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Abstract—Structure Learning for Bayesian network (BN) is an
important problem with extensive research. It plays central roles
in a wide variety of applications in Alibaba Group. However,
existing structure learning algorithms suffer from considerable
limitations in real-world applications due to their low efficiency
and poor scalability. To resolve this, we propose a new structure
learning algorithm LEAST, which comprehensively fulfills our
business requirements as it attains high accuracy, efficiency and
scalability at the same time. The core idea of LEAST is to
formulate the structure learning into a continuous constrained
optimization problem, with a novel differentiable constraint
function measuring the acyclicity of the resulting graph. Unlike
with existing work, our constraint function is built on the spectral
radius of the graph and could be evaluated in near linear
time w.r.t. the graph node size. Based on it, LEAST can be
efficiently implemented with low storage overhead. According
to our benchmark evaluation, LEAST runs 1–2 orders of
magnitude faster than state-of-the-art method with comparable
accuracy, and it is able to scale on BNs with up to hundreds of
thousands of variables. In our production environment, LEAST
is deployed and serves for more than 20 applications with
thousands of executions per day. We describe a concrete scenario
in a ticket booking service in Alibaba, where LEAST is applied
to build a near real-time automatic anomaly detection and root
error cause analysis system. We also show that LEAST unlocks
the possibility of applying BN structure learning in new areas,
such as large-scale gene expression data analysis and explainable
recommendation system.

I. INTRODUCTION

Discovering, modeling and understanding causal mecha-

nisms behind natural phenomena are fundamental tasks in

numerous scientific disciplines, ranging from physics to eco-

nomics, from biology to sociology. Bayesian network (BN) is

prominent example of probabilistic graphical models and has

been recognized as a powerful and versatile tool for modeling

causality. Each BN takes the form of a directed acyclic graph

(DAG), where each node corresponds to an observed or hidden

variable and each edge defines the causal dependency between

two variables. By further specifying the conditional probability

distributions based on the causal structure, one eventually

obtains a joint probability distribution for the model variables.

In real-world situations, running randomized controlled

trials uncovering causal relationships for BN can be costly
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and time consuming. Sometimes, it is even impossible due to

ethical concerns. Thus, it has been of great interest to develop

statistical methods to infer the structure of BN purely based

on observed data. This problem, called structure learning,

has become a research hot spot in machine learning (ML)

community. Traditional applications include gene expression

data analysis [18], [26], error identification [36], model factor-

ization [9] and system optimization [34], to name but a few.

Application Scenarios. In Alibaba Group, a very large-scale

company, structure learning for BN has been applied in a

wide range of business scenarios, including but not limited

to the areas of e-commerce, cloud computing and finance. In

these areas, monitoring production systems is a representative

application of BN structure learning. Traditional monitoring

methods require a significant amount of human resources to

analyze and understand log information compiled from a wide

variety of internal and external interfaces. Thus, monitoring

results heavily rely on personal experience, which may be

inaccurate and incomplete. Meanwhile, due to complex data

pipelines, business logic and technical infrastructure, staff

feedback may not be obtained in time, greatly affecting the

usability of some applications such as ticket booking and cloud

security. For example, in an airline ticket booking application,

operation staff often needs from several hours to days to find

possible reasons causing booking errors.

To overcome these limitations, BN is a robust and inter-

pretable tool for automatic anomaly detection and fast root

error cause analysis in monitoring production systems. Due

to the complexity and scale of our systems, BN needs to be

generated in a data-driven fashion without relying too much

on expert input. Therefore, it is very necessary to design a

scalable and efficient structure learning method for BN to

fulfill our business requirements.

Challenges. Learning the structure of a BN purely from

data is a highly nontrivial endeavour, and it becomes much

more difficult for our concrete business applications. Existing

structure learning algorithms for BNs are based on discrete

combinatorial optimization or numerical continuous optimiza-

tion. Combinatorial optimization algorithms [1], [4], [5], [8],

[10], [12], [13], [16], [20], [24], [28] can only produce accurate

results for BNs with tens of nodes. Their accuracy significantly

declines in the larger regimes. Recently, [17], [18], [37]–[39]
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proposed a new paradigm by measuring the acyclicity of a

graph in a numerical manner. In this paradigm, the structure

learning problem is transformed into a constrained continuous

optimization problem and can be solved using off-the-shelf

gradient based methods. Therefore, this class of algorithms

can be easily implemented in modern ML platforms and tend

to produce accurate results. Yet, they suffer from efficiency and

scalability issues. The time and space cost of computing the

acyclicity metric are O(d3) and O(d2) for a d-node graph [38],

[41], respectively, which only scales well to BNs with up to a

thousand of nodes. As our application scenarios often contain

tens of thousands to millions of variables, no existing method

is applicable.

Our Contributions. In this paper, we tackle the above chal-

lenges by proposing a new structure learning algorithm called

LEAST. It comprehensively fulfills our business requirements

as it simultaneously attains high accuracy, high time effi-

ciency and superior scalability. We leverage the advantages

of continuous optimization algorithms, while designing a new

way around their known drawbacks. Specifically, we find a

novel and equivalent function to measure the acyclicity of

the resulting graph based on its spectral properties. This

new acyclicity constraint function is differentiable and much

easier to compute. Based on it, LEAST can be efficiently

implemented with low space overhead. Therefore, LEAST is

able to learn structure of very large BN. We have deployed

LEAST in the production environment of Alibaba. It now

serves more than 20 business applications and is executed

thousands of times per day.

Our main contributions can be summarized as follows:

• We propose LEAST, a scalable, efficient and accurate

structure learning algorithm for BN. It is built upon a new

acyclicity constraint, whose time and space computation cost

is near linear w.r.t. the graph node size. (Sections 3 and 4)

• We conduct extensive experiments on benchmark datasets

to verify the effectiveness, efficiency and scalability of

LEAST. It attains a comparable result accuracy w.r.t. the

state-of-the-art method while speeding up the computation

by 1–2 orders of magnitude. Furthermore, it can scale to

BNs with up to hundreds of thousands nodes. (Section 5)

• We demonstrate the usage of LEAST in different applica-

tions, including a production task in ticket booking system,

a large-scale gene expression data analysis application and a

case study in building explainable recommendation systems.

We believe that this work represents a first step towards

unlocking structure learning for a wide range of scenarios.

(Section 6)

II. BACKGROUND

We first review some relevant concepts and background

knowledge on BN and structure learning in this section.

Bayesian Networks and Structural Equation Models. We

suppose that in our problem of interest we can observe a d-

dimensional vector1 X ∈ R
d of random variables. The random

1Unless otherwise statement, we assume all vectors to be column vectors.

vector X is assumed to be distributed according to some BN

with DAG G = (V,E), where V and E represent the set

of nodes and edges, respectively. Thus, each node i ∈ V
exactly corresponds to a random variable Xi of X , and each

edge (i, j) ∈ E indicates some kind of causal relation from

variable Xi to Xj . Let Xpa(i) denote the set of parent random

variables of Xi. Random variables in a BN model satisfy

the first order Markov property. That is, each variable Xi is

dependent on Xpa(i), but independent from all other random

variables conditioned on Xpa(i). Therefore, one can decompose

the high-dimensional joint probability density function (PDF)

p(X) of X into a product of compact local mass functions as

p(X) =
∏d

i=1 p(Xi|Xpa(i)), where p(Xi|Xpa(i)) = p(Xi) if

Xi has no parents.

BNs admit an interesting interpretation: one may regard

each variable Xi as a stochastic function of Xpa(i), so that

the causal relations encoded in a BN model naturally lead

to a structural equation model (SEM) [14], [21]. For i =
1, 2, . . . , d, let ni be a random noise variable and fi be a

measurable function. In an SEM, we set Xi = fi(Xpa(i))+ni,

to indicate the causal relation from parents Xpa(i) to the

random variable Xi. The functions fi(·) are modeled as some

linear or non-linear transformations of Xpa(i) to which i.i.d.

noise terms ni are added. Once fi(·) and ni are suitably

parameterized, an SEM may not only serve as a proxy to

BN, but one may also learn a BN via estimation of SEM

parameters.

In this paper, we consider the widely used linear SEM

(LSEM) [30]. This means we set Xi = wT
i X where wi[j] = 0

if Xj is not a parent of Xi, and noise terms ni are not restricted

to be Gaussian.

Structure Learning Problem. Given a sample matrix X =

[x1,x2, . . . ,xd] ∈ R
n×d containing n i.i.d. observations of

the random vector X assumed to follow a SEM model, the

structure learning asks to output a BN G which encodes the

causal relations between all Xi. For the LSEM case, let the

matrix W = [w1, w2, . . . , wd]. Learning the structure of G is

equivalent to finding the matrix W where node i connects to

node j in G iff W[i, j] 6= 0. For clarity, we denote the graph

induced by W as G(W). For a matrix W, a decomposable

loss function L(·), such as the least squares or the negative log-

likelihood on all nodes, may be used to evaluate how well the

model corresponding to W fits the observed data. Hence, the

structure learning problem is essentially solving the following

program, which has been proven to be NP-Hard in [3]:

argminW L(W,X) =
1

n

d
∑

i=1

L(xi, w
T
i X),

subject to G(W) ∈ DAGs.

(1)

Existing Structure Learning Algorithms. From Eq. (1), the

key challenge in BN structure learning is how to enforce

the acyclicity constraint for G(W). Historically this has been

addressed using combinatorial optimization algorithms which

directly explore the search space of all DAGs to optimize

multiple kinds of loss scores [1], [5], [12], [16]. However, as



argminL(W,X)

s.t. G(W) ∈ DAGs

(a) Combinatorial optimization with search

space of all DAGs.

→

argminL(W,X)

s.t. h(W) = 0

(b) Continuous optimization with differen-

tiable acyclicity measure function h(W).

→

argminL(W,X)

s.t. δ(W) = 0

(c) Our method: optimize suitable upper

bound δ(W) for spectral radius of W.

Fig. 1. Different optimization paradigms of structure learning algorithms for BNs.

the search space grows super-exponentially in the number of

BN nodes, these methods can only scale to graphs with around

ten nodes [23]. Later on, a large number of approximate

combinatorial algorithms [4], [8], [10], [12], [13], [20], [24],

[28] have been proposed to speed up by some heuristic

pruning rules. They improve the efficiency while suffer a

significant decline in accuracy [22], [25] in the large-scale

regime. Besides, their scalability is still far from enough for

many real-world applications [7], [18].

As a breakthrough, [39] proposed a novel method called

NOTEARS to recast structure learning into a continuous op-

timization problem by measuring the acyclicity in a numerical

manner. As shown in Fig. 1(b), h(W) is a smooth non-

negative function evaluating the closeness of graph G(W)
with DAG. h(W) = 0 iff G(W) is exactly a DAG. Based

on this, the structure learning problem is transformed into

a constrained continuous optimization problem and can be

solved using off-the-shelf gradient based optimization meth-

ods. Algorithms in this class [17], [18], [37], [38] can generally

handle a wide range of differentiable loss scores and tend to

produce satisfying results. Yet, they suffer from efficiency and

scalability issues since computing h(W) requires O(d3) time

and O(d2) space for a d-node graph [38], [41]. According to

our tests, NOTEARS can process at most a thousand of nodes

on a NVIDA V100 GPU with 64GB RAM, requiring several

hours until convergence.

Summary Existing structure learning algorithms for BNs

suffer from considerable limitations w.r.t efficiency and scal-

ability. None of them is applicable in our company’s business

scenarios such as root error cause analysis and recommen-

dation systems containing tens of thousands to millions of

variables. To this end, we explore a new path to design efficient

and scalable structure learning methods fulfilling our practical

requirements. In the following Section 3, we propose a new

acyclicity constraint, which establishes a new paradigm of

structure learning for BNs. The detailed algorithm and its

applications are then presented in Section 4 and 6, respectively.

III. NEW ACYCLICITY CONSTRAINT

In this section, we address the key challenge of structure

learning for BNs by proposing a novel acyclicity constraint.

We present our fundamental idea in Section III-A. Details

on the formulation are given in Section III-B. Finally, in

Section III-C we present the actual computation scheme for

the constraint.

A. Preparations and Foundations

We first revisit the original constraint as presented in [38].

Based on this, we then explain the key points of our work.

Revisiting Existing Acyclicity Constraints. Let S = W◦W
where ◦ is the Hadamard product. Then, G is a DAG iff

h(S) = Tr(eS)− d = 0, (2)

where eS is the matrix exponential of S.

We can regard S as a non-negative adjacency matrix of the

graph G, where each positive element S[i, j] indicates an edge

(i, j) in G. For each k ≥ 1 and every node i, Sk[i, i] is the

sum of weights of all k-length cycles passing through node i
in G. Therefore, there exist some cycles in G iff Tr(Sk) > 0

for some k ≥ 1. Since eS =
∑

∞

i=0
S

k

k! where S
0 = I, Eq. (2)

certainly indicates that there exist no cycles in G. Later, [37]

relaxes this constraint to

g(S) = Tr((I+ S)d)− d = Tr(

d
∑

k=1

(

d

k

)

S
k) = 0. (3)

For an acyclic graph G Eq. (3) holds since a simple cycle in

G contains at most d nodes.

The acyclicity metrics h(S) or g(S) have two inherent

drawbacks: 1) costly operations such as matrix exponential

or matrix multiplication, whose complexity is O(d3); and 2)

costly storage of the dense matrix eS or (I+S)d even though S

is often sparse. These two drawbacks fundamentally limit the

efficiency and scalability of existing continuous optimization

algorithms. To overcome the drawbacks, we need to design a

new acyclicity metric for S with lightweight computation and

space overhead.

Fundamental Idea. We try to characterize the acyclicity of

graph using the spectral properties of the matrix S. Without

loss of generality, let δ1, δ2, . . . , δd be the d eigenvalues of

matrix S. Since S is non-negative, we have: 1) δi ≥ 0 for all

1 ≤ i ≤ d; 2) Tr(S) =
∑d

i=1 δi; and 3) δk1 , δ
k
2 , . . . , δ

k
d are the

d eigenvalues of matrix S
k for all k ≥ 2. The absolute value of

the largest eigenvalue δ is called the spectral radius of S. By

its definition, we obviously have
∑

∞

k=1 Tr(Sk) = 0 iff δ = 0.

Therefore, the spectral radius can be used as a measure for

acyclicity.

Prior work [18] has used δ for the acyclicity constraint.

However, computing an exact or approximate spectral radius

also requires O(d3) or O(d2) time, respectively. To this end,

instead of using δ itself, we try to utilize a suitable proxy by

deriving an upper bound δ of δ, and then optimize Eq. (1) by

asymptotically decreasing δ to a very small value. When δ is



small enough, δ will be close to 0. As shown in Fig. 1(c), this

establishes a new paradigm of structure learning for BNs.

Requirements on δ. Obtaining an upper bound on the spectral

radius is a longstanding mathematical problem and closely

related to the well-known Perron-Frobenius theorem [2]. How-

ever, finding a suitable δ is a non-trivial task, which should

satisfy the following requirements:

R1: We can ensure acyclicity by using δ as a proxy for δ
during the optimization process, i.e., δ is consistent to

the exact δ.

R2: Differentiability w.r.t. S so that δ can be optimized with

off-the-shelf gradient based methods.

R3: δ and its gradient ∇Sδ should be time-efficient to com-

pute without involving costly matrix operations.

R4: δ and its gradient ∇Sδ should be space-efficient to

compute without costly intermediate storage overhead.

B. Acyclicity Constraint Formulation

We formalize our proposed upper bound δ in this subsection

and show that it satisfies the above requirements. Given a

matrix A, let r(A) and c(A) be the vector of row sums

and column sums of A, respectively. Given a vector v and

any real value α, let vα be the resulting element-wise power

vector. Our bound is derived in an iterative manner. Let

S
(0) = S = W ◦ W. For any k ≥ 0 and 0 ≤ α ≤ 1, let

b(k) = (r(S(k)))
α
◦ (c(S(k)))

1−α
, D(k) = Diag(b(k)) and

S
(k+1) = (D(k))

−1
S
(k)

D
(k), (4)

where we set (D(k))
−1

[i, i] = 0 if D
(k)[i, i] = 0. We set the

upper bound δ
(k)

=
∑d

i=1 b
(k)[i]. The following lemma states

the correctness of this upper bound, following [33]. Due to

space limits, we omit all proofs in this version.

Lemma 1: For any non-negative matrix S, k ≥ 0 and 0 ≤

α ≤ 1, the spectral radius δ of matrix S is no larger than δ
(k)

.

In Eq. (4), we apply a diagonal matrix transformation on

S
(k) and δ

(k)
gradually approaches the exact δ [33]. In our

experiments, we find that setting k to a small number around

5 is enough to ensure the accuracy of the results. The factor

α is a hyper-parameter balancing the effects of r(S(k)) and

c(S(k)). We set it closer to 0 when values in r(S(k)) are much

larger than those in c(S(k)) and vice versa so that the upper

bound δ
(k)

will be smaller.

Consistency between δ and h(S) and g(S). Next, we ver-

ify one by one that our upper bound satisfies all stated

requirements. At first, the following lemma establishes the

consistency between the upper bound δ(k) and the original

acyclicity metrics h(S) and g(S).
Lemma 2: For any non-negative matrix S, k ≥ 0 and any

value ǫ, α ∈ (0, 1), if the upper bound δ
(k)

≤ ln( ǫ
d
+ 1), then

h(S) ≤ ǫ holds; if the upper bound δ
(k)

≤ 1
α
logd

ǫ
d2 , then

g(S) ≤ ǫ holds.

By Lemma 2, it follows that it is safe to use δ(k) as a

proxy for h(S) and g(S) since they will also decrease to a

very small value when we optimize δ(k). According to our

benchmark evaluation results in Section V, the correlation

between δ(k) and h(S) often exceeds 0.9. This indicates that

R1 is satisfied. For the other requirements (R2–R4), we reserve

the examination of them for the following subsection.

C. Efficient Computation of δ and ∇Sδ

In this section, we introduce a time and space efficient way

to compute the upper bound δ
(k)

and its gradient ∇Sδ
(k)

.

Computing δ
(k)

. Given a matrix A and a column vector v,

let A◦v (or v◦A) and A◦vT (or vT ◦A) denote the resulting

matrix by multiplying v onto each column of A and vT onto

each row of A, respectively. The diagonal transformation in

Eq. (4) can then be equivalently written as

S
(k+1) = (D(k))

−1
S
(k)

D
(k) = (b(k))

−1
◦S(k) ◦ (b(k))

T
. (5)

Eq. (5) gives an explicit way to compute δ
(k)

, which only

requires scanning the non-zero elements in S
(k). Let s be the

number of non-zero elements in matrix S. Then, the time cost

to obtain δ
(k)

is O(ks). Since k is a small number and S is

often sparse for DAG, the time cost O(ks) is close to O(d).

Meanwhile, the space cost to obtain δ
(k)

is at most O(s).
Therefore, it is time and space efficient to compute δ.

Computing ∇Sδ
(k)

. We now turn our attention to computing

∇Sδ
(k)

, which clearly exists according to Eq. (4) so R2 is

satisfied. We will now manually apply backward differentia-

tion to the iteration defining ∇Sδ
(k)

(sometimes referred to

as the “adjoint” method outside of the ML literature). As a

result, we obtain a recipe for iteratively computing ∇Sδ
(k)

.

This iterative method will allow us to implement the gradient

such that ∇Sδ
(k)

remains sparse throughout the entire process.

To simplify notation, we denote the Hadamard product of

two vectors uα ◦ v−α as (u
v
)α. By Eq. (5) and Lemma 1,

following the chain rule, we obtain explicit formulae for

∇Sδ
(k)

as follows.

Lemma 3: For any non-negative matrix S, k ≥ 0 and 0 ≤
α ≤ 1, we always have

∇S(k)δ
(k)

= ∇S(k)b(k) = x(k) ◦ J+ (y(k))
T
◦ J, (6)

where x(k) = α
(

c(S(k))

r(S(k))

)1−α

, y(k) = (1− α)
(

r(S(k))

c(S(k))

)α

, and

J ∈ R
d×d is a matrix with all entries equal to 1.

Lemma 4: For any non-negative matrix S, k ≥ 1 and 0 ≤
α ≤ 1, given any 1 ≤ j ≤ k, suppose that we already have

∇S(j)δ
(k)

, let

z(j−1) = −
r(∇S(j)δ

(k)
◦ S(j−1) ◦ (b(j−1))

T
)

(b(j−1))
2

+ c((b(j−1))
−1

◦ ∇S(j)δ
(k)

◦ S(j−1)).

(7)

Then, we have

∇S(j−1)δ
(k)

= (b(j−1))
−1

◦ ∇S(j)δ
(k)

◦ (b(j−1))
T

+ x(j−1) ◦ z(j−1) ◦ J+ (y(j−1))
T
◦ (z(j−1))

T
◦ J,

(8)



Procedure FORWARD(W, k, α)

1: S
0 = W

2

2: for j = 0 to k do

3: b(j) ← (r(S(j)))
α
◦ (c(S(j)))

1−α

4: if j ≤ k − 1 then
5: compute S

(j+1) by Eq. (5)
6: end if
7: end for

8: return δ
(k)
←

∑d

i=1 b
(k)[i]

Procedure BACKWARD(W, k, α)

1: M←W
0

2: compute x(k) and y(k) by Lemma 3

3: compute ∇′

S(k)δ
(k)

by Lemma 5
4: for j = k to 1 do
5: compute x(j−1) and y(j−1) by Lemma 3

6: compute z(j−1) by Eq. (7)

7: compute ∇′

S(j−1)δ
(k)

by Eq. (9)
8: end for

9: return ∇Wδ
(k)
← 2∇′

S(0)δ
(k)
◦W

Fig. 2. Procedures for computing δ
(k)

and ∇Wδ
(k)

.

where x(j−1) and y(j−1) have the same meaning as Lemma 3.

Now, if we directly compute ∇Sδ
(k)

following the above

lemmas, the resulting algorithm would not be space effi-

cient since ∇S(k)δ
(j)

would be a dense matrix for all 0 ≤
j ≤ k. Nevertheless, since the final objective is to compute

∇Wδ
(k)

= 2∇Sδ
(k)

◦W, it is only necessary to compute the

gradient of non-zero elements in W and S. Interestingly, we

find that it is also safe to do this “masking” in advance. The

correctness is guaranteed by the following lemma.

Lemma 5: For any matrix W, k ≥ 1 and 0 ≤ α ≤ 1, let

M ∈ R
d×d be such that M[i, j] = 1 when W[i, j] 6= 0 and

M[i, j] = 0 otherwise. Let ∇′

S(k)δ
(k)

= x(k)◦M+(y(k))
T
◦M.

For all 1 ≤ j ≤ k − 1, let

∇′

S(j−1)δ
(k)

= (b(j−1))
−1

◦ ∇′

S(j)δ
(k)

◦ (b(j−1))
T

+ x(j−1) ◦ z(j−1) ◦M+ (y(j−1))
T
◦ (z(j−1))

T
◦M,

(9)

where x(j−1) and y(j−1) are defined in Lemma 3, and z(j−1)

is defined in Eq. (7). Then, we always have

∇Wδ
(k)

= 2∇′

Sδ
(k)

◦W. (10)

According to Lemma 5, we can obtain ∇Wδ
(k)

in a space

efficient way by properly making use of the sparsity structure

of W and S. For each 1 ≤ j ≤ k−1, the time cost to compute

x(j), y(j) and h(j) are all O(s). Therefore, the time cost to

compute ∇Wδ
(k)

is also O(ks), which is close to O(d) for

sparse W.

Procedures Description. To summarize, we describe the

whole process to compute δ
(k)

and ∇Wδ
(k)

in Fig. 2. Note

that computing both δ
(k)

and ∇Wδ
(k)

will cost at most

O(ks) time and O(s) space, near linear O(d) cost for DAGs.

Therefore, the requirements R3 and R4 are satisfied.

Algorithm LEAST(X,ζ, λ, ǫ, k, α,B, θ, To, Ti)

1: ρ← 1, η ← 1
2: repeat
3: W

∗, δ(W∗)← INNER(X, ζ, λ, ρ, η, k, α, B, θ, Ti)
4: η ← η + ρδ(W∗)
5: enlarge p by a small factor
6: until δ(W∗) ≤ ǫ or running To iterations
7: return W

∗

Procedure INNER(X,ζ, λ, ρ, η, k, α, θ, T )

1: randomly initialize W as a sparse matrix with density ζ using
Glorot uniform initialization

2: repeat
3: δ(W)← FORWARD(W, k, α)
4: ∇Wδ(W)← BACKWARD(W, k, α)
5: randomly fetch a sample XB from X with B samples

6: ℓ(W)← L(W,XB) +
ρ

2
δ(W)

2
+ ηδ(W)

7: ∇Wℓ(W)← ∇WL(W,XB) + (ρ+ δ(W))∇Wδ(W)
8: update W with some optimizer using ∇Wℓ(W) % e.g. Adam

9: filter all elements in W whose absolute value is less than θ
10: until ℓ(W) converges or running T iterations

11: return W and δ(W)

Fig. 3. Algorithm for large-scale BN structure learning.

IV. STRUCTURE LEARNING ALGORITHM

In this section, we propose the structure learning algorithm

built on top of the new acyclicity constraint introduced in

the previous section. Our algorithm is called LEAST, which

represents a Large-scale, Efficient and Accurate StrucTure

learning method for BNs. First, we present the details of the

algorithm in our exemplary LSEM case. Then, we shortly

discuss its implementation details.

LEAST Algorithm. Given a matrix A, let ‖A‖p denote the

p-norm of A for all p ≥ 1. Following [38], we set the loss

function in Eq. (1) as L(W,X) = 1
n
‖X−XW‖

2
2+λ‖W‖1,

that is the least squares with L1-regularization. We denote

δ(W) as the spectral radius upper bound of the matrix W.

To solve this optimization problem, we use the augmented

Lagrangian [19] method with some adjustments. Concretely,

we solve the following program augmented from Eq. (1) with

a quadratic penalty:

argminW

1

n
‖X−XW‖

2
2 + λ‖W‖1 +

ρ

2
δ(W)

2
,

subject to δ(W) = 0,
(11)

where ρ > 0 is a penalty parameter. Eq. (11) is then

transformed into an unconstrained program. Specifically, let

η denote the Lagrangian multiplier, and ℓ(W) = L(W,X) +
ρ
2δ(W)

2
+ηδ(W) represent the unconstrained objective func-

tion. Solving Eq. (11) then consists of two iterative steps:

1) find the optimal value W
∗ minimizing the function

ℓ(W);
2) increase the multiplier η to η + ρδ(W) and optionally

increase the penalty value ρ to improve convergence.

With the growth of ρ and η, since δ(W) ≥ 0, minimizing

ℓ(W) forces δ(W) to decrease to near 0. LEAST follows



this generic process. In each iteration, we use the Inner

procedure to optimize ℓ(W) using a first gradient based

method (line 3), such as Adam [15], and then enlarge ρ and

η (lines 4–5). Finally, we return W when δ(W) is below a

small tolerance value ǫ. In each iteration, we initialize W as

a random sparse matrix with density ζ using Glorot uniform

initialization (line 1). To improve efficiency and scalability, we

also incorporate the two techniques into LEAST:

1) Batching: in line 5 of INNER, we randomly fetch a batch

XB from X to optimize ℓ(W) instead of using X.

2) Thresholding: in line 9 of the Inner procedure, we

filter elements in W with absolute value below a small

threshold θ. A small numerical value in W indicates a weak

correlation between the two nodes, so filtering out them may

help ruling out false cycle-inducing edges in advance. It has

been shown that this helps to decrease the number of false

positive edges [35], [38], [40]. Moreover, removing these

elements makes W remain sparse throughout the optimization

process, thus ensuring overall computational efficiency.

Complexity Analysis. We now analyze the computational

complexity of each round in LEAST. Computing L(W, XB)
and its gradient ∇WL(W, XB) costs O(Bsd) time and

O(s+Bd) space, where s is the number of non-zero elements

in W. As a result, the time cost for computing the acyclicity

constraint O(s) << O(Bsd). Thus, overall training time will

be dominated by the first term in Eq. (11). Meanwhile, since

W remains sparse and XB is a small matrix, they can easily

fit into memory.

Implementation Details. We implement two versions of our

LEAST algorithm in Python:

1) LEAST-TF is a Tensorflow-based implementation using

dense tensors only. We rely on Tensorflow’s automatic differ-

entiation capabilities to compute gradients.

2) LEAST-SP based on the SciPy library, where we have

implemented LEAST using sparse data structures. We use the

CSR format to represent the sparse matrices. Gradients for

the constraint function δ are implemented according to the

description in Section III. We use the Adam [15] optimizer,

since it exhibits fast convergence and does not generate dense

matrices during the computation process.

The two implementations are used in different scenarios. We

generally use LEAST-TF for those cases where a dense W

may fit entirely into the (GPU) memory. This is particularly

relevant for those applications which have strict requirements

on training speed, such as real-time monitoring systems pre-

sented in Section VI-A. We also use LEAST-TF to validate

our method with respect to our accuracy and efficiency claims

in the following Section V.

For use cases where data contains hundreds of thousands

variables and a high degree of sparsity, we use LEAST-SP.

By leveraging sparse data structures, LEAST-SP is able to

deal with cases where the dense representation W does not

fit into GPU or main memory anymore. It is thus also used

for our scalability testing experiments in the next section.

We have deployed both LEAST-TF and LEAST-SP in

the production environment of our company. They are part

of an internal library supporting different applications in

Alibaba. Until now, they have been used in more than 20

business scenarios including production system monitoring,

recommendation systems, health care data analysis, money

laundering detection, could security and etc. It is executed

thousands of times per day. We also plan to release an open-

source implementation of LEAST to the research community.

V. EVALUATION RESULTS

We conduct extensive experiments to evaluate the accuracy,

efficiency and scalability of our proposed method. The results

are reported in this section.

Algorithms. We compare our LEAST algorithm with

NOTEARS, the state-of-the-art structure learning algorithm

for BN proposed in [38]. It provides the most straightforward

way to establish the correctness of our proposed method, while

allowing for a fair comparison w.r.t. computational efficiency.

We refrain from comparing with traditional combinatorial

optimization algorithms such as [22], [31], [32]. The reason

is that we obtain results consistent with [38], which already

shows that NOTEARS generally outperforms them.

Parameter Settings. In our LEAST method, for the upper

bound δ(W), we set k = 5 and the balancing factor α = 0.9.

For the optimizer in the INNER procedure, we use Adam [15]

and set its learning rate to 0.01. We set the initialization

density ζ = 10−4. We furthermore ensure that in LEAST-

SP Adam is operating on sparse matrices only. The maximum

outer and inner iteration numbers are set to 1, 000 and 200 for

all algorithms, respectively. Remaining parameters are tuned

individually for each experiment.

For NOTEARS we use the Tensorflow implementation

provided in [18]. Note that, it seems hardly possible to

implement NOTEARS purely using sparse matrices, as some

steps would always involve completely dense matrices.

Environment. All of our experiments are run on a Linux

server with a Intel Xeon Platinum 2.5 GHz CPU with 96 cores

and 512GB DDR4 main memory. For experiments on GPUs

we use a NVIDIA Tesla V100 SXM2 GPU with 64GB GPU

memory. We run each experiment multiple times and report

the mean value of each evaluation metric.

In the following, Section V-A reports the evaluation results

on artificial benchmark datasets in terms of accuracy and

efficiency. Section V-B examines the scalability of our method

on large-scale real-world datasets.

A. Artificial Datasets

We use the graph generation code from [38] to produce

benchmark artificial data. It generates a random graph topol-

ogy of G following two models, Erdös-Rényi (ER) or scale-

free (SF), and then assigns each edge a uniformly random

weight to obtain the adjacency matrix W. The sample matrix

X is then generated according to LSEM with three kinds of

additive noise: Gaussian (GS), Exponential (EX), and Gumbel

(GB). We vary the node size d, the sample size n and the

average degree of nodes. Following [38], we set the average
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Fig. 4. Evaluation results on artificial benchmark data.

node degree to 2 for ER and 4 for SF graphs. For fairness,

we compare LEAST-TF, the Tensorflow implementation of

LEAST with NOTEARS. We also slightly modify the termi-

nation condition of LEAST. At the end of each outer loop, we

also compute the value of h(W) and terminate when h(W)
is smaller than the tolerance value ǫ. In this way, we ensure

that their convergence is tested using the same termination

condition. For remaining parameters, we set the batch size B
equal to the sample size n, the filtering threshold θ = 0 and

the regularization penalty factor λ = 0.5. All experiments in

this subsection are run on the CPU.

Result Accuracy. We evaluate by comparing results with

the original ground truth graph G used to generate random

samples. Following [38], after optimizing the result matrix

W to a small tolerance value ǫ, we filter it using a small

threshold τ to obtain W
′, and then compare G(W′) with

G. We apply a grid search for the two hyper-parameters ǫ ∈
{10−1, 10−2, 10−3, 10−4} and τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5},

and report the result of the best case. We vary d =
10, 20, 50, 100 and set n = 10d. The results for the two graph

models with three types of noise are shown in Fig. 4.

The first two lines of Fig. 4 report the results in terms

of F1-score and the Structural Hamming Distance (SHD),

respectively. The third line reports the detailed Pearson cor-

relation coefficients of δ(W) and h(W) recorded during

the computation process of LEAST method. The error bar

indicates the standard deviation of each value. We have the

following observations:

1) For LEAST we obtain F1-scores which are larger than

0.8 in almost all cases. Meanwhile, the results for LEAST are

very close to those of NOTEARS in terms of the F1-score and

SHD. The difference appears to be negligible in most cases.

2) Our upper bound based acyclicity measure δ(W) is

highly correlated with the original metric h(W), with corre-

lation coefficients larger than 0.8 in all cases and larger than

0.9 in most cases. This verification indicates that δ(W) is

consistent with h(W) and a valid acyclicity measure.

3) Results of LEAST appear to have higher variance than

those of NOTEARS. This is likely due to small numerical

instabilities in the iterative computation process for δ(W).

4) the observed difference in variance between LEAST and

NOTEARS is larger on dense SF-4 graphs than sparse ER-

2 graphs, also more noticeable for large d ≥ 50 than small

d. Interestingly, as soon as the variance increases, correlation

coefficients decrease at the same time. This could be attributed

to the number of non-zero elements in W, which increases

w.r.t. d and the graph density.

Overall, this set of experiments shows that, for the above

graphs, our proposed acyclicity metric δ(W) produces results

consistent with the original metric h(W). Yet, we note that the
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Fig. 5. Scalability test of LEAST algorithm.

increased computational efficiency (see the following results)

comes at the price of an increased variance.

Time Efficiency. The evaluation results are reported in the

forth row of Fig. 4, which represents the execution time by

fixing ǫ = 10−4 and sampling size n = 10d. We find that:

1) LEAST runs faster than NOTEARS in all tested cases.

The speed up ratio ranges from 5 to 15. This is mainly due to

the fact that the time complexity of computing the acyclicity

constraint in the case of LEAST is much lower than that in

NOTEARS (near O(d) vs. O(d3)).
2) the speed up effects of LEAST are similar for different

graph models and noise types. This is because the time

complexity of LEAST only depends on d, but is independent

of all other factors.

3) the speed up effect is more obvious when d gets larger.

The speed up ratio is up to 10, 9.5 and 14.7 when d = 100,

200 and 500, respectively. This is because the time cost for

evaluating the acyclicity constraint grows almost linearly with

d in LEAST while cubic with d in NOTEARS.

Overall, this set of experiments indicates that LEAST

generally outperforms NOTEARS in terms of computational

efficiency, especially for larger graphs.

Summary. On artificial benchmark data, our LEAST algo-

rithm attains comparable accuracy w.r.t. the state-of-the-art

NOTEARS method while improves the time efficiency by

1–2 orders of magnitude.

B. Real-World Datasets

We examine the scalability of our method on large-scale

real-world datasets. Their properties of are summarized in

Table III. It should be noted that it is difficult to find suitable,

publicly available benchmark datasets which involve more

than thousands of variables. This is why we also present some

results based on non-public, internal datasets.

• Movielens is based on the well-known MovieLens20M [11]

recommendation dataset. We regard each movie as a node

and each user’s entire rating history as one sample. The

rating values range from 0 to 5 with an average rating of

about 3.5. We construct the data matrix X in a standard

way as follows: Let rij be the rating of user i for movie j.

Then, we set X[i, j] = rij −
∑ni

j=1 rij/ni, where ni is the

number of available ratings for user i, so that we subtract

TABLE I
PROPERTIES OF REAL-WORLD LARGE-SCALE DATASETS.

Dataset Name # of Nodes # of Samples

Movielens 27, 278 138, 493

App-Security 91, 850 1, 000, 000

App-Recom 159, 008 584, 871

each user’s mean rating from their ratings. We present a

case study using this dataset later in Section VI-C.

• App-Security and App-Recom are two datasets extracted

from real application scenarios at Alibaba. They are used in

the context of cloud security and recommendation systems,

respectively. Due to the sensitive nature of these businesses,

we cannot provide more details beyond their size.

We set the batch size B = 1, 000, the filtering threshold θ =
10−3 and the tolerance value ǫ = 10−8 and run LEAST-SP,

the sparse matrices based implementation of LEAST on them.

Note that, NOTEARS is unable to scale to these datasets.

Fig. 5 illustrates how the constraint value δ(W) and h(W)
varies with regard to the execution time. We find that:

1) In all cases, when optimizing the constraint δ(W), the

value of h(W) also decreases accordingly and converges to a

very small level. This verifies the effectiveness of our proposed

acyclicity constraint on large graphs.

2) Our proposed algorithm can scale to very large graphs

while taking a reasonable time. It takes 89.4, 67.2 and 6.5
hours on the datasets Movielens, App-Security and App-

Recom, respectively. So far, to the best of our knowledge, no

existing continuous optimization structure learning algorithm

can process SLP with more than 104 nodes, whereas our

proposed method successfully scales to at least 105 nodes.

VI. APPLICATIONS

In this section, we demonstrate several different types of

applications to show the effectiveness of our LEAST method.

Section VI-A describes how LEAST is used in the production

system of ticket booking service. Section VI-B describes the

usage of LEAST for large-scale gene expression data analysis.

Section VI-C presents a case study for applying LEAST in

the context explainable recommendation system.

A. Monitoring the Flight Ticket Booking Business

Scenario Description. Alibaba owns Fliggy (Fei Zhu), a

flight ticket booking service which serves several millions of



customers every day. It runs in a distributed system of consid-

erable size and complexity, both growing with each passing

day. The system is connected to wide range of interfaces to 1)

a variety of airlines; 2) large intermediary booking systems

such as Amadeus or Travelsky; 3) different smaller travel

agents; 4) other internal systems in Alibaba and etc. We use

the term fare source to reflect through which channel a ticket

is booked. The booking process of each flight ticket consists

of four essential steps: 1) query and confirm seat availability;

2) query and confirm price; 3) reserve ticket; and 4) payment

and final confirmation. Each step involved one or several API

requests of some interfaces stated above. All this information

is logged for monitoring.

Due to many unpredictable reasons, e.g., an update or main-

tenance of an airline’s booking system, the booking process

may fail at any step. To maintain a low rate of booking errors

and ensure customers’ experience, an automatic monitoring

system has been implemented. Whenever there is a sudden

increase in booking errors of each step, log data is inspected

to identify possible root causes. Once found, operation staff

can then manually intervene.

In this situation, the monitoring system must fulfill two

goals: 1) It should detect issues as fast as possible in order

to reduce the possibility of money loss due to unsuccessful

booking. 2) It should clearly find the actual root cause of a

problem, since a failure originating at a single point may easily

influence many other factors in the booking system.

Technical Details. Our LEAST algorithm plays a key role in

this monitoring system. It works in the following manner:

1) For every half hour interval, we collect log data T from

a window of the latest 24 hours and learn a BN network G
using LEAST. The nodes in G include the four “error-type

nodes” corresponding to the above four booking steps and

information on airlines, fare sources and airports in the ticket

booking system. Fig. 6 illustrates an example of the graph

learned by the ticket booking data with partial nodes.

2) For each node X of the four error types, we inspect

all paths P whose destination is X . That is, we follow the

incoming links of X until we reach a node with no parents.

Each P stands for a possible reason causing X . To detect

whether P is a random coincidence or not, we count the

number of occurrences of P in the log data T and T ′, i.e.,

the previous window of log data, and perform a statistical test

to derive a p-value. Depending on a threshold for the p-value,

the entire path P may be reported as an anomaly, with the tail

of P likely pinpointing the root cause for the problem.

In general, we have observed that learned BN structure (and

weights on edges) remain unchanged across periods, as long as

there are no observed anomalies leading to error rate increases.

However, in other cases, we have found that relatively large

increases in booking error rates are often accompanied by the

appearance of new links pointing to the error nodes.

Effects and Results. Owing to the high efficiency of our

LEAST method, the analysis task could be finished in 2–

3 minutes of each run. Therefore, the operation staff can

Fig. 6. Example of a graph learned from Fliggy booking data

with partial nodes.

take immediate actions to resolve the problems, rather than

waiting for several hours or days for domain expert analysis

and feedback as before. After deploying our LEAST-based

monitoring system, the first-attempt success booking rate, a

metric evaluating the percentage of all tickets having been

successfully booked upon the first try, has been improved.

To evaluate our LEAST-based monitoring system, we have

compared the output of LEAST for a period of several weeks

with results obtained manually from domain experts. Fig. 7

reports the results of this evaluation. Clearly, only 3% of the

reported cases are found to be false positives but 97% of

them are true positives. Among them, 42% of the reported

problems occur relatively frequently due to problems with

some external systems. 3%, 3% and 10% of the problems are

correctly associated to issues caused by airlines, intermediary

interfaces and travel agents, respectively, which has been

verified manually. The remaining 39% were related to actual

problems, the root causes of which remained unknown even

after manual inspection and analysis, which can be due to a

variety of highly unpredictable events (such as cabin or route

adjustments from airlines and sudden weather changes).

Table II reports some examples of observed anomalies with

explainable events. Some of these problems were ultimately

caused by technical issues with an airline or intermediary

interface. Other issues listed in Table II were caused by effects

of the COVID-19 pandemic, such as sudden travel restrictions.

While these events are not directly observable from the log

data, our method was able to successfully detect their effects

in our business.

Summary. Overall, our LEAST-based anomaly detection and

root cause analysis system has greatly reduced the amount

of manual labor for operation staff and improves the user

experience of its service. We also plan to deploy LEAST into

more similar applications.



TABLE II
FLIGHT TICKET BOOKING EXAMPLE CASES IDENTIFIED BY LEAST.

Date Identified Anomaly Path of Root Cause Explainable Events

2019-11-19 Error in Step 3 ← Fare sources 3,9,16 ← Airline AC
Air Canada booking system unscheduled maintenance, which
creates problems for a variety of different fare sources

2019-12-05 Error in Step 3 ← Airline SL ← Agent Office BKKOK275Q Inaccurate data for Airline SL from Amadeus

2019-12-09
Error in Step 3 ← Error code P-1005-16-001:-41203
Error in Step 3 ← Airline MU ← Fare source 5

Problem caused by internal system deployment

2020-01-23 Error in Step 1 ← Arrival city WUH Lock-down of Wuhan City and many flights are cancelled

2020-02-15/20/28 Error in Step 1 ← Arrival city BKK
Australia extended travel ban from China and
passengers sought Bangkok as a transfer point

2020-02-24
Error in Step 1 ← Departure city SEL
Error in Step 1 ← Airline MU

COVID-19 broke out in South Korea

external systems

42%
airline

3%

travel agent 10%

intermediary interfaces

3%

unpredictable events

39%

false alarms
3%

Fig. 7. Real-world evaluation results.

B. Gene Expression Data Analysis

We further apply our LEAST for gene expression data anal-

ysis, a traditional application of structure learning for BN [18],

[26]. We use the three well-known datasets Sachs [29], E.

Coli [27] and Yeast [27]. In each dataset, each node is a

gene and each sample represents the normalized expression

level values of some genes in a biological bench experiment.

The underlying networks are commonly referred to as gene

regulatory networks. We have the ground truth on the BN

structure of them.

We run our LEAST method and the state-of-the-art

NOTEARS method on a GPU. The evaluation results are

reported in Table I. Regarding accuracy, we inspect the false

direction rate (FDR), true positive rate (TPR), the false positive

rate (FPR) and ROC-AUC metrics. We observe that the

results of LEAST appear to be slightly better compared to

NOTEARS on all gene datasets. LEAST detects 45 and 104
more true positive edges than NOTEARS on E. Coli and

Yeast, respectively. Relatively, on E. Coli, LEAST improves

the F1-score and AUC-ROC by 3.5% and 5.2%, respectively.

We conjecture that this is due to slight numerical instabil-

ities due to the iterative nature of the process for computing

δ(W), which may eventually cause a higher variance in the

final results. However, it appears that this additional source of

noise acts as a form of implicit regularization, causing LEAST

to exhibt higher accuracy in the gene dataset experiments.

On a GPU, in terms of the run time, the speed up ratio

appears to be as not as significant as in the CPU case. This

is could be due to the high level of parallelism possible in

modern GPUs, concealing the speed up effects introduced by

the lower complexity matrix operations in LEAST. However,
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indicate positive and negative learned weights, respectively.

note that, typical sizes of modern GPU memory does not allow

for processing graphs larger than e.g. Yeast.

C. Recommendation Systems: Movielens Case Study

We provide here a case study using the Movielens dataset

to show how structure learning might find an application in

the context of recommendation systems. The purpose is to

exemplify how structure learning, once it is possible to apply it

on large-scale datasets, might play a role in understanding user

behavior and building explainable recommendation systems.

In particular, we find that the resulting DAG for this case

study resembles item-to-item graphs typically encountered in

neighborhood based recommendation systems [6]. Yet, since

our method is agnostic to the real-world meaning of the

random variables Xi, using structure learning one could also

learn graphs which combine relations between items, users,

item features and user features in a straight forward manner.

A qualitative inspection of the resulting DAG yields inter-

esting insights into the data. We present some of the learned

edges with the strongest weights in Table IV. We often find,

that links with strong positive weights indicate very similar

movies, i.e. movies from the same series, period or director.

Furthermore, a representative subgraph extracted around the

Movie Braveheart is presented in Figure 8. One may directly

interpret the learned structure as follows: given a user’s rating

for a specific movie, we start at the node corresponding to

the movie i and follow outgoing edges to movies j, while

multiplying the rating with weights for edges i → j. If

resulting values are positive one could predict whether based

on the original rating for movie i, a user might like (positive



TABLE III
PROPERTIES OF REAL-WORLD DATASETS IN EXPERIMENTS.

Metric
Sachs E. Coli Yeast

NOTEARS LEAST NOTEARS LEAST NOTEARS LEAST

# of Nodes 11 1, 565 4, 441

# of Samples 1, 000 1, 565 4, 441

# of Exact Edges 17 3, 648 12, 873

# of Predicted Edges 17 15 164 234 560 794

# of True Positive Edges 7 7 54 99 307 411

FDR 0.353 0.353 0.146 0.103 0.013 0.011
TPR 0.412 0.412 0.047 0.066 0.044 0.062

FPR 0.263 0.211 1.97× 10
−5

1.97× 10
−5

7.11× 10
−7

9.14× 10
−7

SHD 14 12 3, 492 3,422 12, 311 12, 079
F1-score 0.412 0.437 0.073 0.108 0.082 0.119

AUC-ROC 0.925 0.947 0.831 0.883 0.891 0.919

GPU Time (Sec) 134 53 811 415 6,610 6, 930

TABLE IV
EXAMPLES FOR TOP-10 LEARNED EDGES FOR Movielens

Link From Link To Weight Remarks

Shrek 2 (2004) → Shrek (2001) 0.220 same series
Raiders of the Lost Ark (1981) → Star Wars: Episode IV (1977) 0.178 same main actor
Raiders of the Lost Ark (1981) → Indiana Jones and the Last Crusade (1989) 0.159 same series

Harry Potter and the Chamber of Secrets (2002) → Harry Potter and the Sorcerer’s Stone (2001) 0.159 same series
The Maltese Falcon (1941) → Casablanca (1942) 0.159 same period

Reservoir Dogs (1992) → Pulp Fiction (1994) 0.146 same director
North by Northwest (1959) → Rear Window (1954) 0.144 same director

Toy Story 2 (1999) → Toy Story (1995) 0.144 same series
Spider-Man (2002) → Spider-Man 2 (2004) 0.126 same series

Seven (1995) → The Silence of the Lambs (1991) 0.126 same genre

value) or dislike the movie j. This indicates the possibility

of building a simple, yet explainable recommendation system

based on the learned graph structure.

We also observe an interesting phenomenon related to the

acyclicity constraint: So called “blockbuster” or very popular

movies, which can be assumed to have been watched by the

majority of users, such as e.g. Star Wars: Episode V (no

outgoing, but 68 incoming links) or Casablanca (no outgoing,

but 48 incoming links) tend to have a larger number of

incoming links than outgoing links. On the other hand, less

well known movies or movies indicative of a more specialized

taste, such as The New Land (with no incoming, but 221

outgoing links), tend to have more outgoing links.

One possible explanation for this could be given along the

thought: Since the majority of users enjoy e.g. Star Wars, we

do not obtain any interesting insight into a user’s taste if we

only knew that he or she would like e.g. Star Wars: Episode

V (no outgoing, but 68 incoming links) or Casablanca (no

outgoing, but 48 incoming links). On the other hand, enjoying

a movie such as the 1972 Swedish movie The New Land (with

no incoming, but 221 outgoing links) seems to be much more

indicative of a user’s personal tastes in movies.

VII. CONCLUSIONS AND FUTURE WORK

Driven by a wide variety of business scenarios in Alibaba,

we design LEAST, a highly accurate, efficient and scalable

on structure learning algorithm for BN. LEAST is built upon

a novel way to characterize graph acyclicity using an upper

bound of the graph spectral radius. Benchmark evaluation

exhibits that LEAST attains state-of-the-art performance in

terms of accuracy and efficiency. It is able to scale on BNs

with hundreds of thousands nodes. Moreover, LEAST has

been deployed in our production systems to serve a wide range

of applications.

This work makes the first attempt to apply theoretically

appealing method (BN) to address complex problems at the

intersection of machine learning and causality, which are

previously considered intractable. We believe that it would

attract more efforts on applying structure learning for BN to

problems involving large amount of random variables. We also

hope to implement LEAST in a distributed environment to

explore extremely large-scale applications.
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