∗‖2 + ‖q‖2 − 2〈o∗, q〉 ≥ 0, we have 〈oi, q〉 ≥
c〈o∗, q〉. Therefore, when ‖oM‖2 + ‖q‖2 − 2〈oi,q〉

c
≤ 0, a c-

AMIP point must have been accessed when oi is searched.

B. Condition B

During the incremental NN search in the projected space,

if the current returned NN point doesn’t satisfy Condition A,

‖oM‖2+‖q‖2− 2〈oi,q〉
c

> 0 is true. Based on it, we turn to test

the returned NN point by the following Formula 2. If P (q)’s
i-th NN point P (oi) satisfies:

Ψm(
dis2(P (oi), P (q))

‖oM‖2 + ‖q‖2 − 2〈omax,q〉
c

) ≥ p, (2)

a c-AMIP point must exist among these candidate points with

the given probability p at least, and the searching process can

be terminated, where omax is the point with the maximum

inner product to q among all the candidate points having been

returned so far. Formula 2 is considered as Condition B and

the following Theorem 2 proves its validity.

Before proving Theorem 2, we firstly give the following

Lemma 2 as the preparations.

Lemma 2.
dis2(P (o),P (q))

‖o‖2+‖q‖2−2〈o,q〉 follows the χ2(m) distribution.

Proof. According to Definition 2, we select m d-dimensional

vectors whose entries are i.i.d random variables following

N(0, 1) for performing m 2-stable random projections to get

m-dimensional projected points. The m-dimensional projected

points are denoted as P (o) = (f1(o), f2(o), ..., fm(o)) and

P (q) = (f1(q), f2(q), ..., fm(q)).

According to Lemma 1, we have
fi(o)−fi(q)
dis(o,q) ∼ N(0, 1) (1 ≤

i ≤ m).

Therefore, we can obtain
∑m

i=1 (
fi(o)−fi(q)
dis(o,q) )

2
∼ χ2(m).

Since dis2(P (o), P (q)) =
∑m

i=1(fi(o) − fi(q))
2 and

dis2(o, q) = ‖o‖2 + ‖q‖2 − 2〈o, q〉, the lemma can be

proved.

Theorem 2. If the current returned NN point satisfies For-

mula 2, a c-AMIP point must exist among the points having

been returned with probability p at least.

Proof. Assume that o∗ is the exact MIP point, we consider the

relationship between dis(P (o∗), P (q)) and dis(P (oi), P (q)).
We discuss their relationship in two cases:

• C1: dis(P (o∗), P (q)) ≤ dis(P (oi), P (q)).
In this case, since we perform the incremental NN search,

o∗ must have been accessed when oi is searched.

• C2: dis(P (o∗), P (q)) > dis(P (oi), P (q)).
In this case, our method may produce incorrect results if

none of the c-AMIP points has appeared so far, which can

also be represented as 〈omax, q〉 < c · 〈o∗, q〉. However,

we can prove that the probability of such incorrect case

is less than 1− p.

According to Lemma 2, for any x > 0 and o, we have

Pr[dis(P (o), P (q)) ≤ x] = Ψm(
x2

‖o‖2 + ‖q‖2 − 2〈o, q〉
).

Based on it, we have:

Pr[dis(P (o∗), P (q)) > dis(P (oi), P (q))]

= 1−Ψm(
dis2(P (oi), P (q))

‖o∗‖2 + ‖q‖2 − 2〈o∗, q〉 ).

Since 〈omax, q〉 < c · 〈o∗, q〉, we can derive

Ψm(
dis2(P (oi), P (q))

‖o∗‖2 + ‖q‖2 − 2〈o∗, q〉 )

> Ψm(
dis2(P (oi), P (q))

‖o∗‖2 + ‖q‖2 − 2〈omax,q〉
c

).

Since oM is the point with the maximum norm, we have

Ψm(
dis2(P (oi), P (q))

‖o∗‖2 + ‖q‖2 − 2〈omax,q〉
c

)

> Ψm(
dis2(P (oi), P (q))

‖oM‖2 + ‖q‖2 − 2〈omax,q〉
c

).



Therefore, if oi satisfies Ψm( dis2(P (oi),P (q))

‖oM‖2+‖q‖2− 2〈omax,q〉
c

) ≥
p, we have Pr[dis(P (o∗), P (q)) > dis(P (oi), P (q))] ≤
1− p.

Algorithm 1 gives the pseudo-code of the searching process.

The algorithm can also be extended to solve the c-k-MIP

search problem by some simple changes. In Condition A, it’s

required to test the current k-th MIP point okmax. Similarly,

we should use okmax in Condition B instead of omax.

Algorithm 1: MIP-Search-I (D,n, c, p, q)

1 omax ← Null;
2 i← 1;

3 // Perform incremental NN search

4 while i ≤ n do

5 P (oi)← P (q)’s i-NN point;

6 if 〈omax, q〉 ≤ 〈oi, q〉 then

7 omax ← oi; // Update MIP point

8 if Condition A then

9 return omax;

10 else if Condition B then

11 return omax;

12 i← i+ 1;

13 return omax;

V. QUICK-PROBE

As can be seen from Algorithm 1, we have to perform

the incremental NN search to find the point satisfying the

searching condition. Whenever a point is returned, it’s required

to test it using Condition A or Condition B. Especially

in Condition B, Euclidean distance in the projected space

is computed, which is time-consuming when the projected

dimension is high. Besides, it also incurs extra page accesses

when fetching points from disks. Therefore, we attempt to

avoid testing the points one by one.

A. Method

For the purpose, we introduce a method named Quick-

Probe, by which we can quickly locate a point satisfying

Condition B as much as possible. The distance between the

point and the query in the projected space is used as an

estimation of the searching range. It enables us to perform

range search instead of incremental NN search to find the

candidates points within the searching range.

Nevertheless, it’s hard to determine the bound of
dis2(P (o),P (q))

‖oM‖2+‖q‖2− 2〈omax,q〉
c

in Condition B and locate a point sat-

isfying the condition. But we observe that the point satisfying

Formula 3 is more likely to satisfy Condition B and the

determined searching range can infinitely approach the range

determined by Condition B. So we turn our attention to

determine the bound of
dis2(P (o),P (q))

c×dis2(o,q) , and locate a point

satisfying Formula 3.

Ψm(
dis2(P (o), P (q))

c× dis2(o, q)
) ≥ p (3)

The bound is determined through binary transformation and

data norm’s properties. In detail, we transform each projected

point into a binary code c(o) = (c1(o), c2(o), ..., cm(o)),
where ci(o) = 1 if Pi(o) is non-negative and ci(o) = 0
otherwise (i = 1, 2, ...,m). According to Theorem 3, we

can derive the lower bound of dis(P (o), P (q)). The upper

bound of dis(o, q) can be derived through Theorem 4 using

the property of data norm. By Theorem 3 and Theorem 4, a

lower bound of
dis2(P (o),P (q))

c×dis2(o,q) can be computed. If the lower

bound referring to a point o is greater than Ψ−1
m (p), Formula 3

must be satisfied. Therefore, we can use dis(P (o), P (q)) as

the searching range in the projected space. The process of

finding o is described as below.

Theorem 3. The lower bound of the Euclidean distance

between P (o) and P (q) is 1√
m

∑m

i=1(ci(o)⊕ ci(q))×|Pi(q)|.
Proof. For any m-dimensional vector x, it holds that√
m‖x‖2 ≥ ‖x‖1 [23], [47]. Therefore, we have ‖P (o) −

P (q)‖2 ≥ 1√
m
‖P (o)−P (q)‖1. When ci(o) = ci(q), Pi(o) and

Pi(q) have the same sign and ci(o) ⊕ ci(q) = 0 holds. Since

|Pi(o)−Pi(q)| ≥ 0, we have |Pi(o)−Pi(q)| ≥ (ci(o)⊕ci(q))×
|Pi(q)|. When ci(o) 6= ci(q), Pi(o) and Pi(q) have different

signs and ci(o) ⊕ ci(q) = 1 holds. Therefore, we also have

|Pi(o)−Pi(q)| = |Pi(o)|+ |Pi(q)| ≥ (ci(o)⊕ci(q))×|Pi(q)|.
Therefore, it holds that |Pi(o) − Pi(q)| ≥ (ci(o) ⊕ ci(q)) ×
|Pi(q)| and we can obtain that

‖P (o)− P (q)‖2 ≥
1√
m

m
∑

i=1

(ci(o)⊕ ci(q))× |Pi(q)| (4)

Theorem 4. The upper bound of the Euclidean distance

between o and q is
∑m

i=1 |oi|+
∑m

i=1 |qi|.
Proof. According to the property of vector norm and absolute

value equality [47], we can simply derive:

‖o− q‖2 ≤ ‖o− q‖1 ≤
m
∑

i=1

|oi|+
m
∑

i=1

|qi| = ‖o‖1+‖q‖1. (5)

In the pre-process, the projected points with the same binary

code will be divided into the same group, and the 1-norms of

their original points are computed and sorted. In the searching

process, the lower bounds of Euclidean distance between each

group and the query point are computed through Formula 4.

We search the groups in ascending order of their lower bounds.

In each group, its lower bound is denoted as LB and we fetch

the point o whose ‖o‖1 is the smallest among the points in

the group to find the largest value of LB2

c×(‖o‖1+‖q‖1)2
. Then

we test whether it satisfies Ψm( LB2

c×(‖o‖1+‖q‖1)2
) ≥ p, which is



denoted as Test A. If Test A is satisfied, we fetch the point

to determine the searching range. If not satisfied, we record

the point’s value of LB2

c×(‖o‖1+‖q‖1)2
and continue to search in

the next group until the point is found. If there is no point

satisfying it in all groups, we fetch the point with the largest

recorded value of LB2

c×(‖o‖1+‖q‖1)2
as the result. The following

Algorithm 2 describes the whole process. In Algorithm 2, G =
{G1, G2, ..., GK} are the input set of groups with the same

binary codes. In each group, the points o are sorted in the

ascending order of ‖o‖1.

Algorithm 2: Quick-Probe (G, c, p, q)

1 Compute each group Gi’s lower bound LBi;

2 {GS1, GS2, ..., GSK} ← the sorted groups in the

ascending order of the lower bounds;

3 point← Null;
4 value← 0;

5 for i = 1 to K do

6 // Test A

7 if Ψm(
LB2

i

c×(‖oi1‖1+‖q‖1)2
) ≥ p then

8 return oi1;

9 // Update the point with the largest value

10 if
LB2

i

c×(‖oi1‖1+‖q‖1)2
≥ value then

11 value← LB2

i

c×(‖oi1‖1+‖q‖1)2
;

12 point← oi1;

13 return point;

Combining Quick-Probe and the aforementioned Condition

A and Condition B, the searching process is described in

Algorithm 3. Quick-Probe is applied to find the point o as

the input to determine the searching range in the projected

space. During the range search in the projected space, when

a point is returned, its inner product to the query point is

recorded for the final verification. Besides, Condition A is also

tested to determine whether to terminate the searching process

(Unlike Condition B, Condition A doesn’t require too much

computation).

Because the searching range obtained by Quick-Probe is an

estimated value, the obtained point may not satisfy Condition

B completely, which indicates that the searching range may not

completely guarantee c-AMIP point with the given probability

p. Faced with this problem, we compensate it by expanding

the searching range to ensure the probability-guaranteed c-
AMIP result. If the entire range search has been performed,

the recorded maximum inner product is brought into Condition

B to test whether the result satisfies the condition. If satisfied,

terminate the searching process and return the result. If not

satisfied, according to Formula 2, the searching range will be

extended to r
′

=
√

Ψ−1
m (p)× (‖oM‖2 + ‖q‖2 − 2〈omax,q〉

c
)

as compensation to find the final results. Since the obtained

maximum inner product later is greater than or equal to current

〈omax, q〉, the extended r
′

is larger than or equal to the

actual searching range satisfying the probability-guaranteed

requirements.

Algorithm 3: MIP-Search-II (D, c, p, q, o)

1 r ← dis(P (o), P (q)); // Determined searching range

2 omax ← Null;
3 i← 0;

4 // Perform range search

5 while dis(P (oi), P (q)) < r do

6 i← i+ 1;

7 oi ← the original form of P (oi);
8 if 〈oi, q〉 > 〈omax, q〉 then

9 omax ← oi; // Update MIP point

10 if Condition A then

11 return omax;

12 if Condition B then

13 return omax;

14 else

15 Update the searching range to r
′

;

16 while dis(P (oi), P (q)) < r
′

do

17 i← i+ 1;

18 oi ← the original form of P (oi);
19 if 〈oi, q〉 > 〈omax, q〉 then

20 omax ← oi;
21 if Condition A then

22 return omax;

23 return omax;

B. Optimized Projected Dimension

In Quick-Probe, the projected points are transformed into

binary codes. It indicates that m projected dimensions will

bring 2m binary codes. If assuming that each binary code

represents the same number of points, 2m groups will bring

n/2m points in each group. It can be observed that more

projected dimensions may bring more groups, while bring

fewer points in each group. If the point can be located by

directly searching one group, fewer points in one group will

lead to less time consumption. However, more groups also

require more time to compute their lower bounds. Therefore,

there exists a trade-off and we can derive an optimized

projected dimension to improve the efficiency of Quick-Probe.

Binary codes with m bits can divide the whole dataset

into up to 2m groups. The time consumption to compute the

groups’ lower bounds and find the group with the smallest

lower bound is 2m(m+1). We assume that the whole dataset

can be equally divided and the point satisfying Formula 3

can be located by searching only one group. Therefore, each

group contains n/2m points and the time consumption of

searching the point is n/2m. The total time consumption is

2m(m + 1) + n/2m. We set the function f(m) = 2m(m +
1)+n/2m. Since the second derivative of f(m) is greater than
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0, f(m) has the minimum value. Our objective is to compute

m = argmin f(m), which is considered as the optimized

projected dimension.

VI. INDEX STRUCTURE

In the standard iDistance shown in Fig. 1, when performing

range search, the searching area is much larger than the

given searching sphere, which indicates that a large portion

of searching area is unnecessary.

Different from the standard iDistance, to avoid much unnec-

essary searching area, we adopt a different partition pattern as

shown in Fig. 3. We use the following Formula 6 to compute

each point’s index key,

I(p) = ⌊i ∗ C + dis(p,Oi)/ε⌋ (6)

where ε is a constant determined by the data distribution.

In detail, taking a two-dimensional space as an example, we

obtain the clusters’ radii after the first stage of clustering

and compute their average. Then, we make a circle with the

average as the radius denoted as ravg , and the value of ε is

equal to ravg/Nkey to divide the circle into Nkey rings with

equal ring widths, which also means that points can be mapped

to Nkey keys. We continue to employ k-means to divide the

sets of points in the rings into several sub-partitions, while

the clusters’ centers and radii are the sub-partitions’ pivots

and radii, respectively. In the searching process, points can

be filtered in sub-partitions by whether they intersect with the

given searching sphere. In addition, the points in the same

sub-partition can be collectively organized on disks in order,

which means that the adjacent points belonging to the same

sub-partition are likely to be organized on the same disk, while

the adjacent sub-partitions are also likely to be organized on

the adjacent disks. It’s beneficial to reduce page accesses since

points can be read from disks in sub-partitions to avoid random

readings. As shown in Fig. 3, an index key indexes a deep grey

ring in the partition. The points in this ring are divided into

eight sub-partitions. Given a searching sphere centered at the

query point, two of the eight sub-partitions intersect with the

given sphere and the points in these sub-partitions are selected

as the candidate points. In our partition pattern, it’s required to

select appropriate values of the number of partitions kp and the

number of sub-partitions ksp to ensure that each sub-partition

contains a certain number of points to make the filter effective.

To the end, we introduce a parameter called selectivity µ. That

is, we try to make nearly µn points in each sub-partition by

setting appropriate kp and ksp. We assume that, after the first

clustering stage via kp-means, the number of points in each

cluster is the same, which is n
kp

. We determine the value of

ε in Formula 6 according to the data distribution to control

the number of keys in each cluster, and the number of points

corresponding to each key is also assumed to be the same.

We denote the number of keys in a cluster as Nkey , thereby

the number of points represented by a key is n
kp∗Nkey

. Based

on the aforementioned assumptions, the number of points

in each sub-partition is n
kp∗Nkey∗ksp

after clustering by ksp-

means. Therefore, the selectivity µ = 1
kp∗Nkey∗ksp

. In the

experimental evaluations, we will give the parameter settings

on the testing datasets.

Algorithm 4 introduces the index construction containing

the dividing process, computing the index keys and construct-

ing the B+-tree to index these points.

Algorithm 4: Index-Construct(D)

1 Project original dataset D onto projected dataset Dp;

2 Divide Dp into kp partitions {P1, P2, ..., Pkp
};

3 for i = 1 to kp do

4 for every point p in Pi do

5 I(p) = ⌊i ∗ C + dis(p,Oi)/ε⌋; // Formula 6

6 Divide points with the same index keys in Pi into

ksp sub-partitions;

7 Construct B+-tree index and organize points on disks;

VII. TIME AND SPACE COMPLEXITIES

The time cost of our method consists of five parts. Firstly,

according to Section V, we have the computed optimized

projected dimension m = O(log n) and the time cost of

locating the point through Quick-Probe is 2mm+2m+ n
2m =

O(n logn). Secondly, the time complexity of computing q’s

projection is O(d). Thirdly, the time cost of locating the

partition containing the projected query point and comput-

ing the projected query point’s key is kpm + 1 = O(1).
Then, since there are kpNkey keys in B+-tree, locating the

key in the B+-tree costs log(kpNkey). In the B+-tree, as-

suming that αkpNkey (0 < α < 1) keys are searched,

it costs αkpNkey log(kpNkey). The process of determining

whether the searching range intersects with αkpNkeyksp sub-

partitions costs αkpNkeykspm. Summing them up, the whole

searching process costs log kpNkey + αkpNkey log kpNkey +
αkpNkeykspm = O(log n). Finally, we denote that the filter-

ing rate is β (0 < β < 1), which indicates βn are selected

as candidate points. Hence computing the inner products for

candidate points costs βnd = O(d). Therefore, the time

complexity of our method is O(n logn+d+1+ logn+d) =
O(d+ n logn).



We also analyze the space cost of our proposed method.

The space complexity of our method consists of the space

complexities of storing n original high-dimensional points and

n projected low-dimensional points, which are O(nd) and

nm = O(n log n), respectively. In addition, In Quick-Probe,

the space complexity of storing the binary codes and each

point o’s ‖o‖1 are nm = O(n log n) and O(n), respectively.

Thus, the total space cost is O(nd+ n logn+ n logn+ n) =
O(nd+ n logn).

We also list the time and space complexities of two bench-

mark methods, H2-ALSH [17] and Norm Ranging-LSH [44]

in Table II. From Table II, the time complexity of our method

outperforms two benchmark methods. Although the space

complexities of three methods are the same, in fact, the

projected space in our method is much smaller than the number

of hash tables in H2-ALSH or the hash codes’ length in Norm

Ranging-LSH.

TABLE II
TIME AND SPACE COMPLEXITIES

Time Complexity Space Complexity

ProMIPS O(d+ n logn) O(nd+ n logn)
L2-ALSH O(d logn+ n logn) O(nd+ n logn)
Norm Ranging-LSH O(d logn+ n logn) O(nd+ n logn)

VIII. EXPERIMENTAL EVALUATIONS

A. Experiment Setup

1) Benchmark Methods: We select two state-of-the-

art methods with probability guarantee in accuracy, H2-

ALSH [17] and Norm Ranging-LSH [44], as two bench-

mark methods. In addition, to compare our method with the

method without probability guarantee in accuracy, we adopt

the asymmetric transformation in H2-ALSH to convert MIP

search problem into NN search problem, and select the latest

product quantization-based NN search technique [19] which

performs well in accuracy and efficiency to solve the problem

as a benchmark method. In the experiments, our method is

denoted as “ProMIPS”. Three benchmark methods are denoted

as “H2-ALSH”, “Range-LSH” and “PQ-Based”, respectively.

To evaluate the page access, we employ the disk-resident

QALSH in the implementation of H2-ALSH. In Range-LSH,

we organize the data in each subset sequentially on disks

according to the descending order of each subset’s maximum

norm. In PQ-based method, we organize the data according to

each cell’s inverted list. All methods are implemented in Java

and all experiments are conducted on an ECS with Intel Core

Processor (Haswell, no TSX) 2.29GHZ, 48GB main memory,

and 512GB hard disk, running under Windows 10. We use the

buffering management in the operating system.

2) Datasets and queries: Four real datasets Netflix [3],

Yahoo [12], P531 and Sift2 are summarized in Table III.

On Netflix and Yahoo, the user vectors and item vectors are

generated by PureSVD [6], [17]. For all datasets, 100 points

are randomly selected as the query points.

1http://archive.ics.uci.edu/ml/datasets/p53+Mutants
2http://archive.ics.uci.edu/ml/datasets/SIFT10M
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Fig. 4. Index Size and Pre-processing Time

TABLE III
DATASETS

Parameter n d Data Size

Netflix 17770 300 84.2MB
Yahoo 624961 300 2.3GB
P53 31420 5408 1.07GB
Sift 11164866 128 7.3GB

3) Evaluation metrics:

• Index Size. It is defined as the size of each evaluated

method’s index.

• Pre-processing Time. It is defined as the pre-computation

and the index construction time of each evaluated method.

• Overall Ratio. It is defined as: 1
k

∑k

i=1
〈oi,q〉
〈o∗

i
,q〉 in c-k-

AMIP search problem, where oi is the i-th returned AMIP

point and o∗i is the exact i-th MIP point of the query

point. Intuitively, the overall ratio is between 0 and 1

and a larger overall ratio indicates a higher accuracy.

• Recall. It is defined as: t/k in c-k-AMIP search problem.

t is the number of the returned AMIP points which are

actually in the set of exact k-MIP points. A larger recall

means more exact k-MIP points are returned, indicating

a higher accuracy.

• Page Access. It is defined as the number of disk pages

to be accessed during the searching process.

• CPU Time. It is defined as the CPU time for performing

a c-k-AMIP search.

• Total Time. It is defined as the running time for reading

data from disks and performing a c-k-AMIP search.

4) Parameter Settings: The performance of ProMIPS is

evaluated under different parameter settings. According to

Section V-B, the projected dimensions m are set to 6 on Netflix

and P53. On Yahoo and Sift, the projected dimensions m are

set to 8 and 10, respectively. Through experiments, we find

that it doesn’t have much effect on efficiency when the values

of kp, Nkey and ksp are set in the ranges of 5-15, 20-50 and

5-25, respectively. Therefore, we set kp = 5, Nkey = 40 and

ksp = 10 as the default values for all testing datasets. The

values of ε on Netflix, Yahoo, P53 and Sift are 0.02, 40, 0.1

and 250, respectively. The default approximation ratio c is

set to 0.9 and we vary c to 0.7, 0.8 and 0.9 to evaluate its

impact on ProMIPS’s searching accuracy and efficiency. The

default guaranteed probability p is set to 0.5 and we vary p
to 0.3, 0.5, 0.7 and 0.9 to evaluate its impact on ProMIPS’s

searching accuracy and efficiency. In H2-ALSH, the value of
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c0 is fixed to 2.0 [17]. In Range-LSH, we divide the datasets

into 32 partitions under a code length of 16 [44]. In PQ-based

method, the whole space is divided into 16 subspaces. The

number of centroids in each subspace is 256 and the number

of searched nearest cells is 16 in the searching process [19].

The required k is set from 10 to 100 in all testing cases. When

evaluating the page access, the disk page’s size is set to 4KB

on Netflix, Yahoo and Sift. On P53, the disk page’s size is set

to 64KB due to its high dimension.

B. Pre-processing Time and Index Size

The pre-process of our method contains generating each

point’s projection, computing each point’s norms and convert-

ing the projected points into binary codes for Quick-Probe,

and constructing the index. The pre-processes of H2-ALSH

and Range-LSH contain constructing multiple hash tables

and transforming data points. The pre-process of PQ-based

method contains constructing quantizers with multiple cells,

computing the residuals, training for the rotation matrices and

maintaining each cell’s corresponding inverted list. The index

size and the pre-processing time of four evaluated methods are

illustrated in Figs. 4(a) and (b), respectively. On all datasets,

the index size and the pre-processing time of ProMIPS beat

other methods. This is because H2-ALSH and Range-LSH

construct multiple hash tables and PQ-based method stores

many local rotation matrices and cells incurring large space

overheads, while ProMIPS constructs iDistance with a single

B+-tree. In ProMIPS, although the two-stage dividing process

in the index construction is time-consuming, only one B+-tree

is required, which reduces the time overhead. Compared to

H2-ALSH, Range-LSH uses more hash vectors to generate

each point’s bit vector and their proposed single-table multi-

probe strategy requires more time to rank the hash tables.

Therefore, it takes more pre-processing time in Range-LSH.

Nevertheless, since the points’ bit vectors take up less space,

the index size of Range-LSH is smaller than that of H2-ALSH.

Since the training process to obtain the optimized rotation

matrices is costly and it’s space-consuming to store rotation

matrices and cells, the performances of PQ-based method on

the index size and the pre-processing time are the worst.

C. Overall Ratio and Recall

Fig. 5 reports the results on overall ratio when varying the

value of k from 10 to 100. Four methods perform well on

all datasets while the values of overall ratio are over 0.95.

From the experimental results, the overall ratio of ProMIPS

is higher than those of the other three methods by up to 3%.

Meanwhile, the overall ratio of ProMIPS is larger than the

default approximation ratio when varying k. The phenomenon

demonstrates that ProMIPS can guarantee c-k-AMIP search in

accuracy. In addition, we test the recall of four methods on

four datasets and the results are shown in Fig. 6. In Fig. 6, the

similar trends are observed. Both of the experimental results on

the overall ratio and recall illustrate that ProMIPS can provide

c-k-AMIP point with a high accuracy.

D. Page Access

We evaluate the page access of four methods by varying k
from 10 to 100 as well and show the experimental results in

Fig. 7. In Fig. 7, ProMIPS outperforms the other three methods

in all testing cases as k increases. It is because iDistance

used in ProMIPS only requires one B+-tree as index, while

both H2-ALSH and Range-LSH require more hash tables to

ensure the accuracy, leading to more candidate points. In

addition, the searching conditions in our method enable us

to verify fewer candidate points to obtain satisfactory results.

Meanwhile, benefiting from Quick-Probe, we can avoid read-

ing the projected points from disks and testing them one by
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one. Besides, using the iDistance with our proposed partition

pattern, the points can be collectively organized on disks in

sub-partitions. The points can be read from disks sequentially

to reduce page accesses. The experimental results on four

datasets also illustrate that ProMIPS provides good efficiency

in all data dimensions and at all data scales, which reflects

our method’s high scalability. In PQ-based method, we have

to check many PQ-encoded residuals, which incurs more page

accesses. Compared to H2-ALSH, Range-LSH performs better

in terms of the page access because fewer hash buckets are

probed during the searching process in Range-LSH benefitting

from their proposed single-table multi-probe strategy, which

brings fewer selected candidate points.

E. CPU Time and Total Time

In Fig. 8, we evaluate the CPU time to test the efficiency of

four methods. From the experimental results, the performance

of ProMIPS on CPU time is comparable. PQ-based method

performs the best on CPU time because the distances between

PQ-encoded residuals are pre-computed in the pre-process.

Compared to H2-ALSH and Range-LSH, ProMIPS requires

fewer candidate points to guarantee the accuracy benefiting

from the derived effective searching conditions. In addition,

the process of Quick-Probe determines a certain searching

range in the projected space, which avoids testing each re-

turned point to reduce the CPU time. With respect to H2-

ALSH, it’s more complex to count points’ frequencies to fetch

the candidate points in more hash tables compared to directly

scanning points in hash tables for candidate points in Range-

LSH. Therefore, it takes more CPU’s running time in H2-

ALSH.

Furthermore, we also evaluate the total time to verify the

efficiency. Due to the space limits, we only show the exper-

imental results on Netflix and Yahoo in Fig. 9. In the whole

searching process, a large portion of the time consumption

comes from reading data from disks. Since ProMIPS performs

the best on page access, it obtains the superior performance

on total time.

F. Impact of c and p

Since ProMIPS guarantees c-k-MIP search in accuracy, we

vary the approximation ratio c and the guaranteed probability

p to evaluate how the performances of ProMIPS vary with c
and p. We test overall ratio, recall, page access, CPU time

and total time on four datasets. Due to the space limits, we

only show the results on the overall ratio and page access to

demonstrate our method’s accuracy and efficiency. The recall

and running time show similar trends with the overall ratio

and page access, respectively. The experimental results are

reported in Fig. 10 and Fig. 11.

In Fig. 10, the overall ratio decreases as c decreases. This is

because a smaller c leads to a smaller range according to the

searching conditions and fewer candidate points are selected,

which leads to a lower accuracy. Although the overall ratio

decreases, it’s still larger than the given approximation ratio

c. It demonstrates that ProMIPS can guarantee c-k-MIP search

in accuracy. In Fig. 10, a larger overall ratio leads to more page

accesses, which shows that ProMIPS enjoys a better trade-off

between the accuracy and efficiency.

In Fig. 11, it shows that a higher probability leads to a

higher overall ratio. This is because a higher p leads to a larger

searching range containing more candidate points. But more

candidate points also incur more page accesses. Although we

can obtain a higher overall ratio when p = 0.9, it incurs much

more page accesses at the same time. It demonstrates that the

increasing rate of accuracy is lower than the decreasing rate

of efficiency as p increases.
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IX. RELATED WORK

In recent years, MIP search problem has received

widespread attention and various types of methods have been

proposed to solve both exact and approximate MIP search

problems. In the beginning, some tree-based searching meth-

ods [7], [8], [21], [32] are presented for the exact MIP

search problem. In addition, several methods based on linear

search [22], [39], [40] are also proposed. However, these

methods suffer from the curse of dimensionality and their

performances will degrade sharply when the feature dimension

is high (more than 20) [17], [44].

To address the MIP search problem in high-dimensional

space, there exists a line of research on approximate solutions

by trading off the accuracy and efficiency. Since inner product

doesn’t satisfy some important metric properties such as non-

negativity and triangle inequality, it’s not a metric measure-

ment. Existing methods for metric measurements [24], [25],

[48], such as Locality Sensitive Hashing (LSH) [16] and some

quantization-based methods [19], [42], [45], can’t be applied to

MIP search problem. In addition, some methods proposed for

a class of measurements such as Bregman distance [36] can’t
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be employed. For this reason, most existing methods employ

asymmetric (data points and query point are transformed

in different manners) or symmetric (data points and query

point are transformed in the same manner) transformations to

convert a MIP search problem into a Nearest Neighbor (NN)

search problem (called MIPS-NNS reduction) or a Maximum

Cosine-similarity (MC) search problem (called MIPS-MCS

reduction) [2], [17], [30], [34], [35], [44]. Benefiting from

these transformations, the order of MIP points can be pre-

served by the order of NN/MC points as much as possible, and

the traditional metric search methods represented by LSH can

be applied. These methods are considered as transformation-

based methods and they are introduced as follows.

In L2-ALSH [34] and Sign-ALSH [35], the MIP search

problem is respectively converted into an NN search problem

or an MC search problem by various asymmetric transfor-

mations, and the NN and MC search problems are solved

by E2LSH [9] and SimHash [4], respectively. Nonetheless,

they both introduce transformation errors affecting the accu-

racy. Besides, L2-ALSH leads to distortion errors after the

transformation, which indicates that the Euclidean distance

between most data points and the query point will be close

to each other [17], and the efficiency will decrease. To avoid

the transformation errors, an exact asymmetric transformation

based solution named X-BOX is proposed. It takes advantage

of the MIPS-NNS reduction and solves the NN search problem

by PCA-tree, but its transformation also causes distortion

errors. In addition to the aforementioned asymmetric solutions,

Simple-LSH [30] employs a symmetric transformation for a

MIPS-MCS reduction. Nevertheless, it suffers from long tails

in the 2-norm distribution of real datasets [44].

Recently, two LSH-based methods, named H2-ALSH [17]

and Norm Ranging-LSH [44] are devised. H2-ALSH proposes

an asymmetric transformation without transformation errors

named QNF transformation to convert MIP search problem

into NN search problem. Furthermore, to reduce the distor-

tion errors for the higher efficiency, a novel homocentric

hypersphere partition strategy is designed. Norm-ranging LSH

partitions the whole dataset into several subsets, where the

searching process is performed by several independent in-

dexes, to solve the excessive normalization problem caused

by the long tails. Nevertheless, these methods require a large

number of hash tables or long hash codes to ensure the

accuracy, which takes up lots of pre-processing overheads.

In this paper, we choose these two advanced methods as the

benchmark methods.

There is also a plethora of data-dependent methods [11],

[13], [14], [20], [27]–[29], [33], [43], [46], which are dedicated

to the MIP search problem recently. These methods require

learning-based techniques in the preprocess, which is difficult

to maintain when large volumes of data are being updated.

More importantly, they are not tailored to our concerned

c-AMIP search problem with the probability guarantee in

accuracy.



X. CONCLUSION

In this paper, we address the important issue of c-AMIP

search on high-dimensional and large-scale datasets by in-

troducing an efficient method with a lightweight index. In

our method, we employ 2-stable random projections to re-

duce the high-dimensional c-AMIP search problem to a low-

dimensional search problem. With two derived searching

conditions and the proposed Quick-Probe, our method can

efficiently guarantee c-AMIP search in accuracy with arbitrary

probabilities. In addition, to accelerate the searching process,

we utilize the lightweight iDistance as the index to perform

the range search in the low-dimensional space. Experimental

results on four real datasets demonstrate that our method

requires less pre-processing cost and provides c-AMIP results

with a probability guarantee in accuracy efficiently.
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