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Abstract—Counts of attribute-value combinations are central
to the profiling of a dataset, particularly in determining fitness
for use and in eliminating bias and unfairness. While counts
of individual attribute values may be stored in some dataset
profiles, there are too many combinations of attributes for it
to be practical to store counts for each combination. In this
paper, we develop the notion of storing a “label” of limited size
that can be used to obtain good estimates for these counts. A
label, in this paper, contains information regarding the count of
selected patterns–attributes values combinations–in the data. We
define an estimation function, that uses this label to estimate the
count of every pattern. We present the problem of finding the
optimal label given a bound on its size and propose a heuristic
algorithm for generating optimal labels. We experimentally show
the accuracy of count estimates derived from the resulting labels
and the efficiency of our algorithm.

I. INTRODUCTION

Data-driven decision systems are increasingly used today.
The data on which these systems depend, as in much of data
science, are often “found data”, namely, data that was not
collected as part of the development of the analytics pipeline,
but was rather acquired independently, possibly assembled
by others for different purposes. When the decision is made
by a machine-learned model, the correctness and quality of
the decision depend centrally on the data used in the model
training phase.

The use of improper, unrepresentative, or biased data may
lead to unfair decisions, algorithmic discrimination (such as
racism), and biased models [16]. Data-driven methods are
increasingly being used in domains such as fraud and risk
detection, where data-driven algorithmic decision making may
affect human life. For instance, risk assessment tools, which
predict the likelihood of a defendant to re-offend, are widely
used in courtrooms across the US [6]. ProPublica, an in-
dependent, non-profit newsroom that produces investigative
journalism in the public interest, conducted a study on the
risk assessment scores output by a software developed by
Northpointe, Inc. They found that the software discriminated
based on race: blacks were scored at greater risk of re-
offending than the actual, while whites were scores at lower
risk than actual.

Further analysis [8] showed issues with other groups as
well. For example, the error rate for Hispanic women is
very high because there aren’t many Hispanic women in the
data set. It is not only that there are fewer Hispanics than
blacks and whites, and fewer women then men, but also fewer
Hispanic women than one would expect if these attribute

values were independently distributed. A judge sentencing a
Hispanic woman presumably would like to be informed about
this low count of Hispanic women in the data set and the
consequent likelihood of greater error in the risk assessment.

When using “found data”, analysts typically perform data
profiling, a process of extracting metadata or other informative
summaries of the data [3]. Examples of information acquired
in this process include statistics over the attributes’ values,
their type, common patterns, and attributes correlations and
dependencies. Such information may assist in mitigating the
misuse of data and reduce algorithmic bias and racism. While
informative and useful, data profiling is hard to do well, is
usually not automated, and requires significant effort.

Even users of the data (or data analysis), and not just the
analysts, may be interested in this sort of profiling information
on the training data before they can trust the learned model.
To help both the data analyst and the data user, the notion of
a “nutrition label” has been suggested [15], [18], [21], [27],
[28], [32]. The basic idea of a nutrition label is to capture,
in a succinct label, data set properties of interest. Perhaps
the single most important such property is a profile of the
counts of various attribute value combinations. For instance, an
analyst may wish to ensure a (close) to real-world distribution
in the attribute’s values of the data, such as an equal number
of males and females. Another concern may be the lack of
adequate representation in the data for a particular group [8],
such as divorced African-American females, or contrarily, a
high percentage of data that represents the same group (data
skew) [10]. The count information may also reveal potential
dependent or correlated attributes. As a simple example, if
all tuples representing individuals under 20 years old are also
single, this may point out a possible connection between age
and marital status.

Of course, interpretation of the count information depends
on the intended use of the data set. Users performing different
tasks may be interested in various parts of the data and their
counts. Moreover, the thresholds set for skew or inadequate
data may vary for different uses. Once the count information is
available, it can be used to develop usecase-specific metadata
warnings such as “dangerous intersected attribute combina-
tions” or “inadequate representation of a protected group”.

In this paper, we propose to label datasets with information
regarding the count of different patterns (attributes values
combinations) in the data, which can be useful to determine
fitness for use. Needless to say, there is a combinatorial
number of such combinations possible. So, storing individual
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Total size: 60,843
Attribute Value Count

Gender
Male 47514 78%
Female 13329 22%

Age

under 20 2049 3%
20-39 40110 66%
40-59 16467 27%
over 60 2217 4%

Race

African-American 27069 45%
Caucasian 21783 36%
Hispanic 8742 14%
Other 3249 5%

Marital status

Single 45126 75%
Married 8172 13%
Divorced 3879 6%
Separated 1803 3%
Significant Other 1260 2%
Widowed 390 0.6%
Unknown 213 0.4%

Gender Race Count

Female

African-American 5583 9%
Caucasian 5433 9%
Hispanicl 1731 3%
Other 582 1%

Male

African-American 21486 35%
Caucasian 16350 27%
Hispanic 7011 12%
Other 2667 4%

Average Error 116 0.02%
Maximal Error 3133 5%
Standard deviation 308

Fig. 1: Labels computed for (a simplified version of the)
COMPAS dataset

counts for each is likely to be impossible. To this end, we
focus on techniques to estimate these counts based on storing
only a limited amount of information.

Example 1.1: COMPAS is a risk assessment commercial
tool made by Northpointe, Inc. The COMPAS dataset was
collected and published by ProPublica. as part of their inves-
tigation [1]. The full dataset contains 60,843 tuples with 29
attributes, including meaningful demographic groups such as
gender, race, age, marital status, assessment reason, agency
(e.g., pretrial, probation), language, legal stats, custody status,
and supervision level. Four of these attributes are shown in
a fragment of a simplified version of the dataset in Figure 2.
Partial counts information of the simplified version is given in
Figure 1. This dataset description depicts the possible values
of each attribute, and their count in the data, with the addition
of counts for some attribute value combinations: gender and
race in this example. Some immediate observations that can
be made based on this information is that female and male
are not equally represented in the data, and due to the low
number of widows in the data, there is a high possibility that
the number of Hispanic female widows is inadequate for the
development of non-biased algorithm using this data.

Given a data set, if we do not know anything about value
distributions in it, a common assumption to make is that of in-
dependence between attributes. One way we could control the
size of stored information is to keep counts for only individual
attribute values, and to estimate counts for attribute value
combinations, assuming independence. However, this defeats
the central purpose of profiling – we only get information
about individual attributes (the “marginal distributions”) but
nothing about any correlations. In the study of discrimination,
there is a considerable examination of intersectionality, the
whole point of which is to understand how the social conse-
quence of being a member of a protected class on multiple
axes is not simply the “sum” of each alone. For example, to
understand the discrimination faced by black women it is not
enough to understand independently the impact of race alone

and gender alone. In other words, we have to ensure that our
estimates for the count of any pattern in the database are at
least approximately correct.

Histograms have long been used for similar purposes in
relational databases, however, they do not do very well in high
dimensions. Other prevalent techniques for selectivity estima-
tion includes sampling, and machine learning-based methods
(see review in Section V). The former suffers from insufficient
performance in the presence of skews and high selectivity
queries, and the latter requires training and result in very
complex models. Inspired by the concept of nutrition labels
for datasets, a key requirement in our problem context is that
the metadata annotation can be immediately comprehensible
to a potential user of the dataset.

Our problem, intuitively, is to choose a small number
of patterns (limited by a given space budget), among the
exponential number, that can be used to estimate the count for
any pattern with minimal error. We envisage this information
being made available as meta-data with each data set. In
deference to the idea of a nutrition label, we call our stored
information a “label”. An important feature of our model that
is missing in previously proposed models for data labeling is
the ability to generate the labels in a fully automated manner.

We define our notion of data labels with respect to a subset
of attributes S, as the count information of all possible values
combination of attributes in S appearing in the data. The size
of the label is then determined by the space required for the
count information. By making an independence assumption,
individual attribute value counts can be used to estimate the
joint distribution, but if we are additionally given selected
intersection counts, how should we use these to estimate other
intersection counts not provided? We present a model for this
estimation in Section II. Given the estimation procedure, each
label entails an error with respect to the real count of patterns
in the data. The problem of finding an optimal label within a
given bound on the label size is NP-hard.

A naive algorithm for the problem would traverse over all
possible attributes subsets in increasing size order, compute
the size of the corresponding label for each set, and choose
the one that entails the minimal error within the space budget.
We argue that in practice, the labels generated with a set of
attributes S is preferable over labels generated using any sub-
set of S, and build upon this property an optimized heuristic
for the problem of finding an optimal label (Section III).

We conduct an extensive experimental study (Section IV) to
assess the quality of our proposed labels model and the labels
generation algorithm’s performance using real-world datasets.
Our experimental results demonstrate the high accuracy of the
labels generated, even with a very limited space budget, and
indicate the usefulness of our proposed optimized heuristic
compared to the naive algorithm. They further show the
scalability of the algorithm with respect to the generated label
size, the data size, and the number of attributes.

We survey related work in Section V and conclude in
Section VI.



D Dataset
A Attributes set in D
Dom(Ai) Active domain of attribute Ai

p Pattern
Attr(p) The set of attributes in the pattern p
cD(p) The count of tuples in D satisfying p
S A subset of attributes (S ⊆ A)
PS The set of all possible patterns over S s.t. CD(p) > 0
LS(D) A label of D using S
V C The value count of each value in D
PC The pattern count of each tuples in PS

p|S1
The pattern resulting when restringing p to S1

Est(p, l) The estimation of a pattern p using the label l
Err(l, p) The error of l with respect to p
P A set of patterns
Err(l,P) The maximal error of l with respect to p ∈ P

TABLE I: Notation Table

II. LABELS AND PATTERN COUNT ESTIMATION

In this section we present a novel model of label con-
struction, based on counts. A summary of the notations used
throughout the paper is shown in Table I. We assume the
data is represented using a single relational database, and that
the relation’s attributes values are categorical. Where attribute
values are drawn from a continuous domain, we render them
categorical by bucketizing them into ranges: very commonly
done in practice to present aggregate results. In fact, we may
even group categorical attributes into fewer buckets where the
number of individual categories is very large.

A. Patterns count information

We first define the notion of pattern which is the foundation
for our label model.

Definition 2.1 (Patterns): Let D be a database with attributes
A = {A1, . . . , An} and let Dom(Ai) be the active domain of
Ai for i ∈ [1..n]. A pattern p is a set {Ai1 = a1, . . . , Aik =
ak} where {Ai1 , . . . , Aik} ⊆ A and aj ∈ Dom(Aij ) for each
Aij in p. We use Attr(p) to denote the set of attributes in p.

Example 2.2: Consider the fragment of the simplified ver-
sion of the COMPAS database given in Figure 2. p ={age
group= under 20, marital status = singe} is a possible pattern
and Attr(p) ={age group, marital status}.

Definition 2.3: We say that a tuple t ∈ D satisfies a pattern
p if t.Ai = ai for each Ai ∈ Attr(p). The count cD(p) of a
pattern p is the number of tuples in D that satisfy p.

Example 2.4: Consider again the database given in Figure 2.
The tuples 1, 3, 8, 10, 12, and 14 satisfy the pattern p ={age
group= under 20, marital status = single} and thus the count
of p is cD(p) = 6.

Information regarding the count of patterns appearing in the
data can be useful to determine fitness for use. It may be used
to ensure a (close) to real world distribution in the attribute’s
values of the data to detect improper (underrepresented) or
extremely high representation (data skew) of patterns, and
potential dependent or correlated attributes. While full count
of each pattern provides detailed and accurate description of
the data, it can be extremely large. In fact it can have the same
size as the data.

Example 2.5: As a simple example, consider a database
D with n binary attributes A1, . . . , An, where each value
combination (b1, . . . , bn), for bi ∈ {0, 1}, appears exactly

Gender Age group Race Marital status
1 Female under 20 African-American single
2 Male 20-39 African-American divorced
3 Male under 20 Hispanic single
4 Male 20-39 Caucasian married
5 Female 20-39 African-American divorced
6 Male 20-39 Caucasian divorced
7 Female 20-39 African-American married
8 Male under 20 African-American single
9 Female 20-39 Caucasian divorced
10 Male under 20 Caucasian single
11 Male 20-39 Hispanic divorced
12 Female under 20 Hispanic single
13 Female 20-39 Hispanic married
14 Female under 20 Caucasian single
15 Female 20-39 Caucasian married
16 Male 20-39 Hispanic married
17 Male 20-39 African-American married
18 Female 20-39 Hispanic divorced

Fig. 2: Sample data from a simplified version of the COMPAS
dataset

once. In this case the database, as well as the patterns count,
includes 2n tuples.

To this end, we propose an estimation function, which
estimates a pattern count based on partial count information.
Our basic intuition is that information regarding the count
of individual attributes values is sufficient to provide a good
estimate of any pattern count if there are no correlations within
the attributes.

Example 2.6: Continuing with Example 2.5, given the
counts cD({Ai = bi}) = 2n

2 , the count of the pattern
{A1 = 0, A2 = 0, A3 = 0} may be estimated as

2n·
3∏

i=1

cD({Ai = 0})
cD({Ai = 0}) + cD({Ai = 1})

= 2n·
(1
2

)3
= 2n−3

Intuitively, under the assumption that there are no correlations,
the count of the pattern {A1 = 0, A2 = 0, A3 = 0} is the
relative portion of the data (total number of 2n tuples), that
have the value 0 in the attribute A1, A2 and A3, which is
reflected in the sub-expressions cD({Ai=0})

cD({Ai=0})+cD({Ai=1}) in the
computation. In general, the count of the pattern p = {Ai1 =
bi1 , . . . , Aik = bik} can be computed as

|D| ·
k∏

j=1

cD({Aij = bij})
cD({Aij = 0}) + cD({Aij = 1})

When we introduce correlations, the counts of individual
attributes are no longer sufficient to provide a good estimation,
as we next demonstrate.

Example 2.7: As a simple example, consider a database D
with n binary attributes as described in Example 2.5, except
that the values in the attributes A1 are replaced such that
the value of A1 is equal to the value of A2 for every tuple.
The real count of the pattern {A1 = 0, A2 = 0, A3 = 0} is
now 2n−2, where using only the individual count the pattern
count estimation is 2n−3 with the same computation shown in
Example 2.6.

We may remedy this problem by using additional count
information. In the above example, the counts of the patterns
p = {A1 = b1, A2 = b2} for bi ∈ {0, 1} is sufficient to
provide an exact estimate for each pattern in the database.



Example 2.8: Given the patterns count cD({A1 = 0, A2 =
0}) = 2n−1 we can compute the count of {A1 = 0, A2 =
0, A3 = 0} as

2n−1· cD({A3 = 0})
cD({A3 = 0}) + cD({A3 = 1})

= 2n−1·1
2
= 2n−2

In general, the count of any pattern p = {Ai1 =
bi1 , . . . , Aik = bik} (that contains {A1 = b1, A2 = b2} for
bi ∈ {0, 1}) can be computed as

cD({A1 = b1, A2 = b2})·
k∏

j=3

cD({Aij = bij})
cD({Aij = 0}) + cD({Aij = 1})

Real world datasets are typically complex, and have corre-
lations among attributes. One possible way to tackle this prob-
lem is to store more information about these (large) deviations
from our initial independence assumption. The challenge is to
spend wisely a limited space budget to capture exactly the
deviations that induce greatest error in our estimates.

B. Patterns count based labels

We next define our notion of data label. A label is defined
with respect to a subset S of the database attributes, and it
contains the pattern count (PC) for each possible pattern over
S and value count (V C) of each value appearing in D. Given
a subset of attributes S ⊆ A we use PS to denote the set of
all possible patterns over S (i.e., p with Attr(p) = S) such
that cD(p) > 0. The maximal number of patterns in PS is∏

Ai∈S |Dom(Ai)|.
Definition 2.9 (Label): Given a database D with attributes

A = {A1, . . . , An}, and a subset of attributes S ⊆ A a label
LS(D) of D using S contains the set PC = {(pi, cD(pi))}
for each pi ∈ PS and the set V C = {({Ai = aj}, cD({Ai =
aj}))} for each Ai ∈ A and aj ∈ Dom(Ai).

Example 2.10: Consider the database fragment given in
Figure 2, the label resulting from use of the attributes set S =
{age group, marital status} consists of the following:

PC = {({age group = under 20, marital status = single}, 6)
({age group = 20-39, marital status = married}, 6),
({age group = 20-39, marital status = divorced}, 6)}

V C = {({gender = female}, 9), ({gender = male}, 9),
({age group = under 20}, 6),
({age group = 20-39}, 12),
({race = African-American}, 6),
({race = Hispanic}, 6),
({race = Caucasian}, 6),
({marital status = single}, 6),
({marital status = divorced}, 6),
({marital status = married}, 6)}

The label resulting from use of the attributes set S′ = {gender,
age group} consists of the same V C set and the following
PC set:

PC = {({gender = female, age group = under 20}, 3)
({gender = male, age group = under 20}, 3),
({gender = female, age group = 20-39}, 6),
({gender = male, age group = 20-39}, 6)}

Note that for a given database D, the V C set is determined
and similar for every label of D. This set may be large, for
instance, the COMPAS dataset includes at leas 10 meaningful
demographic attributes as shown in Example 1.1 and the
Credit Card dataset [2] we used in our experiments has over
20 attributes, including demographic factors, credit data and
history of payments (see Section IV for more details). As
we show in the sequel this information is an integral part of
the estimation method we propose. However, note that with a
simple user interface, the label’s presentation may be manually
refined and attributes can be filtered-out in order to adjust the
information to the user’s interest.

Let D be a database with attributes A, and S1 and S2 be two
subsets of attributes such that S1 ⊆ S2 ⊆ A . Given a pattern
p ∈ PS2 , we use p|S1 to denote the pattern that results when p
is restricted to include only the attributes of S1. Given a label
of D using S1, we may estimate the count of each pattern in
PS2

as follows.
Definition 2.11 (Pattern Estimation): Let D be a database

with attributes A and S1 ⊆ S2 ⊆ A be two subsets of
attributes. Given a label l = LS1

(D) the count estimate for a
pattern p ∈ PS2 is

Est(p, l) = cD(p|S1)·
∏

Ai∈S2\S1

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})

Example 2.12: Consider again the database given in Fig-
ure 2, and the label l = LS(D) generated using S ={age
group, marital status} shown in Example 2.10. The estimate
of the pattern p ={gender = female, age group = 20-39, marital
status = married} using l is

Est(p, l) =

cD(age group = 20-39, marital status = married)·
cD({gender = female})∑

aj∈Dom(gender) cD({gender = aj})
= 6 · 9

18
= 3

Using the label l′ = LS′(D) generated from S′ = {gender,
age group}, with a similar computation we obtain

Est(p, l′) = cD(gender = female, age group = 20-39)·
cD({marital status = married})∑

aj∈Dom(marital status) cD({marital status = aj})
=

6 · 6
18

= 2

We can then define the error of a label with respect to a
pattern and a set of patterns.



Definition 2.13 (Estimation Error): The error of a label l =
LS(D) with respect to a pattern p is

Err(l, p) = |cD(p)− Est(p, l)|

Example 2.14: Reconsider the estimates Est(p, l) and
Est(p, l′) of the pattern p ={gender = female, age group =
20-39, marital status = married} shown in Example 2.12. The
count of the pattern p in the database is 3, thus the error of l
with respect to p is 0 and the error of l′ is 1.

Abusing notation, we use Err(l,P), for a set of patterns P ,
to denote the maximum error in the estimate for any individual
pattern in P .

Error metric: There are multiple plausible error measures
which can be classified into two groups: relative and absolute
error measures. An example of relative error measure, com-
monly used in the field of selection estimation (see, e.g., [13],
[23], [33]) is the proportion between the selectivity estimation
and the true selectivity, called q-error [22].

q-error(p) = max
( cD(p)

est(p)
,
est(p)

cD(p)

)
The q-error metric is relative, symmetric, and is usually
preferred since it “fairly” penalize low selectivity estimations.

Selectivity estimation techniques are geared towards query
optimizations, and relates to query plan quality [22], while
our labels are designed to assist end users determine fitness
for use. This difference plays a rule when choosing the error
measure. We choose to focus on the absolute maximum error
(rather than mean for instance), as this definition of error is
stiffer and gives us a sense of the error “bound” over a large
number of patterns in the database. Our problem definition,
its hardness and proposed solution holds also when using q-
error, and we report the resulting q-error of the generated
labels in the out experiments (see Section IV-B).

C. Problem definition

We are now ready to define the optimal label problem.
Definition 2.15 (Optimal Label Problem): Given a database

D, with attributes A, a bound Bs over the label size, and a
set of patterns P , the optimal label is

argmin
S⊆A

Err(LS(D),P) such that |PS | ≤ Bs

Intuitively, the set of patterns P may be defined as PA (i.e.,
the set of all possible patterns that include all the attributes
and every value for each attribute that appears in the data). In
this case |P| = |D| and an optimal label would be one that
minimizes the error with respect to the count of tuples in the
data. Our problem definition is more flexible, and allows the
user to define a different pattern set, e.g., patterns that include
only sensitive attributes.

To formally characterize the complexity of the optimization
problem, we further need to define a corresponding decision
problem. We define it as the problem of determining the
existence of a label with size limited by the given bound and
error which does not exceed a given error bound.

Definition 2.16 (Decision Problem): Given a database D,
with attributes A, a bound Bs over the label size, a set of
patterns P , and an error bound Be, determine if there is a
label LS(D) with |PS | ≤ Bs and Err(LS(D),P) ≤ Be

We can show that (see proof in the appendix).
Theorem 2.17: The decision problem is NP-hard.
More complex approaches could consider overlapping com-

binations of patterns, derive best estimates from multiple la-
bels, use partial patterns, and so on. Such complex approaches
are left to future work.

III. OPTIMAL LABEL COMPUTATION

Given a database D with attributes A = {A1, . . . , An}
and a bound Bs, a naive algorithm for the optimal label
computation would operate as follows: iterate over possible
attributes sets, starting with set of size 2. At each iteration,
compute the set of all possible labels with a fixed size,
namely, at the i’th iteration the algorithm generate the labels
{LS1

(D), . . . , LSk
(D)}, where each Sj for j ∈ [1..k] is a

subset of attributes of size i + 1. For each label generated,
compute its size and error, and record the optimal label
computed with size below the given bound. The algorithm
terminates if the size of all the labels generated in the same
iteration exceeds the bound (or when all possible subsets were
generated). Intuitively, if every attribute subset of size i leads
to a label with size greater than the given bound, then, every
label generated using any attributes subset of size > i would
also exceed the bound. The naive algorithm is unacceptably
expensive. Therefore we developed a much faster heuristic
solution for the optimal label problem.

A. Label estimation characterization

We start by characterizing the count estimation for a given
pattern using a given label. Let D be a database with attributes
A, S ⊆ A an attributes set and l = LS(D) a label of D
using S.

Definition 3.1: Given a pattern p, we say that the estimate
of p using l is
• an exact estimation if Est(l, p) = cD(p),
• an over estimation if Est(l, p) > cD(p), and
• an under estimation if Est(l, p) < cD(p).
Clearly, for every pattern p if Attr(p) ⊆ S then the estimate

of p using l is an exact estimation. Moreover, we can show
the following:

Proposition 3.2: Given two attribute sets S1 ⊆ S2 ⊆ A
and li = LSi

(D) the labels of D using Si for i = 1, 2
respectively, for every pattern p such that Attr(p) 6⊆ S2 let
p′ = p|Attr(p)∩S2

be the pattern resulting when restricting
p to include only the attributes appearing in S2. If the
estimate of p′ using l1 is an over (under) estimation, and the
estimate of p using l2 is an over (resp., under) estimation then
Err(l2, p) ≤ Err(l1, p).

Example 3.3: Suppose we are interested in estimating the
number of married Hispanic females under the age of 20 in
the data. Proposition 3.2 states that if the estimation of a label
l1 consisting of the count for gender and age combinations



{}
{g} {a} {r} {m}

{g, a} {g, r} {g,m} {a, r} {a,m} {r,m}

{g, a, r} {g, a,m} {g, r,m} {a, r,m}

{g, a, r,m}
Fig. 3: A label lattice

leads to an over (or resp. under) estimation of the pattern
p′ ={gender = female, age = under 20, marital status =
married}, and the estimation using a label l2 generated with
the count of the gender, age and marital status leads to an
over (or under) estimation of p ={gender = female, age =
under 20, race = Hispanic, marital status = married}, then
Err(l2, p) ≤ Err(l1, p).

Intuitively, for two attributes sets S1 and S2, if S1 ⊆ S2

the label generated using S2 has more details than the one
generated using S1. In fact, based on Proposition 3.2, it is
reasonable to assume that the pattern’s count estimation using
LS2

(D) is more precise than the one using LS1
(D). We show

that this assumption indeed holds in practice in our experiment
(see Section IV-E).

Our proposed solution is based on the above observation.
Our algorithm is inspired by the Apriori algorithm [4] and
the Set-Enumeration Tree for enumerating sets in a best-first
fashion [26]. We start by defining a lattice over the possible
labels, and then show how it can be used to compute the
optimal label.

B. Labels lattice

We define a labels lattice as follows.
Definition 3.4 (Labels lattice): Given a database D with

attributes A, let A∗ be the set of all possible subset of A. The
label lattice of D is a graph G = (V,E), where V = A∗ and
E = {{S1, S2} | S1 ⊂ S2 and ∃Ai ∈ A s.t. S1∪{Ai} = S2}.
S1 is a parent (child) of S2 if there is an edge {S1, S2} and

S1 ⊂ S2 (S2 ⊂ S1).
Intuitively, S1 is a parent of S2 if S2 can be obtained from

S1 by adding a single attribute A ∈ A \ S1. Figure 3 depicts
the label lattice of the database given in Figure 2 (g, a, r and
m are use as abbreviations for gender, age group, race and
marital status).

We note that, due to the nature and purpose of the labels
(i.e., conciseness that allow for user friendly visualization),
the typical bound over the label size is small. Thus, a natural
way to scan the lattice is from the top down. Traversing the
lattice does not require explicit representation of the graph,
as children nodes can be generated on demand from their
respective parents. Moreover we can generate each node in
the label lattice exactly once in a top down scan as we next
show. To this end we define the operator gen(S) for a subset
of attributes S as follows.

Definition 3.5: Let D be a database with attributes A =
{A1, . . . , An}. We assume attributes are ordered, and for a

Algorithm 1: Top down search
input : A database D, a set of patterns P and a

bound Bs.
output: Optimal label.

1 Q = [gen({})]
2 cands = ∅
3 while Q is not empty do
4 curr ← Q.dequeue()
5 for c ∈ gen(curr) do
6 if labelSize(c, D) ≤ Bs then
7 Q.enqueue(c)
8 removeParents(cands, c)
9 cands← cands ∪ {c}

10 return LS(D) for argminS∈cands Err(LS(D),P)

given subset of attributes S ⊂ A we use idx(S) to denote
the index of the attribute with maximal attribute index in S,
namely idx(S) = maxi({Ai | Ai ∈ S}), we define

gen(S) = {S′ | S′ = S ∪ {Aj} ∀j s.t. idx(S) < j ≤ n}

For a given attributes set S, the set gen(S) ⊆ children(S)
where children(S) is the set of all children of S in the label
lattice of D.

Example 3.6: For the database D given in Figure 2 and the
attributes subset S ={gender, race}, gen(S) is {gender, race,
marital status}. Note that {gender, age group, race} is a child
of S in the labels lattice, but is not included in gen(S).

C. Top down algorithm

Algorithm 1 finds the optimal label using a top down
traversal of the label lattice. The algorithm gets as input a
database D, a set of patterns, and a bound Bs. It uses a queue
Q to generate a candidate list of attributes subset, cands, such
that the size of the label generated using each candidate in the
list does not exceed the bound Bs.

The algorithm first initializes the queue Q with the set of at-
tribute’s singletons using gen({}) (line 1), and the candidates
set cands to an empty set (line 2). Then while the queue
Q is not empty (lines 3 – 9), the algorithm examines the
first element in the queue curr (line 4). It traverses over the
elements in gen(curr) (lines 5 – 9), and for each element c,
checks if the size of the label generated by c is not greater than
Bs (line 6). If so, the algorithm adds c to the queue (line 7)
and update the candidates list, by removing the parents of c
that are currently in cands (line 8), and adding c to the cands
list (line 9). Finally, the label that entails the minimal loss out
of the set of all labels generated using the attributes sets in
the cands list is returned (line 10).

Example 3.7: Given the database D shown in Figure 2,
the pattern’s set P that contains the set of all tuples in D,
and the bound Bs = 5, the algorithm first initializes Q to
be [{g}, {a}, {r}, {m}], and cands to be an empty set. In
the first iteration, {g} is extracted from Q and it’s children,



{{g, a}, {g, r}, {g,m}}, are generated using gen({g}). Out
of this set, {g, a} is the only subset that results in a label of
size below 5, and therefore is added to Q and to cands. In
the next iteration, {a} is extracted from Q, and the algorithm
examines the elements in gen({a} = {{a, r}, {a,m}}. The
label generated with {a, r} is of size 3 and the label generated
with {a,m} is of size 6, thus only {a, r} is added to Q and
cands. No other subset in the following iterations generates a
label of adequate size, and the while loop terminates after all
the elements in Q are extracted. Finally, cands contains {g, a}
and {a,m}, and the algorithm returns the label generated using
{a,m} since it is the optimal in this case.

By traversing the lattice in a top down fashion using the
gen operator the algorithm generates each node in the lattice at
most once. Furthermore, the nodes generated are only attribute
sets that lead to labels with size below the given bound, and
(in the worst case) their children.

Proposition 3.8: Given a database D, a set of patterns P
and a bound Bs, Algorithm 1 generates each node in the label
lattice at most once.

Algorithm 1 avoids generating and exploring a large portion
of the labels lattice, and in particular most of the labels that
exceed the bound limit (which in practice are the majority, as
shown by our experiments in Section IV-D).

IV. EXPERIMENTAL EVALUATION

We conducted experiments on real data to assess the quality
of our proposed labels in estimating the data pattern’s count.
The key concerns are the size of label and the error in estima-
tion. We evaluated this trade off and considered the impact of
data set parameters. We compared our label’s accuracy to the
performance of a real DBMS estimator, and the conventional
approach of sample based estimation using different error
measures. A second issue we studied is the performance of
the label generation algorithm. We examined scalability in
terms of label generation time as a function of (i) label’s size
bound, (ii) data size and (iii) number of data attributes. We also
quantified the usefulness of the heuristic approach compared to
the naive algorithm. Finally, we validated the assumption from
Section III-A that more detailed labels lead to lower error. In
this section, we report on all these experiments in turn. We
begin with the set up we used.

A. Experimental setup

We used three real datasets with different numbers of tuples
and attributes as follows.
BlueNile Blue Nile is an online jewelry retailer. We used the

dataset collected and used in [8] of diamonds catalog,
containing 116,300 diamonds. The dataset has 7 categor-
ical attributes for the diamonds: shape, cut, color, clarity,
polish, symmetry, and florescence.

COMPAS The COMPAS dataset was collected and published
by ProPublica [1]. It contains 60,843 records that includes
demographics, recidivism scores, and criminal offense
information. The total number of attributes in the original
database was 29. We removed id attributes (person id,

assessment id, case id), names (first, last and middle),
dates and attributes with less than 2 values or over 100
values. We added the attribute age, with four age ranges,
based on the date of birth attribute. The resulting dataset
contains 17 attributes.

Default of Credit Card Clients Dataset [2] This dataset
contains information on default payments, demographic
factors, credit data, history of payment, and bill
statements of credit card clients in Taiwan from April
2005 to September 2005. It has 24 attributes and 30,000
tuples. We bucketize each numerical attribute into 5 bins.

In all the experiments we set P , the patterns set, to be PA
where A in the set of all attributes in the dataset; namely,
the set of possible patterns that include all the attributes and
every value for each attribute that appears in the data. The
experiments were executed on macOS Catalina, 64-bit, with
16GB of RAM and Intel Quad-Core i7 3.1 GHz processor. All
algorithms were implemented in Python 3.

B. Label accuracy

We assessed the quality of the generated labels in estimating
the data pattern’s count by examining the error induced by
the labels of varying size with respect to the set of patterns
appearing in the database. We varied the label’s size bound
from 10 to 100 to generate labels with different size.

Compared Baselines: We have measured the accuracy of
our proposed pattern count based label (PCBL, blue line in
the graphs) to two baseline approaches.
PostgreSQL The PostgreSQL row estimation relies on 1D

histograms. It stores the statistical data about the database
in pg_statistic and random sampling while producing
statistics.

Sampling Uniform random sample with growing size. The
size of a sample that corresponds to the bound x is x+
|V C|1. Given a sample S of size |S| for a dataset D, and
a pattern p, we use cS(p) · |D||S| to estimate the count of p
in D, where cS(p) is the count of p in S.
Error Measures: We compared the quality of the estima-

tion method with different error measures.
Absolute error Error was measured as the absolute value

of difference in count between the actual and estimated
count for each pattern. Recall that the absolute maximum
error is our estimation error measure (as we defined it in
Section II).

Q-error The factor by which an estimate differs from the
actual count (see definition in Section II). This error mea-
sure is a standard accuracy metric in query estimation,
where the accuracy is reported as mean q-error. To avoid
division by zero, we set est(p) = 1 whenever the actual
estimation was 0.

For all three datasets, we observed similar errors for the
label generated by the optimal heuristic and the one generated
by the naive algorithm (blue line in the graphs). In all cases

1Recall that the bound Bs is over the pattern count set size |PC|, see
Section II.
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pg_statistic contained over 400 rows (429 in the BlueNile
dataset, 439 in the COMPAS dataset, and 446 in the Credit
Card). The accuracy is independent of the label size, and is
marked with a gray line in the graphs. For the sample based
estimation we report the average over 5 executions and the
results are marked in yellow.

Figure 4 shows the absolute max error (mean error values
are shown in parenthesis) as a function of the label size. The
maximal error is presented as a fraction of the data size. For
the BlueNile dataset the maximum estimation error was 1136
(less than 1%) for a label of size 9 (generated when setting
the bound to 10). When setting the bound to 100 we obtained
a label of size 66 with maximum error of 575 (around 0.5%).
The postgres maximal error was 1204 (1.04%) and the mean
was about 7. In the sample based estimation we observed
a small increase in the maximal error for a sample of 75
(corresponds to label with |PC| = 28, bound of 30). This
is because the sample size is significantly smaller that the
database size, thus |D|S is larger that the count of all tuples in
the data, which results in over estimation for all tuples in the
sample, and estimation of 0 for the rest. In particular, if the
count of a pattern is greater than 2 (as in one of the executions
in this experiment) the overestimation is even higher. The
mean error of the sample based method decreased from 18.44
for the smallest sample size (×3 of the PCBL) to 17.04 in the
largest sample (over ×4 of the PCBL).

For the COMPAS dataset, the size of the label generated
when setting the bound to 10 was 9 and the maximum error
induced by the generated labels was 494 (about 0.8%). For a
label of size 87, generated with bound of 100, the maximum
error was 378 (a little over 0.6%). In the postgres estimations
the maximal error was 532 (0.87%) and mean error of 3.48.
The maximal error of the sample based estimation was 1070
for the smallest sample size, and 782 for the largest.

The label obtained with bound of 10 contained 10 pattern-
count pairs in the Credit Card dataset. The maximum error was

704 (2.3%). For a label with 92 pattern-count pairs (generated
with the bound set to 100), we obtain maximum error of 607
(2.0%). The maximum observed error remains 607 when we
increased the label size bound from 70 to 100 (generating
labels of size 70 and 92 respectively). We note that the mean
error decreased 2.2978 to 2.2974. To further demonstrate the
trend, we examine the error of labels generated with bound
set to 125 and 150, which generated labels of size 121 and
139 respectively. The postgres maximal error estimation was
717 (2.39%), with mean of 2.44. The maximal error of the
average sample based estimation decreased from 789 to 453,
which is slightly better than the results of the PCBL, however
the mean error was higher, 6.25 to 5.59 (about ×3 of PCBL).

The mean q-error is shown in Figure 5. In all cases, PCBL
outperformed the competitors, and we observed a decrease in
the error as the label size grows. For the BlueNile dataset the
max q-error for the smallest label was 47 compared to average
of 2039 using the corresponding samples. The mean was 2.4
and 10.2 respectively. The PCBL max q-error dropped down
to 25 with mean of 1.8 using the largest label. The max error
using the largest sample was 1335.4 and the mean was 9.4.
The postgres maximal q-error in this case was 45 and the
mean was 2.5. In the COMPAS dataset, the max q-error was
234 and 715 for the PCBL and sample methods respectively
for the smallest bound, with mean of 3.4 and 5.2. For the
largest bound the max q-error was 101 and 387, and the mean
was 2.4 and 5.02 using PCBL and the sample respectively. In
the postgres estimation we obsrved a max error of 234 and
mean of 3.9. Finally, for the Credit Card dataset the observed
max error was 47 in all label’s sizes using the PCBL, and the
mean decreased form 1.8 to 1.7. Using the samples, the max
error was 426.8 and 238.6, with mean of 4.1 and 3.7 for the
smallest and largest samples respectively. The postgres max
q-error was 47 and the mean was 1.8.



C. Label generation time

The next set of experiments aims at studying the scalability
of the algorithms for label generation. We compared the per-
formance of our proposed optimized heuristic algorithm (dark
blue) to a baseline naive algorithm described in Section III
(light blue). The reported times for the optimized heuristic are
the total generation time, including both the candidates search
time and finding the best label in the candidate set. Since the
number of patterns is large (the same size of the database), the
latter may be costly. However, as we use maximal error, we
were able to optimize it as follows. We sort the patterns by
count in a decreasing order. Then, when traversing the patterns,
we compute the error for each one, while tracking the maximal
error observed. Once we reach a pattern with lower count than
the observed maximal error we terminate. On average, finding
the optimal label out of the candidates set was 62.6% of the
total running time in the BlueNile dataset, 18% in COMPAS
and 44.4% in the Credit Card dataset.

Figure 6 depicts the running time as a function of the label’s
size bound from bound 10 and up to 100. As the bound
grows, the number of possible attributes subsets that may be
used to generate an optimal label increases, which affect the
generation time for both algorithms. The optimized heuristic
outperform the naive algorithm since the number of subsets it
consider is smaller (we give the actual number of subsets in
Section IV-D). In the Credit Card dataset, the naive algorithm
did not terminate within 30 minutes beyond bound of 50. For
bound of 50 the naive algorithm running time was over 18
minutes. The optimal heuristics was able to compute the label
for bound of 50 with about 3.5 minutes, and the label for the
largest bound of 100 within 18 minutes.

The next experiments aim at assessing the effect of the data
size (i.e., number of tuples) and the number of attributes, on
the label generation time. We note that the number of attributes
subsets examined by the algorithms to generate the optimal
label depends (exponentially) on the number of attributes,
whereas the number of tuples affects the examination time
of each subset (i.e., measuring it’s size and error rate). Thus,
we expect to see a moderate growth in the label generation
time as a function of the database size, and a steep growth in
the generation time as a function of the number of attributes.

To study the effect of the data size on the algorithm’s
running time we gradually increased the data size by adding
randomly generated tuples to the datasets. We increased the
data size up to ×10 the original data size. We repeated each
experiments 5 times and report the average running time of
the label generation for the bound of 50 in Figure 7 (we
observed similar trends for other bound setting). As expected,
we observed a moderate growth with respect to the data size
for all three datasets.

Interestingly, in the Credit Card dataset, the performance
of both algorithms for the dataset with 60,000 tuples (45
and 24 seconds for the naive algorithm and the optimal
heuristic respectively– first point in the rightmost graph in
Figure 7) was better than their respective performance over

the original 30,000 tuples (18 minute for the naive algorithm
and 221 seconds for the optimal heuristic–3’rd point in the
corresponding graph in Figure 6). The reason for that is that
by adding new randomly generated tuples, we introduced new
patterns that were missing in the original data. As a result, the
number of attribute subsets examined by the algorithm, and in
turn the overall running time of the algorithms, decreased. To
illustrate, the number of attribute sets examined by the naive
algorithm for the original dataset was 536,130 and 9,156 for
the optimized heuristic. For the date (with randomly generated
tuples) of 60,000 tuples the naive algorithm examined 12,926
attribute sets, and the optimized heuristic only 785 sets.

Figure 8 depicts the running time as a function of the
number of attributes. We fixed the bound to 50 and varied the
number of attributes in the datasets from 3 to |A| where A is
the set of all attributes in the dataset. The effect on the running
times was more notable in the COMPAS and the Credit Card
datasets since they contain larger numbers of attributes. The
results for these datasets are thus presented in log scale.

D. Effect of optimization

Recall that our heuristic optimizes the number of attribute
sets examined during the search of the optimal label. To quan-
tify the usefulness of our heuristic, we compared the number
of attributes sets examined during the label generation by the
optimized heuristic and the naive algorithm. We observed a
gain of up to 99% in the number of subsets examined as shown
in Figure 9.

For the BlueNile dataset we observed the lowest gain of
54%: 91 subsets examined by the naive algorithm compared
with 42 by the optimized heuristic for a bound of 100. The
largest gain in this dataset was 86% for a bound of 10 (56
for the naive algorithm and 8 for the optimized heuristic).
For the largest bound, the naive algorithm generate 71% of
all possible attributes subsets, while the optimized heuristic
generate only 33%.

The gain in the COMPAS dataset varied from 96% (89,828
compared to 3,594 for a bound of 100), and up to 99% for a
bound of 10 (9,384 by the naive algorithm compared to 106 by
the optimized heuristic). In the worst case the naive algorithm
examined 69% of of all possible attributes subsets, and the
optimized heuristic examined only 3%.

For a bound of 50, the number of subsets generated for the
Credit Card dataset by the naive algorithm was 536,130 wheres
the optimal heuristic generated only 9,156 subsets, a gain of
98%. For a bound of 10 and 30 the gain was 99% (9,384
compared with 112, and 190,026 compared with 2,102 resp.).
For a bound of 100 the heuristic algorithm generated 64,312
attributes subsets, only 0.4% of the total number of possible
subsets (recall that the naive algorithm did not terminate within
30 minutes beyond bound of 50).

E. Sub-labels accuracy

The goal of our last experiment was to validate the assump-
tion from Section III-A indeed takes place in practice. Namely,
that the error entails from a label generated using a subset of
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attributes S is at most the error entails by the label generated
using any subset of S. To this end, we used the subset of
attributes S used to generate optimal label (for a bound of
100) for each dataset, and examine the error incur by the labels
generated with each possible subset of S.

The dark bars in Figure 10 depict the maximum error for
the optimal label for each dataset (orange for BlueNile, green
for COMPAS and purple for the Credit Card). The light bars
shows the maximum error of the labels generated from the
attributes sets obtained by removing a single attribute from
the set used to generate the optimal label.

For the BlueNile dataset, the optimal label was generated
using the attributes cut, shape and symmetry. The maximum
error for the label generated using this set of attributes was
0.49% (the dark orange bar). The light orange bars shows the
maximum error rate observed for the labels generated using the
sets {cut, shape}, {cut, symmetry}, {shape, symmetry}.

The error in all cases was higher than the error of the optimal
label (from 0.8% and up to 0.91%).

We observed similar results for the COMPAS dataset. The
dark green bar shows the maximum error of the optimal
label (0.62%). In this case the optimal label was gener-
ated using a set of six attributes: RecSupervisionLevel,
RecSupervisionLevelText, DisplayText, Scale_ID,
DecileScore and ScoreText. For each label generated from
a set obtained by removing a single attribute from the set
used to generate the optimal label we obtained a label with an
higher error rate (shown in light green bars) from 0.72% and
up to 0.81%.

Finally, the optimal label for the Credit Card dataset was
generated using the attribute set containing the attributes
education, marriage, age and PAY_AMT1, which describes
the amount paid in September, 2005. The maximum error
of the optimal label was 2.02% (the dark purple bar). In
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Fig. 10: Optimal label vs. Sub labels error. For each data set,
the dark bar indicates the performance with label bound set to
100. The light bars represent the error of the labels generated
from the attributes sets obtained by removing a single attribute
from the optimal set.

three out of the four attributes subsets (light purple bars),
the maximum error was higher than the optimal label (from
2.2% to 2.34%). The error of the label generated using only
education, marriage, age was similar to the optimal error.

To conclude, the result of this experiment supports our claim
and indicates that the assumption (that a more specific pattern
count leads to lower error in the count estimate) underlying
our optimized heuristic indeed holds in practice.

V. RELATED WORK

With increasing interest in data equity in recent years,
multiple lines of work have focused on labeling data and
models in order to improve transparency, accountability and
fairness in data science [15], [18], [21], [27], [28], [32].

Different data labeling models were studied in [15], [18],
[28]. Data nutrition labels [18] are composed of modules,
called widgets. Modules are stand-alone, and each provides
a different flavor of information: metadata, provenance, vari-
ables, statistics pair, probabilistic model and ground truth
correlations. The models vary in the manual effort required for
their generation and their technical sophistication. Overall, the
labels allow users to interrogate various aspects of the dataset.
Our proposed label model may be assimilated as a widget or
a module in the above models. An important feature of our
model is the ability to automatically generate the labels.

Other works focused on model labeling [21], [32]. The
model cards defined in [21] is a framework that encourage
transparent model reporting. The authors proposed a standard
way of reporting information regarding machine learning mod-
els, taking into consideration the context in which they are ap-
plied, and ethical aspects. The model cards include information
about the model such as how it was built, what assumptions
were made and its possible effect on different “protected”
groups. The work of [32] has focused on generating nutritional
label for rankings. The ranking facts of [32] is a set of widgets
that present different aspects of the ranking algorithm while
addressing key principles of transparency and interpretability,
such as attributes with significant impact on the outcome, the
stability of the ranking, its fairness with respect to different
fairness measures and diversity.

While the idea of a nutritional label has been very nicely
argued for in work such as that cited above, the actual content
of the label is either manually generated, or at most has an

aspiration towards automated generation beyond the simplest
properties. Our work establishes the first critical widget that
provides substantive information about a data set and is
constructed in a completely automated manner.

Data profiling is used not just for nutrition labels, but
also for many other purposes. Most notably, database systems
have used such information for decades to assist in query
optimization through query result size estimation. Histograms
are commonly used on individual attributes [19]. However,
histograms on more than one attribute at a time are uncom-
mon. The problem of query size estimation based on multi-
dimensional histograms was studied in [9], [12], [20], [29].
These are not restricted to categorical datasets, but they work
well only for low to medium data dimensionalities (typically
2-5 and at most 12, see [12]). Our work in this paper can also
be of value in building better multi-dimensional histograms.

There is a wealth line of work on selectivity estimation
[11], [13], [23], [33] using various methods from sampling and
synopses [23] to machine learning and deep learning that were
suggested in recent works (e.g., [13], [33]). Sampling methods
are typically simple to implement but they are sensitive to
skew and have insufficient performance for high selectivity
queries, both crucial for the intended labels applications.
As indicated by our experiments, using small samples (of
same size as our labels) results in poor estimations. While
machine learning based methods often do remarkably well,
the resulting models are very complex and have a higher
memory consumption than our proposed labels. Moreover, our
proposed approach is derived from a user perspective, and
designed to allow for human visualization and interpretation.
The typically complexity of ML models makes them ill-suited
for such purpose.

Our proposed label model may be reminiscent of the
minimum description length (MDL) principle [17], [25], an
important concept in information theory and computational
learning theory. The MDL principle addresses the problem of
choosing the model that gives the shortest description of data.
At a high level, the idea behind MDL is that the model that
best captures or fits the important features of the data is the
one that is able to compress the data most. The basic idea is
then to use two parts to describe the data: the hypothesis (or
model) and an encoding of the data using that model. In a way,
our problem may be considered as an MDL problem, where
the label is the model and the set of errors with respect to each
pattern as the additional information needed for the description
of the data given the model. An inherent difference between
our work and the MDL principle, is that in our proposed model
we aim at minimizing the error within a given bound limit,
whereas in the MDL principle the goal is to minimize the total
description length (and not only the error).

The problem of reconstructing finer-scale data from multiple
coarse views, aggregated over different (subsets of) dimensions
was presented in [5]. The goal of the disaggregation task is
to estimate a particular series in a higher resolution, given ob-
servations in lower resolution. While our estimation technique
relies on a single aggregated instance, that best estimates the



original data, the work of [5] uses multiple aggregate data to
reconstruct the original data.

There is a wealth of work on lossy data compression [31],
[34]. Various techniques were proposed for different appli-
cation such as image compassion [7] and text compression
[24], [30]. While our proposed model of data labels may
be considered as a new lossy data compression method, our
intended usage of the labels is different and as a result we do
not consider the decoding process of the entire compressed
data in bulk.

VI. CONCLUSION

We have developed a “label” for a data set that can be
used to determine the count for every pattern of attribute
value combinations in the data set. Since these counts are
typically central to determining fitness for use, and thus avoid
generating biased models and data-driven algorithms, our work
is in line with the many recent proposals for a data set
label that allows users to determine fitness for use and build
trust. Our labels can be fully automatically generated. Our
label model is built upon an estimation function, that allows
to estimate the count of every pattern, using partial count
information in the label. We present an optimized heuristic for
optimal label generation, and experimentally show the quality
of our label and usefulness of our heuristic compared with a
naive algorithm.

Given the label of a found dataset, in case we observe an
undesirable property of the data, such as insufficient diversity
or groups with inadequate representation, the next step for a
data scientist would be to determine whether the data can be
adjusted in a way that will fit their chosen tasks. For instance,
the work of [8] proposed an approach for coverage enhance-
ment for patterns with inadequate representation through data
acquisition.
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APPENDIX

A. Proof of Theorem 2.17
We prove Theorem 2.17 via a reduction from the vertex cover

problem, a decision problem which we now define. For notational
simplicity, and without loss of generality, we omit certain easy cases
from the vertex cover problem. Namely, we require that the input
graph contains at least two nodes and one edge and forbid self loops.

Definition A.1 (Vertex cover): Let G = (V,E) be an undirected
graph. A set V ′ ⊆ V is a vertex cover of G if for every edge
{x, y} ∈ E either x ∈ V ′ or y ∈ V ′.

Theorem A.2 ( [14]): Given an undirected graph G = (V,E),
where V = {v1, . . . , vn} for some 1 < n, E 6= ∅, and for any edge
{vi, vj} ∈ E it holds that i 6= j. Determining if G has a vertex cover
V ′ such that |V ′| ≤ k, when k ∈ {2, ..., |V | − 1}, is NP-hard.

Reduction: Given an input for the vertex cover problem, a
graph G = (V,E) and k, we generated the following input to the
optimal label problem:
• A database D with |V | + 1 attributes A: Ai for each vi ∈ V

and an attribute AE .
• For each attribute Ai there are two possible values x1 and x2.
• The domain of the attribute AE contains |E| possible values xi

for each ei ∈ E.
• For each edge er = {vi, vj} ∈ E there are 4 · |E| tuples in

the database D, each containing only values for the attributes
AE , Ai and Aj (and the rest are missing values): for each
p, q ∈ {1, 2}, |E| tuples such that Ai = xp, Aj = xq and
AE = xr

• For each vi, vj ∈ V such that i 6= j:
1) if {vi, vj} 6∈ E there are 4 · |E| tuples in the database D:

for each p, q ∈ {1, 2}, |E| tuples such that Ai = xp, and
Aj = xq .

2) if {vi, vj} ∈ E there are 4 · |E|2 tuples in the database D:
for each p ∈ {1, 2}, 2 · |E|2 tuples such that Ai = xp, and
Aj = xp.

• Bs = 2 · |E|+ 4 ·∑k−1
i=1 i

• The set P consist of |E| patterns: a pattern p = {Ai =
x1, Aj = x1, AE = xr} for each edge er = {vi, vj} ∈ E.

• Be = 0
Example A.3: Given the graph shown in Figure 11 the reduction’s

output contains the database depicted in Figure 12. The tuples in
the top left-hand side of the Figure correspond to the edge e1 =
{v1, v2} ∈ E and the tuples in the top right-hand side to the edge
e2 = {v2, v3} ∈ E. The cont attribute represent the number of
occurrences of each tuple in the database. The tuples in the bottom
part are added because there is no edge between v1 and v3. The set P
in this example contains the patterns {AE = x1, A1 = x1, A2 = x1}
and {AE = x2, A2 = x1, A3 = x1}.

To prove the reduction correctness we show that there is vertex
cover of size k in a graph if and only if there is a label of size at
most 2 · |E|+ 4 ·∑k−1

i=1 i with error 0.
Proposition A.4: Given an input for the vertex cover problem,

a graph G = (V,E) and k, let D be the database resulting from
the reduction and P the set of patterns. There exists S ⊆ A an
attributes subset with |LS(D)| ≤ 2 · |E| + 4 · ∑k−1

i=1 i such that
Err(LS(D),P) = 0 ⇐⇒ there exists a vertex cover of size k in
G.

To prove Proposition A.4 we show that (i) the error of a label
generated using a subset of attributes S is 0 is and only if the

AE A1 A2 A3 count
x1 x1 x1 2
x1 x1 x2 2
x1 x2 x1 2
x1 x2 x2 2

x1 x1 8
x2 x2 8

AE A1 A2 A3 count
x2 x1 x1 2
x2 x1 x2 2
x2 x2 x1 2
x2 x2 x2 2

x1 x1 8
x2 x2 8

AE A1 A2 A3 count
x1 x1 2
x1 x2 2
x2 x1 2
x2 x2 2

Fig. 12: Reduction example’s output database

corresponding set of nodes in the graph are vertex cover using Lemma
A.5 and (ii) prove the size bounds using Lemma A.8.

Lemma A.5: Let er = {vi, vj} ∈ E, p = {AE = xr, Ai =
x1, Aj = x1} be a pattern in P and S ⊆ A be an attributes subset.
Err(LS(D)) = 0 ⇐⇒ AE ∈ S and at least one of Ai or Aj in
S.

Proof A.6: Let er = {vi, vj} ∈ E, p = {AE = xr, Ai =
x1, Aj = x1} a pattern in P and S ⊆ A be an attributes subset.
Note that:
• cD(p) = |E|
• For each attribute Ap:

cD({Ap = x1})
cD(Ap = x1) + cD(Ap = x2)

=
1

2

• For each xr ∈ Dom(AE):

cD({AE = xr})∑|E|
j=1 cD({AE = xj})

=
4 · |E|∑|E|
j=1 4 · |E|

=
1

|E|

• |D| = 4 · |E|2 + 4 · |E|3 + 4 · |E| · (|V |2 − |E|)
We consider all possible cases as follows.
• Without loss of generality assume that AE ∈ S and Ai ∈ S

then

cD(p|S) = cD({AE = xr, Ai = x1}) = 2 · |E|
and thus

Est(p, LS(D)) = 2 · |E| · 1
2
= |E|

Namely, the error in this case is 0.
• If Ai ∈ S and Aj ∈ S but AE 6∈ S we get cD(p|S) =
cD({Ai = x1, Aj = x1}) = |E|+ 2 · |E|2 and thus

Est(p, LS(D)) = |E|+ 2 · |E|2 · 1

|E| = 2|E|+ 1

Namely, the error in this case is |E|+ 1 > 0.
• Otherwise we get

Est(p, LS(D)) = |D| · 1

|E| ·
1

2
· 1
2
=

(4 · |E|2 + 4 · |E|3 + 4 · |E| · (|V |2 − |E|) · 1

4 · |E| =

|E|2 + |V |2 > |E|
Thus, the error in this case is greater than 0.

Corollary A.7: Let P be the patterns set generated by the reduction
and let S ⊆ A be an attributes subset

Err(LS(D),P) = 0 ⇐⇒ AE ∈ S and
at least one of Ai or Aj in S for each {vi, vj} ∈ E

Lemma A.8: Let S ⊆ A be an attributes subset of size |S| = k+1
for k ≥ 1 such that AE ∈ S then |LS(D)| = 2 · |E′|+ 4 ·∑k−1

i=1 i,
where E′ = {er = {vi, vj} | Ai ∈ S or Aj ∈ S (or both)}.



Proof A.9: The proof by induction on k.
Base If k = 1 then S = {AE , Ai}. Let E′ = {{vi, vj} ∈ E |

∀vj ∈ V }, by the reduction construction D (and thus also
LS(D)) contains the patterns {AE = xr, Ai = x1} and
{AE = xr, Ai = x2} for each er ∈ E′, thus |LS(D)| = 2·|E′|
and the proposition holds.

Inductive step Assuming the proposition holds for k > 1. Let
S = {AE , Ai1 , . . . , Ai(k+1)

}, S′ = {AE , Ai1 , . . . , Aik},
E′ = {er = {vi, vj} | Ai ∈ S or Aj ∈ S (or both)} and
E′′ = {er = {vi, vj} | Ai ∈ S′ or Aj ∈ S′ (or both)}. From
the induction hypothesis |LS′(D)| = 2 · |E′′| + 4 ·∑k−1

i=1 i.
Adding the attribute Ai(k+1)

to the label increase the number
of patterns by 4 for each Aiq ∈ S′:
• If er = {viq , vi(k+1)

} ∈ E then instead of 2 patterns {AE =
xr, Aiq = xp} for each p ∈ {1, 2} we have 6 patterns in
LS(D): {AE = xr, Aiq = xp, Ai(k+1)

= xm}, for each
p,m ∈ {1, 2} (4 patterns), {Aiq = x1, Ai(k+1)

= x1} and
{Ai = x2,
Ai(k+1)

= x2}.
• If {viq , vi(k+1)

} 6∈ E, the patterns {Aiq = xp,
Ai(k+1)

= xp} for each p ∈ {1, 2} are in LS(D) (and not
in L′S(D)).

In addition, for every er ∈ E′ \ E′′, LS(D) contains 2
additional patterns: {AE = xr, Ai(k+1)

= x1} and {AE =
xr, Ai(k+1)

= x2}. Namely

|LS(D)| = |LS′(D)|+ 2 · |E′ \ E′′|+ 4 · k =

2 · |E′′|+ 4 ·
k−1∑
i=1

i+ 2 · |E′ \ E′′|+ 4 · k =

2 · |E′|+ 4 ·
k∑

i=1

i

Proof A.10: (Proposition A.4) Given an input for the vertex cover
problem, a graph G = (V,E) and k, let D be the database resulting
from the reduction and P the set of patterns. Assume that there exists
a vertex cover of size k in G, V ′ = {vi1 , . . . , vi1} ⊆ V . Let S =
{AE , Ai1 , . . . , Aik} ⊆ A a subset of attributes. Since V ′ is a set
cover, for every edge {x, y} ∈ E either x ∈ V ′ or y ∈ V ′. Thus,
from Corollary A.7 the error of Err(LS(D),P) is 0. Moreover, from
Lemma A.8, the size of LS(D) is 2 · |E|+ 4 ·∑k−1

i=1 i.
Assume that there exists a subset of attributes

S = {AE , Ai1 , . . . , Aim} such that |LS(D)| ≤ 2 · |E|+4 ·∑k−1
i=1 i

and Err(LS(D),P) = 0. From Corollary A.7, AE ∈ S. Let V ′ =
{vi1 , . . . , vim} ⊆ V . We show that V ′ is a vertex cover of size
at most k. From Corollary A.7 V ′ is a vertex cover. Assume by
contradiction that m > k, then from Lemma A.8 the size of LS(D)
is 2 · |E|+4 ·∑m−1

i=1 > 2 · |E|+4 ·∑k−1
i=1 . Therefore V ′ is a vertex

cover and |V ′| ≤ k.
The proof of Theorem 2.17 follows immediately from Proposition

A.4 and Theorem A.2.

B. Proof of Proposition 3.2

Proof A.11: Let D be a database with attributes A, S1 ⊆ S2 ⊆ A
two attribute sets, li = LSi(D) the labels of D using Si for i = 1, 2
respectively and p a pattern such that Attr(p) 6⊆ S2. Denoting p′ =
p|Attr(p)∩S2

, the pattern resulting when restricting p to include only
the attributes appearing in S2, the estimate of p′ using l1 is

Est(p′, l1) =

cD(p′|S1) ·
∏

Ai∈Attr(p′)\S1

cD({Ai = p′.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})

and the estimate of p using l2 is

Est(p, l2) =

cD(p|S2) ·
∏

Ai∈Attr(p)\S2

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})

Without loss of generality, assume that Est(p′, l1) < cD(p′), namely,
the estimate of p′ using l1 is an under estimation. Lets further
assume that the estimate of p using l2 is an under estimation, thus
Est(p, l2) < cD(p). Note that p′|S1 = p|S1 and p′|S2 = p|S2 , thus
cD(p′|S1) = cD(p|S1) and cD(p′|S2) = cD(p|S2). Moreover, since
Attr(p′) ⊆ S2, p′|S2 = p′ and cD(p′) = cD(p′|S2) We have that

Est(p, l1) =

cD(p|S1)
∏

Ai∈Attr(p)\S1

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})
=

cD(p′|S1)
∏

Ai∈S2\S1

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})
·

∏
Ai∈Attr(p)\S2

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})
=

Est(p′, l1) ·
∏

Ai∈Attr(p)\S2

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})
<

cD(p′)
∏

Ai∈Attr(p)\S2

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})
=

cD(p|S2)
∏

Ai∈Attr(p)\S2

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})
=

Est(p, l2)

Since Est(p, l2) < cD(p) and Est(p, l1) < Est(p, l2) we get
Err(l1, p) > Err(l2, p).
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