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Abstract—Knowledge graph (KG) entity alignment is the task
of identifying corresponding entities across different KGs. Exist-
ing alignment techniques often require large amounts of labelled
data, are unable to encode multi-modal data simultaneously, and
enforce only a few consistency constraints. In this paper, we
propose an end-to-end, unsupervised entity alignment framework
for cross-lingual KGs using multi-order graph convolutional
networks. An evaluation of our method using real-world datasets
reveals that it consistently outperforms the state-of-the-art in
terms of accuracy, efficiency, and label saving.

Index Terms—knowledge graph, entity alignment, network
embedding, graph convolutional neural network

I. INTRODUCTION

Knowledge graphs (KGs) are used to represent real-world
entities, the relationships between them, and the relationships
between their attributes [1], [2]. Entity alignment (the task of
identifying corresponding entities between monolingual KGs)
is the foundation for the integration of multiple KGs [3].
The problem of KG entity alignment has emerged recently
with graph embedding techniques [4], [5]. The first generation
methods of this paradigm [6] learn the embeddings on the
assumption that if two entities have a relation, the distance
between their respective embeddings is equal to the embedding
of their relation. Avoiding this strict assumption, the second
generation of embedding techniques employ graph neural
networks, which encode the structural relationship based on
neighbourhood information [6].

However, we argue that the above approaches overload the
embedding model with unrelated objectives. On the one hand,
the entity embeddings must encode the syntactic information
(e.g. neighbourhood, topology, degree) for each KG, while on
the other, they also need to reflect the semantic alignment of
entities across KGs. Furthermore, existing models have not
fully utilised the attribute information of entities (e.g. the age
attribute of a person, the population of a country) due to the
high levels of inconsistency and linguistic differences.

In this paper, we meet the above requirements via a unified,
unsupervised and adaptive entity alignment model for cross-
lingual KGs. In essence, our idea is to fully leverage the
richness of a KG by simultaneously comparing the relational
and attributional information of the entities to be aligned. The

fusion of these types of information helps them to complete
each other and to mitigate the high levels of consistency
violation for each type. To efficiently extract the relational
data, we propose to use the multi-layer characteristics of
graph convolutional networks (GCNs) to model the relational
correlation at different orders without the need for supervision
data (e.g. pre-aligned entities). We published the source code
and the datasets 1 for use by the community.
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Fig. 1: Example of knowledge graph entity alignment

II. PROBLEM AND APPROACH

Problem. KG entity alignment aims to find all of the corre-
sponding entities of two given KGs. Fig. 1 shows an example
of knowledge graph alignment with several entities from
YAGO, in which the entities in the English version are aligned
with their counterparts in the French version.

Consistency guarantees. In general, entity alignment cross-
lingual KGs needs to respect three types of constraints:
(i) entity consistency – the names of corresponding entities
should be equivalent, (ii) relation consistency – the relation
is preserved from source KG to target KG, and (iii) attribute
consistency – the corresponding entities should have equivalent
attributes and equivalent attribute values. Most baseline models
struggle to address all three types of consistency requirements
simultaneously, since the attribute imbalance between the two

1https://github.com/thanhtrunghuynh93/EMGCN



KGs and modality inconsistency are frequently observed in
real-world [6]. Going beyond the state-of-the-art, our multi-
order embedding model can naturally satisfy the above con-
straints at the same time, proven by theoretical analyses and
empirical experiments on the real-world datasets [6].
Relation-aware Multi-order Embedding. Our GCN-based
model consists of k layers, and each hidden feature layer
simultaneously encodes the topological and attributional in-
formation using a message passing scheme [7]. Most of
GCN models use the embeddings in the final layer as the
node representation [8], since the deepest layer aggregates
the information from all previous layers. However, while
the deeper layers contain richer topological information, they
are also prone to noise from inconsistent nodes in previous
layers, which is fairly common in real-world KG datasets.
The topological information may also be diluted in the deeper
layers, especially for expander-like networks, since the collec-
tive information of a large neighbourhood would overshadow
individual nodes. To address these challenges, we instead use
the learned embeddings at all layers to identify the nodes.
This strategy allows our framework to exhaustively exploit
the topological information in both a local and global manner.
Unsupervised loss function. We design an unsupervised
loss function to minimise the distance between embeddings
of neighbouring nodes while maximising those of unrelated
nodes [6]. Our loss function goes beyond the state-of-the-art to
incorporate all low-order and high-order embeddings. The for-
mer are embeddings at shallower layers, which capture locally
topological patterns of nodes, although irrelevant nodes may
share a similar patterns. The latter are embeddings at deeper
layers, which capture larger neighbourhood information, but
risk pulling different communities of nodes too close.
Weight-sharing training. To make sure the source and target
networks are embedded into the same vector space, we use
weight-sharing training. That is, the forward pass of the GCN
model for both source and target networks uses the same
weight matrices for each layer. This mechanism guarantees
that the learned embeddings of the source and target rela-
tional network stay within a common embedding space, thus
allowing their direct usage without a reconciliation step for
the two different spaces. The mechanism also assures that the
consistency constraints are satisfied [6].

III. EXCERPT OF EXPERIMENTAL RESULTS

We conducted experiments with real-world DBP15K [6]
datasets, which were generated from DBpedia, a large-scale
multilingual knowledge base containing rich inter-language
links between different languages [6]. In total, there are 500K
entities, 13K relations, 38K attributes, and 4.2M triples.

Table I reports an end-to-end comparison of our model
against baseline methods. Our EMGCN model outperformed
the others in all scenarios, without requiring any supervision
data. Though using similar multi-order GCN mechanism as
GAlign, the gain of 10-20% of Success@1 demonstrates the
efficiency of the fusion of rich properties in KGs proposed in
EMGCN, especially for noisy datasets such as ZH-EN.

TABLE I: End-to-end effectiveness

Dataset Metric EMGCN GAlign RDGCN GCNA MuGNN

ZH-EN Success@1 0.8625 0.6943 0.7029 0.4057 0.4779
MAP 0.8931 0.7513 0.7250 0.5270 0.6000

JA-EN Success@1 0.8663 0.7481 0.7630 0.4072 0.4866
MAP 0.8987 0.8025 0.8110 0.5270 0.6103

FR-EN Success@1 0.9395 0.8695 0.8775 0.3910 0.4896
MAP 0.9582 0.9052 0.9060 0.5270 0.6171

Fig. 2: Computation time Fig. 3: Label savings
Fig. 2 reports the running time of our model against the

baselines. The reported times for the supervised baselines
included training and testing times. It can be seen that GCNA
is the fastest baseline, with a running time of approximately
100s, but accuracy is sacrificed to achieve this (the value of
Success@1 for this method is less than 0.41, as shown in
Table I). Our model EMGCN was the next best, since it does
not require any training time.

Fig. 3 shows the power of our unsupervised approach
against supervised baselines. We varied the training ratio from
0.3 to 0.9 and compared the values for Success@1 on the ZH-
EN dataset. It can be seen that our EMGCN model, with no
training data, outperformed or was on a par with all the other
baselines, even when they used 90% of the data for training.

IV. CONCLUSION

We proposed an unsupervised entity alignment framework
for cross-lingual KGs with no prior information, reducing the
labeling effort. The framework is built on top of a multi-
order GCN model that combines both relation and attribute
information as well as satisfy the consistency constraints.
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