2021 IEEE 37th International Conference on Data Engineering (ICDE)

Implementing Rigid Temporal Geometries
in Moving Object Databases

Maxime Schoemans®, Mahmoud Sakr'2, Esteban Zimanyi!
IEcole Polytechnique de Bruxelles, Université Libre de Bruxelles, Belgium - 2Ain Shams University, Egypt
{maxime.schoemans, mahmoud.sakr, ezimanyi} @ulb.ac.be

Abstract—Various applications process geospatial trajectories
of moving objects, such as cars, ships and robots. There is thus a
need for a common conceptual framework to model and manage
these objects, as well as to enable data interoperability across
tools. The International Organization for Standardization ISO®
has responded to this need and created the standard ISO 19141-
Schema for moving features. Among its types, it defines a schema
for rigid temporal geometries, which represent the movement
of spatial objects translating and rotating over time, while
preserving a fixed shape. Despite the abundance of these objects
in real-world, there exists no reference implementation of this
type of data in a common system, which causes them to usually
be represented as temporal points without taking into account
their spatial extents and shapes. In this paper, we aim to provide
an implementation of rigid temporal geometries into MobilityDB,
an open-source moving object database, that extends PostgreSQL
and PostGIS. We provide a data model for rigid temporal
geometries and propose efficient algorithms for the operations
defined in ISO 19141. A use case on real AIS ship trajectories is
illustrated to validate the proposed implementation. A synthetic
data generator for temporal geometries is also proposed. Finally,
we review the standard from an implementation point of view

foliation

Fig. 1: Schema for Moving Features.

In its current form, ISO 19141 is an abstract schema that
defines the spatiotemporal characteristics that are needed to de-
scribe moving features. It neither describes an implementation-
level data model, nor methods for constructing, stor-
ing, and querying moving features in a database. Two
main classes of this schema, MF_TemporalTrajectory and

MF_RigidTemporalGeometry, can be used to describe mov-
ing points and fixed-shape moving geometries respectively.
Temporal trajectories have been further detailed in successive
implementation-level standards, and have been implemented
in multiple common systems. Rigid temporal geometries, in
contrast, lack implementation standards and reference imple-
mentation. As such, developers have no means of consistently

and provide insights on possible improvements.

[. INTRODUCTION

Large amounts of location data of mobile objects are pro-
duced by positioning systems such as the GPS. The processing

of this big data is a requirement of many modern application
domains, including autonomous vehicles, social computing,
contact tracing, intelligent transportation, maritime, etc. There-
fore, the demand for an ecosystem of software tools handling
moving object big data is rapidly increasing. Tools are required
to assist the tasks of the data science cycle including acquisi-
tion, storage, cleaning, transformation, analysis, visualization,
privacy preservation, etc. Standards play a foundational role
in building such an ecosystem, as the key to interoperability.
The International Standard ISO 19141—Schema for moving
features [1], issued in 2008 and reviewed and confirmed in
2017, specifies an abstract data representation of a motion
consisting of translation and/or rotation of a geographic fea-
ture. The schema is based on the concepts of foliation, prism,
trajectory, and leaf. Fig. 1 illustrates a 2D rectangle which
moves and rotates. A leaf is the snapshot of a moving feature
at a given time instant, hence a geographic feature. A prism is
all the points contained in all leaves in the whole continuous
time range of the movement. A trajectory is the path traversed
by any point of the feature as it evolves in time. The set of
leaves that represent the moving feature forms a foliation.

2375-026X/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00286

2547

developing applications that manage this kind of data.

Rigid temporal geometries are essential data abstractions
for many applications. Safety in sea applications involves
analyzing the movement of ships close to each other and
close to infrastructures like ports and wind farms. The ability
to model the full extent, or approximate it with the main
dimensions of the ship, is a requirement to accurately capture
the interaction with nearby infrastructure and other ships [2].
In the domain of autonomous vehicles, it is important to
include the extent of the vehicles and the nearby objects to
analyze the geometric layout of a scene, and the interactions in
the scene flow [3]. Similar requirements arise in robot motion
management in factories and logistics facilities.

This paper contributes to solving this problem by proposing
an implementation of rigid temporal geometries in Mobil-
ityDB [4]. MobilityDB is an OSGeo community project!,
that extends PostgreSQL [5] and PostGIS [6] for temporal
and spatiotemporal data management. This paper describes

Uhttps://www.osgeo.org/projects/mobilitydb/

the implementation of a new algebra for rigid temporal
geometries, which allows representing and querying moving
geometries with three or six degrees of freedom. Concretely,
the contributions of this paper are as follows:

Implementing the ISO 19141 rigid temporal geometries in
MobilityDB by presenting a 2D and 3D data model allowing
efficient storage and data manipulation.

Proposing efficient data management algorithms for rigid
temporal geometries. Multiple novel algorithms are de-
scribed (3D encoding, rotating bounding box, normalization
of 2D and 3D rotations), as well as modified versions of
existing algorithms (2D encoding, 2D and 3D decoding and
interpolation, 2D traversed area).

Implementing a synthetic data generator for 2D and 3D rigid
temporal geometries based on the BerlinMOD generator.
Assessing ISO 19141 from an implementation point of
view. Standard operations on temporal geometries are also
implemented and discussed.

Our implementation is publicly available on GitHub.?

The rest of this paper is organized as follows. The related
work is presented in Section II. Section III describes essential
background on ISO 19141 and MobilityDB. The new data
model for rigid temporal geometries is then presented in
Section IV and the data management algorithms are given
in Section V. Section VI then describes the implementation
of the standard operations, with a practical use-case on AIS
data in Section VII. A synthetic data generator is presented in
Section VIII and a revision of the standard is done in Section
IX. Finally, Section X concludes this paper.

II. RELATED WORK
A. Standards

International standardization in the field of geographic infor-
mation has been active for two decades, as mainly coordinated
by the ISO Technical Committee 211 (ISO/TC211 2007°) and
the Open Geospatial Consortium (OGC 20074). A large num-
ber of standards (more than 80) has already been published
as part of the ISO191xx suite. This is complemented by more
than 160 OGC implementation standards, that are written for
a more technical audience, and detail the interface structure
between software components.

The baseline of these standards are the ones that contribute
at various levels to the modelling of geographic information:

o ISO/TS 19103 Conceptual Schema Language, defining the
notation for the conceptual modelling of geographic infor-
mation. It specializes UML, restricting features like multiple
inheritance, and adding geographic modelling constructs.

e ISO 19107 Spatial Schema is the main abstract model for
geographic features. It specifies a conceptual schema for the
geographic types, and basic methods to manage geographic
features. It can be seen as a metamodel, that abstracts the
different physical data models of geographic applications.

Zhttps://github.com/mschoema/MobilityDB/tree/geometry
3https://committee.iso.org/home/tc211
“https://www.ogc.org/

2548

ISO 19109 Rules for Application Schema defines a standard
way of mapping ISO 19107 into an application schema of
a given geographic application or class of applications. An
application schema is still at the conceptual level, yet it adds
specifications relevant to a certain class of applications.
OGC 06-103r4 Simple feature access - Part 1: Common
architecture is an Implementation Standard. It implements a
profile of the spatial schema described in ISO 19107. It de-
fines with technical details the structures and operations used
to represent and query geographic features in databases.
This standard is commonly followed by spatial database
developers, including ESRI, Oracle spatial, and PostGIS.
OGC 06-104r4 Simple feature access - Part 2: SQL option
is also an implementation standard. It defines a schema
that supports storage, retrieval, query and update of feature
collections via the SQL Call-Level Interface. It bases on
the ISO 19107 and describes a set of SQL Geometry Types
together with SQL functions on those types. This standard
is also commonly followed by spatial database developers.
In contrast with this mature list of standards for simple
features, the standards for moving features are still in infancy:
e ISO 191141 Schema for moving features is the abstract
(metamodel) for data representation.

OGC 16-120r3 Moving Features Access specifies methods
specifies abstract methods to access a database storing
temporal trajectory data. Rigid temporal geometries are not
in the scope of this standard.

Thus, the standardization of rigid temporal geometry data
representation and functions remains at the abstract level.
Furthermore, up to our knowledge, there is no implementation
of it. This is a clear gap that needs to be filled by implemen-
tation standards and reference implementations, to support the
interoperability of rigid temporal geometry data.

B. Moving Object Data Management

The research in moving object data management has been
active since early 2000, covering all aspects of modelling,
indexing, query operations, analysis, visualization, data un-
certainty, etc. Multiple research prototypes exist, including
SECONDQO([7], UlTraMan([8] on spark, HadoopTrajectory[9],
and TrajMesa[10]. There is also MobilityDB[4], an industrial-
strength moving object database system.

These systems mainly focus on managing moving point
objects. Less focus has been given to temporal geometries,
also known as moving regions. A distinction is made in
the literature between continuous trajectories and discrete
points. TrajMesa [10], for instance, represents a trajectory as
a sequence of timestamped points without assuming interpo-
lation between points. In this sense, the problem of managing
temporal geometries reduces to managing discrete polygon
objects. Another distinction is whether the temporal geometry
is of a fixed-shape or a deforming one. The case of deforming
regions has been investigated in [11], [12], which present a
model using a sliced representation. A polyhedral-based model
[13] has been presented to solve some efficiency issues with
the sliced representation model.

This sliced representation of moving regions assumes lin-
ear interpolation between the start and end segments of the
region, which does not accurately represent the movement of
the vertices of a fixed-shape moving region. This model is
therefore not valid for representing ships, aircraft, or similar
objects whose shape does not change while moving. Towards
addressing this requirement, a model for 2D fixed-shape
moving regions has been presented in [14], which is the
most related work to this paper. A major difference is that
it represents the movement as a sequence of slices, where
every slice stores the transformation of the temporal geometry
at the two sides of the time interval. This introduces a lot
of redundancy in the data representation, which decreases the
overall performance. The ISO 19141, in contrast, represents
the movement as a set of snapshots at discrete time instants
and interpolates the transformation vectors in-between. The
difference between the two models is captured in detail in [4].
In [14], a set of algorithms for fixed-shape moving regions
are also presented, such as point inside, region intersects or
traversed area. Ideas from these algorithms are reused here,
for the 2D case, as will be cited in place.

The 3D temporal geometries are specified in ISO 19141,
but not handled in the moving object data management lit-
erature. Therefore, ideas in this respect have to be surveyed
in the image processing and animation literature. As will be
explained in Section IV, the data model of 3D fixed-shape
moving geometries makes use of quaternions to represent the
3D orientation/rotation of a geometry. This use of quaternions
for the representation of orientations and rotations in three
dimensions has already been researched [15], and they are
already used, for example, to create smooth animations and
movements in computer graphics.

III. BACKGROUND
A. ISO 19141 Standard on Moving Features

‘ GM_Object ‘ ‘ GM_Curve ‘
‘ MF_OneParamGeometry }Q—{ MF_Trajectory ‘

i

MF_TemporaIGeometryW MF_TemporalTrajectory ‘
‘ MF_PrismGeometry }Q—'MFﬁRigidTemporaIGeometw‘

Fig. 2: Moving Features Types

i

The main classes of the schema for moving features are
shown in Fig. 2. They form an inheritance hierarchy of three
levels. At the top level are GM_Object and GM_Curve from
the ISO 19107 standard — schema for spatial features. As
such, a moving feature is compliant with the General Feature
Model. The classes in the moving features package are denoted
by the prefix MF. Their schema is based on the concept of
one parameter set of geometries, which represents a function
from the domain of some parameter p into a geometry object,
that is f : D, = Dgm_object, Where Dyype denotes the

2549

domain of a type. A one parameter set of geometries represents
an infinite set of leaves, where a single leaf f(p) is the
geometry at a given value of the parameter. If the leaf is a
single geometry point, then this class can be specialized as an
ME_Trajectory. The parameter could be any variable such as
pressure, temperature or time.

The third level of the hierarchy specializes the parameter
to time, expressed as TM_Coordinate in ISO 19108 [16]. The
class MF_TemporalGeometry represents a mapping from time
instants into geometries. During its definition interval [start-
Time, endTime], see Fig.3, it defines a continuous mapping
from a time instant into a geometry object, i.e., the leafGeom-
etry function. The class attributes and operations in Fig. 3 will
be discussed in detail in SectionVI. MF_TemporalTrajectory
specializes MF_TemporalGeometry by restricting the leaf ge-
ometry to a single point. An MF_TemporalTrajectory object
can thus represent a moving point object, such as a person,
a car, etc. It is the commonly used moving feature type.
It is therefore the most elaborate class in this standard, in
terms of attributes and functions. Corresponding abstractions
to MF_TemporalTrajectory have been implemented in few
database systems including PostGIS’ LineStringM and trajec-
tory functions, Informix®Spatiotemporal Search, MobilityDB
temporal geometry point types and query APL.

MF_TemporalGeometry MF_TemporalTrajectory

+ beginDomain, endDomain: TM_Coordinate

+ graphTimeToPoint, graphTimeToVelocity,
graphTimeToDistaince, graphTimeToAcceleration,
graphTimeToCumulativeDistance: GM_Curve[]

+ leafGeometry(TM_Coordinate): GM_Object

+ trajectory(DirectPosition, TM_Coordinate):
MF_TemporalTrajectory

+ startTime():TM_Coordinate

+ endTime():TM_Coordinate

+ nearestApproach(GM_Object, TM_Period):

Distance, TM_GeometricPrimitive[]

+ intersection(GM_Object, TM_Period):
TM_TemporalGeometry

+ globalAxis[1..3]: default [tangent, up, right]

+ controlOrientation[]:

MF_TemporalOrientation

+ pointAtTIme(TM_Coordinate): DirectPosition

+ timeAtPoint(DirectPosition): TM_GeometricPrimitive[]

+ velocity, acceleration(TM_Coordinate): vector

+ timeToDistance(): CM_Curve[]

+ timeAtDistance, timeAtCumulativeDistance(Distance):
TM_Coordinate

+ timeToDistance():GM_Curve[]

+ cumulativeDistanceAtTime(TM_Coordinate): Distance

+ nearestApproach(GM_Object): Distance,
TM_GeometricPrimitive[]

+ subTrajectory(TimeRange): MF_TemporalTrajectory

+ timeToMeasure(): MF_MeasureFunction[]

+ positionAtTime, offsetAtTime, secondaryOffsetAtTime,

measureAtTime(TM_Coordinate): corresponding type

p

MF_RigidTemporalGeometry
+ baseGeometry: GM_Object

MF_PrismGeometry

+ geometryAtTime(TM_Coordinate):
GM_Geometry

+ rotationAtTime(TM_Coordinate):
MF_RotationMatrix

<H

Fig. 3: Moving Features Types

The MF_PrismGeometry and MF_RigidTemporalGeometry
classes restrict MF_TemporalGeometry for the case of
an object that has arbitrary geometry and moves with-
out deformation. The object may translate and/or rotate,
but its shape remains congruent. Actually, ISO 19141
puts deformable moving features out of its scope. Ev-
ery point in an MF_RigidTemporalGeometry is thus an
MEF_TemporalTrajectory, and one point acts as the centre of
rotation of the MF_RigidTemporalGeometry, which explains
the association relation in Fig. 2 and Fig. 3. What is not
explained in the standard is the inheritance relation between
MF_RigidTemporalGeometry and MF_TemporalTrajectory,
especially that certain functions in MF_TemporalTrajectory
cannot apply to MF_RigidTemporalGeometry. This is further
discussed in Section IX. Section VI thus only contains the

operations from MF_TemporalGeometry, MF_PrismGeometry
and MF_RigidTemporalGeometry.

The OGC 16-120r3 Moving Features Access standard com-
plements ISO 19141 for the MF_TemporalTrajectory type and
elaborates on its data management methods. Moreover, the
few aforementioned system implementations provide refer-
ences for users and developers in implementing the standard.
The MF_RigidTemporalGeometry lacks such implementation
standards and reference implementations.

B. MobilityDB

MobilityDB implements ADTs of moving objects in Post-
greSQL and PostGIS. It further supports these types with
indexes, a rich set of temporal and spatiotemporal query
operations, and an SQL query interface. It is by far the only
existing moving object database that supports full SQL. It is
compliant with the OGC standards on moving features.

The type system of MobilityDB[4] is based on the concept
of type constructors. These are functions that yield data types.
It is therefore extensible. A temporal type is constructed using
a time type and a base type. The possible time types are
timestamp, timestampSet, period and periodSet,
representing respectively a single time instant, a set of discrete
time instants, a continuous interval, and a disconnected set of
intervals. The base type can be any PostgreSQL and PostGIS
type. The current implementation of MobilityDB has temporal
types corresponding to the base types bool, int, float,
text, geometry (Point) and geography (Point).

Every combination of a base type with a time type
thus creates a temporal type. For example, by combin-
ing the geometry (Point) base type with the time type
timestampSet we construct a temporal type that can rep-
resent a set of disconnected spatiotemporal points, e.g., check-
ins of a Foursquare user. Combining geometry (Point)
and period would construct a temporal type that can rep-
resent the continuous movement of a point, i.e., a temporal
point. Since the input is always discrete, such as GPS points,
continuous temporal types use interpolation functions between
consecutive instants. MobilityDB supports two interpolation
functions: step, and linear.

Formally, the type system consists of four type construc-
tors, corresponding to the four time types: INSTANT, IN-
STANTS, SEQUENCE, SEQUENCES. Given a base type S,
e.g., geometry (Point), the INSTANT type constructor
constructs a temporal type using S and timestamp as follows:

DINSTANT(S) = Dmeta'ualue(S) X Dtimestamp 0

Here metavalue(S) corresponds to the base type, either saved
as-is or as a delta type, that is metavalue(S) could be Dg
or another transformation. Storing a transformed form of the
values of the base type, instead of the direct values, gives
the possibility to compress the representation of base type at
individual timestamps. It is especially useful in the case of
rigid temporal geometries since the shape is preserved during
the movement, and we thus don’t need to store the complete

geometry at every individual timestamp. This concept is re-
ferred to as delta encoding in the rest of the paper.

The SEQUENCE type constructor builds a temporal type
using a base type S and the time type period as follows:

Dsgouvencesy = {(1, i, ui, interpolation) |
® I =1[(vi,t1),...,(vn,t,)] is a list of INSTANT(S)
(ii) li, ui € {true, false}(infex)clusive bounds of period
(iii) interpolation € {step, linear}
(iv) consecutive pieces of the interpolation function are
not colinear}
2

It represents a continuous evolution of value over a time
period, that can be left/right open/closed. Individual instants
are of type INSTANT(S). They could thus be represented
using the metavalue of the base type, which is important to
our implementation. Between instants (v;, t;), (vi+1, ti+1) the
value is interpolated according to the chosen function.

To define a new temporal type in this type system, it is thus
sufficient to define the domain of its metavalue D, csavatue(s)-
The type constructors would then take care of constructing the
corresponding temporal types. In MobilityDB, this effectively
means that it can be extended with low development cost. Then
the effort of development can be re-directed to implementing
data management and query functions for the new types.

IV. DATA MODEL

This section describes the data model for rigid temporal
geometries and integrates it into the MobilityDB type system.
To avoid redundancy, we focus the discussion on geometries
represented as polygons in 2D and polyhedral surfaces in 3D.
A similar development can be done for other geometry types
such as linestring, points, collection types and complex types.

A. 2D geometries

For the PostGIS base type geometry (Polygon), we
handle the object as a 2D temporal geometry, and the
metavalue thus contains the parameters for a 2D affine trans-
formation allowing only a translation and a rotation.

metavalue(S) = (0,0, dz, dy)

Here o is a pointer to the original geometry. The parameters
(dx,dy) € R? represent the translation of the centre of rotation
of the geometry. The rotation parameter in 2D is 6 € (-m, 7].
These parameters are with reference to the original geometry.
The centre of rotation is required to compute a unique
transformation value between two geometries. Without loss
of generality, we will fix the centre of rotation as the centroid
of the geometry. It is easy afterwards to adapt the algorithms
to handle an arbitrary centre of rotation, i.e., given by the user.
Accordingly, the four type constructors, INSTANT, IN-
STANTS, SEQUENCE, and SEQUENCES, see (1), (2), will
extend the system with corresponding types. For instance, the
moving feature example in Fig. 1 would be represented (in the
physical storage) as the SEQUENCE(geometry(Polygon))

([((Ov 07 0: 0)>t1)v ((Ov 07 1a 0)>t2)v ((03 %a 07 1)7 t3)] ’
true, true, linear)

2550

meaning that the moving feature object is defined over a
continuous interval [¢y, t3], with inclusive bounds. It has three
instants, each of which is a pair of a metavalue quadruple and
a timestamp. The initial geometry, i.e., the rectangle shape, is
stored somewhere, and it is referenced by the pointer o in the
three instants. In this example, the object first only translates,
then rotates and translates at the same time. The second and
third instants have rotations of 0 and 7 degrees respectively,
with reference to the initial original geometry and translation
of (1,0) and (0, 1) respectively.

Two possible solutions exist for storing the original ge-
ometry; either in a separate table or inside the object. In
this implementation, we choose to keep the first instant of
a temporal geometry not as a delta, but as a geometry object.
All following instants will then refer to this geometry in the
first instant as the original geometry o.

B. 3D geometries

A three-dimensional volumetric object is represented using
the PostGIS geometry (Polyhedralsurface) type and
the corresponding metavalue contains the parameters for a 3D
affine transformation allowing only a translation and a rotation.

metavalue(S) = (o, W, X,Y, Z, dx, dy, dz)

The parameters for the 3D translation are (dx,dy,dz) and,
similarly to the 2D translation parameters, represent the trans-
lation of the rotation centre of the geometry.

3D rotations are handled and interpolated using unit quater-
nions [15], and the rotation parameters (W, X,Y,Z) thus
correspond to the four parameters of a unit quaternion.

Q= (W,X.,Y,Z), with||Q||> =1

Similar to 2D geometries, we choose to store the original
geometry in the first instant and store all subsequent instants
as delta value (metavalue) with reference to the first instant.
Having defined the metavalue type, the type constructors will
generate the corresponding types for 3D temporal geometries.

V. DATA MANAGEMENT ALGORITHMS

This section describes essential internal algorithms for man-
aging rigid temporal geometries. The operations defined by the
standards (User API) will be discussed later in Section VI.

A. Encoder and Decoder

While the representation of temporal geometries consists of
transformation tuples, i.e., delta encoding, the data typically
arrives as a sequence of geometry snapshots. We, therefore,
define encoding and decoding functions to transform from
geometries into metavalues, and vice versa.

1) Encoder: The encoding function takes two geometries
given either as 2D polygons or 3D polyhedra and computes
the transformation from the first to the second geometry. As
detailed in the data model (Section IV), this transformation
consists of both translation and rotation parameters. The com-
puted transformation is unique and always assumes a minimal
rotation between the two input geometries. If the rotation

2551

between two subsequent geometries is known to be larger than
m, additional intermediate instants have to be added to keep
the rotation between two subsequent instants smaller than 7.

Here we illustrate the more complex case of 3D. The encode
function is illustrated in Algorithm 1. First, we compute the
translation parameters, as the difference between the coordi-
nates of the geometries centres of rotation. Then we translate
both geometries to have their respective rotation centres at
the origin. The remaining problem is to compute a rotation
quaternion from the first geometry to the second one. For this,
we make an assumption on the input geometries: the respective
points of the geometries must be given in the same order. This
allows, for example, different 90-degree rotations of a cube to
be distinguishable from each other when given as input.

Let P and R denote two vertices (different from the centre
of rotation) of the first geometry, and let P’ and R’ denote
the corresponding points on the second geometry. As a first
step, we_compute the rotation axis by realising that both PP’
and RR’' are perpendicular to this axis. This rotation axis is
represented by a unit vector e.

—_— =
?_ PP'xRR’
= L xXAh
|PP"xRR’||

3

With _J)De and P! denoting the projections of respectively ?
and P’ onto the plane perpendicular to e going through the
origin, we can compute the rotation angle 6 = sign(9) - |6].

—

"
P=P (BP.2) 72 P=P _(F.2). %
== = —
0] = acos(ﬁ“;ﬁl}r}ﬂ“) sign(f) = sign(?- (Fz x Pl))
o “

Finally, the rotation quaternion @ = (W, X, Y, Z) is computed
from the axis-angle representation.

W:cos(g) X:e_w>~sin(g) 5)
Y =¢,- sin(g) Z = e - sin(%)

The equations above correspond to the general case where
PP’ and RR’ have nonzero length and are not parallel. Other
equations exist for the special cases, but this is not detailed in
this paper.

The encoder, per se, does not work in an incremental stream-
ing way. Indeed we assume that the movement is historical
and that no update will be done to the instants composing the
movement. If needed, however, the algorithm for updating is
trivial, as it only needs to find the transformation vector of the
updated instant w.r.t the initial instant.

2) Decoder: The decoding function takes a transformation
(delta value) as input and applies this transformation to its ref-
erence geometry to recompute the initial data value. We use the
PostGIS function ST_Affine to apply affine transformations
in 2D and 3D to the reference Geometry.

We first transform the rotation parameters into a rotation

matrix R.
n-)

cos(0)
sin(0)

sin(0)

—cos(6) ©)

Algorithm 1: encode(G1, Go, out T)

Input: G, G, two congruent geometries

Output: 7, 2D or 3D transformation from G; to Go
begin

o0 < pointer to G1;

initialize 81 and 82 as the centroid of G; and Go

respectively;
<~ Ca— 013
translate G; and Gy to have their centroid at the
origin;
if 2D then

%
initialize ? and P’ as the first vertex of G;
and G, respectively;
%
0 < angle between ? and P’;

return Transform2D(o, 0, ?)

else

initialize ?, ﬁ, ?” and }? as the first two
vertices of G and G5 respectively;

compute e, 0, Q@ using (3), (4), (5)
respectively;

return Transform3D(o, Q, ?)

In 3D, the conversion from quaternion to rotation matrix
results in the following 3 x 3 matrix.

Lo(Y2422) (XY -WZ) (XZ+WY)
R=2| (XY +WZ) L1-(X2+2%) (YZ-WX)
(XZ-WY) (YZ+WX)

L- (X2 -Y?)
7

The decoding function then works in three steps. First, it
translates a copy of the reference geometry to place its rotation
centre at the origin. It then applies the rotation matrix I? to the
geometry, which corresponds to a rotation around the origin.
Lastly, it translates the geometry back while at the same time
applying the needed translation from the input transformation.

B. Interpolation

Interpolation between consecutive instants is part of the
definition of SEQUENCE and SEQUENCES types, as in (2).
Step interpolation is straightforward, as the geometry remains
the same until the next instant. In the following, we describe
the linear interpolation functions for 2D and 3D geometries.

The linear interpolation is applied to the transformation
parameters. Indeed, we cannot interpolate the vertices of the
geometries without deforming them. Thus we first interpolate
the transformation parameters at the given time, then use the
decoding function to get the interpolated geometry.

Given two transformations 71 and 75 at times ¢; and ¢, we
want to compute the transformation parameters at t; < ¢t < ta.
For both the 2D and the 3D case, the translation parameters

= (dz, dy, dz) can be interpolated using linear referencing.

r= izl ®)

to—t1

7:71*(1—7“)—}-?2*7" 9)

T 0 T 0 T 0
-7 -7 -7
o, o, 0,
(a) (b) ©

Fig. 4: Three different situations when interpolating angles of
rotation: (a) (62 > 61 and 0 — 81 <=) or (61 > 6 and
01 — 0y < m) (b) #; <0 and O3 — 01 > 7 (¢c) 61 > O and
01— 0 >=m7

The difference arises when interpolating the rotation. In two
dimensions, we linearly interpolate the rotation angle 6, while
still keeping in mind that this angle has to stay between —m
and 7. In 3D, we interpolate the rotation quaternion using
the slerp algorithm. These interpolation methods always use
the smallest angle between the two instants to construct a
unique output value. This means that during construction, no
two subsequent instants can have a rotation of more than 7
between them as explained in Section V-A.

1) 2D Case: Given two rotation angles #; and 65 at times ¢
and t5, we want to compute the rotation angle 6 at t; < t < ts.
Since the angle has to stay between —m and 7, one of three
cases can apply depending on the relative position of the start
and end angles. In Fig. 4, we project the bounded linear axis
on a unit circle and distinguish the three cases.

Equation (10) can then be used to compute the resulting
rotation angle, according to the case.

case a: 6 + (02 — 01) *r
0=<caseb: O+ (2mr+6; —6) x (1 —7) (10)
case c: 0h + (2w + 62 — 01) x 7

Finally, if the resulting angle is larger than 7, we subtract 27
to keep the angle values between —7 and 7.

2) 3D Case: Given two rotation quaternions ()1 and Q5 at
times ¢; and t5, we want to compute the rotation quaternion ()
at t; < t < tp. This is done using the slerp (spherical linear
interpolation) algorithm [15], which corresponds to a linear
interpolation of the rotation angle around a fixed rotation axis.

cos(f) = Qo e Q1
Q = Slerp(Qo, Q1,7)
Qo xsin((1 —7) x0) + Qq *sin(r *)
B sin(0)

Y

C. Bounding Box

MobilityDB pre-computes and stores the bounding boxes
of temporal types, as a means to increase the efficiency of
operations. Computing this bounding box for temporal points
is done by taking the smallest box enclosing all instants. Since
the interpolation techniques used in MobilityDB are linear and
stepwise, this bounding box will always be correct.

For rigid temporal geometries, in contrast, the smallest
box containing all the defined instants does not correspond

2552

Algorithm 2: interpolate(71, 72, r, out T)
Input: 71,75, r, two transformations and a ratio value
as computed using (8)
Output: 7, the interpolated transformation
begin

< linear interpolation of the translation
parameters using (9);
if 2D then
0 < compute the rotation angle using (10);
return Transform2D(0,T);
else
) < compute the quaternion using (11);
return Transform3D(Q,T);

to a correct bounding box. Indeed, the geometry can exit
this box during its movement if it is rotating. This comes
from the fact that, although the transformation parameters
are interpolated linearly, the movement of the vertices is not
linear. Interpolating between two instants could thus result
in a geometry which is not fully contained by this naively
computed bounding box, Fig. 5.

Fig. 5: The geometry in the left performs a translation to the
right and a rotation of 7. As illustrated, a simple union of the
bounding boxes of individual instants is not a correct bounding
box for the whole movement.

A first solution is to compute the bounding box exactly
if we know the traversed area of the temporal geometry.
Since computing this traversed area is a computationally heavy
operation, we present a second solution which returns a sub-
optimal, but still correct bounding box.

This second solution computes a rotating bounding box
around every instant, and the resulting bounding box of the
temporal geometries is then the smallest box enclosing all the
rotating bounding boxes of the instants.

This rotating bounding box is computed by creating a square
box around the rotation centre of the geometry, with sides
twice the length of the longest distance between the rotation
centre and any vertex of the geometry. Since the temporal
geometry is rigid, this distance will be the same for all instants,
and will thus be computed only once.

Fig. 6: Rotating bounding box around an instant

2553

dmam = max{ V $2 + y27 (377 y) S Vgeometry} (]2)

The bounding box of a temporal geometry of any
duration is then defined as a tuple of extreme
values (xmina Tmaxs Ymin, ymax)~ With (07 97 dl‘, dy) S

tgeometry,
Tmaz = MaAX {d'T} + dmaz

Ymaax = MaX {dy} + d’maz

Tmin = min{dz} — dmax
Ymin = min {dy} - d’maz

The 3D case is omitted here but is analogous to the 2D case
presented above.

The complexity of the algorithm is O(m + n), with m
being the number of vertices of the geometry and n being
the number of instants in the temporal geometry. This is a
significant improvement compared to the first method utilizing
the traversed area of the geometry. Indeed, if the traversed
area between every pair of consecutive instants is computed
using the traversed area algorithm presented in [14], the overall
complexity is O(m? % n).

This algorithm computes a sub-optimal bounding box since
it is, in all generality, not the smallest bounding box possible,
but is still correct in the sense that the temporal geometry
never exits the box during its movement. It thus can be used
for indexing or filtering purposes, although less effective than
an optimal bounding box. An example of a query using the
bounding box indexes is shown in Section VII.

D. Normalization

In the type system of MobilityDB, temporal objects are nor-
malized to guarantee unique representation. The normalization
of a temporal sequence removes redundant/collinear interme-
diate instants if found. This is stated in the last condition in
the definition of the SEQUENCE type constructor in (2).

Since the interpolation method used for temporal geometries
always uses the smallest rotation between two instants, re-
moving intermediate collinear instants when the total rotation
exceeds 180 degrees will force the direction of rotation to
change. An example of this is displayed in Fig. 7.

(@) (b)

Fig. 7: Example of a collinear but not redundant instant in a
moving geometry. (a) Path (in blue) taken with the collinear
geometry (counter-clockwise rotation) (b) Path taken without
the collinear geometry (clockwise rotation)

Keeping the intermediate collinear instants is also not a
possibility, since this contradicts the constraint of having
a unique representation for all identical temporal objects.
To solve this issue, we replace the non-redundant collinear
instants with a dummy instant. This dummy instant is the same
for all identical temporal objects and maintains the correct
direction of rotation.

Given three subsequent instants of a temporal geometry,
we want to check if the middle instant is collinear and if it
is redundant. Three instants are collinear if their translation
and rotation parameters are collinear. The collinearity check
of the translation parameters is similar to temporal points. In
the following we discuss collinearity of rotation parameters.

In 3D, the slerp algorithm computes a linear interpolation
of the angle in the axis-angle representation of the rotation.
Here again, similar to the 2D case in Section V-B, the
smallest angle is used. But the algorithm could be adapted
to interpolate along the largest angle. Let’s denote the two
variants interpolate_short and interpolate_long respectively.
The interpolation method used to retrieve the transformation
at a given time is always interpolate_short (Section V-B).

During normalization, we compute the result of both in-
terpolation methods between the first and third instant. If the
middle instant is different form both results, or if the two
subsequent transformations do not have the same direction
of rotation, then it is not collinear and nothing has to be
done. Otherwise if the middle instant is equal to the result
of the interpolate_short function, then the instant is redundant
and can be safely removed. Lastly, if the middle instant is
equal to the result of the interpolate_long, then it is collinear
since it can be recomputed from the first and third instant, but
not redundant since the default interpolation method does not
compute the correct value.

In this third case, we replace the second instant with a
dummy instant, that will be the same for all temporal geome-
tries representing the same movement, while still preserving
the initial direction of rotation. We place the dummy instant
such that the rotation between the first and second instant is
equal to m—e, with epsilon as small as possible to minimize the
number of dummy instants needed, but large enough to keep
the angle below 7 no matter the precision errors. In practice,
since the maximum allowed precision error in MobilityDB is
1075, we chose € = 10~ 4.

Algorithm 3: normalize(77, Tz, 73, t1, to, t3, out T, out t)
Input: 71,75, 73,t1,t2,t3, three transformations and
their corresponding time.
Output: 7, ¢, the new intermediate instant.
begin
R
Tshort < interpolate_short(Ti, T3,7);
Tiong < tnterpolate_long(T1, T3,7);
if 7-2 = Tshort then
‘ return NULL, NULL ,
else if 75> = Tj,ng then
compute 7gymmy using (13);
T .t « interpolate_long(T1, T3, Tdummy)
return 7,1t ;
else
| return T3,t; ;

The 7gummy parameter used in Algorithm 3 is the ratio

needed to compute the correct dummy instant using the
interpolate_long function. With 615 and 053 being the rotation
angles for the two subsequent 2D transformations, we have
sign(012) = sign(fa3) and |12 + O23] > 7. The dummy ratio
is then computed using (13). In 3D, we can use the same
equation with the angles of the axis-angle representation of
the rotation quaternions.

m™—€

_— 13
612 + 623 13)

Tdummy =

E. Traversed Area

The traversed area is the set of all point traversed by the
temporal geometry. It can be seen as a projection onto 2D
or 3D space of the prism of a moving feature as described
in Section I. We present an algorithm to compute a polygon
that approximates the traversed area of a 2D rigid temporal
geometry with a number of straight segments. This choice
allows us to utilize the existing PostGIS spatial functions
on the polygon type to analyze and manipulate the traversed
area. With this assumption made initially, the algorithm differs
significantly from the one presented in [14], since we do not
need to define new curve types to represent the border of the
traversed area.

The area traversed by a temporal geometry is in all gen-
erality not perfectly representable by a polygon, and we thus
need to approximate the curved border of the real area using
straight segments. This approximation is not necessary when
computing the traversed area of a translating (but not rotating)
polygon. We will thus assume that we can approximate the
movement of a vertex of a temporal geometry by a single
straight segment when the applied transformation has a ro-
tation smaller than a given threshold 6,,,,. The smaller this
Omaz, the better the approximation will be.

Given a sequence of transformations, all relating to the same
reference polygon, Algorithm 4 computes the traversed area
of this sequence as follows. As a first step, we compute the
rotation 6 between each pair of subsequent transformations and
add n interpolated transformations between them if the total
rotation # was larger than 6,,,,,. The number of intermediate
transformations added is computed using (14).

o [ﬂ 1 (14)

emam

Then we compute the traversed area between two consecutive
transformations using the assumption that the geometry moves
linearly. Lastly, we combine all the computed traversed areas
into a single polygon using the PostGIS ST_Union function.
The remaining problem consists of computing the traversed
area of two subsequent transformations assuming linear inter-
polation of vertices. We do this in three steps. First, we create
a list of segments consisting of the edges of the start and
end polygon as well as the straight segments representing the
movement of the vertices. We then compute the intersections
between every pair of segments to create a planar graph.
Lastly, we compute the traversed area by starting at the left-
most vertex of the graph and travelling along the border of

2554

this graph until we arrive back at the start vertex. An example
of this process is shown in Fig. 8a.

/

()

()

Fig. 8: Process of computing the traversed area between two
subsequent transformations. (a) Planar graph created from the
computed segments. (b) Start and end polygons (green) with
the resulting traversed area (blue).

Algorithm 4: traversedArea(7 g+, Omaz, out P)

Input: 7.+, Omas, an array of transformations and the
maximum rotation angle

Output: P, the polygon representing the traversed area

begin

for (7;, Tix1) in Tarr do
compute the rotation 6 from 7; to T;11;
compute n using (14);
add n intermediate transformations computed
using interpolate;

/* subsequent transformations in
Tarr now have a rotation smaller
than 0,4z */

Parr < empty polygon array;

for (7;77;+1) in 7:17’7’ do
compute the traversed area between 7; and
Ti+1 assuming linear interpolation of vertices;
add this polygon to Py.p;

return ST_Union(Purr);

VI. STANDARD OPERATIONS ON RIGID TEMPORAL
GEOMETRIES

The operations of the MF_RigidTemporalGeometry class
of ISO 19141 are mostly inherited from its parent classes.
This section presents their algorithms. Some operations that
are defined in the standard cannot be evaluated, either for lack
of an algorithm or because of type system limitations. We,
therefore, believe that the discussion in this section can be
useful in revising the standard.

A. LeafGeometry and GeometryAtTime

The operation LeafGeometry of the MF_TemporalGeometry
class accepts a timestamp and returns the geometry object
representing the leaf at that time. The MF_PrismGeometry
class defines a similar function called GeometryAtTime.

We implement it in MobilityDB as an overload of the exist-
ing valueAtTimestamp function. It computes the value of
the transformation at the given timestamp using Algorithm 2
of interpolation, then uses the decoder to compute the resulting
PostGIS geometry (Polygon) . If the temporal geometry is
not defined at the given timestamp, the function returns NULL.

2555

B. Trajectory

The Trajectory operation takes a point on a leaf at a given
timestamp and returns the MF_TemporalTrajectory represent-
ing the trajectory of this point. This operation can, for example,
retrieve the evolving position of the bow of a ship.

We represent the result with the MobilityDB type SE-
QUENCE((geometry(Polygon)). It assumes that the movement
of temporal points is piecewise linear. Therefore, we need to
approximate the resulting trajectory, which can be an arbitrary
curve, into a piecewise linear trajectory.

We can compute the position of the temporal point at a
given instant exactly using the interpolation function on the
transformations, and applying this interpolated transformation
to the initial point. Note that this does not imply interpolating
the whole geometry. The interpolation is done only for the
specified point, which is much faster. The accuracy of the
result will depend on the number of intermediate instants,
which is left here as a user parameter.

When the input point corresponds to the centre of rotation,
the function returns an exact solution since the rotation centre
of the geometry is assumed to move linearly. The result
corresponds to the originTrajectory attribute defined in the
MF_PrismGeometry class.

C. StartTime and EndTime

These are simple getters of the first and last timestamps of
the temporal geometry, i.e., t1,t, in (2).

D. NearestApproach

This function returns the distance and time of the nearest
approach between a temporal geometry and another geometric
object. An optional parameter timelnterval restricts the search
to a given period. This operation can take both a static or a
temporal geometry as the second argument.

The equations and algorithms for finding both the distance
and the time of the nearest approach in both 2D or 3D are
complex computational geometry problems on their own and
do not fit into the scope of this paper. However, we present a
solution for the case of a temporal and static geometry in 2D.

This solution consists of two steps. Firstly, we compute
the traversed area of the temporal geometry using Algorithm
4. Secondly, we apply the PostGIS function ST_Distance
between this traversed area and the fixed geometry. This
function returns the shortest distance between the two geome-
tries. In MobilityBD, we implement it as an overload of the
nearestApproachDistance function, which is readily
implemented for temporal points.

E. Intersection

When talking about static geometries, it is common to
discuss their intersection, union or difference. The ISO 19141
standard also defines an intersection operator between a tem-
poral geometry and any other geometry, either temporal or
static. This operation returns a temporal geometry describing
the intersection between both geometries at any point in time.

When looking at the intersection between a temporal and a
fixed geometry, it is clear that the result will not be of fixed
shape. The same goes intersecting two temporal geometries.
Since deforming geometries are not modeled in ISO 19141,
this function cannot be defined. Alternatively, a special defi-
nition of its semantic has to be added.

F. RotationAtTime

The standard describes an operation called rotationAtTime,
which returns the rotation needed to correctly orient the
geometry in the global frame at the given time. Assuming
a (3D) rigid geometry with a natural front, left and up parallel
to the X, y and z-axis respectively, this operation returns the
rotation that we need to apply to its rotation centre to give it
the correct orientation at the given time.

We define three versions of the rotationAtTime operation
that vary on the return type: angle, quaternion and ma-
trix. In our model, the rotation angles/quaternions, which
are stored in the instants, are expressed in reference to the
original geometry. Based on this, we implement the func-
tion quaternionAtTimestamp, that returns the rotation
quaternion at a given time. It represents the rotation we need
to apply to the first instant to orient the geometry correctly at
that timestamp. An optional argument initialQuaternion can be
used to describe the initial orientation of the geometry. The
function will then combine the rotation quaternion, defined
with respect to the first instant, with this initial quaternion.
The returned quaternion, as well as the optional quaternion
argument, is given as an array of four doubles. A similar func-
tion angleAtTimestamp is implemented for 2D rotations
and returns a single double value.

A third version, rotationMatrixAtTimestamp, con-
verts the result from rotation angle or quaternion to rotation
matrix, i.e., equations (6) and (7). The optional argument is
also received as a matrix. If the received matrix does not
correspond to a pure rotation, an error is thrown.

VII. USE CASE

The Danish Maritime Authority publishes histories of AIS
ship trajectories® in CSV format. Each row contains a single
point of a ship track. The relevant columns of this data are
listed in Table I. We transform into SRID 25832 (European
Terrestrial Reference System 1989), which is the CRS advised
by the Danish Maritime Authority. We use the CSV file from
September 29th, 2020. The file size is 1.9GB. It contains 8M
AIS points, in 1810 ship tracks.

T Timestamp MMSI ID of the vessel

X,y projected coordinates heading | Angle between 0 and 359
sizea | GPS to bow sizeb GPS to stern

sizec | GPS to starboard side || sized GPS to port side

TABLE I: AIS data columns

Assuming that this data is loaded in a table called
AISInput, we can then create the rigid temporal geometries
using the following SQL query.

Swww.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx

CREATE TABLE Ships (MMSI, Trip) AS
SELECT MMSI, tgeometryseq(array_agg (tgeometryinst (
ST_Rotate (ST_Envelope (ST_MakeLine (

ST_MakePoint (x - sized, y + sizea),
ST_MakePoint (x + sizec, y - sizeb)
)), — radians (heading), ST_MakePoint (x, y)),

T) ORDER BY T))
FROM AISInput GROUP BY MMSI;

The red section in the query corresponds to the creation
of the geometry that represents the vessel. We represent
the vessels using rectangles, and we size and rotate these
rectangles according to the given data. Fig. 9 illustrates the
construction of the rectangle for a single record.

Fig. 9: Construction of the geometry of a vessel.

After adjusting the input geometries, single instants are
constructed using the tgeometryinst function. All in-
stants are then aggregated into an array and passed to the
tgeometryseq constructor which is equivalent to SE-
QUENCE((geometry(Polygon)). This function will thus con-
struct the rigid temporal geometry object by iteratively calling
the encoder function for all instants.

We compare this construction with the construction of the
temporal point representation of the AIS ships, as a baseline,
and a second comparison with an equivalent construction of
fixed-shape moving regions in SECONDO. While SECONDO
contains a fixed-shape moving region algebra, not all opera-
tions are implemented, and specifically, the constructor only
allows for two input instants instead of a sequence of instants.
For this comparison, we thus apply the constructor on every
pair of subsequent instants, which is the closest approximation
of the MobilityDB tgeometryseq constructor.

The construction query in MobilityDB completes in 51
seconds for temporal points and 2 minutes 37 seconds for
temporal geometries, compared to the 45 minutes needed in
SECONDO. This construction operation creates a total of 1810
trips, starting from 8M AIS records. The constructed temporal
geometry data is also about 1.2 times the temporal points.
Compared to SECONDO there is a 50% gain in storage space.

Although this comparison is done on a small data set, the re-
sults are conclusive enough to show the improved performance
of our implementation compared to SECONDO. Section 5
presents a generator for temporal geometry data based on
the BerlinMOD generator and displays similar performance
comparisons between temporal points and geometries. This
generator also uses the 3D temporal geometry implementation.

A. Data Retrieval and Visualization

With the table Ships (MMSI, Trip) containing the tem-
poral geometries, we can now use the implemented operations

2556

to analyze these temporal geometries. In the following query,
we compute the starting geometry of the vessels that were in
the region (, created using ST_MakeEnvelope,) between
the ports of Rgdby and Puttgarden when they first started
emitting data, as well as their nearest approach to one end
of the breakwater of the port of Rgdby.

SELECT MMSI,
valueAtTimestamp (Trip, startTimestamp (Trip)),
nearestApproachDistance (Trip, geometry ’SRID
=25832;POINT (651337.45 6058377.98)")
FROM Ships
WHERE ST_Contains (ST_MakeEnvelope (640730, 6058230,
654100, 6042487, 25832), valueAtTimestamp (Trip,
startTimestamp (Trip)));

The result type of valueAtTimestamp is a PostGIS
geometry and we can thus visualize these results in QGIS.
The area close to the port of Rgdby is shown in Fig. 10a,
with the vessels returned by the query. Fig. 10b is a zoomed-
in version of the previous figure and displays the rectangular
geometry of one of the ships on the top-right of Fig. 10a.

The query also returns the nearest approach distance to one
end of the port of Rgdby. The results show that the ship
with MMSI = 219000429 came closest with a distance of
20.3 meters. The equivalent query on temporal points gives a
distance of 40.5 meters instead, which shows the importance
of using the ship geometry for this operation.

B. Indexing on Temporal Geometries

We extend the GiST and SP-GiST indexes of MobiltiyDB,
implementing respectively R-tree and Oct-tree on temporal
geometries. These indexes store the bounding boxes of the
temporal type and can be used to accelerate queries containing
operators such as overlaps (&&), contained by (<@),
etc.

The following two queries create a GiST index on the Trip
column and lists all the vessels whose trip started after 12 pm
and ended before 4 pm. We can see in the query plan of the
second query that the index is indeed used.

CREATE INDEX ShipsIndex ON Ships USING GiST(Trip);

EXPLAIN SELECT MMSI FROM Ships WHERE Trip <@ period
' [2020-09-29 12:00:00, 2020-09-29 16:00:00)";

Bitmap Heap Scan on ships
Recheck Cond: (trip <@ ’STBOX T((,,2020-09-29
12:00:00+02), (,,2020-09-29 16:00:00+02)) " : :stbox)
-> Bitmap Index Scan on shipsindex
Index Cond: (trip <@ ’STBOX T((,,2020-09-29
12:00:00), (,,2020-09-29 16:00:00))’ ::stbox)

VIII. A DATA GENERATOR FOR RIGID TEMPORAL
GEOMETRIES

To the end of facilitating the research and development work
with Rigid Temporal Geometries, this section proposes a data
generator. Such a synthetic data generator alleviates the effort
for collecting real data, and provides the possibility to scale
the generated data size as per the experiments needs.

We base this data generator on the BerlinMOD benchmark
data generator [17]. BerlinMOD simulates car movements

(2) ()

Fig. 10: Visualization of ship geometries retrieved from tem-
poral geometries using valueAtTimestamp.

in a city capturing normal life scenarios: drive to work,
drive to home, and afternoon and weekend leisure trips. The
simulation can be controlled by a scale factor parameter, which
decides the number of simulated cars, and days. In its original
proposal, BerlinMOD generates temporal point objects repre-
senting car trajectories. It has two available implementations:
one in SECONDO®, and a second one in MobilityDB7.

We extended BerlinMOD to output 2D or 3D rigid temporal
geometries, where every car is represented using a randomly
selected 2D/3D geometry from a given list of shapes.

The generator is implemented in PL/pgSQL (Procedural
Language/PostgreSQL). Constructing the data is done by
calling the SQL function berlinmod_generate (dim,
scale factor). The first argument decides the dimension
of the vehicle shape. (0 = point, 2 = polygon and 3 = polyhe-
dron). Setting dim = 0 corresponds to the original BerlinMOD.
The scale factor argument varies the size of the generated data.
A scale factor of 1.0 simulates 2000 vehicles for 28 days,
which corresponds to a total of 157635 trips having on average
593 instants per trip after normalization. The generator stores
the simulated trips in the table Trips (vehicle, day,
seq, source, target, trip), where the trip col-
umn is the temporal geometry. The following two queries
illustrate a sample to experiment with the generated data.

Query 1 -- geometry at a random timestamp:

SELECT valueAtTimestamp (Trip, startTimestamp (Trip) +
random () * (endTimestamp (Trip) -startTimestamp (Trip)))
FROM Trips;

Query 2 —-- trajectory of the centre of rotation:
SELECT trajectory(Trip) FROM Trips;

Point | 2D Geometry | 3D Geometry
Generation time (minutes) | 33 83 360
Data size (MB) 2461 2873 3621
Index Size (MB) 28 28 25
Query 1 (s) 314 26.8 36.1
Query 2 (s) N/A 56.9 58.8

TABLE II: Data statistics for scale factor 1.0.

Table II shows the duration of the generation for points
as well as 2D and 3D geometry types, together with the

Shttp://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html
Thttps://docs.mobilitydb.com/MobilityDB-BerlinMOD/master/

size of the trip column and the size of the R-Tree index
constructed on this same column. All these values correspond
to a scale factor of 1.0. These results show that there a
difference in the generation time, which is expected due to the
increasing complexity of computing the transformation vectors
and normalization. The contrast in data size is not high, thanks
to the delta encoding. The index size is almost the same for all
types, because the index stores bounding boxes. For the two
queries, the runtimes of the different types are also similar,
because the processing is done on the transformation vectors,
rather than on the geometries themselves.

IX. COMMENTS ON THE STANDARD

During this implementation of the ISO 19141 standard, both
strong and weak points of the standard were exposed. This
section presents our implementer insights.

First of all, the structure of the standard is well-done and it
presents all the necessary types in an understandable hierarchy.
The scope of the standard is also clearly defined in the
introduction. The inheritance hierarchy, however, results in
two inconsistencies. Firstly, the intersection operation is also
present for rigid temporal geometries, which contradicts the
decision of keeping deforming regions out of scope of the
standard, as is discussed in Section VI-E.

Secondly, the MF_RigidTemporalGeometry type inher-
its from MF_PrismGeometry and forces the base ge-
ometry to be of fixed-shape, which is correct. How-
ever, the MF_RigidTemporalGeometry also inherits from
MF_TemporalTrajectory. Since this type represents the move-
ment of a single point, and an object of this type is already
present in MF_PrismGeometry to represent the movement of
the centre of rotation of the geometry, we believe that this
second inheritance should not be present. Indeed, multiple
operations on temporal point trajectories are not possible or do
not make sense when talking about rigid temporal geometries.

In its current form, the ISO 19141 schema does not allow
for temporal gaps within the object representation. Temporal
gaps represent durations where we have no information about
the moving object (e.g., missing sensor readings), or when
we selectively want to remove certain durations. An example
for the latter case is when we want to only keep the parts
of the trip, where the speed is greater than some threshold.
Because the standard assumes that an MF_TemporalGeometry
object is a continuous mapping from time to geometry, gaps
cannot be represented. One possible solution is to change it
into an array of such mappings, so that every inner array
represents a continuous piece of the movement, and between
two consecutive arrays there is a temporal gap.

X. CONCLUSION

This paper presented a data model and an implementation of
the ISO 19141 rigid temporal geometries, in the open-source
moving object database MobilityDB. Delta encoding has been
used to compact the representation into a list of transforma-
tions in the form of translation and rotation parameters.

A baseline of algorithms was proposed, that are necessary
to manipulate this new data type. We further implemented the
operations in the ISO 19141 standard.

The experimental validation showed that the data repre-
sentation size and the query performance are comparable to
temporal points. The integration with PostGIS and MobilityDB
also yields the advantage of exploiting their ecosystems and
functions, such as QGIS visualization, and GiST indexes.

We also implemented a data generator for rigid temporal ge-
ometries in 2D and 3D, based on the BerlinMOD generator for
temporal points. It is available as open source in PL/pgSQL.
Thus its scenario can be further tailored to the R&D needs.

We look forward in the future to determining interesting
operations on rigid temporal geometries and implementing
them into MobilityDB, and to enrich the user API similar to
what is currently possible with temporal points.

REFERENCES

[1] ISO/TC 211 Geographic Information/Geomatics, “Geographic informa-
tion — Schema for moving features,” International Organization for
Standardization, Standard, 2008.

[2] F. Goerlandt and P. Kujala, “Traffic simulation based ship collision
probability modeling,” Reliability Engineering System Safety, vol. 96,
pp. 91-107, 2011.

[3] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 3061-3070.

[4] E. Zimanyi, M. Sakr, and A. Lesuisse, “MobilityDB: A Mobility
Database based on PostgreSQL and PostGIS,” ACM Transactions on
Database Systems, vol. 45, p. 42, 2020.

[5] (1996-2020) PostgreSQL: The World’s Most Advanced Open Source
Relational Database. [Online]. Available: https://www.postgresql.org/

[6] (2001-2020) PostGIS — Spatial and Geographic objects for PostgreSQL.
[Online]. Available: https://postgis.net/

[71 R. Giiting, T. Behr, and C. Diintgen, “SECONDO: A Platform for
Moving Objects Database Research and for Publishing and Integrating
Research Implementations,” IEEE Data Eng. Bull., vol. 33, pp. 56-63,
2010.

[8] X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao, “UlTraMan: A
Unified Platform for Big Trajectory Data Management and Analytics,”
Proc. VLDB Endow., vol. 11, pp. 787-799, 2018.

[9] M. Bakli, M. Sakr, and T. H. A. Soliman, “HadoopTrajectory: a Hadoop
spatiotemporal data processing extension,” Journal of Geographical
Systems, vol. 21, pp. 211-235, 2019.

[10] R.Li, H. He, R. Wang, S. Ruan, Y. Sui, J. Bao, and Y. Zheng, “TrajMesa:
A Distributed NoSQL Storage Engine for Big Trajectory Data,” in 2020
IEEE 36th International Conference on Data Engineering (ICDE), 2020,
pp. 2002-2005.

[11] L. Forlizzi, R. H. Giiting, E. Nardelli, and M. Schneider, “A Data Model
and Data Structures for Moving Objects Databases,” in Proceedings of
the 2000 ACM SIGMOD International Conference on Management of
Data, 2000, pp. 319-330.

[12] J. A. Cotelo Lema, L. Forlizzi, R. H. Giiting, E. Nardelli, and M. Schnei-
der, “Algorithms for Moving Objects Databases,” The Computer Journal,
vol. 46, pp. 680-712, 2003.

[13] F. Heinz and R. H. Giiting, “A polyhedra-based model for moving re-
gions in databases,” International Journal of Geographical Information
Science, vol. 34, pp. 41-73, 2019.

[14] F. Heinz and R. Giiting, “A data model for moving regions of fixed
shape in databases,” International Journal of Geographical Information
Science, vol. 32, pp. 1737-1769, 2018.

[15] E. B. Dam, M. Koch, and M. Lillholm, “Quaternions, Interpolation and
Animation,” Department of Computer Science, University of Copen-
hagen, Tech. Rep., 1998.

[16] ISO/TC 211 Geographic Information/Geomatics, “Geographic informa-
tion — Temporal schema,” International Organization for Standardization,
Standard, 2002.

[17] C. Diintgen, T. Behr, and R. Giiting, “BerlinMOD: A benchmark for
moving object databases,” VLDB J., vol. 18, pp. 1335-1368, 2009.

2558

