
CIAO: An Optimization Framework for
Client-Assisted Data Loading

Cong Ding§

Peking University
congding@pku.edu.cn

Dixin Tang, Xi Liang, Aaron J. Elmore, Sanjay Krishnan
The University of Chicago

{totemtang@, xiliang@, aelmore@cs., skr@}uchicago.edu

Abstract—Data loading has been one of the most common per-
formance bottlenecks for many big data applications, especially
when they are running on inefficient human-readable formats,
such as JSON or CSV. Parsing, validating, integrity checking,
and data structure maintenance are all computationally expensive
steps in loading these formats. Regardless of these costs, many
records may be filtered later during query evaluation due to
highly selective predicates – resulting in wasted computation.
Meanwhile, computing power of client ends are typically not
exploited. Here, we explore investing limited cycles of clients
on prefiltering to accelerate data loading and enable data
skipping for query execution. In this paper, we present CIAO,
a tunable system to enable client cooperation with the server
to enable efficient partial loading and data skipping for a given
workload. We proposed an efficient algorithm which would select
near-optimal predicate set to push down within given budget.
Moreover, CIAO will address the trade-off between client cost
and server savings by setting different budgets for different
clients. We implemented CIAO and evaluated its performance
on three real-world datasets. Our experimental results show that
the system substantially accelerates data loading by up to 21x
and query execution by up to 23x and improves end-to-end
performance by up to 19x within a budget of 1.0 microseconds
latency per record on clients.

I. INTRODUCTION

Databases often centralize data collected from multiple,
distributed client systems. For example, a single log server
in a data center may collect syslog events from all other
servers [1]. Or, a time-series database may collect environment
sensor readings from sensors placed around a building [2]. As
such deployments scale up, data loading (i.e., parsing, validat-
ing, and storing the client data) becomes an under-appreciated
bottleneck on the database server due to the computation
intensive tasks of parsing input formats, converting types, and
validating input [3], [4]. This bottleneck delays the results of
downstream analytics queries, and can increase the latency
of any decision-making system that consumes those results.
Database systems eagerly ingest and load data, as there is no
mechanism for the system to determine if the data will be
relevant and needed for likely future queries.

Prior research literature describes three main approaches
to relieve pressure on the database: client-side parsing [5],
raw-format query processing [6], [7], and hardware accelera-
tion [4], [8]–[11]. In client-side parsing, we leverage excess
processing capacity on the client devices to parse and serialize

§Work done at ChiData group of the University of Chicago.

the data before ingestion on the central server. Client-side
parsing reduces the data loading burden on the server and
the network transfer between the server and the client. The
main disadvantage of the client-side parsing is that it requires
relatively capable and powerful client devices to implement—
if the clients are too under-powered it can actually hurt the
overall per-record loading latency. An alternative is to simply
avoid data loading on the server when possible, and directly
process queries over the raw-format data. While this approach
avoids assumptions about the client and relieves the data load-
ing bottleneck, it often results in suboptimal downstream query
processing. Structured formats, like columnar storage, may
have an upfront loading cost but greatly improve downstream
query latency especially in comparison with a row-oriented
raw data format. Regardless, raw processing still requires
expensive ingestion when a record or attribute is required for
a query’s predicate evaluation.

Clearly, there is a careful balancing act between client-
side processing, data loading costs, and downstream query
processing. However, to an administrator, the only metric that
matters is the per-record processing time: the time from when
an event happens to when it is reflected in the query result.
The various factors combine in complex, deployment-specific
ways to result in a final per-record processing time. Today’s
approaches pick one point in this complex design space. As
such, they don’t give the user enough flexibility to reason
about the trade-offs in a variety of hardware settings. Client-
side parsing may lead to overall worse performance when the
clients are under-powered, and raw-format query processing
may lead to worse performance if there are repeated aggregate
queries over the same data.

This paper presents CIAO, an optimization framework that
can determine what processing to do on a client given a
computation budget to maximally benefit downstream query
processing. CIAO identifies a set of predicates that can be
applied directly by the client using simple string pattern match-
ing, and selects the set of predicates for a client to evaluate
using a client’s slackness via a specified time limit. Clients
evaluate these predicates and include lightweight bitvectors to
indicate what records satisfy what predicates. The server then
selectively loads records that satisfy at least one predicate,
and sets aside the other raw data to be loaded when needed
(e.g. just-in-time loading). For records that are loaded into
the internal format. CIAO retains the bitvectors to use for

1

ar
X

iv
:2

10
2.

11
79

3v
1

 [
cs

.D
B

]
 2

3
Fe

b
20

21

data-skipping [12]. CIAO is developed as part of a project
on resource-efficient database systems, CrocodileDB [13], to
explore how to improve resource utilization in the data loading
process.

The key architectural insight is a marriage between raw-
format query processing and client-side parsing: the client
devices directly manipulate the raw data without fully parsing
it. We leverage techniques similar to Sparser [6] and UDP [4]
to directly apply popular filters to raw data records. However,
instead of evaluating predicates on the raw JSON data at
the server, which requires complex changes to the execution
engine, we use simple filtering on client-side that respects a
computation budget. These filters give us annotations that can
be used for “partial data loading” on the server, where only the
most relevant data is eagerly loaded. The filters also facilitate
data skipping when the database is queried.

The core optimization problem in CIAO is to select a subset
of predicates to be pushed down with respect to a computation
budget on the client side. We prove that this is a submodular
problem, that is, it has diminishing marginal returns. We lever-
age algorithms from the submodular optimization literature
to appropriately select what computation to do on the client
with optimality guarantees. Experimentally, we show a trade-
off between the client’s budget and the downstream server
loading and query processing savings. We implemented this
system using popular data systems components and formats
(e.g., JSON, Parquet, and Spark) and evaluated its performance
on three real-world datasets. Our experimental results show
that the system substantially accelerates data loading by up to
23x and query execution by up to 21x and improves end-to-
end performance by up to 19x.

The rest of the paper is organized as follows. We start in
Section II with a discussion of related work to position our
contributions against prior work. In Section III we overview
CIAO and provide our assumptions. We discuss how client-
side predicate evaluation works in Section IV and our predicate
selection method in Section V. In Section VI we outline
how the server-side uses the prefiltering information for lazy
data loading and data skipping. We evaluate our system in
Section VII and conclude in Section VIII.

II. RELATED WORK

We now discuss the related research projects on fast data
parsing and ingestion, in-situ query processing with lazy data
loading, and offloading work to the data clients (e.g. edge
sensors). We note that none of these projects considers pushing
predicates to the clients to reduce the data loading cost and
accelerate query processing.

A. Fast data parsing and ingestion

Our prior study [13] and others [3] show that data loading
is a time-consuming process, especially for text-based data
formats (e.g. JSON or CSV). Many research projects consider
accelerating the data loading process by exploiting the modern
hardware. Instant loading [11] leverages SIMD instructions to
accelerate parsing CSV files and interleaves the index creation

with parsing data to make data quickly available. Several other
projects [8]–[10] exploit SIMD to quickly parse JSON files
or general text-based data formats in a distributed setting.
UDP [4] builds a programmable accelerator and offloads the
data loading process to the hardware accelerator.

CIAO is different from these projects in that none of them
considers leveraging the computing power of the clients to
accelerate the data loading process. In addition, they do not
consider partial loading to make data quickly available for
queries.

B. Lazy data loading and in-situ query processing

Many projects consider not loading the data upfront, but
directly queries data in its raw format (e.g. CSV or JSON) and
gradually loads data while processing queries. NoDB, and later
RawDB, [7], [14] executes queries over CSV files directly and
builds light-weight indices to accelerate future queries [15].
Later work explored parallel in-situ query execution over
scientific formats [16]. Invisible loading [17] piggybacks the
data loading process with MapReduce [18] jobs that analyze
the raw data. Invisible loading leverages MapReduce jobs’
parsing and tuple extraction operations to incrementally load
tuples into a database system. Database cracking [19] builds
indices incrementally when the underlying data is queried.
A similar idea is also adopted in FishStore [20] that uses
SIMD to support in-situ query processing on text-based data
and incrementally constructs an index for the raw data. Data
skipping projects [12], [21] consider building coarse-grained
index to skip irrelevant data. Specifically, for each data block
(e.g. a partition of data with dozens or hundreds of MBs data
size), they include some metadata that specifies constraints or
predicates a data block meets (e.g. data tuples in a data block
meet the constraint of age ≤ 20). This meta-information is
used to skip data and accelerate query processing.

The difference between CIAO and these projects is that
CIAO considers leveraging the computing capacity of the data
clients to build light-weight index to enable partial loading and
accelerate query processing.

C. Computation offloading

Some prior projects in edge computing [22], [23] consider
offloading computation work to the client-side, but do not
apply this idea to data loading. Shared loading [5] offloads
the data compression phase of the data loading to the client
machines. CIAO is different from the idea that we offload
the predicates to the clients and provide a cost-based knob to
adjust the additional computation cost utilized on the client-
side.

III. OVERVIEW AND ASSUMPTIONS

We now give an overview of CIAO and show how it
leverages the data clients’ computing power to accelerate
data loading and query processing. Specifically, CIAO pushes
predicates of prospective queries to the data clients (e.g. edge
sensors). Based on a computation budget clients will evaluate
simple predicates on the data before sending them to the server

2

Prospective QueriesClients

Predicates

Bit
vectors

JSON

Client-assisted Data Loader

Parquet
format

JSON format

Partially loaded dataBit vectors

0
1
0
0
1

Step 1
Predicate Pushdown

Step 2
Partial data loading

Step 3
Data skipping for
query processing

Prospective Queries

Predicates

0
0
1
0
1

Bit vectors

Data tuples

Filtered data tuples

Edge sensors

Query Execution
Engine

Server

1
0
1

0
1
1

Fig. 1. An overview of client-assisted data loading

and generate bit-vectors that indicate whether a tuple is valid
for a predicate. The bit-vectors are sent along with the raw data
to the server. After, CIAO utilizes the bit-vectors to selectively
load the raw data format (e.g. JSON) from the clients into
a binary data format that is more amenable to query (e.g.
Parquet). Finally, when processing a query, the bit-vectors are
used to skip irrelevant tuples that do not belong to the query.

Fig. 1 shows an overview of the three steps of client-assisted
data loading. The first step is predicate pushdown.
Choosing the predicates to push down systematically considers
two factors: how many new tuples a predicate can filter out
for the prospective queries (i.e. the new tuple is marked as
not valid for a predicate) and the increased cost of evaluating
this predicate on the client-side. Therefore, this step takes the
following information as the input to decide the predicates
to be pushed down: 1) the frequencies of queries that are
expected to be executed; 2) the selectivity of each predicate in
the prospective queries; 3) the cost of evaluating a predicate
on the client-side; and 4) a computation budget that we allow
on the client-side to evaluate the predicates we choose to
push down. Here the computation budget is specified by the
database administrator and is defined as the average amount
of computation cost of evaluating predicates for each new
tuple. We estimate the frequencies of prospective queries and
selectivities of predicates based on historical statistics. We
develop a cost model to estimate the cost of evaluating a
predicate, which is shown in Sec. V-D.

Given this information, we use a greedy algorithm to decide
the predicates to be pushed down to the client-side with respect
to the computation budget. This algorithm is optimized to
select the predicates that filter out the most tuples for each
unit of increased computation cost on the client-side, which
is discussed in Sec. V. In this paper, we assume that the data
clients generate JSON objects and use string operations (e.g.
check whether a JSON object contains a substring) to evaluate
the predicates. Sec. V-A discusses the predicates we support.
We further assume that data clients send JSON objects in
chunks (e.g. 1k objects for each chunk). Each JSON chunk
is associated with a set of bit-vectors, where each bit-vector
corresponds to a predicate. As shown in Step 2 of Fig. 1, a

bit 0 means the tuple is invalid to a predicate; otherwise, the
bit is 1.

When CIAO receives the JSON chunks from the clients,
we selectively load the parts of the JSON objects (i.e. data
tuples) into Parquet files, which is shown as Step 2 in Fig. 1.
Specifically, we choose to load a JSON object if it is at least
valid to one predicate, that is, the JSON object’s bit is marked
as valid for at least one bit-vector. The rationale here is that
we load the data that is likely to be accessed by prospective
queries. Therefore, a JSON chunk is split into two parts: one
is loaded into the Parquet format that is available for querying
and the other is left in a raw JSON format, which requires later
parsing and conversion to analyze the unprocessed records.
The parquet file is also associated with a set of new bit-
vectors that are derived from the bit-vectors of the original
JSON chunk and represent whether a tuple is valid for each
predicate. During query processing, we leverage these bit-
vectors to accelerate query processing (i.e. Step 3 in Fig. 1).
We discuss Step 2 and 3 in Sec. VI.

IV. CLIENT-SIDE PREDICATE EVALUATION

A core contribution of our framework is to evaluate query
predicates on client-devices without full parsing. We argue
that this design decision achieves the best of both worlds: it
reduces data loading costs on the server, while not shifting the
parsing burden to the clients.

A. Raw-data format

Data acquired from client systems are often generated in a
string-based raw-data format. Such formats, like delimited files
and JSON (JavaScript Object Notation), are highly portable
across architectures and programming languages. Being strings
such data are also easy to profile and debug. These formats
are also highly general as they can represent many different
data types and both flat and nested structures. However, this
generality means that the downstream parser has to expend
additional computation for parsing and validation to support
features the user may not use (e.g., like parsing escape
characters).

Thus, a natural question studied in a number of recent works
is whether it is possible to avoid full parsing for specific types

3

of queries [6], [7], [17]. Any given predicate may not require
a full, structured representation of the raw data. Our twist on
this problem is to consider a client-server extension to this
basic idea of raw-format query processing to facilitate both
data-skipping on the server and partial data loading to avoid
loading irrelevant data.

For simplicity, we assume that the client-side generates data
tuples in the JSON format. We note our solution can also be
applied to other text-based data formats, like CSV. JSON is
a common data exchanging format and a JSON file is stored
as human-readable text. Each JSON file is composed of a set
of JSON objects, where each object is defined as a set of
key-value pairs: Object={String: Value, String:
Value, · · ·, String: Value}. A JSON value could
be a string, number, null, a boolean value (i.e. true/false),
a recursive JSON object, or an array. An array is defined
as Array=[Value, · · ·, Value]. One JSON example
could be {‘‘name’’:‘‘Bob’’, ‘‘age’’:22}, where
we have two keys ‘‘name’’ and ‘‘age’’, with two values
‘‘Bod’’ and 22 respectively.

B. String-based predicate evaluation

Since JSON objects are represented as strings, a limited
number of SQL predicates can be evaluated as string search
operations. Our client-side framework converts supported
SQL predicates into string-based pattern expressions that can
quickly identify satisfying JSON objects. We currently sup-
port the following types of predicates and the corresponding
examples are shown in Table I
• Exact or Substring Match The first two examples

in Table I show the exact match and substring match
respectively. For the exact match, the pattern string is the
operand string (e.g. ‘‘Bob’’) that compares against the
value of a key. For the substring match, the pattern string
is the substring we need to find (e.g. ‘‘delicious’’).

• Key-presence match For key-presence match, the pattern
string is the key string (e.g. the ‘‘email’’ of the third
row in Table I).

• Key-value match For key-value match, we have two
pattern strings: the key string and the value string. The
client first searches for the key string and if the key string
exists, the client will continue from the current string
position to search for the next key-value delimiter (i.e. a
comma ‘‘,’’). Between the key string and delimiter,
the client will check whether the value string exists.

Client-side filtering is a sort of converse to data-
prefetching—as it is a bet that the server can make to hide
latency from the end-user. And, similar to pre-fetching, we
engineer client-side filtering to allow for false-positive cases,
that is, a JSON object that is actually not valid for a predicate
can be marked as valid.

Consider the example of exact match in Table I. The pattern
string ‘‘Bob’’ can exist in the key-value pair that does not
include ‘‘name’’ as the key. Therefore, when a query scans
the filtered tuples based on the bit-vectors, it needs to evaluate
all predicates in this query to verify that a tuple is actually

TABLE I
EXAMPLES FOR SUPPORTED PREDICATES AND PATTERN STRINGS

Supported Predicates Example Pattern String

Exact String Match name = “Bob” “Bob”
Substring Match text LIKE “%delicious%” “delicious”

Key-Presence Match email != NULL “email”
Key-Value Match age = 10 “age” “10”

valid to this query. However, false-negative cases will never
happen in our predicate evaluation, that is, if we cannot find
the pattern strings in a JSON object, this JSON object is not
valid to the corresponding predicate.

False-negative cases are not allowed in the predicate eval-
uation because they discard the JSON objects that should
have been incorporated into query results. Therefore, range-
based predicates or inequality predicates are not supported.
In addition, if there are different data representations for the
same number (2.4 vs. 24e-1), we do not support the number
equality because it will result in false negative cases. These
limitations also exist in other systems that evaluate predicates
on Raw JSON objects (e.g. Sparser [6]).

We implement the client-side framework in C++. We use
the string::find method of C++ STL for substring matching.

V. PREDICATE SELECTION OPTIMIZATION

Each predicate evaluated on the client incurs a cost. Since
client-devices are often under-powered compared to the server,
these costs can be significant. In this section, we describe
an optimization algorithm for selecting which predicates to
push down to clients. We can formulate this problem as a
submodular maximization problem. Such problems are, not
surprisingly, the class of problems with diminishing marginal
returns, and are relevant because each additional predicate that
is pushed down has diminishing returns due to overlaps. Such
ideas have been leveraged in data management optimization
problems in a number of prior works [24], [25].

We first set up the optimization problem in Sec. V-A
and then show the key property submodularity for this
problem in Sec. V-B. After, based on the submodularity, we
use an approximation algorithm in Sec. V-C to solve this
optimization problem. Finally, we discuss estimating the cost
of evaluating predicates on the client-side in Sec. V-D.

A. Problem setup and cost model

Consider a workload of m queries Q = {q1, q2, · · · , qm},
where each query has a predicate that is a conjunction of
disjunctive clauses. For example, qi has the two conjunctive
clauses: qi: name in (‘‘Bob’’, ‘‘John’’) and
age = 20. Here, name in (‘‘Bob’’, ‘‘John’’)
is a disjunction (i.e. name = ‘‘Bob’’ or name =
‘‘John’’). When we choose the predicates to push down,
we consider each conjunctive clause as an atomic unit
(each clause is hereafter referred to as a “predicate”). For
example, simply pushing down name = ‘‘Bob’’ cannot

4

Algorithm 1 Naive greedy algorithm
Input: The set of conjunctive predicates P for all queries
Output: Selected predicate set S

1: Let S ← ∅.
2: while ∃p ∈ P \ S : cost(p) +

∑
pi∈S cost(pi) ≤ B do

3: let S ← S ∪

{
arg max
p∈P\S

f(S ∪ {p})

}
.

4: end while
5: Return S.

discard tuples for the predicate name in (‘‘Bob’’,
‘‘John’’).

Thus, for every query in the workload we have a set of
candidate predicates to pushdown: for qi the set of clauses
(predicates) Pi = {p1, p2, · · · , pni

} that can be evaluated on
the client. If a conjunctive predicate includes a disjunctive
clause that we cannot support on the client, we do not consider
it as a candidate to push down.

We further define some valuable notation that will help us
formalize the optimization problem. Let the selectivity of a
predicate p be denoted as sel(p) and the cost of evaluating p
for a JSON object as cost(p). Let freq(q) denote an estimate
of the relative frequency that q is evaluated. We further assume
that the computation budget on the client-side is fixed cost B,
where B represents the average units of computation cost of
evaluating predicates for each new tuple.

Let S be the set of predicates that we chose to evaluate on
the client. For each query qi, let Si = (Pi∩S) be the set of the
query’s conjunctive clauses that have been pushed down. We
can evaluate the probability of filtering a JSON object given
the selected predicate set S is using a statistical independence
assumption and the selectivity of each predicate:

f(qi, S) = 1−
∏

pj∈(Si)

sel(pj)

The optimization goal here is to maximize the expected benefit
of predicate pushdown for all queries in Q:

f(S) =
∑
q∈Q

f(q, S) · freq(q).

We want to optimize this quantity while ensuring that∑
pi∈S cost(pi) ≤ B. In our experiments and the rest of

the text, we present results with a uniform query frequency
(though not necessarily a uniform predicate frequency). For-
mally, the optimization problem is defined as:

maximize f(S)

subject to
∑
pi∈S

cost(pi) ≤ B

B. Submodularity

We now show that f(S) is a submodular set function
and based on the submodularity we use an approximation
algorithm to solve the optimization problem (in Sec. V-C).
By definition, f(·) is a submodular set function if for any two

Algorithm 2 Greedy algorithm based on benefit-cost ratio
Input: The set of conjunctive predicates P for all queries
Output: Selected predicate set S

1: Let S ← ∅.
2: while ∃p ∈ P \ S : cost(p) +

∑
pi∈S cost(pi) ≤ B do

3: S ← S ∪

{
arg max
p∈P\S

f(S∪{p})−f(S)
cost(p)

}
.

4: end while
5: Return S.

predicate sets S and T , f(S) + f(T) ≥ f(S ∩T) + f(S ∪T).
Recall that f(S) =

∑m
i=1[1 −

∏
pj∈Si

sel(pj)]. Therefore, if
f(qi, S) = 1 −

∏
pj∈Si

sel(pj) is a submodular function for
any query qi, then f(S) is also a submodular function. For
simplicity, we let g(S) = f(qi, S)

Given a query qi, we now show that g(S) + g(T)− g(S ∩
T) − g(S ∪ T) ≥ 0. Assuming that g(S) = 1 − h(S), where
h(S) =

∏
pj∈(Pi∩S) sel(pj), we have

g(S)+g(T)− g(S ∩ T)− g(S ∪ T)

= h(S ∩ T) + h(S ∪ T)− h(S)− h(T)

= h(S ∩ T)× [1 +
h(S ∪ T)

h(S ∩ T)
− h(S)

h(S ∩ T)
− h(T)

h(S ∩ T)
]

= h(S ∩ T)× [1 + h(S′)× h(T ′)− h(S′)− h(T ′)]

= h(S ∩ T)× [1− h(S′)]× [1− h(T ′)]

where S′ = S \ (S ∩ T) and T ′ = T \ (S ∩ T). Since h(S)
is the product of the selectivities of the predicates in S for
qi,

h(S)
h(S∩T) essentially removes the predicates in S ∩ T for S.

Therefore h(S)
h(S∩T) = h(S′). Similarly, h(T)

h(S∩T) = h(T ′) and
h(S∪T)
h(S∩T) = h(S′) × h(T ′). Since the value of h(·) is in the
range [0, 1], the above equation is no smaller than 0, which
means that g(S) is a submodular function and so is f(S).

C. Approximation algorithm

As the previous work [26] shows, this is a submodu-
lar maximization problem with a knapsack constraint (i.e.∑

pi∈S cost(pi) ≤ B). One naive greedy algorithm is to
repeatedly add one predicate to a selected predicate set and
at each step choose the predicate that mostly increases the
optimization goal f(S), which is shown in Algorithm 1. It first
checks whether there exists one unselected predicate p which
does not break the budget constraint if p is added to the current
selected predicate set S. Then, the algorithm selects the predi-
cate that yields the highest benefit, that is, arg max

p∈P\S
f(S∪{p}).

However, this algorithm can perform arbitrarily badly since it
does not consider the cost of evaluating a predicate when it
chooses the predicates [26]. A variant algorithm is to choose
the predicate that yields the highest benefit-cost ratio, that
is, for a predicate p it computes the benefit-cost ratio as
f(S∪{p})−f(S)

cost(p) , which is shown in Algorithm 2. The prior
work [26] shows that this solution can also perform arbitrary
badly with respect to the optimal solution.

5

Fortunately, the better solution of the two algorithms has
a bounded error with respect to the optimal solution. Specif-
ically, we run the two algorithms separately and choose the
one with the higher f(S). One prior study [27] proves that this
solution is no smaller than 1

2 (1 − 1
e)OPT ≈ 0.316 × OPT

where e is the mathematical constant and OPT is the f(S)
of the optimal solution.

D. Cost model for predicate evaluation

We now discuss how to estimate the cost of evaluating a
predicate on the client-side. For a disjunction of predicates
(e.g. name = ‘‘Bob’’ or age = 10), its cost is the
summation of the cost of evaluating each simple predicate.
Therefore, our following discussion is focused on estimating
the cost of evaluating a simple predicate. We find that the
substring match operation is the basic operation that imple-
ments the evaluation of all predicates that we support. We
now discuss the cost estimation of the substring match cost.

We perform some experiments to understand the key factors
that influence the cost of a substring search. We find that the
time cost is proportional to pattern string length and the length
of a JSON object. We also observe that the cost for the case
that a pattern string is found in a JSON object is different
from the otherwise case. Therefore, we model the two cases
differently.

We collect information such as the average JSON object
length of a dataset from historical statistics. The expected cost
of evaluating a predicate p on one JSON object is modeled
as:

T =sel(p)× [k1 × len(p) + k2 × len(t)]

+ [1− sel(p)]× [k3 × len(p) + k4 × len(t)] + c

where sel(p) denotes the selectivity of predicate p, len(p) rep-
resents the pattern string length, len(t) indicates the average
JSON object length. The first term in the equation models the
cost when a pattern string is found in a JSON object and the
second term corresponds to the cost when a JSON object does
not have a match of the pattern string. The third term c is the
startup cost for each substring search. The constants k1, k2,
k3, k4 and c are dependent on the hardware configuration and
are estimated from historical statistics. We evaluate this cost
model in Sec. VII-F.

VI. PARTIAL DATA LOADING AND DATA SKIPPING

After we select a subset of predicates, we associate each
predicate with an id and generate its pattern strings. We
use a predicate hashmap to store this information. It
uses the predicate as the key and the predicate id and its
pattern strings as the value. Fig. 2 shows an example of the
predicate mapping. The predicate name = ‘‘Bob’’ has an
id 1 and the pattern string ‘‘Bob’’. CIAO pushes down the
pattern strings along with the predicate ids to the clients. After,
the clients will use substring (e.g., simple pattern matching)
operations to evaluate predicates on each JSON object and
generate bit-vectors that can be used by the server to partially
load data and skip irrelevant tuples for query processing. In

Partially loaded data

0
1

0
1

Predicate Hashmap

key: name = “Bob”

Predicate id: 1

Pattern string: “Bob”

Clients

0
1
2

“12”
“Bob”
“Alice”

Bit
vectors

0 1 2
0
0
1

0
0
1

0
1
0

id

TupleB
TupleC

Parquet

JSON Format

1
0

0 1 2

Predicate pushdown

Data skipping

TupleA

TupleB

TupleC

JSON

TupleA

Predicate
name = “Bob”

TupleC

0
1

TupleB
TupleC

Parquet 1

1. Identify the right vector
2. Skip the tuples with bits set to 0

Fig. 2. An example of the workflow of CIAO

the following discussion, we use the example in Fig. 2 to
explain partial data loading and data skipping in Sec. VI-A
and Sec. VI-B respectively. After, we discuss how the query
workload impacts the performance of CIAO. We use the
example in Fig. 2 to explain the workflow of CIAO.

A. Partial data loading

The data clients send JSON chunks to the server. Each JSON
chunk includes the JSON objects (i.e. data tuples) and a set of
bit-vectors, where each bit-vector corresponds to a predicate.
Fig. 2 shows the bit-vectors sent from the clients and these bit-
vectors can be indexed by the predicate ids. For each JSON
chunk, the server loads parts of the JSON objects into Parquet,
a data format that is faster for queries to access, and leaves
the rest of the JSON objects unloaded. The intuition of partial
data loading is that data loading is a time-consuming process
as shown in prior work [3] and we choose to not load the
data that is unlikely to be accessed by prospectively queries.
Specifically, for each JSON object, if its associated bits of
all predicates are 0 (i.e. not valid for all predicates pushed
down), this JSON object is unlikely to be accessed and is not
loaded into Parquet format. Otherwise, the tuple is loaded into
a Parquet file. For example, Fig. 2 shows that TupleB and
TupleC are converted into Parquet format, but TupleA is
left as JSON format. When we load a JSON object into a
Parquet file, we store the bit-vector information of this object
into the metadata of each data block of the Parquet file. The
bit-vectors are then used for data skipping when processing
new queries.

B. Data skipping

When a query is submitted to the database and scans the
data tuples from CIAO, CIAO first extracts the conjunctive
predicates from the query and compares them to the predicates
we have pushed down. If we find the query includes predicates
that we have pushed down, we only need to scan the Parquet
file because the unprocessed JSON files do not include any
tuples that are valid to the predicates we have pushed down.
When we scan data blocks of the Parquet file, we extract the
bit-vectors that belong to the predicates included in the query,
take the intersected bit-vector of them (i.e. using AND due to

6

the conjunctive predicates), and use the bit-vector to skip data
tuples. For each tuple from a data block, if the corresponding
bit of the intersected bit-vector is 0 (i.e. not valid for at least
one conjunctive predicate), we discard it. Otherwise, we output
it to the query process engine. For example, Fig. 2 shows
a query with a predicate name = ‘‘Bob’’. We find its
predicate id in the predicate hashmap (i.e. id = 1) and filter out
the tuples whose corresponding bits are set to 0 (i.e. discarding
TupleA and TupleB). When the query does not include a
predicate that we have pushed down, CIAO scans both Parquet
and JSON files to return all data tuples.

C. Performance impact of a query workload

We find the performance of CIAO depends on the following
factors of a query workload. We break down the performance
impact of these factors in the micro benchmark experiments
in Sec. VII-E.

Predicate overlap Predicate overlap is one significant factor
that impacts system performance. If a large number of pred-
icates are shared by many queries, pushing them down will
be beneficial for many queries. On the other hand, however,
if there is no predicate overlap across queries (i.e. all queries
have a distinct set of predicates), the bit-vector generated for
one predicate is only useful for skipping tuples for one query.
In addition, partial loading likely loads more data in this case.
To achieve the same query performance (e.g. query latency),
we need to set a higher budget for the query workload that
has smaller predicate overlap.

Predicate selectivity The predicate selectivity also impacts
the number of tuples we need to load and the effectiveness
of data skipping. A highly selective predicate (i.e. with low
selectivity) filters more tuples and thus is more effective for
skipping irrelevant data. In addition, the union of selectivities
of all predicates we have pushed down decides the number of
tuples we need to load. If we have a predicate has a lower
selectivity, we are likely to load less data.

Predicate skewness Predicate skewness represents the skew-
ness of the probability of one predicate appearing in one query.
If there are a small number of predicates that exist in many
queries, pushing these predicates down is enough to cover all
queries (i.e. a query includes at least one of the predicates
that are pushed down). Therefore, a skewer distribution of the
predicates across prospective queries is more beneficial for
partial data loading and data skipping, and consumes a smaller
computation cost on the client-side. However, if predicates are
uniformly distributed, we need to push down a larger number
of predicates to achieve a similar performance compared to
the skew distribution.

VII. EXPERIMENT RESULTS

We evaluate CIAO on three axes:
• How effective is CIAO in reducing the data loading

time and query execution time with varied computation
budgets for different workloads (in Sec. VII-D)?

• How does the predicate overlap, selectivity, and skewness
impact the performance of CIAO (in Sec. VII-E)?

• How robust is our cost model across different hardware
configurations (in Sec. VII-F)?

A. Prototype implementation

We implement the predicate selection algorithm in Python 3,
and the components of evaluating predicates on the client-side
and partial data loading in C++. We use the string::find
method of C++ STL for substring matching and choose
rapidJSON [28] as our JSON parser when we partially convert
JSON objects to the parquet file. We build parquet files with
the low-level interfaces provided by the Apache Arrow C++
project [29]. We integrate our data skipping mechanism with
the query execution engine of Apache Spark 2.4 by checking
corresponding bit vectors to decide whether to discard a tuple.

All experiments are conducted in a single-node Linux
machine with a 2-core Intel Core i7-5557U CPU @ 3.10GHz
and 16 GB RAM. To simulate a server-client deployment, we
implement a single-client and server on the same machine.
All communication is simulated through file I/O, and all of
the experiment processes are single-threaded.

B. Datasets

We evaluate CIAO using three JSON datasets.

Yelp Open Dataset: The Yelp open dataset [30] is released
by Yelp Inc., a company that publishes crowd-sourced reviews
about businesses. The dataset is in JSON format and each line
contains one JSON-object. The entire dataset contains 6 files
including 1.3 million tips by 1.9 million users and 1.4 million
business attributes like hours, parking, etc. In our experiment,
we use the 5 GB review.json file which includes 6,1685,900
JSON objects. Each object contains the full review text data
as well as the userId, the businessId, the date of review, and
values of 4 other metrics a reviewer can use to evaluate a
business.

Windows System Log: The Windows System Log dataset [1]
is collected on a Windows 7 machine. The text file contains
114 millions of rows. Each row contains the date and time of
the log, the level of the log, the Windows service that generates
the log as well as the log message. The uncompressed file is
27G and spans 226 days.

Yahoo Cloud Serving Benchmark: The Yahoo Cloud Serving
Benchmark (YCSB) [31] is a framework that can be used to
evaluate different key-value and cloud services. It comprises
two main components: the core workloads and a workload
generator. In our experiment, we used an open-source JSON
data generator fakeit [32] to generate a JSON dataset of
customers which include 25 attributes, such as name, children,
address, phone, email, visited places, etc. We generate a 20
GB JSON file with 14.4 million objects for the experiments.

C. Synthetic query workloads

We generate the query workloads for different datasets
using a single query template: SELECT COUNT(*) FROM

7

TABLE II
PREDICATE TEMPLATES AND THE NUMBER OF CANDIDATE VALUES FOR

EACH PREDICATE TEMPLATE

Dataset Predicate Template #Candidates

Yelp review

useful = <int> 100
cool = <int> 100

funny = <int> 100
stars = <int> 5

user id = <string> 5
text LIKE <string> 5

date LIKE ”%20[0-1][0-9]%” (year) 14
date LIKE ”%-[0-1][0-9]-%” (month) 12

Windows log

info LIKE <string> 200
time LIKE ”%-[0-1][0-9]-%” (month) 12

time LIKE ”%-[0-3][0-9] %” (day) 31
time LIKE ”%[0-2][0-9]:%” (hour) 24

time LIKE ”%:[0-5][0-9]:%” (minute) 60
time LIKE ”%:[0-5][0-9],%” (second) 60

YCSB

isActive = <boolean> 2
linear score = <int> 100

weighted score = <int> 100
phone country = <string> 3

age group = <string> 4
age by group = <int> 100

url domain LIKE <string> 12
url site LIKE <string> 14
email LIKE <string> 2

TABLE III
WORKLOADS FOR END-TO-END EXPERIMENTS

Workload #Predicates Min/Max
#Predicates

Predicate
Distribution

A 732 1/8 Zipfian(1.5)
B 617 1/7 Zipfian(2)
C 607 1/10 Uniform

<dataset> WHERE <conjunctive predicates>.
We use this query template because it best evaluates the
cost of scanning tuples from the base tables and shows the
performance impact of partial data loading and data skipping.
To generate queries for each dataset, we build a predicate
pool and randomly draw the predicates from the pool to build
each query’s conjunctive predicates. We generate
the predicate pools using predicate templates and change
the candidate values for each predicate template. Table II
shows all predicate templates and the number of candidate
values for each template. For example, the template stars
= <int> for the Yelp dataset in Table II has 5 candidate
values and we have five candidate predicates for this template.
We estimate the selectivity for each predicate by evaluating
them on sampled datasets.

To generate the conjunctive predicates of each query, we
assign each predicate a probability that indicates whether this
predicate is selected from the pool or not. We make sure that
each query includes the same expected number of predicates
and vary the distribution of how likely a predicate is selected.
For example, if the predicate pool size is 100, the expected
number of predicates is 3, and we use a uniform distribution,
each predicate will be selected with the probability 3

100 =

0.03. It is possible to use a skewed distribution, like Zipfian,
to simulate different levels of predicate skewness (i.e. if the
distribution is more skew, a small number of predicates have
higher probabilities of appearing in a query). In the following
experiments, we set the expected number of predicates for each
query to 3 unless otherwise specified and vary the distributions
of selecting the predicates to simulate different workloads.

D. Reducing data loading and query processing time with
varied budgets

In this experiment, we generate three query workloads for
each dataset to test the data loading time and query processing
time of CIAO under varied computation budgets. Each work-
load includes 200 queries and has a different distribution of
the predicate skewness. Table III summarizes the information
about three workloads. The #Predicates column shows the
summation of the number of predicates that are included in
all queries. The column Min/Max #Predicates shows the
minimum and the maximum number of predicates of a query.
The last column shows the distribution of choosing the predi-
cates. Here, workload A is highly skewed with a high predicate
overlap, which represents the ‘easy’ case where CIAO can
leverage predicate overlap and skewness to achieve the most
benefit. On the other end, workload C has a low predicate
overlap and the predicates are uniformly distributed, i.e. not
skewed. Therefore, workload C represents the ‘challenging’
case where CIAO can be less beneficial. Finally, workload
B is a middle ground of workload A and C, that is, it is less
skewed than workload A. Note that we use Numpy to generate
the Zipfian distribution and the smaller skewness parameter
means higher skewness in its implementation (i.e. Table III
shows that skewness parameters are 1.5 and 2 for workload A
and B respectively.)

We first calibrate the cost model as shown in Section VII-F
for the current hardware configuration. The cost model es-
timates the number of µs of evaluating each predicate on
a JSON object. For each dataset, we vary the computation
budget and show how CIAO performs given the same budget
on different workloads. Our baseline in these experiments is
the one with zero budget (i.e. no optimization is applied). The
experiment results are shown in Fig. 3, Fig. 4 and Fig 5 for
the Windows System Log dataset, the Yelp Review dataset and
the YCSB dataset respectively.

We observe the following trends in the experiment results.
We see that the performance of the partial loading (denoted
as Data loading) varies for different workloads. For the
‘easy’ workload A, partial loading is used even if the adminis-
trator uses a very small budget on clients. As expected, highly
overlapped predicates and skewed distribution of predicates is
beneficial for the optimization. For workload B, a small budget
limits the number of predicates that can be pushed down.
In such a case, there may not be an opportunity for partial
loading (i.e. there is no tuple that is invalid for all queries).
As we increase the budget, more predicates are pushed down
and the server can now avoid loading irrelevant JSON objects
by utilizing the bit vectors. For the workload C, the server

8

0 1 3 5 7 9
Budget per record (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(s

)

Workload A

Prefiltering
Data loading
Query

0 1 3 5 7 9
Budget per record (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(s

)

Workload B

Prefiltering
Data loading
Query

0 1 3 5 7 9
Budget per record (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(s

)

Workload C
Prefiltering
Data loading
Query

Fig. 3. End-to-End Experiments of the 3 workloads on the Windows System Log Dataset

0 10 20 30 40 50
Budget per record (s)

0

200

400

600

800

Ti
m

e
(s

)

Workload A

Prefiltering
Data loading
Query

0 10 20 30 40 50
Budget per record (s)

0

200

400

600

800

Ti
m

e
(s

)

Workload B

Prefiltering
Data loading
Query

0 10 20 30 40 50
Budget per record (s)

0

200

400

600

800

Ti
m

e
(s

)

Workload C

Prefiltering
Data loading
Query

Fig. 4. End-to-End Experiments of the 3 workloads on the Yelp Review Dataset

0 25 50 75 100 125
Budget per record (s)

0

500

1000

1500

2000

Ti
m

e
(s

)

Workload A

Prefiltering
Data loading
Query

0 25 50 75 100 125
Budget per record (s)

0

500

1000

1500

2000

Ti
m

e
(s

)

Workload B

Prefiltering
Data loading
Query

0 25 50 75 100 125
Budget per record (s)

0

500

1000

1500

2000

Ti
m

e
(s

)

Workload C

Prefiltering
Data loading
Query

Fig. 5. End-to-End Experiments of the 3 workloads on the YCSB Dataset

does not employ partial data loading due to low predicates
overlapping and low skewness. Among all the workloads for
all datasets, CIAO can accelerate the data loading process by
21x, with the budget of 1 µs.

In addition to partial data loading, our experiments show
the results of the query processing time (denoted as Query).
This is the total time to run the full workload of 200 queries.
We see that as we have a larger computation budget, we can
push down more predicates to the client-side and we can skip
more tuples to reduce the query processing time. Specifically,
CIAO can accelerate query processing by 23x for the budget 1
µs. Finally, we show the total time of evaluating the predicates
on the client-side (denoted as prefiltering). We see that
the prefiltering time is increased as we have a larger budget.

We now further investigate the performance of CIAO on the
‘challenging’ workload using the YCSB dataset (i.e. Workload
C). The aggregated result in the rightmost plot of Fig. 5 does
not suggest a noticeable improvement. However, when we

25 50 75 100 125
Budget per record (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
ta

ge
 o

f q
ue

rie
s

 b
en

ef
iti

ng
 fr

om
 d

at
a

sk
ip

pi
ng

Fig. 6. The percentage of queries that have less query processing time due
to data skipping for the workload C of YCSB dataset.

look at each query individually, we find that the data skipping
technique can reduce the query processing time for several of
the queries. To show this, we report the fraction of queries that
have lower query processing time due to data skipping with

9

0.35 0.15 0.01
Selectivity

0

50

100

150

200

250

300

Lo
ad

in
g

Ti
m

e
(s

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ad

in
g

Ra
tio

Loading time
Loading ratio

Fig. 7. We vary the predicate selectivity and evaluate the data loading time
on the Windows System Log dataset.

q0 q1 q2 q3 q4
0

5

10

15

20

25

30

Qu
er

y
Ti

m
e

(s
)

0.35
0.15
0.01

Fig. 8. We vary the predicate selectivity and evaluate the query execution
time on the Windows System Log dataset.

varied computation budgets. The results are shown in Fig. 6.
We find that there are between 37% and 68% queries that
benefit from the data skipping technique.

E. Performance impact of predicate selectivity, overlap, and
skewness

In our micro-benchmarks, we break down the end-to-end
experiments for a better understanding of how different char-
acteristics of a workload affect the performance of CIAO. For
all the micro-benchmarks, we test the Windows System Log
dataset.

1) Sensitivity to predicate selectivity: In this experiment,
we evaluate how the selectivity of a workload affects the data
loading time and the query execution time. In the Windows
System Log dataset, we generate predicates of different selec-
tivities (0.01, 0.15, 0.35) by using attributes whose frequencies
roughly represent the corresponding selectivity. We then con-
struct 3 workloads, where each workload contains 5 queries
and each query contains 3 conjunctive predicates. The queries
in the high selectivity workload are of high selectivity (0.01)
and vice versa for the medium (0.15) and low selectivity (0.35)
workloads.

We push down 2 predicates to the client for each workload
and make sure partial loading is enabled. The results are shown
in Fig. 7 and Fig. 8 for data loading time and query execution
time respectively. We note that the loading ratio is the
ratio between the number of loaded objects and the number
of all objects in the dataset. We see the loading ratio changes
due to predicate selectivity. This is because highly selective

Low Medium High
Overlap

0

100

200

300

400

500

Lo
ad

in
g

Ti
m

e
(s

)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ad

in
g

Ra
tio

Loading time
Loading ratio

Fig. 9. We vary the predicate overlapping and evaluate the data loading time
on the Windows System Log dataset.

q0 q1 q2 q3 q4
0

5

10

15

20

25

30

35

40

Qu
er

y
Ti

m
e

(s
)

Low
Medium
High

Fig. 10. We vary the predicate overlapping and evaluate the query execution
time on the Windows System Log dataset.

predicates will enable the server to load fewer JSON objects so
the loading ratio will be relatively low, thus reducing loading
time. Fig. 8 shows the query execution time for each query.
We see that as we decrease the selectivity (i.e. from 0.35 to
0.01), more tuples are skipped and the query processing time
is reduced.

2) Sensitivity to predicate overlap: We next study how the
predicate overlap impacts the data loading time and query
processing time. We generate 3 workloads Lol, Mol, and Hol.
Each workload contains 5 queries and each query in workload
Lol, Mol and Hol includes 1, 2 and 4 conjunctive predicates
respectively. The predicates are distributed uniformly for all
workloads and we push down two predicates for each work-
load. In this setting, the workload Lol and Mol have low and
medium predicate overlap respectively, and the workload Hol

has a high predicate overlap.
The results for data loading time are shown in Fig. 9. For the

workload Lol and Mol, the numbers of predicates pushed down
are not large enough to enable partial loading. In practice,
for a workload in which queries almost share no predicates,
the administrator needs to set a large budget so that enough
predicates can be pushed down to cover all the queries. On
the other hand, we can observe a drastic drop in loading time
for workload Hol. This is because queries in the workload
Hol include more conjunctive predicates and the pushed-down
predicates cover all the queries in the workload Hol. Therefore,
the server can employ partial data loading to reduce the data
loading time.

10

0.0 0.5 2.0
Skewness

0

100

200

300

400

500

Lo
ad

in
g

Ti
m

e
(s

)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ad

in
g

Ra
tio

Loading time
Loading ratio

Fig. 11. We vary the predicate skewness and evaluate the data loading time
on the Windows System Log dataset.

q0 q1 q2 q3 q4
0

5

10

15

20

25

30

35

40

Qu
er

y
Ti

m
e

(s
)

0.0
0.5
2.0

Fig. 12. We vary the predicate skewness and evaluate the query execution
time on the Windows System Log dataset.

The results for query processing time are shown in Fig. 10.
We see that even if we need to load all objects for both
workloads Lol and Mol, the workload with a higher predicate
overlap (i.e. Mol) reduces more query processing time. This
is because for Mol there are more queries (i.e. q2 and q3)
that include the pushed-down predicates compared to workload
Lol. The workload Hol represents the best-case scenario in
which we not only significantly reduce the data loading time
due to partial loading, but also reduce the query processing
time via data skipping.

3) Sensitivity to predicate skewness: A highly skewed dis-
tribution of predicates can be beneficial for CIAO because
a small number of conjunctive predicates are included in all
queries. In the most extreme scenario, one predicate that is
pushed down is included in all queries. In this case, the server
can directly skip all tuples that fail to satisfy the predicate.

We can calculate the skewness factor with the following
formula: ∑N

i=1(Xi − X̄)3

(N − 1)σ3

where N is the number of distinct predicates, Xi denotes
number of queries including the predicate i, X̄ denotes the
expected value of Xi, σ indicates the standard deviation of

predicate distribution, i.e., σ =

√∑N
i=1(Xi−X̄)2

N .
To evaluate how skewness impacts the performance of

CIAO, we construct three workloads of 5 queries, where each
query includes 2 predicates. We set the skewness factors for

TABLE IV
WE CALIBRATE THE COST MODEL UNDER THREE DIFFERENT HARDWARE

ENVIRONMENTS AND REPORT R-SQUARED VALUES.

Platform Hardware R-squared

Local Server 2-core Intel Core i7-5557U @ 3.10 GHz
RAM: 16 GB 0.897

Alibaba Cloud 4 vCPU-core Intel Xeon @ 2.5 GHz
RAM: 8 GB 0.666

PKU Weiming 32-core Intel Xeon Gold 6240 @ 2.6 GHz
RAM: 192 GB 0.978

workload Lsk, Msk and Hsk to 0.0, 0.5 and 2.0 respectively
and we only push one predicate down to the client.

The results for data loading time and query processing time
are shown in Fig. 11 and Fig. 12 respectively. For different
skewness levels, the different number of queries include the
predicates that are pushed down:
• for workload Lsk, q0 includes the pushed down predicate;

therefore, q0 is the only query benefiting from data
skipping;

• for workload Msk, q0, q1, and q2 are covered and this
leads to a drop in query processing time for workload
Msk as shown in Fig. 12;

• for workload Hsk, all queries are covered and the server
enables partial loading to reduce the data loading time as
shown in Fig. 11.

F. Robustness of the cost model

In this experiment, we demonstrate the robustness of our
cost model discussed in Sec. V-D using different hardware
configurations. We calibrate the cost model under three dif-
ferent hardware environments as shown in Table IV. We ran-
domly choose 100 predicates respectively from three datasets
and select a sample with a size of 5 GB for each dataset. The
client evaluates the predicates and records the time cost and
selectivity for each predicate. Then we conduct multivariate
linear regression on the results and compute the coefficients
for the specific hardware environment.

We construct the cost model on three different hardware
platforms: an “on-premise” server, Alibaba Cloud ECS (Elastic
Compute Service) and Weiming Teaching Cluster of Peking
University. Specific details of hardware environments are listed
in Table IV.

We use R-squared, a common statistical measure in linear
regression to show how well the data fits the regression model.
R-squared can be calculated as follows:

R2 = 1−
∑

i(ŷi − yi)2∑
i(ŷi − ȳ)2

We see that the results on the local server and PKU Weiming
Cluster fit the model very well, while the cost model on
Alibaba Cloud does not work as good as the other two
configurations. We believe this is largely due to not running
on bare-metal, but instead, an opaque hypervisor that can limit

11

computation cycles or even migrate the virtual machine while
running.

VIII. CONCLUSION

Analytics databases often centralize data collected. Data
loading (i.e., parsing, validating, and storing the client data) is
an under-appreciated bottleneck on a database server. There
are numerous opportunities to offload parts of the loading
process to client devices to reduce the perceived end-to-end
latency in query processing. CIAO evaluates query predicates
on client-devices without fully parsing the data on the clients.
It leverages string pattern-matching primitives to directly query
JSON records on the client devices, and allows for data
skipping and partial data loading. Our experimental results
show that the system substantially accelerates data loading by
up to 21x and query execution by up to 23x and improves
end-to-end performance by up to 19x within a budget of 1.0
microseconds latency per record on clients.

REFERENCES

[1] Loghub, “Windows event log,” https://github.com/logpai/loghub, 2018.
[2] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases

and influxdb,” Studienarbeit, Université Libre de Bruxelles, 2017.
[3] A. Dziedzic, M. Karpathiotakis, I. Alagiannis, R. Appuswamy, and

A. Ailamaki, “Dbms data loading: An analysis on modern hardware,”
in Data Management on New Hardware. Springer, 2016, pp. 95–117.

[4] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien, “Udp: a programmable
accelerator for extract-transform-load workloads and more,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2017, pp. 55–68.

[5] S. Noll, J. Teubner, N. May, and A. Boehm, “Shared load(ing): Efficient
bulk loading into optimized storage,” in CIDR 2020, 10th Conference
on Innovative Data Systems Research, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. www.cidrdb.org, 2020.

[6] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia, “Filter before you
parse: Faster analytics on raw data with sparser,” Proceedings of the
VLDB Endowment, vol. 11, no. 11, pp. 1576–1589, 2018.

[7] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki,
“Nodb: efficient query execution on raw data files,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data, 2012, pp. 241–252.

[8] Y. Li, N. R. Katsipoulakis, B. Chandramouli, J. Goldstein, and
D. Kossmann, “Mison: A fast JSON parser for data analytics,” Proc.
VLDB Endow., vol. 10, no. 10, pp. 1118–1129, 2017. [Online].
Available: http://www.vldb.org/pvldb/vol10/p1118-li.pdf

[9] G. Langdale and D. Lemire, “Parsing gigabytes of JSON per second,”
VLDB J., vol. 28, no. 6, pp. 941–960, 2019. [Online]. Available:
https://doi.org/10.1007/s00778-019-00578-5

[10] C. Ge, Y. Li, E. Eilebrecht, B. Chandramouli, and D. Kossmann,
“Speculative distributed CSV data parsing for big data analytics,” in
Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019. ACM, 2019, pp. 883–899.

[11] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A. Kemper, and
T. Neumann, “Instant loading for main memory databases,” Proc. VLDB
Endow., vol. 6, no. 14, pp. 1702–1713, 2013. [Online]. Available:
http://www.vldb.org/pvldb/vol6/p1702-muehlbauer.pdf

[12] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin, “Fine-grained
partitioning for aggressive data skipping,” in Proceedings of the 2014
ACM SIGMOD international conference on Management of data, 2014,
pp. 1115–1126.

[13] Z. Shang, X. Liang, D. Tang, C. Ding, A. J. Elmore, S. Krishnan, and
M. J. Franklin, “CrocodileDB: Efficient Database Execution through
Intelligent Deferment,” in CIDR 2020, 10th Conference on Innovative
Data Systems Research, Amsterdam, The Netherlands, January 12-15,
2020, Online Proceedings. www.cidrdb.org, 2020. [Online]. Available:
http://cidrdb.org/cidr2020/papers/p14-shang-cidr20.pdf

[14] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, “Adaptive
query processing on raw data,” Proceedings of the VLDB Endowment,
vol. 7, no. 12, pp. 1119–1130, 2014.

[15] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and
A. Ailamaki, “Slalom: Coasting through raw data via adaptive parti-
tioning and indexing,” Proceedings of the VLDB Endowment, vol. 10,
no. 10, pp. 1106–1117, 2017.

[16] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani, “Parallel data
analysis directly on scientific file formats,” in Proceedings of the 2014
ACM SIGMOD international conference on Management of data, 2014,
pp. 385–396.

[17] A. Abouzied, D. J. Abadi, and A. Silberschatz, “Invisible loading:
access-driven data transfer from raw files into database systems,” in Pro-
ceedings of the 16th International Conference on Extending Database
Technology, 2013, pp. 1–10.

[18] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[19] S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,”
in CIDR 2007, Third Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 7-10, 2007, Online
Proceedings. www.cidrdb.org, 2007, pp. 68–78. [Online]. Available:
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf

[20] D. Xie, B. Chandramouli, Y. Li, and D. Kossmann, “Fishstore:
Faster ingestion with subset hashing,” in Proceedings of the
2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019, P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and
T. Kraska, Eds. ACM, 2019, pp. 1711–1728. [Online]. Available:
https://doi.org/10.1145/3299869.3319896

[21] L. Sun, M. J. Franklin, J. Wang, and E. Wu, “Skipping-oriented
partitioning for columnar layouts,” Proc. VLDB Endow., vol. 10, no. 4,
pp. 421–432, 2016. [Online]. Available: http://www.vldb.org/pvldb/
vol10/p421-sun.pdf

[22] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings of the IEEE INFOCOM
2012, Orlando, FL, USA, March 25-30, 2012, A. G. Greenberg and
K. Sohraby, Eds. IEEE, 2012, pp. 945–953. [Online]. Available:
https://doi.org/10.1109/INFCOM.2012.6195845

[23] V. Cozzolino, A. Y. Ding, and J. Ott, “FADES: fine-grained
edge offloading with unikernels,” in Proceedings of the Workshop
on Hot Topics in Container Networking and Networked Systems,
HotConNet@SIGCOMM 2017, Los Angeles, CA, USA, August
25, 2017. ACM, 2017, pp. 36–41. [Online]. Available: https:
//doi.org/10.1145/3094405.3094412

[24] S. Choenni, H. M. Blanken, and T. Chang, “On the selection of sec-
ondary indices in relational databases,” Data & knowledge engineering,
vol. 11, no. 3, pp. 207–233, 1993.

[25] R. Li, M. Riedewald, and X. Deng, “Submodularity of distributed join
computation,” in Proceedings of the 2018 International Conference on
Management of Data, 2018, pp. 1237–1252.

[26] A. Krause and D. Golovin, “Submodular function maximization,” in
Tractability: Practical Approaches to Hard Problems, L. Bordeaux,
Y. Hamadi, and P. Kohli, Eds. Cambridge University Press, 2014,
pp. 71–104.

[27] S. Khuller, A. Moss, and J. Naor, “The budgeted maximum coverage
problem,” Inf. Process. Lett., vol. 70, no. 1, pp. 39–45, 1999. [Online].
Available: https://doi.org/10.1016/S0020-0190(99)00031-9

[28] T. Inc., “Rapidjson,” http://rapidjson.org/, 2015.
[29] T. A. S. Foundation, “Apache arrow,” http://https://arrow.apache.org//,

2015.
[30] Y. Inc., “Yelp open dataset,” https://www.yelp.com/dataset, 2020.
[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings of
the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
143–154. [Online]. Available: https://doi.org/10.1145/1807128.1807152

[32] A. Benton, “fakeit,” https://github.com/bentonam/fakeit, 2016.

12

https://github.com/logpai/loghub
http://www.vldb.org/pvldb/vol10/p1118-li.pdf
https://doi.org/10.1007/s00778-019-00578-5
http://www.vldb.org/pvldb/vol6/p1702-muehlbauer.pdf
http://cidrdb.org/cidr2020/papers/p14-shang-cidr20.pdf
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.1145/3299869.3319896
http://www.vldb.org/pvldb/vol10/p421-sun.pdf
http://www.vldb.org/pvldb/vol10/p421-sun.pdf
https://doi.org/10.1109/INFCOM.2012.6195845
https://doi.org/10.1145/3094405.3094412
https://doi.org/10.1145/3094405.3094412
https://doi.org/10.1016/S0020-0190(99)00031-9
http://rapidjson.org/
http://https://arrow.apache.org//
https://www.yelp.com/dataset
https://doi.org/10.1145/1807128.1807152
https://github.com/bentonam/fakeit

	I Introduction
	II Related Work
	II-A Fast data parsing and ingestion
	II-B Lazy data loading and in-situ query processing
	II-C Computation offloading

	III Overview and Assumptions
	IV Client-side Predicate Evaluation
	IV-A Raw-data format
	IV-B String-based predicate evaluation

	V Predicate Selection Optimization
	V-A Problem setup and cost model
	V-B Submodularity
	V-C Approximation algorithm
	V-D Cost model for predicate evaluation

	VI Partial Data Loading and Data Skipping
	VI-A Partial data loading
	VI-B Data skipping
	VI-C Performance impact of a query workload

	VII Experiment Results
	VII-A Prototype implementation
	VII-B Datasets
	VII-C Synthetic query workloads
	VII-D Reducing data loading and query processing time with varied budgets
	VII-E Performance impact of predicate selectivity, overlap, and skewness
	VII-E1 Sensitivity to predicate selectivity
	VII-E2 Sensitivity to predicate overlap
	VII-E3 Sensitivity to predicate skewness

	VII-F Robustness of the cost model

	VIII Conclusion
	References

