
Distributed Company Control in
Company Shareholding Graphs

Andrea Gulino∗, Stefano Ceri∗, Georg Gottlob†, Emanuel Sallinger† and Luigi Bellomarini‡ §

∗Politecnico di Milano, name.surname@polimi.it
†TU Wien and Univ. of Oxford, surname@dbai.tuwien.ac.at

‡Banca d’Italia, luigi.bellomarini@bancaditalia.it

Abstract—The Company Control Problem is of central im-
portance to banks, financial intermediaries, financial intelligence
units, regulatory and supervisory authorities such as the Central
Banks. It consists in understanding who takes decisions in a large
company network, that is, who controls the majority of votes for
each single company. This has an impact on a large number of
business areas, with examples including evaluation of creditwor-
thiness, economic analysis of the control dispersion, anti-money
laundering, prevention of potentially hostile takeovers, evaluation
of risks, and shock propagation.

This paper is based on our experience with the Central Bank of
Italy and presents an approach to the solution of the company
control problem in distributed settings, especially relevant, as
large and distributed ownership graphs reflect European-size
applications where scalability is paramount.

In particular, we formalize the problem as query answering
on a large distributed database. We study how independent
subqueries can be executed in each partition and the partial
results assembled at a master site to produce the answer.
We study the formal properties of the problem, that is not
easily parallelizable, and then present a method that supports
parallelism at best.

We present a thorough experimental evaluation of our ap-
proach with the Italian company graph of the Bank of Italy and
the European Register of Financial Intermediaries and Affiliates
as well as many artificial graphs to fully assess scalability.

I. INTRODUCTION

Understanding who takes decisions in company networks,
exerting the so-called company control, is a well-known prob-
lem and of primary interest to a very broad spectrum of
financial authorities, banks, central banks, national statistical
offices, Financial Intelligence Units (FIUs), financial inter-
mediaries, including both the rising FinTechs as well as the
incumbent firms. All such actors wish to understand who,
for a given company, can control the vote majority, as it is
a generally accepted assumption [11] that voting rights have
a one-to-one correspondence to company shares. Control of
shares can be direct, in the sense that x directly owns such
shares of y (i.e., it is a shareholder of y), or indirect, in case
x controls a set of companies that jointly own shares of y.
This latter, inductive facet of control, makes its computation
by no means trivial and indeed much harder than standard
reachability queries, or variants thereof, over graphs.

The company control problem serves many different busi-
ness goals of the financial authorities, including financial and

§The views and opinions expressed in this paper are those of the authors
and do not necessarily reflect the official policy or position of Banca d’Italia.

bank supervision, anti-money laundering, credit worthiness
evaluation and collateral eligibility.

This paper is based on our experience with the Central Bank
of Italy. In its role of central bank within the European System
of Central Banks (ESBC), the Bank of Italy operates as a
EU-wide supervisory and regulatory body. In such a global
setting, the company control problem has a supernational span
and involves processing datasets of very large directed graphs
represented and stored in either relational or graph databases,
expressing the ownership relationship. In fact, the ESCB has
consolidated an EU-level supervision mechanism and, more
in general, is heading towards an integrated financial and
statistical systems that increasingly calls for a cooperation of
the national banks in data collection, processing and analysis
tasks. In these settings, for scalability, responsibility, and
privacy reasons, distributed data processing where multiple
and sometimes all the ESBC banks are involved are becoming
more and more common.

Yet, to the best of our knowledge, the algorithms that have
been proposed so far to solve the company control problem, in
both the technical [24] and the economics [11] communities,
are sequential and, unfortunately, do not meet the needs of
the real-world applications, which require highly parallelizable
methods to support a distributed version of company control,
with the following desiderata:

• Volume. The graph includes millions of companies which
ere extensively interconnected.

• Locality. The graph may be partitioned, owned and main-
tained by different sites for organisational reasons (e.g.,
different central banks, countries).

• Scalability (scaling-out). The algorithm should support
growing graphs.

• Performance (scaling-up). For specific applications (e.g.,
interactive analytics) the processing time must be limited.

In this work, we account for all these aspects and propose
an approach that combines effective graph data management
techniques with parallel and distributed query execution.
We see the problem as a query answering task on a large
distributed database and study how independent subqueries
can be executed at each partition (inter-site parallelism) with
a further level of intra-site parallelism, and the partial results
be assembled by a master site, producing the answer.

1

Figure 1: Subgraph of Italian ownership graph from [24], with
the 12 shareholders having the highest out-degree.

Contribution. The main contributions of this work are:
• Relevant industrial scenarios motivated by real processes of

the Bank of Italy within the ESCB, where the company
control problem is of major interest.

• A formalization of the company control problem and the
first characterization of its computational complexity.

• A parallel algorithm for solving the company control prob-
lem through recursive queries over large databases of own-
ership relationships.

• The definition of the distributed control problem as well as
a distributed parallel algorithm for it.

• A detailed experimental evaluation of our approach in the
ESCB scenario, using two real-world ownership graphs and
testing overall scalability with exhaustive synthetic settings.

Overview. The remainder of the paper is organized as follows.
In Section II we describe our industrial settings. In Section III
we formally characterize the problem, whose complexity is
studied in Section IV. In Section V, we propose a sequential
algorithm as well as its properties, an essential building
block of our parallel version, which is then presented in
Section VI. Section VII describes how the problem can be
effectively managed when data distribution reflects a national
organization and a transnational control. Section VIII evaluates
our approach in action. Section IX presents the related work
and in Section X we draw our conclusions.

II. INDUSTRIAL SCENARIOS

Let us start by describing the characteristics of the graphs
interested by the business goals described in the introduction.

The Italian graph. The Italian ownership graph is charac-
terized by a main large weakly connected component. As it
shown in Figure 1 (from [24] and sometimes referred to as “the
lung graph”), it contains the main 12 shareholding companies,
with the highest out-degree. Six of them own more than 200
other companies (the right lung), whereas another group of
six (the left lung) owns in turn a similar number. The main 12
shareholders are all owned, though not controlled, by 7 non-
Italian companies, located at the center of the lung graph and
displayed in yellow. More in detail, the graph counts 4.059M
nodes and 3.960M edges; it exhibits a high number of small
strongly connected components (SCC), 4.058M conglomerates
with 15 nodes in the largest one; also, although the graph has

one huge weakly connected component (WCC) with 1.598M
nodes, most of the nodes are scattered around small WCCs:
635.324K in total, with 6.390 nodes on average and none
with more than 175 nodes. On average, each node owns 1.431
companies and is owned by 2.716. There are 30 nodes owning
more than 225 firms, with 2 owning more than 1K.

In terms of topology, the graph is a scale-free network,
i.e., the degree distribution asymptotically follows a particular
degree law [22]. This topology is also confirmed by corporate
economics literature [10], which justifies this with portfolio
differentiation reasons.

The EU graph. The overall European graph is composed
of a set of scale-free networks, the local graphs, which are
interconnected via cross-country ownership and control rela-
tionships. Towards a production application of our approach
to distributed company control, we used the Italian graph as
a proxy version of the EU-level company graph, where the
real Italian graph of the Bank of Italy is used to train graph
generators and produce a realistic simulation version of the
overall EU graph. Scale-free networks are characterized by
a set of parameters, which control the distribution (e.g., in
terms of density) and give shape to each specific network [3].
With this assumption, we generated graphs for all European
countries as scale-free networks (whose parameters have been
fitted from the Italian graph) and connected them via a set of
“border companies” (between 2% and 5% of the total).

The Register of Intermediaries and Affiliates. We also
successfully applied our technique to the Register of Inter-
mediaries and Affiliates (RIAD) [23], the ownership network
of European financial companies run by the Bank of Italy
for the European Central Bank. While at the moment, this
graph is entirely stored at a single site, being able to swiftly
compute company control on RIAD data is extremely valuable
business-wise. In fact, control can be used as a predictor of
the collateral eligibility for asset-backed securities, a core
application RIAD is used for in the ESCB [14]. Due to its
structure, the RIAD graphs highlights the effectiveness of
parallelism, in our technique: 91% of the nodes are within
a one-node SCC, with one large SCC containing 88 nodes,
and all the others with less than 10 nodes; there is one huge
WCC, with 57% of the nodes, with the others scattered around
small WCCs with 11.968 nodes on average and (apart from
the largest one), none with more than 472 nodes.

III. THE COMPANY CONTROL PROBLEM

Let us now formally introduce the problem. A business own-
ership graph (or simply ownership graph) G = (V,E,L)
is a directed graph with nodes V representing companies,
directed edges E ⊆ (V 2 − {(v, v)|v ∈ V }), and a labelling
L : E → (0, 1] assigning each edge e = (v, w) ∈ E a
label L(e) representing the fraction of the equity of w that
v holds. For any node v ∈ V , it is required to hold that∑

w∈predv
L((w, v)) ≤ 1.

We will use the following notation: for an edge e = (h, t)
we will sometimes call the node h (resp. t) the head (resp.

2

tail) of e. For v ∈ V we denote by inv (resp. outv) the set
of incoming (resp. outgoing) edges of v, and by predv (resp.
succv) the set of predecessor (resp. successor) nodes of v.

The company control problem. Intuitively, company x con-
trols a company y when x directly owns more than 50% of y
or x controls a set of companies that jointly own more than
50% of y. Formally, the control relation can be defined by
the smallest set Control that satisfies the following logical
recursive query1 over a very large graph database - a classical
but not trivial data management problem:

Control(x)→ Control(x, x) (1)
Control(x, y),Own(y, z, w),

v = msum(w, 〈y〉), v > 0.5→ Control(x, z) (2)

Given an ownership graph G = (V,E, L) together with two
of its vertices, namely, a company s (source), and a company
t (target), the company control problem (CCP) is the decision
problem of determining whether Controls(s, t) holds, i.e., un-
derstanding whether s can control t either directly or indirectly.
We shall sometimes refer to this problem instance, or query,
as qc(s, t) if the graph G is clear from the context. Observe
that the structure of the inductive case (2) distances CCP from
standard pathfiding or weighted pathfinding settings in graphs,
and makes algorithms based on Dijkstra, A*, breadth-first
or iterative depth-first traversals [17], not helpful due to the
inherent difference between the problems. In fact, a company x
may exert control on a company y as a result of multiple paths
from x to y: a workable algorithm must be able to consider
only those that potentially contribute to control and exclude
the others. On the other hand, the standard algorithms either
find specific paths from x to y (shortest, lowest/highest weight,
etc.), or explore all of them. In particular, an approach to CCP
based on path-enumeration would be inherently intractable and
not parallelizable, as counting all s-t simple paths is a paradig-
matic #P-hard problem of enumerative combinatorics [19].

IV. COMPUTATIONAL COMPLEXITY

In this section, we explore the computational complexity
of the company control problem (CCP) an see what are the
margins of applicability for a parallel solution to it, suitable
to our setting. We first argue that the CCP is tractable,
and quadratic time in particular. Yet, unfortunately, we show
that it is P-complete, from which we cannot immediately
conclude it is parallelizable. In other words, an algorithm
solving the problem by a polylogarithmic round of parallel
steps on a polynomial number of processors (for example, via
MapReduce or similar techniques) is by no means trivial or
intrinsic of the problem itself and will be matter of Section V.

For proving tractability of the CCP, we have to provide
a polynomial-time algorithm whose input (G, s, t), where G
is an ownership graph and v and w are two of its nodes,

1v = msum(w, 〈y〉) is the monotonic sum of all w counting contributions
only once for each y [2]

determines whether v controls w. Actually, this algorithm
already exists, as one just needs to execute the logic program
given in Section III, for example using the Vadalog inference
engine [2]. However, let us here state a strictly procedural
program which does exactly the same:

Algorithm 1 Control by Expansion (CBE)
Input: (G,s,t), where G = (V,E, L).
Output: yes if s controls t in G, otherwise no.

Controlled← {s};
while there is some u ∈ V − Controlled such that
Σu′∈Controlled∧(u′,u)∈E L((u′, u)) > 0.5 do

Controlled← Controlled ∪ {u};
if t ∈Controlled then return yes else return no.

The above CBE algorithm thus starts with Controlled = {s}
(which would correspond to the first rule of the logic program
of Section III applied to s, and during the while-loop exhaus-
tively executes the second (recursive) rule. The CBE program,
in its set variable Controlled thus correctly accumulates all
companies that are controlled by s, and only those, and outputs
yes if t is in this final set and otherwise no. If the input graph
G has n company vertices, the while-loop is executed at most
n times, and each time it sums over no more than n elements.
Assuming appropriate data structures and a machine model
where an arithmetic operation can be done in one unit step,
the CBE algorithm thus runs in time O(n2). Therefore we can
state:

Theorem 1. The Company Control Problem (CCP) can be
solved in quadratic time and is thus tractable.

Now the question about the parallelizability of CCP arises.
Could we use parallel frameworks, such as, for example Map-
Reduce to solve CCP on a cluster of many computers with sub-
polynomially many sequential rounds of parallel computations
on all input instances? In more theoretical terms, is the CCP
problem in the complexity class NC? We will show that this
is actually not possible unless there were a dramatic, and
generally disbelieved collapse of complexity classes. In fact,
we are going to show that the CCP problem is P-hard, and
thus P-complete (here P stands for the class of polynomial-
time solvable decision problems). This means that CCP is
among the hardest problems in P, being at least as hard as
any other problem in P, and thus not in the class NC unless
NC=P, which is considered to be similarly unlikely as P=NP.
Problems that are P-hard are also referred-to as inherently
sequential problems. For a very survey of P-hardness and the
limits to parallel computations including a compendium of P-
hard problems see [13].

Theorem 2. The Company Control Problem (CCP) is P-hard
and thus, as a member of P, also P-complete. CCP is therefore
not parallelizable unless NC=P, that is, unless all polynomially
decidable problems are parallelizable. CCP, moreover, remains
P-hard even for acyclic company graphs that have less than
three times more edges than nodes (and are thus sparse).

3

Figure 2: Illustration of the reduction of MVCP to CCP.

Proof. (Sketch) We reduce the well-known P-hard Monotone
Circuit Value Problem (MCVP) via a logspace-reduction to
the CCP problem. An instance C of the MCVP consists of a
monotone Boolean circuit with input values, as depicted in the
left part of Fig. 2. It is transformed into an equivalent instance
of the CCP problem, as depicted in the right part of Fig. 2.

Each gate g is mapped to a company. In particular, the
unique output gate of C is mapped into a vertex named t.
In addition, there is an extra vertex s connected by an arc
labeled 1 to each vertex that corresponds to an input gate
with associated Boolean value 1. If g is an and-gate then an
arc (va, v) and an arc (vb, v), both labeled 0.5 are introduced.
Intuitively this enforces that s must control both va and vb in
order to also control v. If g is an or-gate then an arc (s, v)
labeled 0.4 and the two arcs (va, v), (vb, v), both labeled 0.2
are introduced. Intuitively this enforces that s must control at
least one of va and vb in order to also control v.

Although Theorem 2 is a negative result, it is a typical worst-
case complexity result, and there may be many cases where a
significant level of parallelization is still possible. In fact, in the
rest of the paper we will present efficient parallel algorithms
that perform very well in practice on the real-world and real-
world inspired synthetic graphs in our experimental evaluation.

V. ALGORITHM

In this section, we first classify the nodes of an ownership
graph into four classes that shall become central to the
algorithms in this paper. After that, we describe reduction rules
that act on these classes of nodes and apply simplifications to
the graph. As the final ingredient for our algorithms, we then
describe termination conditions.

Based on these parts, we are going to show how a central-
ized algorithm could be immediately constructed from these
concepts. This is to help foster understanding for the more
complex parallel and distributed algorithms that will follow.

A. Classes of Nodes

The reduction rules that we are going to present are node-
centric, i.e., their application depends exclusively on the class
of the individual node. We define four such classes:

• Irrelevant nodes (class C1): a node is irrelevant if it
misses incoming edges, outgoing edges or both. Formally
we have that:

C1 =
{
v ∈ V − | outv = ∅ ∨ incv = ∅

}
where V − = V \{s, t}. Such a node cannot play any role
in the control of s on t, and therefore can be removed.
For obtaining non-overlapping classes, C1 nodes will be
excluded from C2, C3 and C4.

• Uncontrollable nodes: (class C2): a node is uncontrol-
lable if the sum of the labels associated to its incoming
edges does not exceed 0.5. Formally:

C2 =
{
v ∈ V −

∣∣ ∑
e∈incv

L(e) ≤ 0.5
}
\ C1

This kind of nodes can neither be controlled directly nor
indirectly and, therefore, can be removed.

• Directly controlled nodes (class C3): a node v is directly
controlled if there exists a predecessor, namely wdc, than
owns more than 50% of v. Formally:

C3 =
{
v ∈ V − | ∃w (w ∈ incv ∧ L(w) > 0.5)

}
\ C1

Observe that wdc is the only predecessor that can directly
control v, as the sum of ownership cannot be larger than
1. Hence, all other nodes in the graph can indirectly
control v if and only if they control wdc. Thus node v
itself can be removed if we “transfer” its edges to wdc.

• Indirectly controllable nodes (class C4): a node is
indirectly controllable if the sum of the labels associated
to its incoming edges exceeds 0.5, but none of the labels
individually exceeds 0.5 (i.e., C3). Formally:

C4 =
{
v ∈ V − |

∑
e∈incv

L(e) > 0.5} \ (C1 ∪ C3)

Even if nodes in this class cannot be directly controlled
by any of their predecessors, they may be indirectly con-
trolled by other nodes in V (for example the source node).
Therefore, those nodes may be relevant for answering
qc(s, t) and cannot be immediately removed from the
graph.

Note that the union of the defined classes contains all the
possible nodes in a control graph except s and t and that, by
construction, these classes are disjoint. To sum up, we have
defined four classes: C1 and C2, describing nodes that can be
removed from the graph, C3, describing a relation between
nodes that can be simplified, and C4 containing nodes that
cannot directly be removed from the graph.

B. Reduction Rules

In this subsection, we define reduction rules, the second
component of our algorithm. A reduction rule is described
by means of: (i) an activation condition defined on a node
of the graph, that tells whether the rule can be applied to
remove that node from the graph. For our rules, the condition
checks whether the node belongs to one of the four classes

4

Figure 3: Four examples in which R3 is applied to a node
v ∈ G. In each reduced graph Rv , resulting from the appli-
cation of R3, v has been removed and the relations between
its predecessors (denoted by letter w) and successors (denoted
by letter u) have been simplified.

described in V-A and (ii) an action that tells how the graph
should change as a consequence of the activation of a rule (e.g.
remove the node and all its edges, add new outgoing edges to
a given node).

In order to define reduction rules, consider an ownership
graph G = (V,E,L) and two nodes s, t ∈ G that are
respectively the source and target nodes for which we want to
answer qc(s, t). In our notation, we generally use v to denote
the node to which the rule is applied and that, eventually, will
be removed from the graph; w and u to denote, respectively,
a generic predecessor of v and a generic successor of v. We
present the action associated to each rule as a function a(R, v)
that transforms the input graph R = (V,E, L) into the reduced
graph R′ = (V ′, E′, L′). The source and target nodes are
excluded a-priori from the application of any rule (i.e. they
should always remain in the graph).

1) R1, R2: Irrelevant or Uncontrollable Nodes: These two
rules differ in their activation condition (R1 matches any node
v ∈ C1, while R2 matches nodes v ∈ C2), but both have as
their action to remove v and all its edges from the input graph
R = (V,E, L). The following is a formal description of the
output graph R′ = (V ′, E′, L′):

a1/2(R, v) = R′ =


V ′ = V \ {v}
E′ = E \ (incv ∪ outv)

L′ = L \ {(e, k) | e ∈ (incv ∪ outv)}

2) R3: Directly Controlled Nodes: This rule matches any
node v ∈ C3, i.e. any node that is directly controlled by one of
its predecessors, namely wdc. In this case, v and its incoming
edges are removed from the graph, while the set of its outgoing
edges, along with their labels, can be transferred to wdc; i.e.,

what was previously owned by v is now owned by wdc.
Let us consider a number of examples to understand the

possible situations first. In Figure 3 (1) w directly controls v
(i.e. w = wdc), therefore v and its incoming edge are removed
from the graph while its unique outgoing edge is transferred
to w. In Figure 3 (2), w2 directly controls v (i.e. w2 = wdc),
therefore v and all its incoming edges are removed from the
graph while all its outgoing edges are transferred to w2.

In Figure 3 (3), we see that when the outgoing edges of
v are assigned to wdc, it may happen that there is already
an edge connecting wdc to a successor of s. In this situation,
instead of introducing parallel edges in the graph, i.e. an edge
with label m and another with label n, both connecting the
same couple of nodes, we just generate a single edge whose
label is the sum m + n.

In Figure 3 (4) we see a situation where w is both a
predecessor and a successor of v. The application of R3 in this
example would clearly introduce a self-loop on wdc. Since for
this instance of the company control problem self-loops are
neglectable, we exclude the generation of self-loops from the
application of R3.

We formalize the action of R3 as the following two steps:

Step 1. We remove v and all its edges from the graph in the
same way as for R1 and R2, producing a temporary reduced
graph Rt = (V t, Et, Lt) = a1(R, v).
Step 2. We assign to wdc the outgoing edges of v together
with their labels, unless there is already an edge connecting
wdc to a successor of v; in that case we just add a new label to
the already existing edge, as previously discussed. Formally,
this is performed through constructing the following sets:

• E+ and L+: respectively, the set of new edges that should
be assigned to wdc and were previously successors of v,
and the set of their labels. E+ is simply the domain of L+,
that is defined as follows:

L+ = {
(
(wdc, u), k)

)
| (wdc, u) 6∈ E ∧

wdc 6= u ∧ (v, u) ∈ outv ∧ L((v, u)) = k}

where condition wdc 6= u prevents the creation of self-
loops, and condition (wdc, u) 6∈ E excludes those edges
that would create a parallel if they were assigned to wdc.

• L−: are the labels of the already existing edges connecting
wdc to a successor of v. We are going to remove those
labels from the graph and replace them with new labels
defined in the next point. The definition of this set is the
following:

L− = {
(
(wdc, u), k)

)
|
(
(wdc, u), k)

)
∈ L ∧

(v, u) ∈ outv}

• L
⊕

: the new labels that should replace the labels defined in
the previous point. The definition of this set is the following:

L
⊕

= {
(
(wdc, u), k1 + k2)

)
|
(
(wdc, u), k1)

)
∈ L ∧

(v, u) ∈ outv ∧
(
(v, u), k2)

)
∈ L}

5

The overall action performed by R3, that produces the reduced
graph R′ = (V ′, E′, L′) from Rt = (V t, Et, Lt), is:

a3(R, v) = R′ =


V ′ = V t

E′ = Et ∪ E+

L′ =
(
Lt \ L−

)
∪ L+ ∪ L

⊕

Analysis. We are now going to show that the reduction rules
preserve the behaviour of the graph for answering company
control queries. This shall be essential for the completeness
and correctness of our algorithms. We first define control-
equivalence between graphs.

Definition 1. Two ownership graphs G and G′ are called
control-equivalent w.r.t. a set of companies X , denoted

G ≡c
X G′

if for any s, t ∈ X it holds that s controls t in G if and only
if s controls t in G′.

Note that the graph resulting from applying a reduction rule
in general contains a subset of the nodes of the original graph.
Therefore, control-equivalence is known to hold only for that
subset:

Proposition 1. Let Ri be a reduction rule (i ∈ 1, 2, 3) and let
G be an ownership graph. Let G′ = ai(G) and let V ′ denote
the set of nodes of G′. It holds that G ≡c

V ′ G′.

C. Termination Conditions

In principle, as our rules preserve control equivalence as
shown in Prop. 1, any algorithm based on these rules could
be executed exhaustively until no further rule is applicable.
Given that each of our reduction rules removes at least one
node, this would be guaranteed to terminate. Still, for obtaining
optimized algorithms, we define the following conditions that
allow us to terminate earlier:

• T1: The source node s does not directly control any node
in the graph. Formally:

outs = ∅ ∨ ¬∃e (e ∈ outs ∧ L(e) > 0.5) (T1)

In this case, there is no way for s to control t neither directly
nor indirectly. Query qc(s, t) is therefore false.

• T2: The target node t cannot be controlled by any other
node in the graph. Formally:

inct = ∅ ∨
∑

e∈inct

L(e) ≤ 0.5 (T2)

Also in this case there is no way for s to control t. Query
qc(s, t) is therefore false.

• T3: s directly controls t. Formally:

(s, t) ∈ E ∧ L((s, t)) > 0.5 (T3)

Query qc(s, t) is therefore true.

Procedure checkTermination simply returns a boolean value
indicating whether at least one of the termination conditions
is satisfied on R, i.e.:

checkTermination(qc, R) := T1 ∨ T2 ∨ T3

We shall later also use T3 to give the answer of our algorithm,
i.e., we define answer(qc, R) := T3.

VI. PARALLELISM

In this section, we propose a parallel solution for graph
reduction, based on the parallel application of rules R1 and R2
and enabling a certain degree of parallelism for the application
of rule R3. We conclude the section with an example.
The proposed solution:
• organizes the execution in steps (somehow similar to the

concept of super-steps used in Pregel [20]). Specifically, the
algorithm iteratively applies two steps: (1) parallel testing
of each node for the identification of their class; (2) parallel
removal of nodes, depending on their class;

• separates the application of R1 and R2 from the application
of R3, by splitting the overall execution in two phases:
(1) parallel elimination of useless nodes (v ∈ C1, C2);
(2) simplification of the remaining graph (v ∈ C3). As
shortly explained, while in the first phase R1 and R2 can be
fully applied in parallel, in the second phase, we can also
apply R3 partially in parallel, by identifying some non-
overlapping fragments of the graph that can be processed
in parallel.

procedure parallelReduction(G, qc, X)
Input: a graph G, a query qc(s, t), an exclusion set X .
Output: a tuple [globalAns,R].

1: G′ = mark(G, qc, X);
2: while (6 ∃v ∈ G′ | LV (v) ∈ {C1, C2}) do . Phase 1
3: if checkTermination(G′, qc) == true then
4: return [answer(G, qc), ∅];
5: G′ = clean(G′);
6: G′ = mark(G′, qc, X);

7: while (6 ∃v ∈ G′ | LV (v) = C3}) do . Phase 2
8: if checkTermination(G′, qc) == true then
9: return [answer(qc, G

′), ∅];
10: G′ = simplify(G′);
11: G′ = mark(G′, qc, X);

12: if checkTermination(G′, qc) == true then
13: return [answer(G, qc), ∅];
14: else
15: return [∅, G′];

The parallel algorithm is presented in the form of a procedure
named parallelReduction to be next invoked in a distributed
setting; it takes as input: (i) the ownership graph G; (ii) the
query qc(s, t); (iii) an exclusion set X , containing nodes that
are never removed from the graph. For this section, X =
{s, t}, i.e., the algorithm will never remove nodes s and t, but

6

the exclusion set will play an additional role in the distributed
version of the algorithm.

The algorithm produces as output the tuple [globalAns,G′],
where globalAns is the answer to q(s, t), while G′ is the
reduced graph that remains after applying reduction rules. The
reduced graph G′ is of course not required for giving the
answer to the query, but will be used in the distributed setting.
Moreover, we introduce an accessory labeling function LV

assigning each node v ∈ V the label LV (v). The algorithm
consists of two phases:

Phase 1: in this phase rules R1 and R2 are applied in parallel
to remove irrelevant or uncontrollable nodes from the graph,
by means of the following steps:
• mark: in parallel, each node v is labelled with a symbol

representing its class (i.e. C1, C2, C3 or C4). If v is in the
exclusion set X , it is marked with the symbol ⊥.

• clean: in parallel, each node that was marked either with
C1 or with C2 in the previous step is removed from the
graph, along with all its edges.

After applying the cleaning step, some nodes that were pre-
viously labeled with C3 or C4 may have lost some of their
incoming edges, thus changing their class into C1 or C2. If
this is the case, the mark and clean steps have to be repeated.
Phase 1 terminates when all C1 and C2 nodes have been
removed from the graph.

Phase 2: in this phase rule R3 is applied to simplify the graph
produced in the previous phase. Note that now the graph can
contain only nodes labeled with C3, C4 or ⊥. In this phase,
the following steps are iteratively applied:
• mark: the same procedure described for the first phase.
• simplify: in parallel for each node v that is marked either

with C4 or with ⊥ (i.e. for each node that cannot be
removed from the graph), perform a sequential reduction:
R3 is sequentially applied to the C3-successors of v until
no successor of v is marked with C3 (i.e. every successor
is another non-removable node).

Virtually, each node v defines an application context, i.e. a
sub-graph induced by all the nodes of type C3 in any path
from v to another non-removable node.

After applying the simplify step, some nodes that were
previously labeled with C4 may now be directly controlled,
thus changing their class to C3. If this is the case, the mark
and simplify steps have to be repeated. Phase 2 terminates
when all C3 nodes have been removed from the graph.

Procedure checkTermination, identical to the one described
in Section V, checks, at different steps, whether a termination
condition is satisfied, possibly causing an early stop of the
algorithm. Procedure answer produces the boolean answer to
qc(s, t), as described in Section V.

At the end of phase 2, only s and t remain in the graph (no
C4 can remain under those conditions). Therefore, the check
at line 14 will always yield true and the algorithm will always
terminate with the answer to qc(s, t) (given at line 15). Line 17
will be useful in the distributed context. All parallel procedures

Figure 4: Example of parallel reduction.

were implemented with GraphX, which is widely used for
implementing parallel iterative graph computation algorithms
like ours, as advised in [8].

Example. Figure 4 shows an example of application of par-
allelReduction to the graph represented in the top-most rect-
angle. Each rectangle represents an iteration of the algorithm,
showing the initial marking of nodes and highlighting, in light
blue, either nodes that will removed or application contexts
that will be simplified in that iteration.

VII. DISTRIBUTED CONTROL

Our approach is based on partial evaluation, similar to what
has been done in [7]. The query qc(s, t) is sent to all sites
storing a partition of the graph. At each site, in parallel, a
partial answer to qc(s, t), based on the local partition of the
graph available at that site, is computed. Partial answers are
then collected by a coordinator site that solves qc(s, t) on the
graph built by merging all the partial answers. This method
provides the following properties:
1) Each site in visited at most once.
2) Partial evaluation is performed in parallel at each site, thus

sites do not have to synchronize their execution with any
other site.

3) Partial answers are reduced graphs, usually much smaller
than initial partitions, as many internal nodes (i.e. without
direct connection to any external partition) are missing.

4) If the company control information is static (or at least it
varies periodically, with rather long periods such as days
or weeks), then at query time at most two sites need to
perform local evaluation (i.e., compute a partial answer).
Specifically, such local evaluation needs to be performed
on those sites storing s or t; the partial answers produced
by the remaining sites can be computed off-line and stored
at the coordinator site.

No bounds on the size of the returned partial answers can
be guaranteed: in the worst case, the whole partition must
be returned to the coordinator. Nevertheless, in the experi-
mental section we show that in real applications the size of

7

Figure 5: Distributed graph with 3 partitions P1, P2 and P3;
partitions are first reduced to R1, R2 and R3 at each site and
then merged into MGraph at the coordinator site, that finally
can answer the query qc(s, t).

the returned partial answer is remarkably smaller than the
initial partition size. In what follows, We start by introducing
the notion of distributed graph, then we provide a detailed
description on how partial evaluation is performed.

A. Distributed Graph

A partitioning Π of a graph G is defined as a pair (P,Gp),
where P is a set of sub-graphs of G = (V,E, L), as defined
in Section III, and Gp is called the partition graph of Π,
specifying edges across distinct sites with their head and tail
nodes. Specifically, P and Gp are defined as:

1) P = (P1, ..., Pk), where each partition Pi is defined by
(Vi ∪ V virt

i , Ei ∪ Ecross
i , Li), with:

• Vi ⊆ V ,
• (Vi, Ei, Li) is the sub-graph of G induced by Vi,
• if a node u ∈ Vi is such that there is an edge (u, v) ∈ E

with v 6∈ Vi, then v is a virtual node in V virt
i ,

• Ecross
i is the set of cross edges, i.e. those edges (u, v)

such that u ∈ Vi and v 6∈ Vi.
Moreover we define the set of in-nodes V in

i as the set
of those nodes in Vi having at least one predecessor in
another partition. Formally, it is the set of nodes u ∈ Vi

such that there exists a cross edge (v, u) ∈ Ecross
j with

j 6= i. We generally refer to in-nodes and virtual nodes as
the boundary nodes of a partition.
Intuitively, for each partition Pi, Vi ∪ V virt

i is the set of
all nodes in Vi and, for each node in Vi having an edge to
another partition, a virtual node indicating the connection.
The set Ei ∪ Ecross

i , instead, contains all the edges in Ei

and those edges departing from a node in Pi that reach a
node located in a different partition.

2) The partition graph Gp is defined as (Vp, Ep), in which
• Vp =

⋃
i∈[1,|P |](V

virt
i ∪V in

i), where the set V virt
i ∪V in

i

is the set of nodes in Pi having incoming cross-edges

Algorithm 2 Distributed Control
/* executed at the coordinator site */

Input: Partitioning (Π, Gp), query qc(s, t).
Output: The boolean answer to qc in G.

1: post a query qc(s, t) for each partition in Π;
2: MGraph := ∅;
3: post query qc(s, t) to all the partitions in Π ;
4: for each partition Pi ∈ Π do
5: X = {s, t, V in

i , V virt
i }

6: [ans,Ri] = parallelReduction(Pi, qc(s, t), X);
7: if ans 6= ∅ then
8: return ans;
9: MGraph := MGraph ∪Ri;

10: parallelReduction(MGraph, qc(s, t));
11: return ans;

from different partitions or cross-edges reaching different
partitions.

• Ep =
⋃

i∈[1,|P |] E
cross
i

In the first row of Figure 5, we show a distributed graph with
three partitions: P1, P2 and P3. Partition P1 has no in-nodes,
while V virt

1 = {1, 3}. For partition P2, V in
2 = {1, 2} and

V virt
2 = {4}. Finally, V in

3 = {4, 3} and V virt
3 = {2}. Note

that the graph in Figure 5 is the same graph of Figure 4.

B. Distributed Algorithm

Assume that Q = qc(s, t) is posted on a site Sc, referred
to as the coordinator site, in which a mapping m from the
partitions in Π to different sites is stored.
1) Distributing at site Sc. Upon receiving query Q, the coor-

dinator Sc posts Q to each site according to mapping m.
2) Local evaluation at each site Si. Each site Si evaluates

(sub-queries) of Q in parallel, by processing the partition
Pi stored in Si as the known input to Q; the other partitions
Pj are taken as the yet unavailable input, denoted by the un-
transformable nodes in V in

i and V virt
i . The partial answers

are represented as a reduction of the graph Pi, and are sent
back to Sc.

3) Assembling at Sc. Site Sc assembles and then reduces the
received partial answers to get the final answer to Q.

The algorithm that performs the distributed evaluation of
qc(s, t) is described by Alg. 2. The coordinator site invokes
procedure parallelReduction (described in Section 4) on each
site to compute partial answers. The reduced graph Ri must
always contain the boundary nodes and, if contained in Pi,
the source node and the target node. This is done by adding
those nodes to the exclusion set passed to the procedure
parallelReduction; i.e. X = {s, t, V virt

i , V in
i }. Unless any of

the sites was able to independently produce the global answer
to qc(s, t), all partial answers are collected and merged by the
coordinator site that eventually invokes again parallelReduc-
tion on the merged partial answers to produce the final answer
to qc(s, t).

8

Figure 6: Upon receiving qc(s, t), the coordinator site forwards
it to those sites storing either s or t. Sites return either the
global answer ans or a reduced partition R1/2. If none of
the two sites was able to produce a global answer, R1, R2,
together with any other pre-computed reduced partition (R3),
are merged and further reduced so as to produce the answer
qc(s, t).

An important property of Algorithm 4 is highlighted at line
5: when a site does not contain s or t, its local evaluation
depends only on the set of nodes in V in

i and V virt
i . These

represent the control relationships between companies placed
at the borders of partitions. If the control network is static (or
has a slowly evolving dynamics) such control relationship can
then be processed offline. Figure 6 highlights this property, as
it shows that local evaluation takes place at the two sites 1
and 2 and that for all other sites (represented by site 3) the
relevant information is precomputed offline.
Example. Figure 5 shows an example of how partial evalua-
tion is applied to a distributed graph of three partitions. Proce-
dure parallelReduction is first applied to P1, P2 and P3. The
resulting reduced partitions, R1, R2 and R3 are collected by
the coordinator. However, since P2 does not contain s or t, R2

could be pre-computed and already available at the coordinator
site. The coordinator site merges the three reduced graphs
into a single graph (MGraph) and applies parallelReduction
to further reduce the graph and solve qc(s, t).

VIII. IMPLEMENTATION AND APPLICATION

Towards an imminent production application of the parallel
approach, we performed extensive experimentation with a
realistic simulated version of the EU graph (Section VIII-A),
which we also massively enriched with synthetic data to
simulate extreme-scale settings, likely to arise in the near
future. We also evaluated the approach against the real data
from the Italian ownership graph and the European Register
of Intermediaries and Affiliates (Section VIII-B). We analyzed
the speedup led by the distributed approach and by pre-caching
techniques (Section VIII-C). Finally, we compared our results
with those obtained with a baseline serial algorithm and with
a state-of-the-art graph processing engine (Section VIII-D).

The characteristics of all the graphs are in Section II.
The algorithm and the architecture in Figure 6 have been
implemented in Scala and are based on a Pregel-based com-
putational model (GraphX [12]).

Configuration. All runs have been performed on a server
equipped with two Intel R© Xeon R© E5-2650 processors at 2.00
GHz (32 hyper-threads in total) and 384 GB DDR3 RAM.
The software stack includes Apache Spark 2.2.0.

A. Evaluating Distribution — the EU Graph

Figure 7: Overview of the distributed setting.

We generated a graph representing a real-world like Europe,
assumed to contain 30 countries and, to allow more meaningful
comparison between experimental results presented here, with
the same number of companies in each country, assumed to
be 5 million companies. In Figure 7 we show the distribution
setting we assume. In Figure 7.A, we show partitions P1 . . . Pn

representing the company graphs at each of the EU countries.
Note that some nodes participate in cross-country links, e.g.,
a company in Italy may control a company in France or the
other way around. When a query qc(s, t) is received at EU
level, it is forwarded to all the n sites. Each of them computes
parallelReduction. This reduced graph is submitted by each
site to the EU level coordinator which on the union of the re-
ceived reduced graphs, once again computes parallelReduction
to obtain the final query result.

Note that at most two partitions contain s and t, whereas
the remainder of partitions are query independent and therefore
can be cached. Figure 7.B illustrates this latter setting, where
we assume that P1 resp. Pn contain s resp. t (where com-
putation still needs to be performed before submitting to the
European coordinator) whereas P2, . . . , Pn−1 can be cached
once computed (illustrated in Figure 7.B by the smaller areas
Ri representing the reduced graph corresponding to Pi).

This setting allows for multiple scenarios, depending on the
number of partitions. The real-world configuration is expected
to be highly variable, with new companies being incorporated,

9

(a) varying the partition size (b) varying the number of parti-
tions

(c) varying the interconnection
rate

(d) varying the number of cores

(e) varying the number of nodes (f) varying the number of edges
and density

(g) time speedup distributed vs
centralized

(h) cost speedup with and without
pre-computation

Figure 8: Experimental evaluation of parallelism (a-c) and distribution (d-h).

countries joining the distribution setting and others leaving,
and the interconnection rate fluctuating. Let us consider the
different cases.
Elapsed time varying the size of partitions. Figure 8.a shows
how the execution time scales varying the size of each partition
in terms of contained nodes (x-axis). The grey area under the
curve represents the time spent at the coordinator site, while
the light blue area represents the maximum execution time
spent for partial result computation among all the involved
sites. We can clearly observe a linear behaviour relative to the
size of the partitions. This is consistent with what one would
expect from the algorithm employed.
Elapsed time varying the number of partitions. We mea-
sured the influence of the number of partitions over the elapsed
time in Figure 8.b. We still see a roughly linear behaviour here,
with some deviations for the smaller number of partitions.
Elapsed time varying the interconnection rate. We mea-
sured the influence of the interconnection rate (the percentage
of border nodes) on the elapsed times. In Figure 8.c, we
observe that the higher the interconnection rate, the longer
it takes to process the graph. Moreover, as the interconnection
rate increases, most of the computation moves to the coordi-
nator site; if all nodes in a partition were boundary nodes, all
the computation would be performed at the coordinator.
In Europe, border nodes are approximately l%, hence compu-
tation occurs mostly at the member states. Note that, assuming
N partitions, each with M nodes, a 1% interconnection rate
increase implies adding 0.01·M ·N edges to the overall graph,
motivating the significant increase in execution time.

B. Evaluating Parallelism – the Italian Graph and RIAD

Elapsed time varying the number of cores. We measured
the elapsed time of execution for the Italian graph, varying the
number of available cores in the processing node, from 2 to
20 (Figure 8.d). We observe a roughly linear speed-up in the
number of cores, with diminishing returns getting particularly
stronger starting from 10 cores.

Elapsed time varying the number of nodes. We measured
the elapsed time of execution for the Italian graph, varying the
number of nodes in the graph from 4M to 8M. This reflects
potential use cases, where different sets of companies are
involved in the computation due to different properites (e.g.,
their legal form or size). As shown in Figure 8.e, doubling the
number of nodes (from 4M to 8M), takes less than double the
time (70% more time).
Elapsed time varying the number of edges and density
of the graph. To assess extreme-scale settings, we measured
the elapsed time of execution building synthetic scale-free
graphs with increasing number of edges (x axis) and different
densities, with out-degree of nodes from 2 to 20. As shown in
Figure 8.f, in addition to the linear scalability with the number
of edges, we can see that, dividing the out-degree by 10 (i.e.
with a less denser graph) the execution time is 6 times faster.

Elapsed time with RIAD. The RIAD graph is smaller and less
dense than the Italian and EU ones, yet, the computation of
company control is a felt problem. The approach proposed in
this work allows a runtime of 6.71 seconds. This is considered
to be a good value by subject-matter experts.

C. Evaluating speed-up wrt distribution and pre-caching

Besides regulatory restrictions, we show that distribution has
substantial performance advantage over centralization. We
therefore conclude the experimental evaluation of our ap-
proach with further discussion of distribution vs. centralization
and the pros of adopting data caching.
Speed-up of Distributed (w/o pre-caching) vs Centralized.
We measured the speed-up in terms of elapsed time by
partition size (x-axis) and for multiple interconnection rates
of the distributed algorithm over the centralized one. The
speedup is shown by plotting the ratio between the time spent
to process the entire graph on a single site (TC) and the
distributed execution time TD. Figure 8.g shows that with
low interconnection rates (e.g., 0.1%) the distribution speed-
up is relevant for small partitions and improves with larger

10

ones (e.g., with ∼ 4.6x speed-up for 24M -sized partitions).
More realistic scenarios of company graphs exhibit higher
interconnection rates (e.g., 1%), as we have seen: in these
cases, although the speed-up is moderate for small partitions, it
substantially improves with larger partitions and keeps stable,
denoting a scalable behaviour of the approach.

Speedup of Distributed with pre-caching and w/o pre-
caching. We measured the speed-up in terms of total com-
putation cost by partition size (x-axis) and for multiple inter-
connection rates of the distributed algorithm with caching of
query independent computations and without.
Again, as shown in Figure 8.h, an higher interconnection rate
reduces the advantage of caching partial results, since a longer
time is spent at coordinator.

Network traffic.
As argued in Section VII, sites storing partitions do not

need to synchronize their execution and do not exchange data,
The only data transfer consists in returning partial answers,
mainly containing boundary nodes, to the master node. The
following table shows the execution of the algorithm on a
distributed graph partitioned across four different sites with
0.1% interconnection rate and variable partition size (from
4M to 8M nodes). Columns represent, in order: the average
partition size (P); the average partial result size (R); the merged
graph size (MGraph); the total network traffic in megabytes.

P (nodes | edges) R (nodes | edges) MGraph (nodes | edges) Network Traffic
4M | 20M 8.2K | 7.3K 32.7K | 29K 1.2 MB
5M | 25M 10.3K | 9.3K 40.9K | 37K 1.5 MB
6M | 30M 12.3K | 11K 49.2K | 44.3K 1.8 MB
7M | 35M 14.7K | 15K 58.9K | 60K 2.4 MB
8M | 40M 18.1K | 21.8 72.5K | 87K 3.5 MB

D. Baseline Solution and Graph-native Systems

Speedup with respect to serial algorithm. We compared
the parallel and distributed approach to CCP to a baseline
version of the algorithm in production at the Bank of Italy
for the RIAD graph, and which we consider our performance
yardstick. On the RIAD graph, the parallel algorithm takes
6.71 seconds, i.e., ∼ 1/100 of the time needed by the serial
algorithm. We experimentally confirmed similar gain factors
(from 1/60 to 1/100) with the synthetic settings. Artificially
increasing the density beyond the one expected in real-world
scenarios shows a reduced yet still significant (more than 60%)
gain with respect to the baseline.

Comparison with Neo4J. Graph processing systems represent
another yardstick to validate our approach. We encoded the
CCP problem in Cypher, the query language of Neo4J, the
most widely adopted graph management system. As Cypher
is a navigational language, it adopts a limited form of recur-
sion [1] which we experienced as insufficient to fully express
CCP. Thus, we encoded in Cypher only the logic to detect
all the paths needed for answering qc(s, t) and implemented
a custom post-processing procedure taking them as input.
We tested qc(s, t) by varying the number of nodes, edges
and density as we previously did for our approach, and we
measured only the Neo4J processing time, as a lower bound.

Figure 9.a-b, when compared with Figure 8.e-f, shows that
under these assumptions our approach outperforms Neo4J and
is more scalable for growing number of nodes, edges and
graph density. In multiple cases we had to limit the exploration
depth of Neo4J: runs with 7M nodes, with 9M edges and
out-degree 2, and with 5M edges and out-degree 20 could
not complete, while these cases are covered in Figure 8.e-f.
Performance decay is due to the fact that Neo4J enumerates all
the possible s-t paths. This experiment confirms that general
purpose systems offer insufficient support to recursion for
effectively computing CCP.

E. Use in Production and Lessons Learned

The parallel and distributed approach to CCP we have
proposed is already used at the Bank of Italy for the production
of internal research data products. It is part of a larger
framework of solutions which will be imminently put into
production for the delivery of external data products, some
of which have been discussed in this paper. In particular, it is
going to be the forefront to cope with the increasing volume
and density of EU-level applications, unmanageable with the
baseline algorithm.

Regulatory constraints make CCP a central problem. The
experimental evaluation confirmed that a distributed solution
though non-trivial is feasible in practice. Moreover, with
volumes and densities resembling those of EU-level graphs,
distribution leads to relevant performance gains, to be increas-
ingly exploited. The graph density and the interconnection rate
between partitions, reflecting the natural propensity of compa-
nies to establish national and cross-country links, respectively,
are such as to undermine the approach effectiveness, although
we clearly identified them as a key performance drivers.

IX. RELATED WORK

The partial evaluation technique, on which the distribution of
our algorithm relies on, has been used in compiler optimization
[16], and querying XML trees [5]. Within the context of
graph processing, the technique has been used to evaluate
reachability queries [7], and graph simulation [18] [8] over
graphs. Partial evaluation is used in Wenfei Fan et al [7] to
solve a distributed reachability query q(s,t) over a master-slave
architecture. In that case, partial results, which are represented
by sets of boolean formulas, are computed sequentially within
each node. Moreover, reachability is a much easier problem,
NLOGSPACE-complete and with linear time complexity; it is

(a) varying the number of nodes (b) varying the number of edges
and density

Figure 9: Experimental evaluation of CCP in Neo4J.

11

therefore highly parallelizable. Instead, the company control
problem addressed in our work is PTIME-complete and the
best known algorithms are quadratic, which is clearly harder
than reachability and intrinsically non-parallelizable.

The work of Wenfei Fan [7] has been followed-up by [8],
which basically extends the work to graph pattern matching
queries, and by [9], where the authors present GRAPE a graph
engine that, under certain conditions, allows to parallelize
sequential algorithms such as graph traversal (e.g. reachability)
and pattern matching algorithms. Others use a similar partial-
evaluation based approach as in [7] ([21] [4] [15]). Again,
none of the proposed solutions is suited for the complexity of
company control queries.

A popular computational model for supporting efficient
processing on large graphs is Pregel [20]. Programs in Pregel
are expressed as a sequence of iterations, in each of which a
node can receive messages sent by other nodes in the previous
iteration, send messages to other nodes, modify its state or
mutate the graph topology. The underlying architecture of
Pregel consists of a master node and several worker node,
each storing and processing a partition of the original graph.
Messages sent to nodes belonging to different partitions imply
a communication between different worker nodes. As pointed
out in [7], the message passing model used in Pregel may
serialize operations that can be conducted in parallel, and
have no bound on the number of visits to each site. However
Pregel can be combined with partial evaluation to support local
processing of queries at each site, as we did, implementing the
local evaluation procedure of our algorithm on top of Graphx
[12], which is based on the computational model of Pregel.

X. CONCLUSION

In this paper, we provided a formal study of the company
control problem and contributed a distributed and parallel algo-
rithm, successful in handling the demand for high performance
on graphs with millions of companies, possibly partitioned
and maintained by different sites, even in the presence of
access restrictions. We faithfully implemented an intrinsically
parallel algorithm on top of a parallel framework. Thanks
to our innovative methods, which exploit ad-hoc parallelism
in a principled way, the problem can be solved with good
performance in the real industrial setting, where thousands of
control queries per minute can be asked.

This settings has one-to-one correspondence with multiple
scenarios at EU level, featuring a set of national authorities or
entities (e.g., national central banks, national statistical offices,
etc.), each holding a specific partition of the company graph,
and all facing the need to decide control relationships at super-
national level. Many isomorphic scenarios to the company-
control problem, with distributed graphs and control-like mea-
sures to be computed, exist and are of central interest. To
the best of our knowledge, none of the existing solutions and
systems adopts a distributed and parallel approach; existing
solutions resort to ad-hoc combinations of the available local
graphs and centralized processing, when feasible and allowed.

We believe that our algorithm could be at the basis of
novel, more efficient systems for real settings at the EU
level, as it could be key in unlocking the possibility to
compute control-like measures that have been neglected so far,
due to technical or organizational unfeasibility of centralized
computation. Furthermore, our approach could drive a broader
process change, towards relieving central institutions (e.g.,
the European Central Bank and Eurostat Register [6]) of
centralized processing, while exploiting the computing power
of local entities.

REFERENCES

[1] ANGLES, R., ARENAS, M., BARCELÓ, P., HOGAN, A., REUTTER,
J. L., AND VRGOC, D. Foundations of modern query languages for
graph databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40.

[2] BELLOMARINI, L., SALLINGER, E., AND GOTTLOB, G. The Vadalog
system: Datalog-based reasoning for knowledge graphs. VLDB 11, 9
(2018).

[3] BOLLOBÁS, B., BORGS, C., CHAYES, J., AND RIORDAN, O. Directed
scale-free graphs. In SODA (2003).

[4] CHENG, Y., YUAN, Y., CHEN, L., WANG, G., GIRAUD-CARRIER, C.,
AND SUN, Y. Distr: A distributed method for the reachability query over
large uncertain graphs. IEEE Transactions on Parallel and Distributed
Systems 27, 11 (2016).

[5] CONG, G., FAN, W., FAN, W., AND KEMENTSIETSIDIS, A. Distributed
query evaluation with performance guarantees. In SIGMOD (2007),
ACM.

[6] Eurostat EuroGroup Register. https://cutt.ly/njJQoit.
[7] FAN, W., WANG, X., AND WU, Y. Performance guarantees for

distributed reachability queries. VLDB 5, 11 (2012).
[8] FAN, W., WANG, X., WU, Y., AND DENG, D. Distributed graph

simulation: Impossibility and possibility. VLDB 7, 12 (2014).
[9] FAN, W., YU, W., XU, J., ZHOU, J., LUO, X., YIN, Q., LU, P., CAO,

Y., AND XU, R. Parallelizing sequential graph computations. TODS 43,
4 (2018).

[10] GARLASCHELLI, D., BATTISTON, S., CASTRI, M., SERVEDIO, V.,
AND CALDARELLI, G. The scale-free topology of market investments.
Technical Report (https://arxiv.org/abs/cond-mat/0310503) (2005).

[11] GLATTFELDER, J. B. Ownership networks and corporate control:
mapping economic power in a globalized world. PhD thesis, ETH
Zurich, 2010.

[12] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,
FRANKLIN, M. J., AND STOICA, I. Graphx: Graph processing in a
distributed dataflow framework. In 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14) (2014).

[13] GREENLAW, R., HOOVER, H. J., RUZZO, W. L., ET AL. Limits to
parallel computation: P-completeness theory. Oxford University Press
on Demand, 1995.

[14] Guideline (EU) 2011/14 of the ECB. https://cutt.ly/DjJQcup.
[15] GURAJADA, S., AND THEOBALD, M. Distributed set reachability. In

SIGMOD (2016), ACM.
[16] JONES, N. D. An introduction to partial evaluation. ACM Computing

Surveys (CSUR) 28, 3 (1996).
[17] KNUTH, D. E. The Art of Computer Programming, Volume 4. Addison-

Wesley Professional, 2006.
[18] MA, S., CAO, Y., HUAI, J., AND WO, T. Distributed graph pattern

matching. In WWW (2012), ACM.
[19] MADRAS, N., AND SLADE, G. The Self-Avoiding Walk. Probability and

Its Applications. Birkhäuser Boston, 1996.
[20] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT, J. C., HORN,

I., LEISER, N., AND CZAJKOWSKI, G. Pregel: a system for large-scale
graph processing. In SIGMOD (2010), ACM.

[21] PENG, P., ZOU, L., ÖZSU, M. T., CHEN, L., AND ZHAO, D. Processing
sparql queries over distributed rdf graphs. VLDB 25, 2 (2016).

[22] R., C. A. H., AND BARABÁSI, A. Scale-free networks. Scholarpedia
3, 1 (2008).

[23] Guideline (EU) 2018/876 of the ECB. https://cutt.ly/8jJQYys.
[24] ROMEI, A., RUGGIERI, S., AND TURINI, F. The layered structure of

company share networks. In 2015 IEEE International Conference on
Data Science and Advanced Analytics (DSAA) (2015), IEEE.

12

