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Abstract—Modern video data management systems store
videos as a single encoded file, which significantly limits possible
storage level optimizations. We design, implement, and evaluate
TASM, a new tile-based storage manager for video data. TASM
uses a feature in modern video codecs called “tiles” that enables
spatial random access into encoded videos. TASM physically
tunes stored videos by optimizing their tile layouts given the video
content and a query workload. Additionally, TASM dynamically
tunes that layout in response to changes in the query workload
or if the query workload and video contents are incrementally
discovered. Finally, TASM also produces efficient initial tile
layouts for newly ingested videos. We demonstrate that TASM
can speed up subframe selection queries by an average of over
50% and up to 94%. TASM can also improve the throughput of
the full scan phase of object detection queries by up to 2×.

I. INTRODUCTION

The proliferation of inexpensive high-quality cameras
coupled with recent advances in machine learning and computer
vision have enabled new applications on video data such as
automatic traffic analysis [1], [2], retail store planning [3], and
drone analytics [4], [5]. This has led to a class of database
systems specializing in video data management that facilitate
query processing over videos [3], [6]–[10].

A query over a video comprises two steps. First, read
the video file from disk and decode it. Second, process
frames to identify and return pixels of interest or compute an
aggregate. Most systems, so far, have focused on accelerating
and optimizing the second step [3], [9]–[11], often assuming
that the video is already decoded and stored in memory [3],
[7], [12], which is not feasible in practice.

The lack of efficient storage managers in existing video
data management systems significantly impacts queries. First,
subframe selection queries (e.g., “Show me video snippets
cropped to show previously identified hummingbirds feeding on
honeysuckles” ) are common and their execution bottleneck is at
the storage layer since these queries are selections, reading and
returning pixels without additional operations. Second, object
detection queries, which extract new semantic information
from a video (e.g., “Find all sightings of hummingbirds in this
new video”) require the execution of expensive deep learning
models. To avoid applying such models to as many frames as
possible, query plans typically include an initial full scan phase
that applies a cheap predicate [12] or a specialized model [7]
to the entire video to filter uninteresting frames. The overhead

(a) (b) (c)

Fig. 1. Video partitioned into tiles. (a) shows the first j frames partitioned
with a uniform 1×2 layout. (b) shows frames partitioned with a non-
uniform 2×2 layout. (c) shows a directory hierarchy. Video stored at
video/frames_1-j/tile0.mp4 contains the left half of frames [1, j].

of reading and decoding the video file is known to significantly
hurt the performance of this phase [13].

In this paper, we introduce TASM, a storage manager that
greatly improves the performance of subframe selection queries
and the full scan phase of object detection queries by providing
spatial random access within videos. TASM exploits the
observation that objects in videos frequently lie in subregions
of video frames. For example, a traffic camera may be oriented
such that it partially captures the sky, so vehicles only appear
in the lower portion of a frame. Analysis applications such
as running license plate recognition [1] or extracting image
patches for vehicle type recognition [1] only need to operate on
the parts of the frame containing vehicles. Privacy applications
such as blurring license plates and faces [14] or performing
region of interest-based encryption [15] similarly only need to
modify the parts of the frame that contain sensitive objects.

Using its spatial random access capability, TASM enables
reading from disk and decoding only the parts of the frame
that are interesting to queries. Providing such a capability is
difficult because the video encoding process introduces spatial
and temporal dependencies within and between frames. To
address this problem, TASM subdivides video frames into
smaller pieces called tiles that can be processed independently.
As shown in Fig. 1, each tile contains a rectangular subregion
of the frame that can be decoded independently because there
are no spatial dependencies between tiles. In contrast, current
state of the art incurs the cost of decoding entire frames. TASM
optimizes how a video is divided into tiles and stored on disk to
reduce the amount of work spent decoding and preprocessing
parts of the video not involved in a query. Through its use of
tiles, TASM implements a new type of optimization that we
call semantic predicate pushdown where predicates are pushed
below the decoding step and only tiles of interest are read from
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disk, decoded, and processed.
Building TASM raises three challenges. The first challenge

is fundamental, but important: Given a video file with known
semantic content (i.e., known object locations within video
frames) and a known query workload, TASM must decide on
the optimal tile layout, choosing from among layouts with
uniform or non-uniform tiles and either fine-grained or coarse-
grained tiles. TASM must also decide whether different tile
layouts should be used in different parts of a video. To do
this effectively, TASM must accurately estimate the cost of
executing a query with a given tile layout. TASM therefore
drives its selection using a cost function that balances the
benefits of processing fewer pixels against the overhead of
processing more tiles for a given tile layout, video content, and
query workload. In this paper, we experimentally demonstrate
that non-uniform, fine-grained tiles outperform the other
options. Additionally, we find that optimizing the layout for
short sections of the video (i.e., every 1 second) maximizes
query performance with no storage overhead. Given a video
file, TASM thus splits it into 1 second fragments and selects
the optimal fine-grained tile layout for each fragment.

The second challenge is that the semantic content and the
query workload for a video are typically discovered over time
as users execute object detection and subframe selection queries.
TASM therefore lacks the information it needs to design optimal
tile layouts. To address this challenge, TASM incrementally
updates a video’s tile layout as queries to detect and retrieve
objects are executed. TASM uses different tile layouts in
different parts of the video, and independently evolves the tile
layout in each section. To do this, TASM builds on techniques
from database cracking [16], [17] and online indexing [18].
To decide when to re-tile portions of the video and which
layout to use, TASM maintains a limited set of alternative
layouts based on past queries. It then uses its cost function to
accumulate estimated performance improvements offered by
these tile layouts as it observes queries. Once the estimated
improvement, also called regret [19], of a new layout offsets
the cost of reorganization, TASM re-tiles that portion of the
video. By observing multiple queries before making tiling
decisions, TASM designs layouts optimized for multiple query
types. For the ornithology example, TASM could tile around
hummingbirds and flowers that are likely to attract them.

The third challenge lies in the initial phase that identifies
objects of interest in a new video. This phase is both expensive
and requires at least one full scan over the video, generally
using a cheap model to filter frames or compute statistics.
The models used in the full scan phase are limited by video
decoding and preprocessing throughput [13]. To address this
final challenge, TASM uses semantic predicate pushdown where
the semantic predicate is not a specific object type, but rather
a general region of interest (ROI). TASM bootstraps an initial
tile layout using an inexpensive predicate that identifies ROIs
within frames. This predicate can use background segmentation
to find foreground objects, motion vectors to identify areas
with large amounts of motion, or even a specialized neural
network designed to identify specific object types. When an

object detection query is executed, TASM only decodes the
tiles that contain ROIs, hence filtering regions of the frame
before the decode step. TASM thus alleviates the bottleneck
for the full scan phase of object detection queries by reducing
the amount of data that must be decoded and preprocessed.
TASM can be directly incorporated into existing techniques and
systems that accelerate the extraction of semantic information
from videos (e.g., [3], [11]).

In summary, the contributions of this paper are as follows:
• We develop TASM1, a new type of storage manager for

video data that splits video frames into independently
queryable tiles. TASM optimizes the tile layout of a
video file based on its contents and the query workload.
By doing so, TASM accelerates queries that retrieve
objects in videos while keeping storage overheads low
and maintaining good video quality.

• We develop new algorithms for TASM to dynamically
evolve the video layout as information about the video
content and query workload becomes available over time.

• We extend TASM to cheaply profile videos and design
an initial layout around ROIs when a video is initially
ingested. This initial tiling reduces the preprocessing work
required for object detection queries.

We evaluate TASM on a variety of videos and workloads
and find that the layouts picked by TASM speed up subframe
selection queries by an average of 51% and up to 94%
while maintaining good quality, and that TASM automatically
tunes layouts after just a small number of queries to improve
performance even when the workload is unknown. We also find
that TASM improves the throughput of the full scan phase of
object detection by up to 2× while maintaining high accuracy.

II. BACKGROUND

Videos are stored as encoded files due to their large size.
Video codecs such as H264 [20], HEVC [21], and AV1 [22]
specify algorithms used to (de)compress videos. While the
specific algorithms used by various codecs differ, the high-
level approach is the same as we describe in this section.

Groups of pictures: A video consists of a sequence of
frames, where each frame is a 2D array of pixels. Frames in
the sequence are partitioned into groups of pictures (GOPs).
Each GOP is encoded independently from the other GOPs
and is typically one second in duration. The first frame in a
GOP is called a keyframe. Keyframes allow GOPs to act as
temporal random access points into the video because it is
possible to start decoding a video at any keyframe. To retrieve
a specific frame, the decoder begins decoding at the closest
keyframe preceding the frame being retrieved. Keyframes have
large storage sizes because they use a less efficient form of
compression than other types of frames, so the number of
keyframes impacts a video’s overall storage size. Videos stored
with long GOPs are smaller in size than videos stored with short
GOPs, but they also have fewer random access opportunities.

1Code is available at https://github.com/uwdb/TASM.

https://github.com/uwdb/TASM


Tiles: Compressed videos do not generally support decoding
spatial regions of a frame. The encoding process creates spatial
dependencies within a frame, and decoders must resolve these
dependencies by decoding the entire frame, even if just a small
region is requested. Modern codecs, however, provide a feature
called tiles that enables splitting frames into independently-
decodable regions. Fig. 1 illustrates this concept. Like frames,
tiles are also 2D arrays of pixels. However, a tile only contains
the pixels for a rectangular portion of the frame. The full frame
is recovered by combining the tiles. Tiles introduce spatial
random access points for decoding. To decode a region within
a frame, only the tiles that contain the requested region are
processed. This flexibility to decode spatial subsets of frames
comes with tradeoffs in quality; tiling can lead to artifacts
appearing at the tile boundaries [23], which reduces the visual
quality of videos. As such, carefully selecting tile layouts is
important for high-quality query results. While tiles act as spatial
random access points, temporal random access is still provided
by keyframes. Tiles are applied to all frames within a GOP, so
decoding a tile in a non-keyframe requires decoding that tile in
all frames starting from the preceding keyframe.

A tile layout defines how a sequence of frames is divided
into tiles. A layout L= (nr, nc, {h1, . . . , hnr}, {w1, . . . , wnc})
is defined by the number of rows and columns, nr and nc,
the height of each row, and the width of each column. These
parameters define the (x, y) offset, width, and height of the
nr·nc tiles. An untiled video is a special case of a tile layout
consisting of a single tile that encompasses the entire frame:
ω = (1, 1, {frame height}, {frame width}). Valid layouts
require tiles to be partitioned along a regular grid, meaning
rows and columns extend through the entire frame. We do
not consider irregular layouts, which are not supported by the
HEVC specification [21]. Different tile layouts can be used
throughout the video; a sequence of tiles (SOT) refers to a
sequence of frames with the same tile layout. Changes in the
tile layout must happen at GOP boundaries, so every new layout
must start at a keyframe. Therefore, changing the tile layout
has a high storage overhead for the same reason that starting a
new GOP has a high storage overhead. The cost of executing
a query over a video encoded with tiles is proportional to the
number of pixels and tiles that are decoded.

Stitching: Tiles can be stored separately, but they must be
combined to recover the original video. Tiles can be combined
without an intermediate decode step using a process called
homomorphic stitching [24]. Homomorphic stitching interleaves
the encoded data from each tile and adds header information
so the decoder knows how the tiles are arranged.

III. TILE-BASED STORAGE MANAGER DESIGN

In this section, we present the design of TASM, our tile-
based storage manager. TASM is designed to be the lowest
layer in a VDBMS. Unlike existing storage managers that serve
requests for sequences of frames, TASM efficiently retrieves
regions within frames to answer queries for specific objects.

Fig. 2 shows an overview of how TASM integrates with the
rest of a VDBMS. TASM incrementally populates a semantic

Fig. 2. Overview of how TASM integrates with a VDBMS.

index to store the bounding boxes associated with object
detections. While queries for statistics about the semantic
content can use the semantic index to avoid re-running
expensive analysis over the frame contents, TASM uses this
index to generate tile layouts, split videos into tiles, store such
physically tuned videos as files, and answer content-based queries
more efficiently by retrieving only relevant tiles from disk.

A. TASM API

TASM exposes the following access method API:

Method Parameters Result

SCAN video, L : labels, T : times Pixel[]
ADDMETADATA video, frame, label, —

x1, y1, x2, y2

The core method SCAN (video, L, T ) performs subframe
selection by retrieving the pixels that satisfy a CNF predicate on
the labels, L, and an optional predicate on the time dimension,
T . For example, L=(label=‘car’)∨(label=‘bicycle’) retrieves
pixels for both cars and bicycles.

TASM also exposes an API to incorporate metadata
generated during query processing into the semantic
index (discussed in the following section). The method
ADDMETADATA (video, frame, label, x1, y1, x2, y2) adds the
bounding box (x1, y1, x2, y2) on frame to the semantic index
and associates it with the specified label.

B. Semantic index

TASM maintains metadata about the contents of videos in
a semantic index. The semantic information consists of labels
associated with bounding boxes. Labels denote object types
and properties such as color. Bounding boxes locate an object
within a frame. When the query processor invokes TASM’s
SCAN method, TASM must efficiently retrieve bounding box
information associated with the specified parameters. The
semantic index is therefore implemented as a B-tree clustered
on (video, label, time). The leaves contain information about
the bounding boxes and pointers to the encoded video tile(s)
each box intersects based on the associated tile layout.

The semantic index is populated through the ADDMETADATA
method as object detection queries execute. As we discuss in
Section IV, TASM creates an initial layout around high-level
regions of interest within frames to speed up object detection
queries. As those queries execute and add more objects to the
semantic index, TASM incrementally updates the tile layout
to maximize the performance of the observed query workload.



(a) Uniform 2x4 layout (b) Layout around cars & people

(c) Tile layout around cars (d) Tile layout around people

Fig. 3. Various ways to tile a frame. (a) is a uniform layout, while (b)-(d)
are non-uniform layouts. Depending on which objects are targeted, different
layouts will be more efficient.

(a) Fine-grained tiles (b) Coarse-grained tiles

Fig. 4. Non-uniform tile layout around cars using (a) fine-grained tiles, or (b)
coarse-grained tiles.

C. Tile-based data storage

Having captured the metadata about objects and other
interesting areas in a video using the semantic index, the next
step is to leverage it to guide how the video data is encoded
with tiles. Two tiling approaches are possible: uniform-sized
tiles, or non-uniform tiles whose dimensions are set based
on the locations of objects in the video. Both techniques can
improve query performance, but tile layouts that are designed
around the objects in frames can reduce the number of non-
object pixels that have to be decoded. Fig. 3 shows these
different tiling strategies on an example frame.

1) Uniform layouts: The uniform layout approach divides
frames into tiles with equal dimensions. This approach does
not leverage the semantic index, but if objects in the video are
small relative to the total frame size, they will likely lie in a
subset of the tiles. However, an object can intersect multiple
tiles, as shown in Fig. 3a where part of the person lies in two
tiles. While TASM decodes fewer pixels than the entire frame,
it still must process many pixels that are not requested by
the query. Further, the visual quality of the video is reduced
because in general a large number of uniform tiles are required
to improve query performance, as shown in Fig. 7b.

2) Non-uniform layouts: TASM creates non-uniform layouts
with tile dimensions such that objects targeted by queries lie
within a single tile. There are a number of ways a given tile
layout can benefit multiple types of queries. If a large portion
of the frame does not contain objects of interest, the layout can
be designed such that this region does not have to be processed.
If objects of interest appear near each other, a single tile around
this region benefits queries for any of these objects. If objects
are not nearby but do appear in clusters, creating a tile around
each cluster can also accelerate queries for these objects.

Fig. 4 shows examples of non-uniform layouts around cars.
For a set of bounding boxes B, TASM picks tile boundaries
guided by a desired tile granularity. For coarse-grained tiles
(Fig. 4b), it places all B within a single, large tile. For fine-
grained tiles (Fig. 4a), it attempts to isolate non-intersecting b ∈
B into smaller tiles while respecting minimum tile dimensions

(a) Long layout duration (b) Short layout duration

Fig. 5. (a) shows how more pixels must be decoded on each individual frame
when a tile layout extends for many frames compared to (b) where fewer
frames have the same layout. The boxes show the location of the car on later
frames, and the dashed lines show the tile boundaries. The striped region
indicates the tile that would be decoded for a query targeting cars.

specified by the codec and ensuring that no tile boundary
intersects any b ∈ B. TASM does not limit the number of tiles
in a layout. To modulate quality, this could be made a user-
specified setting; we leave this as future work. TASM processes
fewer pixels from a video stored with fine-grained tiles because
the tiles do not contain the parts of the frame between objects,
but it processes more individual tiles because multiple tiles in
each frame may contain objects. TASM estimates the overall
effectiveness of a layout using a cost function that combines
these two metrics, as described in Section IV-A.

In addition to deciding the tile granularity, TASM also
chooses which objects to design the tile layout around, and
therefore which bounding boxes to include in B. The best
choice depends on the queries. For example, if queries target
people, a layout around just people, as in Fig. 3d, is more
efficient than a layout around both cars and people (Fig. 3b).
We explain how TASM makes this choice in Section IV.

3) Temporally-changing layouts: Different tile layouts,
uniform and non-uniform, can be used throughout a video; the
layout can change as often as every GOP. TASM uses different
layouts throughout a video to adapt to objects as they move.

The size of these temporal sections is determined by the
layout duration, which refers to the number of frames within a
sequence of tiles (SOT). Layout duration is separate from GOP
length; while layout duration cannot be shorter than a GOP, it
can extend over multiple GOPs. The layout duration affects
the sizes of tiles in non-uniform layouts, as shown in Fig. 5. In
general, longer tile layout durations have lower storage costs
but lead to larger tiles because TASM must consider more
object bounding boxes as objects move and new objects appear.
Therefore, TASM must decode more data on each frame. We
evaluate this tradeoff in Fig. 10.

4) Not tiling: Layouts that require TASM to decode a similar
number of pixels as when the video is not tiled can actually
slow queries down due to the implementation complexities that
arise from working with multiple tiles. Therefore, TASM may
opt to not tile GOPs when the gain in performance does not
exceed a threshold value.

5) Data storage and retrieval: TASM stores each tile as a
separate video file, as shown in Fig. 1. If different layouts are
used throughout the video, each tile video contains only the
frames with that layout. If only a segment of a video is ever
queried, TASM reads and tiles just the frames in that segment.



This storage structure facilitates the ingestion of new videos
because each video’s data is stored separately. Additionally,
because each GOP is also stored separately, to modify an
existing video, updated GOPs can replace original ones, or
new GOPs can be appended.

TASM retrieves just the tiles containing the objects targeted
by queries. When complete frames are requested, TASM applies
homomorphic stitching (see Section II). This stitching process
can also be used to efficiently convert the tiles into a codec-
compliant video that other applications can interact with.

IV. TILING STRATEGIES

TASM automatically tunes the tile layout of a video to improve
query performance. The objects in a video and workloads, or the
set of queries presented to a VDBMS, may be known or unknown.
When TASM has full knowledge of both the objects targeted by
queries and the locations of these objects in video frames, TASM
designs tile layouts before queries are processed, as described in
Section IV-B. In practice, the objects targeted by queries and
their locations are initially unknown. TASM uses techniques
from online indexing to incrementally design layouts based on
prior queries and the objects detected so far, as described in
Section IV-C. Finally, TASM also creates an efficient, initial tiling
before any queries are executed as we present in Section IV-D.
A. Notation and cost function

We first introduce notation that will be used throughout
this section. A query workload Q = (q1, ..., qn) is a list of
queries, where each query requests pixels belonging to specified
object classes, possibly with temporal constraints. The set Oqi

represents the objects requested by an individual query qi,
while OQ = ∪qi∈QOqi is the set of all objects targeted by Q.

A video v = s0 ⊕ · · · ⊕ sn is a series of concatenated,
non-overlapping, non-empty sequence of tiles (SOTs; see
Section II), si. A video layout specification L =si 7→ L
maps each SOT to a tile layout, L, which specifies how
frames are partitioned into tiles, as described in Section II.
If a SOT is not tiled, then si 7→ω, where ω refers to a 1×1
tile layout. PARTITION(s,O) refers to tiling the SOT using a
non-uniform layout around the bounding boxes associated with
objects in the set O using the techniques from Section III-C2.
For example, PARTITION(s, {car, person}) refers to creating
a layout around cars and people, as in Fig. 3b.

TASM implements a “what-if” interface [25] to estimate
the cost of executing queries with alternative layouts using a
cost function. The estimated cost of executing query q over
SOT s encoded with layout L is C(s, q, L)=β ·P (s, q, L)+γ ·
T (s, q, L). The cost C is proportional to the number of pixels
P , and the number of tiles T that are decoded, both of which
depend on the query and layout. To validate this cost function
and estimate β and γ to use in experiments, we fit a linear
model to the decode times for over 1,400 video, query, and
non-uniform layout combinations used in the microbenchmarks
in Section V-B. The resulting model achieves R2=0.996. The
exact values of β and γ will depend on the system; TASM can
re-estimate them by generating a number of layouts from a small
sample of videos and measuring execution time.

Finally, the cost of executing q over video v encoded
with layout specification L is the sum of its SOT costs (i.e.,
C(v, q,L )=

∑
si∈v C(si, q,L (si))) and the cost of executing

an entire query workload is the sum over all individual queries,
C(v,Q,L )=

∑
qi∈Q C(v, qi,L ). The difference in estimated

query time for query q over SOT s between layouts L and L′ is
∆(q, L, L′, s)=C(s, q, L)−C(s, q, L′), or simply ∆(q, L, L′)
when s is obvious from the context. The cost of (re-)encoding
SOT s with layout L is R(s, L).

Using this cost function, the maximum expected
improvement for an individual query is inversely proportional to
the object density, which determines the number of pixels (P )
and tiles (T ). Tiling therefore leads to negligible improvement—
or even regressions—when objects are dense and occupy a large
fraction of a frame. In those cases, TASM does not tile a video
at all as we discuss in Section IV-B. In contrast, tiling yields
large improvements when objects are sparse. Fig. 11 shows the
linear relationship. It shows how, for a given video and query,
non-uniform tiling reduces the number of pixels that must
be decoded, which directly increases performance. TASM’s
regret-based approach described in Section IV-C converges to
such good layouts over time as queries are executed. Fig. 9
also shows how object densities affect performance.

B. Known queries and known objects

We first present TASM’s fundamental video layout
optimization assuming a known workload, meaning that TASM
knows which objects will be queried, and the semantic index
contains their locations. These assumptions are unlikely to hold
in practice, and we relax them in the next section.

Given a workload and a complete semantic index, TASM
decides on SOT boundaries then picks a tile layout for each
SOT to minimize execution costs over the entire workload.
More formally, the goal is to partition a video into SOTs,
v = s0 ⊕ · · · ⊕ sn and find L ∗ = arg minLC(v,Q,L ).

The experiment in Fig. 10 motivates us to create small SOTs
because they perform best. We therefore partition the video
such that each GOP corresponds to a SOT in the tiled video.
This produces a tiled video with a similar storage cost as the
untiled video because it has the same number of keyframes.

It would be too expensive for TASM to consider every
possible layout, uniform and non-uniform, for a given SOT.
However, tile layouts that isolate the queried objects should
improve performance the most. Additionally, we empirically
demonstrate that non-uniform layouts outperform uniform
layouts (see Fig. 7a), and that fine-grained layouts outperform
coarse-grained layouts (see Fig. 9). Therefore, for each si,
TASM only considers a fine-grained, non-uniform layout around
the objects targeted by queries in that SOT, Osi ⊆ OQ.

TASM’s optimization process proceeds in two steps. First, for
each si and associated layout, L=PARTITION(si, Osi), TASM
estimates if re-tiling the SOT with L will improve query
performance at all. As described in Section III-C4, TASM
does not tile si when P (si, Q, L)>α·P (si, Q, ω), where α
specifies how much a tile layout must reduce the amount of
decoding work compared to an untiled video (i.e., L=ω). In our



1: OQ′ ← ∅, Lalt ← ∅, ∀sj ∈ v : δj ← 0, Lj
0 ← ω

2: for all qi ∈ Q do
3: OQ′ ← OQ′ ∪Oqi

4: L′alt = P(OQ′)
5: for all Lk ∈ L′alt − Lalt do
6: for m = 0, . . . , i− 1 do
7: ∀sj ∈ v : δjk ← δjk + ∆(qm, L

j
m, Lk)

8: Lalt ← L′alt
9: for all Lk ∈ Lalt do

10: ∀sj ∈ v : δjk ← δjk + ∆(qi, L
j
i , Lk)

11: for all sj ∈ v do
12: k∗ ← argmaxkδ

j
k

13: if δjk∗ > η ·R(sj , Lk∗) then
14: Retile sj with Lk∗ . δj ← 0

Fig. 6. Pseudocode for incrementally adjusting layouts

experiments we find α=0.8 to be a good threshold. As shown
in Fig. 11, this value of α prevents TASM from picking tile
layouts that would slow down query processing, but does not
cause it to ignore layouts that would have significantly sped up
queries. Second, from among all such layouts, TASM selects
the layout with the smallest estimated cost for the workload.

C. Unknown queries and unknown objects

In practice, objects targeted by queries and their locations
are initially unknown. Physically tuning the tile layout is then
similar to the online index selection problem in relational
databases [18]. In both, the system reorganizes physical data
or builds indices with the goal of accelerating unknown
future queries. However, while a nonclustered index can
benefit queries over relational data because there are many
natural random access points, video data requires physical
reorganization to introduce useful random access opportunities.
As TASM observes queries and learns the locations of objects,
it makes incremental changes to the video’s layout specification
to introduce these random access points.

TASM optimizes the layout of each SOT independently
because each SOT’s contribution to query time and the cost to
re-encode it are independent of other SOTs. TASM optimizes
the layout of an SOT based on the queries that have targeted
it so far. TASM may even tile it multiple times with different
layouts as the semantic index gains more complete information
and TASM observes queries that target additional objects.

As TASM re-encodes portions of the video, the SOT
sj transitions through a series of layouts: L=[Lj

0, · · · , Lj
n].

TASM’s goal is to pick a sequence of layouts that minimizes
the total execution cost over the workload by finding
L∗=arg minL

∑
qi∈Q(C(sj , qi, L

j
i ) + R(sj , L

j
i )). The first

term measures the cost of executing the query with the current
layout, and the second term measures the cost of transitioning
the SOT to that layout. If the layout does not change (i.e.,
Lj
i−1=Lj

i ), then R(sj , L
j
i )=0. However, future queries are

unknown, so TASM must pick Lj
i+1 without knowing qi+1.

Therefore, TASM uses heuristics to pick a sequence of layouts,
L̂, that approximates L∗. While there are no guarantees on
how close L̂ is to L∗, we show in Section V-C that empirically
these layouts perform well. One such heuristic is guided by the

observation that many applications query for similar objects
over time. TASM therefore creates layouts optimized for objects
it has seen so far. More formally, let OQ′ be the set of objects
from Q′=(q0, · · · , qi) ⊆ Q. TASM only considers non-uniform
layouts around objects in OQ′ for Li+1.

Now consider a future query qj that targets a new class
of object: Oqj 6⊆OQ′ . While Li+1 will not be optimized for
Oqj , TASM attempts to create layouts that will not hurt the
performance of queries for new types of objects. It does this
by creating fine-grained tile layouts because, as shown in
Fig. 9, fine-grained tiles lead to better query performance
than coarse-grained tiles when queries target new types of
objects (PARTITION(s,O′), O′∩Oqj=∅). Objects that are not
considered when designing the tile layout may intersect multiple
tiles, and it is more efficient for TASM to decode all intersecting
tiles when the tiles are small, as in fine-grained layouts, than
when the tiles are large, as in coarse-grained layouts.

At a high level, TASM tracks alternative layouts based on
the objects targeted by past queries and identifies potentially
good layouts from this set by estimating their performance
on observed queries. TASM’s incremental tiling algorithm
builds on related regret-minimization techniques [18], [19].
Regret captures the potential utility of alternative indices or
layouts over the observed query history when future queries are
unknown. As each query executes, TASM accumulates regret
δjk for each SOT sj and alternative layout Lk, which measures
the total estimated performance improvement compared to the
current tile layout over the query history.

Fig. 6 shows the pseudocode of our core algorithm for
incremental tile layout optimization using regret minimization.
Initially, TASM has not seen queries for any objects, so it does
not have any alternative layouts to consider, and each SOT is
untiled (line 1). After each query, TASM updates the set of seen
objects and alternative layouts (lines 3-4). Each potential layout
is a subset of the seen objects that have location information
in the semantic index. TASM then accumulates regret for
each potential layout by computing ∆ and adding it to δ. ∆
measures the estimated performance improvement of executing
the query with an alternative layout rather than the current
layout, using the cost function described in Section IV-A:
∆(q, L, L′) = C(s, q, L) − C(s, q, L′). Layouts with high ∆
values would likely reduce query costs, while layouts with
low or negative values could hurt query performance. TASM
accumulates these per-query ∆’s into regret to estimate which
layouts would benefit the entire query workload.

TASM first retroactively accumulates regret for new layouts
based on the previous queries (lines 5-7), and then accumulates
regret for the current query (lines 9-10). Finally, TASM weighs
the performance improvements against the estimated cost of
transitioning a SOT to a new layout. In lines 11-14, TASM
only re-tiles sj once its regret exceeds some proportion of its
estimated retiling cost: δjk > η ·R(sj , Lk).

As an example, consider a city planning application looking
through traffic videos for instances where both cars and
pedestrians were in the crosswalk at the same time. Initially the
traffic video is untiled, so for each si, L (si)=ω. Suppose the



first query requests cars in s0. TASM updates Lalt={{car}}
to consider layouts around cars. TASM accumulates regret
for s0 as δ0car=∆(q0, ω, PARTITION(s0, {car})), and it is
positive because tiling around cars would accelerate the query.
Suppose the next query is for people in s0. TASM updates
Lalt={{car}, {person}, {car, person}} to consider layouts
around cars and people. The regret for PARTITION(s0, {car})
on q1 will likely be negative because layouts around anything
other than the query object tend to perform poorly (see
Fig. 9b), so δ0car decreases. TASM retroactively accumulates
regret for the new layouts. The accumulated regret for
PARTITION(s0, {person}) will be similar to δ0car because it
would accelerate q1 and hurt q0. PARTITION(s0, {car, person})
has positive regret for both q0 and q1, so after both queries it
has the largest accumulated regret.

The threshold η (see line 13) determines how quickly TASM
re-tiles the video after observing queries for different objects.
Using η = 0 risks wasting resources to re-tile SOTs. The work
to re-tile could be wasted if a SOT is never queried again
because no queries will experience improved performance
from the tiled layout. The work to re-tile can also be wasted if
queries target different objects because TASM will re-tile after
each query with layouts optimized for just that query. Values
of η > 0 enable TASM to observe multiple queries before
picking layouts, so the layouts can be optimized for multiple
types of objects. Observing multiple queries before committing
to re-tiling also enables TASM to avoid creating layouts
optimized for objects that are infrequently queried because
layouts around more representative objects will accumulate
more regret. However, if the value of η is too large, it reduces
the number of queries whose performance benefits from the
tiled layout. Using a value of η = 1 is similar to the logic
used in the online indexing algorithm in [18], and we find it
generally works well in this scenario, as shown in Fig. 12. If
the types of objects queries target changes, this incremental
algorithm will take some amount of time to adjust to the new
query distribution, depending on the value of η.

D. ROI tiling

Initially, nothing is known about a video. As we discussed
in Section I, in many systems, the first object detection query
performs a full scan and applies a simple predicate to filter
away uninteresting frames or compute statistics. Because of
the speed of these initial filters, decoding and preprocessing is
the bottleneck for this phase [13]. To accelerate this full scan
phase, TASM also uses predicate pushdown. Instead of creating
tiles around objects, however, TASM creates tiles around more
general regions of interest (ROIs), where objects are expected
to be located. ROIs are defined by bounding boxes, so TASM
uses the same tiling strategies described in previous sections.
TASM accepts a user-defined predicate that detects ROIs and
inserts the associated bounding boxes into TASM’s semantic
index. Examples include applying background subtraction to
identify foreground objects, running specialized models trained
to identify a specific object type [7], [12], extracting motion
vectors to isolate areas with moving objects, or any other

TABLE I
VIDEO DATASETS

Video dataset Duration Res. Per-frame Frequently
(sec.) object occurring objects

coverage (%)
Visual Road [28]† 540–900 2K, 4K 0.06–10 car, person
Netflix public [29] 6 2K 0.32–49 person, car, bird
Netflix OS [30]* 720 2K, 4K 25–45 person, car, sheep
XIPH [31] 4–20 2K, 4K 2–59 car, person, boat
MOT16 [32] 15–30 2K 3–36 car, person
El Fuente [33] 480 (full) 4K 1–47 person, car,

15–45 (scenes) boat, bicycle
† Synthetic videos * Both real and synthetic videos

inexpensive computation. More expensive predicates may also
be used by applying them every n frames, as in [11].

Generating ROIs and creating tiles around these regions are
operations that a compute-enabled camera can perform directly
as it first encodes the video. Cameras are now capable of
running these lightweight predicates as video is captured [26].
For example, specialized background subtractor modules can
run at over 20 FPS on low-end hardware [27]. This optimization
is designed to be implemented on the edge.

Through its semantic predicate pushdown optimization,
TASM improves the performance of object detection queries
by only decoding tiles that contain ROIs. As we show in
Section V-E, an initial ROI layout in combination with semantic
predicate pushdown can significantly accelerate the full scan
phase of object detection queries while maintaining accuracy.

V. EVALUATION

We implemented a prototype of TASM in C++ integrated
with LightDB [24]. TASM encodes and decodes videos using
NVENCODE/NVDECODE [34] with the HEVC codec. We
perform experiments on a single node running Ubuntu 16.04
with an Intel i7-6800K processor and an Nvidia P5000 GPU. Our
prototype does not parallelize encoding or decoding multiple
tiles at once. We use FFmpeg [35] to measure video quality.

We evaluate TASM on both real and synthetic videos with a
variety of resolutions and contents as shown in Table I. Visual
Road videos simulate traffic cameras. They include stationary
videos as well as videos taken from a roof-mounted camera
(the latter created using a modified Visual Road generator [28])
The Netflix datasets primarily show scenes of people. The
XIPH dataset captures scenes ranging from a football game
to a kayaker. The MOT16 dataset contains busy city scenes
with many people and cars. The El Fuente video contains a
variety of scenes (city squares, crowds dancing, car traffic).
In addition to evaluating the full El Fuente video, we also
manually decompose it into individual scenes using the scene
boundaries specified in [33] and evaluate each independently.
We do not evaluate on videos with resolution below 2K because
we found that decoding low-resolution video did not exhibit
significant overhead. All experiments populate the semantic
index with object detections from YOLOv3 [36], except for
the MOT16 videos where we use the detections from the
dataset [32]. We store the semantic index using SQLite [37], and
TASM maps bounding boxes to tiles at query time.



(a) (b)
Fig. 7. (a) shows the improvement in query time achieved by tiling the video
using the fastest uniform and non-uniform layout for each video and query
object. (b) shows the quality of these layouts compared to the untiled video.

The queries used in the microbenchmarks evaluated in
Section V-A and V-B are subframe selection queries of the
form “SELECT o FROM v”, which cause TASM to decode all
pixels belonging to object class o in video v. The queries
used in the workloads in Section V-C additionally include a
temporal predicate (i.e., “SELECT o FROM v WHERE start

< t < end”). 2 Reported query times include both the index
look-up time and the time to read from disk and decode the tiles.

Unless otherwise specified, queries target the most frequently
occurring objects in each video. When videos primarily show
a single type of object (e.g., some Netflix public dataset videos
show only people), queries target just that object. When videos
feature multiple types of objects with similar frequency (e.g.,
the Visual Road videos show similar numbers of cars and
people), we evaluate on queries that target each object type.
Queries over the MOT16 videos retrieve cars and people
because the bounding boxes that come with the dataset are
unlabeled, so we store them in the semantic index with a generic
label of “object”. For all graphs, the bars show the median value
across videos, while the error bars denote the interquartile range
(IQR) across videos. The performance differs across videos
because they have different object densities, which affects
TASM’s efficacy as described in Section V-B2. However, the
runtime for a single query on any video has low variance. The
standard deviation for multiple executions of the same query
is < 1% of that query’s mean execution time.

A. Tiling effect on decode cost and quality

We first evaluate whether tiling can provide meaningful
improvements in query time without degrading the visual
quality of videos. We find that non-uniform layouts yield
better query performance and higher video quality than uniform
layouts. Fig. 7 only shows results for videos and queries that
benefit from tiling, using the layouts that empirically led to
the greatest performance improvement. We discuss how TASM
determines whether to tile a video in Section V-B3 and how it
selects the optimal tile layout in Section V-B and Section V-C.

Fig. 7a shows the improvement in query time achieved by
operating over a tiled video compared to a video that is not
tiled. For a given video and query object, a non-uniform layout
provides an average of 10% improvement and up to a 35%
improvement over the best uniform layout.

2While we use SQL to explain the experiments because of its familiarity
to most readers, other language bindings on TASM’s API are possible; the
language itself is not the focus of this paper.

Fig. 8. This figure shows improvement in query time achieved with various
uniform layouts compared to the untiled video.

(a) Same (b) Different (c) All (d) Superset

Fig. 9. The effect of tile granularity on query time compared to untiled videos.
All videos used a one second tile layout duration. Objects occupy <20% of
each frame on average in “sparse”, and ≥20% in “dense” videos.

Fig. 7b shows that tiling maintains good visual quality
when the tiles are stitched to recover the full frame. We
measure quality using peak signal-to-noise ratio (PSNR), where
values above 30 dB are acceptable [38], and videos with
values ≥ 40 dB are perceived to have good quality [29], [39].
PSNR was computed over the entire tiled video stitched using
homomorphic stitching [24] and compared against the untiled
video. For comparison, the median PSNR after re-encoding the
videos without tiles is 46 dB. Non-uniform layouts achieve an
average PSNR of 40 DB, while uniform layouts have an average
of 36 dB. PSNR is likely lower for the uniform layouts because
the layouts with the largest performance improvement have
many tiles (the median number of tiles is 25), and therefore a
large number of tile boundaries where quality is degraded.

B. Microbenchmarks

1) Uniform tiles: We dig deeper into the results of Fig. 7 and
show in Fig. 8 the performance improvements when varying the
number of uniform tiles on the same set of videos. We increase
the number of uniform tiles first by increasing the number
of rows and columns together, and then by only increasing
the number of columns once the height of each tile reached
the minimum height allowed by the decoder. Fig. 8 shows
that creating more uniform tiles initially improves query time
because tiles contain fewer non-object pixels. However, as the
number of tiles grows, the per-tile decode overhead begins to
slow queries down. Additionally, variation in performance across
videos and queries increases with the number of tiles, as indicated
by the widening IQR bars, demonstrating that the same uniform
layout does not work equally well on all videos and queries.

2) Non-uniform tiles: The performance of non-uniform
layouts depends on the objects queries target and the objects
considered when designing the tile layout. Fig. 9 shows results
from different settings. We classify layouts as same, different,
all, or superset. “Same” describes a tile layout around the query
object. “Different” describes a layout around an object different



Fig. 10. This plot shows the effect of SOT duration on query time and storage
cost. Tiled videos were encoded with fine-grained tiles and a GOP length
equal to the SOT duration.

from the query object (e.g., tiling around people but querying
for cars). “All” describes tiling around all objects detected in
the video. Finally, “superset” evaluates tiling around the target
object and only 1-2 other, frequently occurring objects (e.g.,
tiling around cars and people, as in Fig. 3b). We further classify
videos as sparse, where the average area occupied by all objects
in a frame is <20%, or dense, where it is ≥20%. Fig. 9 shows
the results. The “different” and “superset” categories only use
Visual Road videos and El Fuente scenes that feature multiple
object classes; the other videos have a single primary object type.

Fig. 9 shows that tiling generally improves performance in
sparse videos more than dense videos, and tile granularity has
the largest impact when objects are dense. Fig. 9a shows that
when the tile layout is constructed around the query object,
both coarse- and fine-grained tiles significantly improve query
performance. Fig. 9b shows that tiling around an object type
different from the query object hurts performance when objects
are dense. This happens when one object is more dense than the
others. Querying for the dense object using a layout around the
sparse object requires TASM to decode most of the tiles because
the dense object occupies much of each frame. Querying for
a sparse object using a layout around the dense object also
requires most of the frame to be decoded because tiles around
dense objects tend to be large. TASM avoids creating these
ineffective layouts around dense objects using the decision
rule from Section IV-B, which we evaluate in Section V-B3.
Improvement in sparse videos is reduced, but still positive;
although the query object may intersect multiple tiles, TASM
still performs less work if the tiles are small.

Fig. 9c shows that tiling around all objects is effective only
when objects are sparse. When objects are dense, median
improvement is 1% worse for coarse-grained tiles. Fig. 9d
shows that the “superset” strategy performs similarly to “all”;
considering only two or three types of objects rather than all
objects when designing layouts achieves small performance gains.

These results show that tiling around anything other than
the query object slows queries down compared to tiling around
the query object. However, fine-grained tiles can still lead to
moderate performance improvements in these cases because
they are smaller, so fewer non-object pixels must be decoded.

Sequence of tiles (SOT) duration. Here we evaluate the
impact of SOT duration (the number of frames with the same
layout) on the performance of non-uniform tile layouts. SOT
duration affects the sizes of both tiles and the video. Layout
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Fig. 11. Ratio of the number of pixels decoded with a non-uniform layout to
the number decoded without tiles vs. performance improvement. Each point
represents a video, query object, and non-uniform layout. Points below the
horizontal line at 0% represent cases where queries ran more slowly on the
tiled video. Points to the right of the vertical line at 0.8 represent videos that
would not be tiled when the threshold for tiling requires the ratio to be < 0.8.

changes must happen at GOP boundaries, so short SOTs require
short GOPs and lead to larger storage sizes (see Section II).

Fig. 10 shows the effect of SOT duration on query
performance and storage size. The tiled videos are encoded
with a GOP length equal to the SOT duration. We compare
query performance and storage size to an untiled video encoded
with one-second GOPs (the default GOP duration in most video
encoders). Shorter SOT durations lead to larger improvements
in query performance because the tiles are smaller and contain
fewer non-object pixels. However, shorter SOTs lead to larger
storage costs because there are more keyframes. Note that we
see a small improvement in the size of the tiled video with
one-second SOTs compared to the original video (also encoded
with one-second GOPs); this is due to video encoders being
inherently lossy and having the ability to exploit additional
compression opportunities during recompression. These results
demonstrate that setting SOT duration to GOP length is optimal
since it leads to the best performance without storage overhead.

3) Not tiling: There are videos where tiling is an ineffective
strategy to improve query performance. To identify cases where
tiling should not be used, we evaluate the effectiveness of a
decision rule based on the number of pixels decoded with a
given layout. Fig. 11 plots the improvement in query time
against the ratio of pixels decoded with a non-uniform layout
compared to the untiled video (i.e., P (v, q, L)/P (v, q, ω))
for various videos and query objects. The figure includes a
sampling of diverse layouts, both optimal and suboptimal.
The “same” category includes the greatest variety of layouts
measured, including suboptimal layouts. While many points
overlap, the key observation is that queries for sparse objects
primarily lie in the top-left quadrant. This aligns with the
expected improvements based on the cost function described
in Section IV-A. Using a threshold of not tiling when
P (v, q, L)/P (v, q, ω)>0.8 captures nearly all tile layouts that
slow queries down (i.e., the improvement is negative). A small
number of videos achieve minor performance improvements
(<20%) above this threshold (the upper-right quadrant).

C. Incremental tiling

We next evaluate strategies for incremental tiling over various
subframe selection workloads, which we construct to represent
possible query patterns over videos. The baseline strategies
are not tiling the video (“Not tiled”) and tiling around all
detected objects before queries are processed (“All objects”).
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Fig. 12. Cumulative decode and re-tiling time for various workloads. Values
are normalized to the time to execute each query over the untiled videos.

We compare against two incremental strategies. “Incremental,
more” re-tiles each GOP with a non-uniform, fine-grained
layout around all object classes that have been queried so far.
For example, if a GOP were queried for cars and then people,
TASM would first tile around cars and then re-tile around
cars and people. Finally, we evaluate the regret-based approach
from Section IV-C (“Incremental, regret”). In this strategy, TASM
tracks alternative layouts based on the objects queried so far, and
re-tiles GOPs once the regret for a layout exceeds the estimated
re-encoding cost if the layout is not expected to hurt performance.

TASM estimates the layout will hurt performance if, for
any query, P (si, qi, L)≥α·P (si, qi, ω), where α=0.8 (see
Section IV-B). TASM estimates the regret using the cost
function described in Section IV-A. Similarly, the re-encoding
cost is estimated using a linear model based on the number of
pixels being encoded. It was fit based on the time to encode
videos with the various layouts used in the microbenchmarks.

As we are focused on the operations at the storage level,
we measure the cumulative time to read video from disk and
decode it to answer each query, and re-tile it with new layouts
as needed. The time to initially tile the video around all objects
is included with the first query for the “all objects” strategy.
We normalize each query’s cost to the time to execute that
query on the untiled video, so each query with the “not tiled”
strategy has a cost of 1. The lines in Fig. 12 show the median
over all videos the workload was evaluated on. We evaluate the
first four workloads on Visual Road videos, which have sparse
objects, and the last two on videos and scenes with dense objects.

As Fig. 12 shows, the regret-based approach consistently
performs best across all evaluated methods, except for Workload
1. TASM’s regret-based approach was designed for more
dynamic workloads than Workload 1 where the same query is
evaluated across the entire video. For this type of workload,
running object detection and tiling up front is a reasonable

strategy because all of the results will be used.
We now drill down in the results of each workload. Queries

in Workload 1 target a single object class across the entire
video. The workload consists of 100 one-minute queries for
cars uniformly distributed over each Visual Road video. As
shown in Fig. 12a and discussed above, pre-tiling around all
objects performs well when queries target the entire video.
Incrementally tiling without regret also performs well because
all queries target the same object, so SOTs are re-tiled to a
layout that speeds up future queries. The regret-based approach
performs poorly over a small number of queries because TASM
must observe multiple queries over the same SOT before enough
regret accumulates to re-tile. This requires many total queries to be
executed when they are uniformly distributed over the entire video.

We next evaluate Workload 2, which examines the
performance when queries are restricted to a subset of the
video. Workload 2 consists of 100 one-minute queries over the
first 25% of each Visual Road video. Each query has a 50%
chance of being for cars or people. As shown in Fig. 12b, both
incremental strategies perform similarly well. Both outperform
pre-tiling the entire video around all objects, which is wasteful
when only a small portion of the video is ever queried.

Workload 3 measures the performance when queries are
biased towards one section of a video and particular object
types. It consists of 100 queries over the Visual Road videos,
where each query has a 47.5% chance of being for cars or
people, and a 5% chance of being for traffic lights. We exclude
one 4K video that did not contain a traffic light. The start
frame of each query is picked following a Zipfian distribution,
so queries are more likely to target the beginning of the video.
As shown in Fig. 12c, the regret-based approach performs
better than incrementally tiling around more objects because it
spends less time re-tiling sections of the video with tile layouts
designed around the rarely-queried object.

Workload 4 measures performance when queries target
different objects over time. It consists of 200 one-minute queries
following a Zipfian distribution over the Visual Road videos.
The middle third of the queries target people, and the rest
target cars. As shown in Fig. 12d, the incremental, regret-based
approach performs well and does not exhibit large jumps in
decode and re-tiling time when the query object changes.

Workload 5 measures performance when tiling is not
effective. It is evaluated on select videos from the Xiph, Netflix
public dataset, and scenes from the El Fuente video that contain
diverse scenes with many types of objects (e.g., markets with
people, cars, and food). The queries are uniformly distributed,
and each randomly targets one of the video’s primary objects
within one-second. As shown in Fig. 12e, only the regret-
based approach keeps costs similar to not tiling. “All objects”
performs poorly because objects are dense in these scenes.
“Incremental, more” performs poorly because it spends time
re-tiling with layouts that perform similarly to the untiled video.

Finally, Workload 6 measures performance when tiling
around the query object is beneficial, but tiling around all
objects is not. It is evaluated on select videos from the Netflix
public dataset and scenes from the full El Fuente video that fit



Fig. 13. Speedup achieved with TASM over the Visual Road object detection
workload. The lines show the median speedup over six orderings of the queries.

this criteria. The queries are uniformly distributed, and each
targets the same object class over one second. As shown in
Fig. 12f, both incremental strategies eventually achieve layouts
that perform better than not tiling. “All objects” performs poorly
because objects in these videos are dense.

D. Macrobenchmark

Beyond the decoding benchmarks, we also evaluate TASM’s
performance on an end-to-end workload from the Visual Road
benchmark [28], specifically Q7. Each query in the workload
specifies a temporal range and a set of object classes. The
following tasks are executed per-query: (i) detect objects if
not previously done on the specified temporal range, (ii) draw
boxes around the specified object classes, and (iii) encode the
modified frames. The original Visual Road query involves
masking the background pixels, but we omit that step to
demonstrate TASM’s benefits when users want to view full
frames. We compare the performance of executing this query
on untiled frames to TASM with incremental, regret-based
tiling. We detect objects by running YOLOv3 [36] every three
frames. TASM adds bounding boxes by decoding only the
tiles that contain the requested objects, drawing the boxes,
then re-encoding these tiles. TASM outputs the full frame by
homomorphically stitching the modified tiles that contain the
object with the original tiles that do not contain the object.

We execute 100 one-minute queries over the Visual Road
videos, using a Zipfian distribution over time-ranges. Each
query is randomly for cars or people. Fig. 13 shows the
median speedup achieved with TASM compared to the untiled
video over six orderings of the queries. TASM reduces the
total workload runtime by 12-39% across the videos. Object
detection contributes significantly to the total runtime and
LightDB does not use a pre-filtering step to accelerate this
operation. If we examine one instance of the workload where
the last 20 queries no longer need to perform object detection
and execute after TASM has found good layouts, the median
improvement for these queries ranges from 23% to 66% across
the videos. While these queries request the full frame, TASM
accelerates them by processing just the relevant regions of the
frame, which allows it to decode and encode less data.

E. Object detection acceleration

We now evaluate TASM’s ability to accelerate the full scan
phase of object detection queries, as described in Section I. One
system that uses specialized models during the full scan phase
is BlazeIt [3]. For example, it uses a specialized counting

Fig. 14. Specialized model
preprocessing throughput

TABLE II
MODEL ACCURACY

Day 1 Day 2 Day 3
Full 0.79 0.51 0.56
ROI 0.84 0.61 0.51

Coarse 0.76 0.60 0.54

model to compute aggregates. We evaluate TASM’s ability
to accelerate this phase using BlazeIt’s counting model as a
representative fast model. This model runs at over 1K frames
per second (fps), while preprocessing the frames runs below 300
fps. TASM reduces the preprocessing bottleneck and achieves
up to a 2× speedup while maintaining the model’s accuracy.

The preprocessing phase includes reading video from disk,
decoding and resizing frames, normalizing pixel values, and
transforming the pixel format. BlazeIt implements this using
Python, OpenCV [40], and Numpy [41] (“Python” in Fig. 14).
We reimplemented this using C++, NVDECODE [34], and Intel
IPP [42] to fairly compare against TASM (“C++”). We evaluate
on three days of BlazeIt’s grand-canal video dataset.

We compare against using semantic predicate pushdown
with ROI layouts generated by TASM. We first use MOG2-
based background segmentation implemented in OpenCV [40]
to detect foreground ROIs on the first frame of each GOP.
This is a throughput that recent mobile devices are known to
operate above [27], and therefore it would be possible for this
step to be offloaded to a compute-enabled camera as discussed
in Section IV-D. We use TASM to create fine-grained tiles
(“Fine tiles”) and coarse-grained tiles (“Coarse tiles”) around
the foreground regions. We also compare against a tile layout
created around a manually-specified ROI capturing the canal in
the lower-left portion of each frame (“ROI”).

Fig. 14 shows the preprocessing throughput when operating
on entire frames compared to just the tiles that contain ROIs.
Operating on tiles improves throughput by up to 2× and
therefore reduces the bottleneck for performing inference with
the specialized model. We next verify that using tiles rather than
full frames does not negatively impact the model’s accuracy. We
use the same model architecture for tiled inputs. However, rather
than training and inferring using full frames, we use a single tile
from each frame that contains all ROIs. For each strategy we train
BlazeIt’s counting model on the first 150K frames or tiles from
the first day of video. We evaluate this model on 150K frames or
tiles from each day (using a different set of frames for the first
day). As shown in Table II, models trained and evaluated on tiles
show similar accuracy to full frame training within each day.

VI. RELATED WORK

As mentioned in Section I, many systems optimize extracting
semantic content from videos. BlazeIt [3] and NoScope [7]
apply specialized NNs that run faster than general models.
Other systems filter frames before applying expensive models:
probabilistic predicates [12] and ExSample [43] use statistical
techniques, MIRIS [11] uses sampling, and SVQ [44] and IC
and OD filters [45] use deep learning filters. These systems and



techniques can use TASM to run models on specific ROIs to
reduce their preprocessing overhead. Focus [9] shifts some
processing to ingest-time. Systems such as LightDB [24],
Optasia [1], and Scanner [8] accelerate queries through
parallelization and deduplication of work, while VideoEdge [46]
distributes processing over clusters. These general VDBMSs
could incorporate TASM to further accelerate performance.
Panorama [6] and Rekall [47] expand the set of queries that can
be executed over videos, which is orthogonal to video storage.

Other systems also target storage-level optimizations.
VStore [10] modifies encoding parameters to accelerate
processing while maintaining accuracy. Smol [13] jointly
optimizes video resolution and NN architectures to achieve high
accuracy while accelerating preprocessing, but, like VStore,
only considers reducing the resolution of videos while TASM
maintains video quality. Vignette [48] uses tiles for perception-
based compression but only considers uniform layouts.

TASM’s incremental tiling approach is inspired by database
cracking [16], [17], which incrementally reorganizes the data
processed by each query, and online indexing [18] which creates
and modifies indices as queries are processed. Regret has also
been used to design an economic model for self-tuning indices
in a shared cloud database [19]. TASM extends these relational
storage techniques to provide efficient access to video data.

Other application domains have observed the usefulness of
retrieving spatial subsets of videos. The MPEG DASH SRD
standard [49] is motivated by a similar observation that video
streaming clients occasionally request a spatial subset of videos.
While it specifies a model to support streaming spatial subsets,
it does not specify how to efficiently partition videos into tiles.

VII. CONCLUSION

We presented TASM, a tile-based storage manager that
accelerates subframe selection and object detection queries
by targeting spatial frame subsets. TASM incrementally tiles
sections of the video as queries execute, leading to improved
performance (up to 94%). We also showed how TASM alleviates
bottlenecks by only reading areas likely to contain objects.
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