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Abstract—To tackle ever-increasing city traffic congestion
problems, researchers have proposed deep learning models to
aid decision-makers in the traffic control domain. Although the
proposed models have been remarkably improved in recent years,
there are still questions that need to be answered before deploying
models. For example, it is difficult to figure out which mod-
els provide state-of-the-art performance, as recently proposed
models have often been evaluated with different datasets and
experiment environments. It is also difficult to determine which
models would work when traffic conditions change abruptly
(e.g., rush hour). In this work, we conduct two experiments to
answer the two questions. In the first experiment, we conduct
an experiment with the state-of-the-art models and the identical
public datasets to compare model performance under a consistent
experiment environment. We then extract a set of temporal
regions in the datasets, whose speeds change abruptly and
use these regions to explore model performance with difficult
intervals. The experiment results indicate that Graph-WaveNet
and GMAN show better performance in general. We also find
that prediction models tend to have varying performances with
data and intervals, which calls for in-depth analysis of models
on difficult intervals for real-world deployment.

Index Terms—Deep Learning, Traffic Forecasting, Speed Pre-
diction, Flow Prediction

I. INTRODUCTION

As traffic problems have become severe in major cities,

a considerable amount of research has been performed to

forecast traffic conditions, such as traffic speed and flow,

utilizing machine learning [1], [2]. Recently, as deep learning

models have become dominant in various domains, novel

deep learning models to solve traffic data prediction problems

have also increased [3], [4]. Although approaches have been

proposed, some issues remain unsolved in traffic prediction.

First, as previous models are evaluated with different datasets

and under different experimental environments [2], comparing

the accuracy and computation times of diverse models is

challenging. Second, numerous existing studies utilize average

accuracy to evaluate models, but this approach is not conducive

to performing a thorough analysis. For example, both recurring

(e.g., daily and rush hour) and non-recurring (e.g., accident)

patterns exist, and some of them change abruptly (e.g., sudden

decrease in speed due to accidents) in the speed data [5]. In

many cases, it is more critical to suggest accurate predictions

for non-flat and abruptly changing speed patterns for real-

world use cases [2], [6].

∗Corresponding author

In this work, we conduct a series of experiments to re-

solve the aforementioned issues. First, we review and de-

scribe different traffic speed and flow datasets. Then, we

select eight models and seven datasets to directly compare

the accuracy and computation times across the models and

datasets in the same running environment. The selected

models are STGCN [7], DCRNN [8], ASTGCN [9], ST-

MetaNet [10], Graph-WaveNet [11], STG2Seq [12], STS-

GCN [13], and GMAN [14]. We include METR-LA, PeMS-

BAY, and PeMSD7 as speed datasets and PeMSD3, PeMSD4,

PeMSD7, and PeMSD8 as flow datasets. We also extract

intervals during which traffic conditions change abruptly.

The experimental results indicate that Graph-WaveNet [11]

is generally the most accurate across datasets. However,

GMAN [14] performed the best when making long-term

predictions, such as 60-minutes prediction. In terms of compu-

tation time, STGCN requires the least amount of training time,

while Graph-WaveNet is the fastest in producing prediction

results. In an experiment involving intervals with abruptly

changing speed conditions, we obtain similar results, as Graph-

WaveNet has the highest accuracy rates, and GMAN’s perfor-

mance is superior in long-term prediction.

Several papers similar to our work have been published.

For example, Vlahogianni et al. and Li et al. conduct sur-

veys on traffic prediction models, focusing on short-term

prediction [1], [2], [4]. Yin et al. [4] also present a survey

on traffic prediction from multiple perspectives, including

methods, applications, datasets, and experiments. Our work

differs from prior work, as we report and compare the accuracy

and computation time of state-of-the-art prediction models

with multiple speed and flow datasets in the same environment.

The main contributions of this work include the following:

• Experiments to compare the accuracy and time consump-

tion of eight state-of-the-art deep learning models using

seven different speed and flow datasets;

• A report of the accuracy of the selected models with

intervals of abruptly changing traffic condition, and

• Lessons learned from the experiments.

II. RELATED WORK

In this section we describe existing surveys on deep learning

models for traffic data prediction. Vlahogianni et al. [1] review

conventional approaches for predicting short-term traffic data

in the categories of 10 challenges, including data resolution,

http://arxiv.org/abs/2105.05504v1


TABLE I
SUMMARY OF PEMS DATASETS USED FOR PREDICTING TRAFFIC SPEED AND FLOW.

Tasks Speed prediction Flow Prediction

Name METR-LA PeMS-BAY PeMSD7(M) PeMSD3 PeMSD4 PeMSD7 PeMSD8
Region Los Angeles Bay Area Los Angeles North Central Bay Area Los Angeles San Bernardino

Start Date 3/1/2012 1/1/2017 5/1/2012 9/1/2018 1/1/2018 5/1/2017 7/1/2016
End Date 6/30/2012 6/30/2017 6/30/2012 11/30/2018 2/28/2018 8/31/2017 8/31/2016

# of Days 122 181 44a 91 59 98b 62
# Nodes 207 325 228 358 307 883 170
Features speed speed speed flow flow, occupancy, speed flow flow, occupancy, speed

Sensor ID Y Y N Y N N N
citation [8], [10], [11], [15]–[18] [8], [11], [14], [15], [18] [7], [19] [13] [9], [13], [20], [21] [13] [9], [13], [20]

aOnly contains weekdays
bReal data range and one in the original paper is not equivalent

aggregation and quality, and fusing data from other sources.

Reviewing traditional methods used for traffic prediction is

helpful to understanding existing methods. However, the meth-

ods do not cover deep learning approaches, which are drawing

a considerable amount of attention in the traffic prediction

literature. Furthermore, they do not discuss model performance

and datasets. Li et al. [2] categorize prior work based on

whether spatial modeling methods are used. In addition, they

explain existing research problems and challenges. For ex-

ample, they describe traffic prediction in extreme conditions,

such as incidents, as an important challenge. However, they

do not consider any datasets nor make performance com-

parisons. Xie et al. [3] focus on existing models that use

flow datasets. They describe data processing methods and

significant factors affecting accurate flow prediction, as well as

categorize existing methods as based on statistics, traditional

machine learning, deep learning, reinforcement learning, or

transfer learning. However, their work does not cover model

evaluation. Yin et al. [4] present a comprehensive survey

on traffic prediction tasks in multiple perspectives, including

methods, applications, datasets, and experiments. They provide

a taxonomy for existing works, summarize public datasets

for forecasting tasks, and compare the performance of the

models. However, the existing work utilizes only a few datasets

in different running environments, which causes difficulty in

finding superiority of a particular models in the surveys.

In this work, we perform a series of extensive experiments

with eight state-of-the-art models in the same environment to

make direct comparisons of the models across seven different

speed and flow datasets. We also extract difficult intervals and

perform an experiment with the intervals to reveal which mod-

els perform better than others during intervals with abruptly

changing conditions.

III. DATA DESCRIPTION

In this section, we describe Performance Measurement

System (PeMS) datasets [22], [23], which have been used

extensively for speed and flow prediction tasks. PeMS is a

system operated by the California Department of Transporta-

tion (Caltrans) [23], which collects traffic data from more

than 45,000 independent detectors installed across freeways

in major metropolitan areas of California. It collects data

from each detector every 30 seconds and aggregates them into

five-minute interval values by lane. It also provides distance

information of roads which can be used to build a road network

graph and its adjacency matrix.

Most of the existing approaches that use the PeMS data

for speed and flow prediction [7]–[11], [13]–[21] utilize the

five-minute aggregated values. We summarize the data used in

the existing work in Table I, using eight categories– dataset

name, the region, start and end dates of the data, the data range,

sensor counts, features used, and sensor IDs. To supplement

existing datasets for further experiments, we present the sensor

IDs, which can be used to access data for specific IDs in PeMS.

For example, while the PeMSD3 dataset does not contain

speed data, one can download it for each sensor and data range

from the PeMS site using sensor IDs in the data.

We find that METR-LA and PeMS-BAY data are the most

popular for speed prediction. Originally, there are 4,573 and

3,656 sensors in the Los Angeles and Bay area, respectively,

but only a sampled sensors in the region is used for training

(207 and 305 sensors for 122 and 181 days in the METR-

LA and PeMS-BAY datasets, respectively). Compared to

PeMSD7(M), they contain both weekday and weekend data.

PeMSD4 and PeMSD8 have been frequently used to predict

traffic flow. They include data for about two months and

provide not only flow information, but also occupancy and

speed. Note that the data described in this section is not

complete, since we exclude taxi- and bike-demand datasets and

focus on speed and flow data, which can be represented with

graphs. For a more comprehensive dataset collection, we refer

readers to the survey presented by Yin et al. [4]. Next, we will

describe how we select the models and present experiments to

compare their performance.

IV. PRELIMINARIES

A. Model Selection Process

Deep learning models for traffic data aim to effectively

model the spatial and temporal dependencies of roads, utilizing

a graph structure of road networks [2]. To summarize existing

models for traffic prediction and select the models for the

experiments, we take several steps. First, we review existing

surveys on traffic prediction (e.g., [4]). Then, we individually

explore prestigious venues for publications, including AAAI,

IJCAI, and ITS. Next, we further search for publications in

the IEEE Xplore and ACM digital libraries. Finally, we find

35 papers from our search. Prior to characterization of the

different models (Table II), we exclude 20 models that do not

consider graph structures for spatial modeling, which results



TABLE II
CHARACTERIZATION OF SPATIAL AND TEMPORAL MODELING METHODS

Component Pros Cons Models

Spatial

GCN [24]
Simple Architecture

Direct use of graph structures
K-hop neighboring problem

Cannot consider a graph structure change
STGCN1, DCRNN2, ASTGCN1,

Graph-WaveNet2 , STG2Seq2, STSGCN2

GAT [25]
Dynamic modeling of spatial correlation

Interpretability
High time and memory cost ST-MetaNet

Attn+Graph Embedding [14]

Dynamic modeling of spatial correlation
Consideration of latent features

Attention beyond the graph structure
Random grouping corrupts graph structures GMAN

Temporal

RNN [26] Consideration of all states
Complex architecture

Hard to capture local hidden feature
DCRNN, ST-MetaNet

CNN [27]

Simple architecture
Good at local feature extraction

Prediction for multiple steps at once
Should find the best filter size STGCN, ASTGCN, Graph-WaveNet

Attention [28]
Flexible feature selection

Less time consumption on referring long-term data
Generally high time/memory cost ASTGCN, GMAN

1spectral-based GCN, 2spatial-based GCN

in lower accuracy when compared to other models. We also

exclude the papers whose source code and datasets are not

publicly accessible. Finally, we choose eight deep learning

models to predict traffic speed and flow.

Table II summarizes the spatial and temporal components

and pros and cons of the chosen models. We note that

there are two types of graph convolutional networks (GCNs)–

spatial-based and spectral-based. Spatial-based GCNs apply

convolution directly to the adjacency matrix, utilizing phys-

ical distances and connections among roads. In contrast, the

spectral-based GCNs use a Laplacian matrix, a graph structure

representation in the spectral domain, for graph convolution.

B. Problem Statement

We begin by defining the road network structure and its

representation, followed by reviewing and summarizing the

problem statements of existing work. To predict traffic data,

we define the road network graph as G = (V , E ,A), where V
is the set of vertices (i.e., sensors) with |V| = N , E as the

set of the edges, representing the connectivity between roads,

and A ∈ R
N×N is a weighted adjacency matrix that contains

the connectivity and edge weight information. Edge weights

are calculated based on the distance and direction of the edges

between two connected nodes. If A is a simple non-weighted

adjacency matrix, then the edge weights are either 0 or 1, and

A only represents connectivity. If A is a weighted adjacency

matrix, most of the previous approaches calculate edge weights

with a Gaussian kernel, as follows: Wij = exp−
dist2ij
σ2 [7], [8],

[11], where distij is a distance between sensor i and j and σ

is the standard deviation of the distances.

Note that a road network can be directly represented by the

weighted adjacency matrix A. Traffic forecasting is a typical

spatiotemporal data prediction problem, which aims to predict

a value in the next T time steps with previous T ′ historical

traffic data and an adjacency matrix. Traffic data at time t is

represented by a graph signal matrix Xt
G ∈ R

N×C , where C is

the number of features (e.g., speed, flow, and the normalized

time of the day). In summary, the deep learning-based traffic

prediction task is to learn a mapping function f(·) that predicts

future T graph signals from T ′ historical input graph signals:

[

XG
(t−T ′+1), · · · , XG

(t)
] f(·)
−−→

[

XG
(t+1), · · · , XG

(t+T )
]

TABLE III
COMPUTATION TIME OF THE MODELS WITH THE METR-LA DATASET

Training time/epoch Inference time # of params

STGCN 14.8 secs 16.70 secs 320k
DCRNN 122.22 secs 13.44 secs 372k
ASTGCN 92.11 secs 13.68 secs 721k
ST-MetaNet 135.32 secs 24.10 secs 85k
Graph-WaveNet 48.07 secs 3.69 secs 309k
STG2Seq 87.74 secs 11.84 secs 351k
STSGCN 110.44 secs 11.34 secs 1100k
GMAN 312.1 secs 33.7 secs 901k

V. EXPERIMENTS

In this section, we describe how we present experimental

results. We use a server equipped with an Intel Xeon 5120

CPU, 394 GB of RAM, and eight Nvidia Titan RTX GPUs

for all the experiments. To evaluate both computation time and

accuracy of the models, we use Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), and Mean Absolute Per-

centage Error (MAPE) as evaluation metrics and set the batch

size as 64. All the datasets are divided into train, validate,

and test sets at a 7:1:2 ratio, respectively. We implement all

models with PyTorch1 to avoid any performance differences

due to the tools and their settings. To implement GAT, we use

Deep Graph Library (DGL) [29], a state-of-the-art library for

graph modeling. We set both T and T ′ as 12 for fairness. We

pre-process the data to have two input features–time stamp

and speed (or flow). Then, we use z-score normalization for

the traffic data and min-max normalization for the timestamp.

Lastly, we utilize the same hyperparameter settings from the

original work. We repeat each experiment five times and use

average and standard deviation values to present the results.

A. Model Performance Experiment Results

In this section, we present the models’ accuracy and compu-

tation time for speed and flow data in 15-, 30-, and 60-minute

intervals, respectively. Fig. 1 shows the experimental results

for speed and flow.

First, we note that Graph-WaveNet outperforms other mod-

els for the 15 and 30 minutes interval predictions across all the

speed datasets. For the long-term prediction (i.e., 60-minute

interval), GMAN records higher accuracy than other models

in general, followed by DCRNN and ST-MetaNet. ASTGCN

tends to have the lowest accuracy across all speed datasets.

1https://pytorch.org/

https://pytorch.org/


Fig. 1. Model comparison results with standard deviation, measured by MAE, RMSE, and MAPE. The above 3 plots for speed data, and the others are plots
for flow data.

We can observe a similar result in flow prediction. Graph-

WaveNet and GMAN show higher accuracy than other models

in general. We also find that GMAN’s strength lies in the

long-term prediction. STG2Seq shows the third most accurate

prediction, while STGCN records the lowest performance in

general. With the flow datasets, we observe that all models

perform better with PeMSD3 and PeMSD8 in terms of MAE

and RMSE. Lastly, Graph-WaveNet performs better with the

PeMSD3 and PeMSD8 datasets, while GMAN shows higher

accuracy with PeMSD4 and PeMSD7.

When considering both speed and flow prediction, we

find that models with spatial-based GCNs (DCRNN, Graph-

WaveNet, STSGCN, and STG2Seq) have higher accuracy than

those with spectral-based GCNs (STGCN and ASTGCN) in

general. We also find that including an attention mechanism

in temporal modeling is more effective than other methods

in long-term prediction. On the other hand, we notice that

STGCN has the highest performance drop across the intervals.

This result shows a weakness of the many-to-one model,

which is trained to predict only one time step. When we

compare RNN-based models (DCRNN and ST-MetaNet) to

other models, we find that they suffer from error accumulation,

which shows the inherent problem of sequence-to-sequence

structures.

Table III indicates the computation time spent on prediction.

From the table, we observe that models using GCNs for

spatial dependency (e.g., STGCN, DCRNN, ASTGCN, Graph-

WaveNet, STG2Seq, and STSGCN) spend less time during

both training and inference. STSGCN requires the largest

number of parameters, as it uses individual modules to capture

heterogeneity of the traffic data. STGCN requires the shortest

training time per epoch, but it needs a longer inference time

because it has a many-to-one architecture that needs to predict

multiple steps separately.

B. Model Performance with Difficult Intervals

All the existing studies on the traffic prediction models

evaluate performance using the average accuracy. However,

such an evaluation method is insufficient to reveal models’

weaknesses and characteristics. For example, it is possible

that a model could record higher performance than others

because it records higher accuracy than others when traffic

conditions are stable. The opposite case is also possible, where

a model does not perform well on average, but its performance

improves significantly when road conditions change abruptly.

Fig. 3 shows two example cases that describe how model

performance changes according to the road’s traffic condition.

The model effectively follows the road speed trend (MAE: 1)

for road 147, while the same model produces 4.5 times lower

accuracy (MAE: 4.5) for road 146. To measure performance on

different road condition, we first extract intervals by computing

a moving standard deviation with a 30-minute window size.

Then we choose the upper 25% of the intervals for the

experiment, which have steeper speed and flow fluctuations.

The vertical blue bars in Fig. 3 (top) presents an example set

of the extracted intervals, which consists of multiple abruptly

changing speed trends.



Fig. 2. MAE and relative performance degradation in percentage in abruptly changing condition with METR-LA dataset

Fig. 3. Different models show varying accuracy performance based on traffic
data dynamics (e.g., Graph-WaveNet, data: PeMS-BAY, model prediction: red
line, A: MAE: 1 (Road 147), B: MAE: 4.5 (Road 146). Blue shadow areas
at A indicates the intervals that have upper 25% standard deviation.

Fig. 2 shows the experimental results with different models

and the extracted difficult intervals in MAE. We first notice

that the overall performance distribution is changed. For ex-

ample, ASTGCN shows worse performance across all datasets

when evaluated with the entire testset, but its performance

improved significantly with difficult intervals, comparable to

other models. We further investigate how much performance

decline happens to each model, which allows us to compare

models and find which one adapts better to abruptly changing

conditions. We call these conditions difficult intervals. Fig. 2

shows the performance decline in the second row. First, we

observe that all the models have large performance decline

between 67.3% to 180.3%, compared to their previous per-

formance. If we consider MAE, Graph-WaveNet and GMAN

outperform other models. However, ASTGCN shows the low-

est performance decline across all datasets, which means it is

more robust than other models in making predictions when

road conditions are changing abruptly.

In terms of both MAE and performance drop, ST-MetaNet

shows almost the worst performance with the difficult inter-

vals. This large performance decline is caused by its meta-

learning approach, which generates weights from invariant

prior knowledge, such as neighboring nodes.

VI. FINDINGS AND LESSON LEARNED

In this section, we present our findings and lessons learned

in this work. First, although speed and flow are correlated [30],

they do not have exactly the same tendencies. In the first

experiment (Fig. 1), we observe that the performance of

different models differs across the evaluation metrics and

datasets. For example, MAPE shows the largest error values

among the metrics with speed data, while RMSE has the

largest error values with flow data. This result implies that

using one or two metrics may not be sufficient when new

models are evaluated.

Although RNN-based sequence prediction models perform

better, they often show a weakness in making long-term

predictions due to their auto-regressive property, where errors

are accumulated along with previous prediction errors. For

example, ST-MetaNet shows a high performance drop between

the 30- and 60-minute intervals, as shown in Fig. 1. Compared

to ASTGCN, ST-MetaNet perform better on the short-term

predictions, but worse on the long-term predictions with most

of the flow datasets. Thus, we can assume that RNNs’ long-

term prediction accuracy is highly dependent on their short-

term predictions. We extract difficult intervals with a 30-

minute window and observe that all models record a declined

accuracy. This result implies that the model performance is

related to the (moving) standard deviation of intervals. For

example, we observe that when the speed changes slowly

in a short window, as shown in Fig. 3 A, the model easily

predicts the future pattern. In contrast, when the speed abruptly

changes, the models cannot predict changes in the pattern

(Fig. 3 B), resulting in declined accuracy. A future study

should investigate this question further, as answering it could

lead to dramatic improvements in model performance.

VII. CONCLUSIONS AND FUTURE WORK

Although numerous deep learning models have been pro-

posed, it has been difficult to compare them and determine

which models are better for predicting road speed and flow.

In this work, we conduct a series of experiments with the

state-of-the-art models to compare average accuracy, inference

time, and accuracy with difficult intervals. All experiments are

performed in the same conditions and with the same datasets.

The results indicate that Graph-WaveNet shows the best aver-

age performance and GMAN has an advantage in long-term



predictions. They also show better performance than others

for the difficult intervals. Lastly, the different performance of

the models with different intervals and difficulties suggest that

future research on traffic prediction models should consider

evaluating models under a variety of traffic conditions for

evaluation. This work does not answer the question on why

model performance differ by traffic data patterns. A future

study can investigate to answer the question and seek to reduce

the performance gap among different traffic patterns.
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