
PAW: Data Partitioning Meets Workload Variance
Zhe Li

Department of Computing
Hong Kong Polytechnic University

richie.li@connect.polyu.hk

Man Lung Yiu
Department of Computing

Hong Kong Polytechnic University
csmlyiu@comp.polyu.edu.hk

Tsz Nam Chan
Department of Computer Science

Hong Kong Baptist University
edisonchan@comp.hkbu.edu.hk

Abstract—In distributed storage systems (e.g., HDFS, Amazon
S3, Databricks), partitioning is applied on a dataset in order
to enhance performance and availability. Recently, partitioning
methods have been designed to optimize the query performance
of partitions with respect to the historical query workload. Never-
theless, in practice, future query workloads may deviate from the
historical query workload, thus deteriorating the performance of
existing partitioning methods.

To fill this research gap, we model the variance of future
query workloads from the historical query workload, then exploit
this characteristic to produce partitions that perform well for
future query workloads. In addition, we explore the space of
irregular shaped partition regions to further optimize the query
performance. Experimental results on TPC-H and real datasets
show that our proposal is up to 70× more efficient than the
state-of-the-art method.

I. INTRODUCTION

In many applications, distributed systems (e.g., Hadoop,
Spark) are employed to store and query a vast amount of
data. These systems adopt block-based storage (e.g., HDFS,
Amazon S3, Databricks), which partitions a dataset into large
data blocks1, then provides access at the block level. During
query processing, it suffices to fetch the data blocks whose
semantic descriptions intersect with the query region. Recent
studies [1]–[5] have used the historical query workload to
construct partitions in order to reduce the query cost.

We conceptually visualize three scenarios for partitioning
in Figure 1, based on the similarity between the historical
query workload and future query workloads. The historical
query workload QH is denoted by a red dot, whereas future
query workloads in different time periods QF1, QF2, QF3 are
represented by blue dots.

• The most specific: The first scenario (Figure 1a) assumes
that future workloads have exactly the same distribution
as the historical workload. The state-of-the-art solution is
the Qd-tree [1], which aims to optimize the performance
of partitions with respect to the historical workload only.
However, the above assumption is seldom true in practice,
causing performance deterioration on future workloads,
as we shall discuss shortly.

• The most generic: The third scenario (Figure 1c) con-
siders exploratory queries [6]–[9]; future workloads are

This work was supported by grant GRF 152050/19E from the Hong Kong
RGC.

1For example, the typical size of a data block in HDFS is 128MB.

unpredictable and may vary significantly from the his-
torical workload. The typical solution is to partition the
dataset based on data distribution (e.g., k-d tree, R-tree),
like in SpatialHadoop [5].

Workload

similarity

QH
QF1

(a) the same (c) unpredictable(b) similar

Solutions Qd-tree this paper k-d tree, R-tree

QF1

QF2
QF3 QF1QF2

QF3

QH

QH

Fig. 1: The similarity between the historical workload QH and
future workloads QF1, QF2, QF3, in three scenarios

In this paper, we explore the alternative scenario in Fig-
ure 1b, where future workloads are similar to the historical
workload. Observe that concepts in machine learning (e.g.,
model, training set, testing set) [10] are analogous to the
corresponding concepts in our problem (i.e., partition layout,
historical workload, future workload). Overfitting occurs when
a model is optimized to fit the training set (e.g., QH) closely;
however, such a model does not generalize well to the testing
set (e.g., QF1, QF2, QF3).

A. Limitations of existing solutions

Unfortunately, our scenario cannot be efficiently addressed
by the solutions from other scenarios. Obviously, the solutions
from the third scenario (e.g., k-d tree, R-tree) are inefficient
because they do not exploit any workload information.

The best solution from the first scenario suffers from
overfitting when it is used in our scenario. We exemplify
this concern in Figure 2 on a dataset with two attributes
A and B. By building the Qd-tree [1] on the historical
workload QH = {q1, · · · , q4}, we obtain the partition layout
P = {P1, · · · , P5} shown in Figure 2a. The future workload
is QF = {q′1, · · · , q′4}, where q′i is similar to qi. Although
the partition layout P is efficient for the historical workload,
it incurs high cost for the future workload. For instance, the
I/O cost for q1 in Figure 2a is 220MB only; however, the
I/O cost for q′1 in Figure 2b is 790MB because q′1 intersects
all partitions. This phenomenon is similar to the concept of
overfitting in machine learning [10].

The following publication Z. Li, M. L. Yiu and T. N. Chan, "PAW: Data Partitioning Meets Workload Variance," 2022 IEEE 38th International Conference on Data Engineering (ICDE), 2022,

pp. 123-135 is available at https://dx.doi.org/10.1109/ICDE53745.2022.00014.

This is the Preprint Version.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

P1:
220MB

��
��

��

��

��
�

��
�

��
�

��
�

(a) the partition layout generated by

Qd-tree on the historical workload

(b) the same partition layout

used for a future workload

P2:
140MB

P3:
150MB

P4:
130MB

P5:
150MB

attribute A

at
tr

ib
u

te
 B

P1:
220MB

P2:
140MB

P3:
150MB

P4:
130MB

P5:
150MB

attribute A

at
tr

ib
u

te
 B

Fig. 2: An example of historical queries and future queries in
workload-aware partitioning

In addition, existing partitioning methods produce rectangu-
lar partitions only. Frequently-used partitions (e.g., P1 in Fig-
ure 2a) may cover rarely-queried regions and thus deteriorate
the query performance. We demonstrate an alternative partition
layout in Figure 3, which contains three rectangular partitions
(P1, P2, P3) and an irregular shape partition (P4). Our idea is
to enlarge P4 (in any shape) as much as possible in order to
cover rarely-queried regions, and thus reduce the sizes of more
frequently-used partitions (e.g., P1, P2, P3). Observe that the
query cost of query q2 is reduced from 220MB in Figure 2a
to 160MB in Figure 3.

TABLE I: Methods for partitioning

X Support O No optimization × No support
Method Qd-tree [1]k-d tree [11]PAW (ours)

Exact workload (Fig. 1a) X O X
Similar workload (Fig. 1b) O O X

Unpredictable workload (Fig. 1c) O X X

Workload-aware X × X
Data-aware × X X

Irregular shape partition × × X

Table I summarizes the properties of methods appeared in
Figure 1. Although our solution focuses on the second scenario
(Figure 1b), it can also be adapted to the first scenario (Figure
1a) and the third scenario (Figure 1c).

B. Our challenges and contributions

Our key challenges in this paper are as follows. (1) How
to generalize the historical workload to future workloads? (2)
How to utilize the generalized workload to produce an efficient
partition layout? (3) How to exploit irregular shape partitions
to boost the query performance?

To tackle the above challenges, we make the following
contributions:
• To avoid overfitting, we formulate a data partitioning

problem that considers the generalization of the historical
workload.

• We propose Partitioning Aware of Workload Variance
(PAW), a workload-aware partition technique that is ro-
bust to future queries. It exploits irregular shape partitions
to reduce the query cost.

��

��

irregular shape

��

��P
1
:

160MB
P

2
:

130MB
P

3
:

128MB

P
4
:

372MB

Fig. 3: An example of using irregular shape partitions for
historical queries.

• We develop two plugin optimizations to further boost the
query performance.

• Extensive experiments are conducted to validate the per-
formance of the proposed methods. PAW outperforms the
state-of-the-art method Qd-tree [1] by up to 70×.

The rest of the paper is organized as follows. We first review
the related work in Section II. Next, we introduce preliminaries
in Section III. Then, we present our PAW partitioning algo-
rithms in Section IV, followed by two plugin optimizations in
Section V. Lastly, we present our experiments in Section VI
and conclude in Section VII.

II. RELATED WORK

Data partitioning is common in databases and big data
processing systems. We first review existing partitioning tech-
niques in Section II-A, then discuss partition pruning in
Section II-B.

A. Partitioning

We classify existing partitioning techniques into three cate-
gories (i.e., independent, data-aware, and workload-aware).

Independent partitioning assigns records to partitions
based on a mapping function that does not rely on the data
distribution nor query workloads. Range partitioning and hash
partitioning are frequently used in database systems [12], [13],
Hive [14], and Spark [15].

Data-driven proposals mainly utilize traditional indexing
to generate partition layouts, such as B-tree [16], k-d tree [11]
and R-tree [17]. For example, SpatialHadoop [5] partitions
data according to spatial locality with a R-tree like mechanism.
Notice these approaches partition the dataset only according to
the data distribution and provide relatively stable performance
to queries with different focus. However, these methods are
inefficient when the query workloads follow certain distribu-
tion.

Workload-aware approaches exploit the workload to pro-
duce partition layouts. Auto-tuning and AutoAdmin meth-
ods [18]–[24] attempt to find a good physical design of
a database according to a given workload. These physical
designs include index selection, compression options, update
policy, buffering options and partitioning options for data
organization. However such methods may take much time (or
iteration) in exploring a huge space of parameters. On the
contrary, adaptive physical design methods [25]–[27] generate
the physical design incrementally and adaptively with periodic
update to amortize the exploration cost. However, all these

methods generate partitions with simple horizontal or hash
split on certain selected dimensions, which again may have
poor performance when the query workloads involve many
dimensions.

Adaptive partitioning techniques such as AQWA [4] and
Amoeba [2] consider the scenario that future workloads shift
gradually over time. To be adaptive, they continuously update
partitions as future queries arrive (in a streaming manner),
which imposes expensive overheads on updating partitions.
However, their techniques are not efficient in our scenario
where the workloads vary within a limited scope (i.e., the
dotted scope in Figure 1b). In our problem setting, there is
no need to update the descriptors of partitions, provided that
the future workload is sufficiently similar to the historical
workload.

Sun et al. [28] formulate the “MaxSkip” partitioning prob-
lem and prove it NP-hard. They propose a bottom-up cluster-
ing approach which iteratively merges unique binary feature
vectors that produce the lowest penalty. The experimental
study in [1] has demonstrated that Qd-tree [1] outperforms
the solution in [28] by at most 61 times. Note that both [1]
and [28] have not dealt with the overfitting problem and our
scenario (see Figure 1b).

Some techniques use graph-based workload modeling to
generate partition layouts [21], [29], [30]. However, such
works are used to optimize the cost caused by mutual network
transfer or data shuffling, which differ from our cost target
(i.e., minimizing data scan).

Recently, machine learning based methods are getting in-
creasingly popular. SageDB [31] provides a vision of future
database which replaces most of its components by machine
learning alternatives, including the partition layout generator.
Both Yang et al. [1] and Hilprecht et al. [32] provide reinforce-
ment learning agents to find suitable partition layout. However
the former has similar performance with its heuristic based
alternative and the latter can only produce coarse-grained
partitioning (e.g., hash).

Ding et al. [33] leverage sideway information generated
from analytic queries with join operations to improve parti-
tioning on multi-table scenarios, which is orthogonal to ours
(i.e., single dataset / table partitioning) and could be combined
with existing partitioning approaches.

B. Query Evaluation with Partition Pruning

Partition pruning has been frequently used to improve query
performance. Specifically, one may maintain some aggregate
information such as min, max, count and sum for each dimen-
sion in each partition, which is known as small materialized
aggregates (SMAs) [34]. Then, the SMAs will determine
whether a partition contains the query result or not and directly
prune the partitions that have no overlap with the given query.
Among all the SMAs, the min-max based aggregate is most
popular and have been used in various databases like Oracle
[35], PostgreSQL [36] and SQLServer [37] to skip irrelevant
partitions. Besides these industry databases, many research

works [1], [4], [28], [38] also design their algorithms based
on partition pruning.

III. PRELIMINARIES

A. Problem Definition

In this paper, we consider multi-dimensional range queries
on a dataset D with dimensionality dmax. According to [1],
[2], SQL queries with unary predicates (in the WHERE clause)
can be converted to range queries. We shall elaborate the
details in Section III-B.

A partition layout P is a collection of disjoint partitions
(say, P1, P2, · · · , Pn) so that their union equals to the dataset
D. Each partition Pi has a descriptor to indicate the ranges of
records stored in Pi.

Many block-based storage systems (e.g., HDFS, Amazon
S3, Databricks) impose a minimal size bmin on a block
(e.g., 128MB in HDFS). We adopt this constraint so that the
generated partitions will not be too small. Thus, we require
the size of each partition to be at least bmin. As a remark,
in this paper we only care about logical partitions (i.e., which
partition to place for each record). We leave the underlying
storage layer to decide the physical placement of blocks and
the replication policy.

The I/O cost of a query q on a partition layout P, denoted
by Cost(P, q), is defined as the total size of the partitions in P
that intersect with q. Then, we define the I/O cost of a query
workload Q (i.e., a set of queries) on P by summing the cost
of each query in Q.

Cost(P, q) =
∑

pi∈P,pi∩q 6=∅

pi.size (1)

Cost(P, Q) =
∑
q∈Q

∑
pi∈P,pi∩q 6=∅

pi.size (2)

Generalization is the key to address overfitting. Our idea is
to generalize the historical workload QH into a collection of
possible workloads that are sufficiently similar to QH . Based
on this idea, we formulate the distance between the historical
workload QH and the future workload QF . First, we define
the distance between two queries as the maximal difference
between them in any dimension. This definition is inspired by
the L∞ norm in the vector space.

Definition 1 (Distance between two queries): The distance
between two queries qi and qj , denoted by dist�(qi, qj), is
defined as

dist�(qi, qj) = max
d=1..dmax

max(|qi.ld− qj .ld|, |qi.ud− qj .ud|),
(3)

where qi.ld and qi.ud denote the lower and upper values of qi
on the d-th dimension.

Next, we propose the following test on whether two work-
loads QH and QF are similar. This definition allows different
workload sizes, but requires |QF | to be divisible by |QH |.

Definition 2 (δ-similar workloads): Let δ be a distance
threshold. Two workloads QH and QF are said to be δ-similar
if there exists a matching M⊂ QF ×QH such that: (i) each
pair (q′i, qj) ∈M satisfies dist�(q′i, qj) ≤ δ (ii) each q′i ∈ QF

Master node

Range

query
List of

partition IDs
Partitions

1

Partition

layout

2

SQL Query

rewriter

Query

router

Fig. 4: The query framework of PAW

appears exactly once in M, and (iii) each qj ∈ QH appears
exactly |QF |

|QH | times in M.
The last condition guarantees that the matching is not domi-
nated by any particular query in QH . As a remark, the system
parameter δ should be chosen by system administrators. We
also provide some heuristics to estimate δ from the historical
workload (to be discussed in Section IV-E). We leave for future
work the alternative definitions of δ-similar workloads.

We now formally define our problem as follows.
Problem 1 (Partitioning for Worst-Case Future Workload):

Given a historical workload QH , a dataset D, and a threshold
δ, this problem asks for the partition layout P such that (i)
the size of each partition Pi ∈ P is at least bmin, and (ii) it
minimizes the following worst-case cost

WCost(P) = max
δ-similar(QH ,QF)

1

|QF |
· Cost(P, QF),

for any possible future workload QF that is δ-similar to QH .
The factor 1

|QF | is used to obtain the average cost per query.
Our problem can address overfitting because it considers a

collection of possible workloads. It is also challenging because
it involves infinite possible instances of the future workload
QF .

B. Query Processing

We illustrate the flow of query processing in Figure 4. The
master node (of the cluster) manages the meta information of
the partition layout in memory (e.g., descriptors and sizes of
partitions).

First, when a SQL query is received, the query rewriter
converts it into one or more range queries. For example, a SQL
query with WHERE A>=10 AND B<=50 corresponds to the
range query [10,∞)× (−∞, 50]. As another example, a SQL
query with WHERE A>=10 OR B<=50 can be decomposed
into two disjoint range queries [10,∞) × (−∞,∞) and
(−∞, 10)× (−∞, 50].

Second, the query router examines the partition layout to
find the relevant partitions, computes the union list of partition
IDs (in case of multiple sub-queries), and then sends the list
of partition IDs to the underlying storage system.

IV. CONSTRUCTION OF PAW

In this section, we present our techniques to construct
the partition layout for Problem 1. First, in Section IV-A,

we simplify our partitioning problem but without sacrificing
the query cost. Next, we propose split methods in Sec-
tions IV-B and IV-C. Then, we summarize our construction
algorithm in Section IV-D. Finally, we discuss how to deal
with unknown δ in Section IV-E.

A. Reducing the Problem

Recall that, in Problem 1, the equation of WCost(P)
involves infinite possible instances of the future workload QF .
To simplify this problem, we plan to rewrite that equation so
that it involves one workload only.

Our idea is to extend each historical query qi ∈ QH into a
new query q∗i by δ along all directions, i.e.,

[q∗i .ld, q
∗
i .ud] = [qi.ld − δ, qi.ud + δ]

An example is shown in Figure 5.

��

δ

extend

historical query

extended query

δ δ

δ

��
∗

Fig. 5: An example of extended query

Next, we construct the worst-case workload Q∗F as the
collection of q∗i . The following lemma shows that WCost(P)
can be expressed by using a single workload (Q∗F).

Lemma 1: For any partition P, we have:

WCost(P) =
1

|Q∗F |
· Cost(P, Q∗F)

.
Proof: Let QF be a workload such that it is ε-similar

to QH . We first consider the case that QF and QH have the
same size, so that we ignore the factor 1

|Q∗
F |

in the equation
of WCost(P).

According to Definition 2, there exists one-to-one matching
M between QF and QH such that each pair (q′i, qj) ∈ M
satisfies dist�(q′i, qj) ≤ δ. Without loss of generality, we
assume that qi ∈ QH corresponds to q′i ∈ QF in the matching
M.

Observe that q∗i (in Q∗F) contains the maximal query range
with respect to dist�(q∗i , qi) = δ. Thus, we conclude that q∗i
contains q′i. Next, we get Cost(P, Q∗F) ≥ Cost(P, QF), and
then obtain: WCost(P) = Cost(P, Q∗F).

The above arguments can be generalized to QF with other
sizes, except that each query in QH corresponds to |QF |

|QH |
queries in QF .

In subsequent sections, we shall use the worst-case work-
load Q∗F to build partitions.

B. Partitioning with Irregular Shapes

In this section, we exploit irregular shapes in data partition-
ing to lower the query cost by reducing the sizes of frequently-
queried regions as much as possible.

In subsequent examples, we begin from an initial partition
Po and denote the worst-case workload as Q∗F = {q∗1 , q∗2 , · · · }.

First, we examine an ideal case in which the queries in
Q∗F are mutually disjoint. Figure 6a shows the initial partition
Po and the queries in Q∗F . Our idea is to divide Po into
four partitions as shown in Figure 6b. P1, P2, P3 can be used
to answer q∗1 , q

∗
2 , q
∗
3 , respectively. The remaining records are

placed in an irregular shape partition (P4).

(a) initial partition ��

 ��= �� − �� − �� − �	

��

��

�	

�
∗

�
∗

	
∗

��

(b) partitions ��, ��, �	, ��

��

Fig. 6: Optimal partitions for disjoint queries

Next, we consider a more complicated case in which some
queries in QF intersect, as shown in Figure 7a. Our idea is
to merge intersecting queries (e.g., q∗1 , q

∗
4 , q
∗
5) into a minimum

bounding rectangle (MBR), then create a grouped partition
(e.g., GP1) for records in that MBR. With this idea, we obtain
three grouped partitions (GP1, GP2, GP3) and an irregular
partition (IP) in Figure 7b. Recall that our partitioning prob-
lem imposes a constraint on the size of each partition (i.e.,
at least bmin). If any partition has a size below bmin, then
we expand it in order to satisfy the size constraint, like in
Figure 7c.

���

���

���

��
∗

��
∗

��
∗

(b) partitions ���, ���, ���, 	�

�

∗

��
∗

��
∗

�
∗

	�

(c) expanded partitions

���

���

���

��

(a) initial partition ��

	� = �� − ��� − ��� − ���

Fig. 7: Multi-Group Split

We elaborate how to expand a partition in Figure 8.
Conceptually, a rectangular region GP can be expressed as
GP.−→c ±GP.−→r , where the center vector GP.−→c and the radius
vector GP.−→r are defined as follows.

GP.−→c =
[GP.ld +GP.ud

2

]
d=1..dmax

GP.−→r =
[GP.ud −GP.ld

2

]
d=1..dmax

With these concepts, the region GP can be enlarged by a
factor f along all dimensions via the following expression.

GP ′ = GP.−→c ± f ·GP.−→r

For example, in Figure 8, the region GP ′ is obtained by
enlarging GP with the factor f = 1.5.

��

��

��

�� = �� � ��

��′ = �� � 1.5���

Fig. 8: Expand a partition

Our next step is to find the minimal factor f such that the
size of GP ′ is at least bmin. Given a record x, we define its
relative position in region GP as follows.

FGP (x) = max
d=1..dmax

|xd −GP.−→c d|
GP.−→r d

Consider the initial partition Po in which GP is split from.
We sort the records in Po in the ascending order of FGP (x),
then follow this order to assign records to GP until satisfying
the size constraint bmin.

We summarize our split method in Algorithm 1. At lines
2-4, we create grouped partitions, like in Figure 7b. When the
size of a grouped partition GPi is below bmin, we expand it
by using the aforementioned idea (at line 5). At line 7, we
test whether all grouped partitions are mutually disjoint. If so,
then we return them together with an irregular partition IP as
the result. Otherwise, an empty result is returned to indicate
a failure split.

Algorithm 1 Multi-Group Split
Input: partition Po, workload Q∗F , min block size bmin

1: P← ∅
2: check the intersection relationships of queries in Q∗F (Po)
3: for each group of intersecting queries in Q∗F (Po) do
4: create a grouped partition GPi

5: expand GPi until GPi.size ≥ bmin

6: insert GPi to P
7: if ∀GPi, GPj ∈ P, GPi ∩GPj = ∅ then
8: IP ← Po −

⋃
GPi∈P GPi

9: if IP.size ≥ bmin then
10: return P ∪ {IP}
11: return ∅

C. Rectangular Split

In some cases, rectangular partitions may perform better
than irregular partitions. Therefore, we introduce this comple-
mentary query-driven partition technique. To illustrate this, we
consider the example in Figure 9, where the minimum block
size bmin is 128 MB. Observe that q∗1 and q∗2 have partial
intersection, so the MBR of these two queries is huge.

Applying the method in Section IV-B on this example, the
solution degenerates into a single partition P , as shown in

Figure 9a. The query cost can be reduced to 465MB if we
divide P into two irregular partitions as shown in Figure 9b.
Interestingly, if we employ only rectangular partitions like in
Figure 9c, the query cost can be further reduced to 420MB.

(a) partition �

��
∗

��
∗

�

(b) irregular partitions

����

��	
�

��
��

���

(c) regular partitions

735MB

465MB

270MB

135MB

240MB
180MB

180MB

Fig. 9: A case where rectangular partitions perform better

As such, we also consider existing query-driven partition-
ing methods that are axis-parallel and produce rectangular
partitions. Specifically, for each dimension d, we consider a
possible split at (i) the median of P in this dimension, and (ii)
the lower and upper values of each query in Q∗F (P). Observe
that (ii) has also been used in the Qd-tree [1].

We summarize this split method in Algorithm 2.

Algorithm 2 Axis-Parallel Split
Input: partition P , workload Q∗F , min block size bmin

1: let APS be the set of axis-parallel splits
2: Pbest ← ∅; costbest ←∞
3: for spliti in APS do
4: P′ ← divide P by using spliti
5: if ∀pi ∈ P′, pi.size ≥ bmin then
6: if costbest > Cost(P′, Q∗F (P)) then
7: Pbest ← P′; costbest ← Cost(P′, Q∗F (P))

8: return Pbest

D. The Construction Algorithm

We propose a recursive algorithm to construct partitions (see
Algorithm 3). Its parameters include: (i) the initial partition Po,
(ii) the worst-case workload Q∗F as described in Section IV-A,
and (iii) the split policy Ψ which will be discussed later. In the
root recursive call, Po is initialized to the MBR of the dataset
D. In lines 1-6, we apply each split function SFi on the initial
partition Po, measure the cost of the resulting partition layout
P′, and update the best layout Pbest when P′ yields a lower
cost. If Pbest is better than Po, then we replace Po by Pbest and
invoke a recursive call on each partition in Pbest. However if
Pi is irregular shape, the partitioning process terminates once it
is generated as an irregular shape partition contains no queries
in Q∗F and no splits could reduce its cost if it is already 0.

Note that, at line 2, the split policy Ψ is used to decides the
list of applicable split methods for Po. Ideally, both irregular
split (Alg. 1) and rectangular split (Alg. 2) should be tried at
line 2, in order to optimize the query cost. However, Alg. 1 is
time-consuming and it is effective on small to medium sized
partitions. To control the trade-off between the quality and

construction time, we recommend to use the following split
policy Ψ:

Ψ(Po) =

{Alg. 1,Alg. 2}, if Po.size ≥ α · bmin
{Alg. 2} if Po.size ≥ 2 · bmin
∅ otherwise

(4)

where α is a constant larger than 1. We shall test the effect
of α in our experimental study.

Algorithm 3 PAW-Construction
Input: the initial partition Po, the worst-case workload Q∗F , the
split policy Ψ

1: Pbest ← ∅; costbest ←∞
2: for SFi in Ψ(Po) do
3: P′ ← SFi(Po)
4: if P′ 6= ∅ then
5: if Cost(P′, Q∗F (Po)) < costbest then
6: Pbest ← P′; costbest ← Cost(P′, Q∗F (Po))

7: if costbest < Cost(Po, Q
∗
F (Po)) then

8: for Pi in Pbest do
9: add Pi as a child of Po

10: PAW-Construction(Pi, Q
∗
F ,Ψ)

Figure 10 demonstrates some running steps of our construc-
tion algorithm. The relationships between different recursive
calls (and partitions) can be visualized as the partition tree, in
Figure 10d. The leaf nodes correspond to the final partitions
PA, PB , PC , PD in the storage system. The partitions for non-
leaf nodes are not stored physically; instead, we only maintain
their descriptors in the master node in order to facilitate query
routing.

1

2 3

��

A C DB��

(b) the partition layout

after one split
(d) the partition tree

��

(a) the initial partition

layout

split ��

��

��

��

��

(c) the partition layout

after two more splits

split	��

split ��
the final partition

layout

temporary partitions

Fig. 10: Example of PAW construction

As a remark, Algorithm 3 is a greedy heuristics algorithm;
it makes locally optimal choices but does not guarantee the
globally optimal solution. Alternative search strategies (e.g.,
beam search [39]) may be applied to broaden the search space
and revise Algorithm 3. We leave this issue for future work.

E. Dealing with Unknown δ

In real applications, the distance threshold δ can be un-
known. We propose a simple heuristics to estimate the thresh-
old by using the historical workload QH . First, we simulate
the past and future by dividing QH equally into two workloads
QH1 and QH2, according to their timestamps in the system.
Next, we compute the minimal value (say, δ′) such that QH1

and QH2 are δ′-similar (see Definition 2). Then, we use δ′ as
the distance threshold.

��

(a) the original descriptor:

1 MBR

��

��

(b) precise descriptor:

3 MBRs

partition ��partition

Fig. 11: Descriptors for a partition Pj

Note that Algorithm 3 stops partitioning when a region does
not intersect with any query in Q∗F . Some partitions can be
huge and may cause performance deterioration if some future
queries partially intersect with them. This happens when the
estimated δ′ is less than the real δ. To alleviate this issue,
we keep split the leaves of a partition tree by data-aware
partitioning (e.g., k-d tree partitioning) until reaching the finest
size (i.e., [bmin, 2bmin)).

V. PLUGIN MODULES

We shall present two plugin modules to boost the query
performance, after constructing the partition layout. They are
orthogonal to the techniques proposed in Section IV.

A. The Precise Descriptor Module

This module represents partitions by using more precise
descriptors in order to enhance the pruning power during query
processing.

As an example, consider the partition Pj in Figure 11,
where black dots denote the actual records stored in Pj . We
compare the original descriptor of Pj (in Figure 11a) and the
precise descriptor of Pj (in Figure 11b), by using the query
qi. The original descriptor of Pj is just the MBR of Pj , which
intersects with the query qi. Thus, we still need to scan the data
stored in Pj . In Figure 11b, we use a more precise descriptor
of Pj , i.e., a set of 3 gray MBRs that collectively cover all
records in Pj . Since qi does not intersect with any gray MBR,
we avoid scanning the data stored in Pj .

Existing data partitioning algorithms may be used to con-
struct the above precise descriptor. In our implementation, we
adopt the R-tree construction algorithm to extract a given
number of MBRs (say Nmbr) from a partition. Like the
partition layout, the precise descriptors of partitions are stored
in the memory in the master node (cf. Figure 4) . During query
processing, the master node checks whether a query (say qi)
intersects with any MBR in the precise descriptor of partition
Pj . If there is no intersection, we skip the scanning of Pj .

As a remark, a precise descriptor occupies only 16 · dmax ·
Nmbr bytes, where Nmbr is the number of MBRs in the precise
descriptor, and dmax is the number of dimensions. The extra
memory required is very small compared to the size of a
partition (e.g., 128MB).

(b) after adding a redundant partition(a) the original partition layout

��
∗��

∗

�� ��

��

�� ��

��

�	

Fig. 12: Plugin redundant partition

B. The Storage Tuner Module

This module exploits the available storage space to construct
extra partitions in order to reduce the query cost. Obviously,
these extra partitions overlap with some partitions in the
original partition layout P.

We proceed to illustrate our idea. In Figure 12a, the original
partition layout contains three partitions P1, P2, P3. A query
q∗i ∈ Q∗F intersects with both P1 and P2. Thus, the I/O cost
of q∗i is P1.size + P2.size. In Figure 12b, suppose that the
gray partition P4 is included as an extra partition. Note that
P4 can be used to answer q∗i at a lower cost.

Next, we elaborate how to construct extra partitions, subject
to the available storage space. For each query q∗j in the worst-
case workload Q∗F , we define its extra partition RPj as the
result size of q∗j . Then, the gain of RPj is defined as follows.

Gain(RPj) =

∑
q∗i ∈Q∗

F ,q
∗
i⊆RPj

(Cost(P, q∗i)−RPj .size)
RPj .size

(5)
We implement a greedy algorithm to select extra partitions
in descending order of Gain(RPj), until occupying all the
available storage space. When a partition RPj is selected,
we include it into P and update the gain of any other extra
partition.

At the query time, the master node first checks whether
the query lies within some extra partitions. If yes, then we
consult the corresponding extra partition. Otherwise, the query
is processed with the original PAW partition layout.

VI. EXPERIMENTAL EVALUATION

We conduct extensive experiments to evaluate the perfor-
mance of PAW. Our key findings are highlighted as follows:
• PAW incurs much lower I/O cost than Qd-tree (2× to

70× better).
• The I/O cost of PAW is only within 1.5× of the theoret-

ical lower bound cost in most of the tested cases.

A. Experimental Setting

Platform. Experiments are conducted on a 4-node Spark
cluster connected by LAN. Each node has 8 vCPUs (Intel
Skylake, 2.6GHz), 16GB RAM, and 1TB HDD. All data is
stored in the Parquet file format in HDFS. For each method,
we measure the average end-to-end response time (per query)
and the average I/O cost (per query).

Methods. We compare our proposed method PAW with
two existing methods: Qd-tree [1] and k-d tree [11]. For
PAW, we disable our plugin modules in Section V by default.
For Qd-tree [1], we implement its greedy version because it
is deterministic and yields comparable performance (to the
reinforcement learning variant) in our experiments. For k-d
tree [11], we implement the standard version which chooses
split dimensions by round-robin and splits from the median.
In addition, we also compare with the theoretical lower bound
cost, denoted by LBCost, which scans exactly the query result.

Datasets. The TPC-H benchmark2, with scale factor, is used
to generate the lineitem table. This table contains 600
million records (75GB) and 8 numerical attributes. We observe
that the generated records are uniformly distributed.

We also use a real dataset OSM [40], which contains 100
million records and 2 numerical attributes (latitude and longi-
tude). The records in this dataset follow a skewed distribution.

Following Qd-tree [1], we use a sampled subset (fixed to 6M
rows from the dataset) to generate the logical partition layout,
then route the full dataset to its corresponding partitions
and write each partition to disk. In Table II, we show the
breakdown of construction time for 3 different TPC-H dataset
sizes (i.e., 8GB, 38GB, and 75GB). The logical partition layout
could be generated quickly due to sampling, while routing
(i.e., distribute records to partitions) and I/O dominate 90%–
99% of the construction time. Therefore, all methods have
similar construction time on the same dataset size. It takes
approximately 2.4 hours and 0.2 hours to construct partitions
on TPC-H (75GB) and OSM, respectively.

TABLE II: Partition construction time for the TPC-H dataset
with 3 sizes (8 GB, 38GB, and 75GB)

Methods Layout generation time (s) Routing and I/O time (s)
8GB 38GB 75GB

Qd-tree 8.68 730 3794 7899
k-d tree 3.43 754 3594 8703

PAW 22.09 737 3880 8769

Query workloads. Following the literature [4], [5], [20],
[22], [29], we implement the following two generators to
produce the historical workload QH . The uniform generator
generates historical queries according to the data domain. The
skewed generator picks a fixed number of centers and then
generates historical queries by the Gaussian mixture model.

The future workload QF is generated randomly within a
given distance threshold from QH . By default, we use a total
of 100 queries; 50% in QH and 50% in QF . The parameters
for generating the above workloads are shown in Table III.

B. A Case Study on Partition Layouts

Before diving into detailed comparisons, we visualize the
partition layouts generated by different methods. For the
sake of visualization, we plot Figures 13 and 14 in the 2-
dimensional space. Partition boundaries are shown as green
lines, whereas query regions are drawn as red boxes.

2http://www.tpc.org/tpch/

TABLE III: Default query properties

Property Default value
Common workload generator properties

#Q: the number of queries 100
#dims: the number of dimensions in queries 4

δ: the distance threshold 1% of domain length
γ: the maximal query range 10% of domain length

Skewed workload generator properties
#C: the number of query centers 10

σ: the standard deviation 10% of γ

For k-d tree, the historical workload (Figure 13a) and the
future workload (Figure 14a) have similar query cost. The
reason is because each partition has been split to its minimum
size (i.e., [bmin, 2bmin)). However, a query may partially
intersect some partitions and waste I/O cost on scanning
records that are not in the query result.

Qd-tree produces the partitions based on the borders of
historical queries (see Figure 13b). This could optimize the
query cost with respect to the historical workload. However,
slightly different future queries may deteriorate the query cost
significantly (see Figure 14b).

PAW extends historical queries and applies multi-group
splits. Thus, it produces just the right partitions to tolerate
variances in the future workload. Each future query is highly
likely to fall into a single partition in Figure 14c.

C. Scalability on TPC-H

In Figure 15, we vary the data size of TPC-H, then plot
the average I/O cost (per query) and the average end-to-end
query response time (per query). in the Spark cluster. PAW
outperforms Qd-tree by 10×.

Observe that, when the I/O cost is extremely high, the
end-to-end query response time grows sub-linearly. This is
attributed to the optimizations implemented in the underlying
system (e.g., row group based pruning [41], caching). These
optimizations (and engineering tricks) are orthogonal to our
problem. In subsequent experiments, we measure the I/O cost
only because it is platform independent.

D. Robustness to Various Parameters

In this subsection, we measure the scan ratio as the ratio
of the average I/O cost to the dataset size.

The effect of the number of query dimensions. In Figure
16, we vary the number of dimensions used in queries, by
selecting the first few attributes (from the lineitem table in
TPC-H) except the primary key. Note that partitions store all
the dimensions of records. The I/O cost of PAW is within 1.5×
of the theoretical lower bound cost in all tested cases. Qd-
tree incurs the highest I/O cost because the future workload
deviates from the historical workload and Qd-tree partitions
are more likely to have partial intersections with the future
workload. When the number of query dimensions increases,
the query selectivity drops and thus all methods yield lower
I/O cost in general. The spike in the I/O cost of k-d tree, from 2
to 3 query dimensions, happens because k-d tree chooses split

(a) k-d tree on QH (b) Qd-tree on QH (c) PAW on QH

Fig. 13: The historical workload and the partition layout of all methods, on TPC-H

(a) k-d tree on QF (b) Qd-tree on QF (c) PAW on QF

Fig. 14: The future workload and the partition layout of all methods, on TPC-H

 0.1

 1

 10

8 38 75

av
er

ag
e

I/
O

 c
os

t
(G

B)

TPC-H dataset size (GB)

Qd-tree
k-d tree

PAW

 0.1

 1

 10

8 38 75av
er

ag
e

en
d-

to
-e

nd
 t

im
e

(s
)

TPC-H dataset size (GB)

Qd-tree
k-d tree

PAW

(a) I/O cost (b) End-to-end time

Fig. 15: Average I/O cost and end-to-end time, on TPC-H

dimensions by round-robin and the 3rd chosen split dimension
has a much smaller domain than other attributes.

The effect of the query range. In Figure 17, we vary
the maximal query range. As expected, most of the methods
incur higher I/O cost as query range increases. Even when the
query range is small, the queries in the future query workload
may partially intersect large partitions in Qd-tree, as we have
demonstrated in Figure 14b. This phenomenon renders the
I/O cost of Qd-tree unnecessary high. PAW remains the best
method.

The effect of workload size. In Figure 18, we vary the
historical workload size. PAW and k-d tree are not very
sensitive to this parameter. The I/O cost of PAW is close to
the theoretical lower bound cost. In contrast, Qd-tree behaves
differently on different data distributions. For a uniform dataset
(i.e., TPC-H), a larger historical workload size implies more
partitions in Qd-tree, thus leading to more saving in the I/O
cost. For a skewed dataset (i.e., OSM), Qd-tree may compute
a pathological layout as shown in Figure 14b, where future
queries are likely to intersect with multiple partitions. When
the number of historical queries is extremely high, the scan
ratio of Qd-tree is close to PAW due to the large number of
partitions.

PAW outperforms Qd-tree by 70× on TPC-H and 10× on
OSM.

The effect of the distance threshold. In Figure 19, we vary
the distance threshold δ between the historical workload and
the future workload. As expected, a larger δ implies a higher
I/O cost. Again, PAW is the best method and its I/O cost is
close to the theoretical lower bound cost in most of the cases.
Note that a larger δ could also widen the average query range
of future queries, leading to a higher scan ratio of all methods.

The effect of the workload distribution. As shown in
Figure 20, the I/O cost of most methods rise slowly when we
change from the uniform workload to the skewed workload.

For a skewed workload, queries are more likely to have
overlapping ranges, rendering it harder to generate efficient
partition layouts. The I/O cost of k-d tree remains stable
because its partition layout does not rely on the historical
workload.

The effect of skewed workload parameters. Next, we test
the effect of skewed workload parameters: (i) the number of
query centers, and (ii) the standard deviation of query range.
In Figure 21a, when the number of query centers rises, the I/O
cost begins to drop because more partitions will be produced.
However, when the number of query centers becomes too
high (e.g., 50), overlapping occurs among many queries, thus
leading to higher query cost. Note that PAW is not sensitive
to this parameter. Figure 21b plots the I/O cost of methods
while varying the standard deviation of the query range. PAW
performs the best and it is the least sensitive to this parameter.

 0.1

 1

 10

 2 3 4 5 6 7sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

number of dimensions

Qd-tree
k-d tree

PAW
LB-Cost

Fig. 16: Average I/O cost on TPC-H, varying the number of
query dimensions

 0.1

 1

 10

1 2 5 10 20 50sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

max query range (% of domain)

Qd-tree
k-d tree

PAW
LB-Cost

 0.1

 1

 10

 100

1 2 5 10 20 50sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

max query range (% of domain)

Qd-tree
k-d tree

PAW
LB-Cost

(a) TPC-H (b) OSM

Fig. 17: Average I/O cost on two datasets, varying the maximal
query range

E. The Effect of Unknown Distance Threshold

We proceed to compare two variants of PAW: (i) PAW,
which is given the (real) distance threshold δ, (ii) PAW-
unknown, which estimates δ from the historical workload
according to Section IV-E. Figure 22a shows the I/O of these
two variants of PAW, as well as the theoretical lower bound
cost. For uniform workloads, PAW-unknown is worser than
PAW by 3 to 4×; nevertheless, the scan ratio (per query) is

 0.1

 1

 10

 100

0.02 0.050.1 0.2 0.5 1 2 5 10sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

query amount (x 1000)

Qd-tree
k-d tree

PAW
LB-Cost

 0.1

 1

 10

0.02 0.050.1 0.2 0.5 1 2 5 10sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

query amount (x 1000)

Qd-tree
k-d tree

PAW
LB-Cost

(a) TPC-H (b) OSM

Fig. 18: Average I/O cost on two datasets, varying the number
of queries

 0.1

 1

 10

 100

0.1 0.2 0.5 1 2 5 10 20sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)
distance threshold (% of domain)

Qd-tree
k-d tree

PAW
LB-Cost

 0.1

 1

 10

 100

0.1 0.2 0.5 1 2 5 10 20sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

distance threshold (% of domain)

Qd-tree
k-d tree

PAW
LB-Cost

(a) TPC-H (b) OSM

Fig. 19: Average I/O cost on two datasets, varying the distance
threshold δ

 0.1

 1

 10

Qd-tree kdtree PAW LB-Costsc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

methods

uniform workload
skewed workload

 0.1

 1

 10

 100

Qd-tree kdtree PAW LB-Costsc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

methods

uniform workload
skewed workload

(a) TPC-H (b) OSM

Fig. 20: Average I/O cost on two datasets, varying the distri-
bution of queries

 0.1

 1

 10

 100

5 10 20 50sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

query center amount

Qd-tree
k-d tree

PAW
LB-Cost

 0.1

 1

 10

10 20 50 100sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

σ (% of max query range)

Qd-tree
k-d tree

PAW
LB-Cost

(a) varying #C (b) varying σ

Fig. 21: Average I/O cost on TPC-H, varying the parameters
in skewed workload

still below 1% of the entire dataset. For skewed workloads,
the performance of PAW-unknown is comparable to PAW.

In the next experiment, we simulate the unpredictable sce-
nario (in Figure 1c) by replacing X% of queries in the future
workload with random queries. The historical workload is
uniformly distributed. We turn on the data-aware optimization
(as discussed in Section IV-E) for PAW. In Figure 22b,
we vary the percentage of random queries (in the future
workload). Observe that the performance of PAW degrades
gracefully from 0% to 100%. In the worst case (i.e., 100%
of random), PAW is comparable to a k-d tree. Thanks to the
data-aware optimization in Section IV-E, PAW can support the
unpredictable scenario shown in Figure 1c.

 0.1

 1

uniform skewsc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

workload distribution

PAW
PAW-unknown

LB-Cost

 0.1

 1

 10

0 10 20 30 40 50 75 100sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

random query percentage (%)

Qd-tree
k-d tree

PAW
LB-Cost

(a) unknown threshold (b) mixing with random queries

Fig. 22: Average I/O cost on TPC-H dataset, using the tech-
niques in Section IV-E

F. Experiments on Plugin Modules

In this subsection, we test the plugin modules described in
Section V.

First, we enable the precise descriptor plugin in PAW and
vary the number of MBRs per precise descriptor. According to
Figure 23a, 3 MBRs per precise descriptor would be sufficient
to reduce the query I/O cost by 10%.

Second, we enable the storage tuner plugin in PAW and
vary the amount of disk space for storing redundant partitions.
According to Figure 23b, when we have 20% more extra space,
the query I/O cost of PAW drops by 10%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 3 6 10 20 50 100sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

MBR amount

PAW
LB-Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 5 10 20sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

redundant space (% of dataset)

PAW
LB-Cost

(a) precise descriptor plugin (b) storage tuner plugin

Fig. 23: Average I/O cost on OSM, using plugin modules

G. Experiments on the Special Case δ = 0

In this subsection, we consider the special case δ = 0, which
corresponds to the ‘same workload’ scenario in Figure 1a. This
is also the scenario where Qd-tree is designed for.

Even in this special case, PAW still outperforms Qd-tree
because we exploit irregular shape partitions (in Multi-Group
Split). We rerun our experiments on this setting.

Table IV gives the I/O cost and end-to-end time in Spark
cluster when δ = 0 under the default setting. Observe that
PAW is 6×more efficient than k-d tree and 1.2×more efficient
than Qd-tree.

TABLE IV: Query cost on default settings when δ = 0

Scenario Measure k-d tree Qd-tree PAW
δ = 0 I/O cost (GB) 0.81 0.18 0.15

|D| = 75GB end-to-end time (s) 3.11 0.63 0.50

In Figure 24a, we vary the number of query dimensions.
Similar to the case when δ 6= 0, the query cost of all methods
decrease, which correspond to the selectivity of queries. In
Figure 24b, we vary maximum query range. As expected, all
methods increase the cost as query range increases. In Figure
24c, we vary number of historical queries. k-d tree is still
insensitive to this parameter. When there are many queries,
the query distribution becomes more similar to the uniform
distribution. Thus, the I/O costs of both Qd-tree and PAW
increase as the number of queries increases. In Figure 24d,
we test the effect of different query distributions. The result
is similar to the δ 6= 0 case.

 0.1

 1

 10

 2 3 4 5 6 7sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

number of dimensions

Qd-tree
k-d tree

PAW
LB-Cost

 0.1

 1

 10

1 2 5 10 20 50sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

max query range (% of domain)

Qd-tree
k-d tree

PAW
LB-Cost

(a) varying #dims (b) varying γ

 0.1

 1

0.02 0.050.1 0.2 0.5 1 2 5 10sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

query amount (x 1000)

Qd-tree
k-d tree

PAW
LB-Cost

 0.1

 1

 10

Qd-tree kdtree PAW LB-Costsc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

methods

uniform workload
skewed workload

(c) varying #Q (d) varying distribution

Fig. 24: Average I/O cost on TPC-H dataset, varying query
parameters, fixing δ = 0

In Figure 25, we rerun the plugin optimizations. For precise
descriptor plugin (Figure 25a), its performance is similar to

the case when δ 6= 0 (i.e., Figure 23a). For storage tuner
plugin, since now the extra partitions are generated using
Q∗F equivalently (Q∗F = QH when δ = 0), the plugin keep
reducing the cost for all method with increasing redundant
space until the lower bound is met. Notice under the above
two plugin optimizations, PAW still achieves the lowest cost
and is close to the theoretical lower bound in all cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 3 6 10 20 50 100sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

MBR amount

Qd-tree
k-d tree

PAW
LB-Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 5 10 20sc
an

 r
at

io
 (

%
 o

f
da

ta
se

t)

redundant space (% of dataset)

Qd-tree
k-d tree

PAW
LB-Cost

(a) precise descriptor plugin (b) storage tuner plugin

Fig. 25: Average I/O cost on OSM, using plugin modules,
fixing δ = 0

VII. CONCLUSION

In this paper, we study the workload-aware partitioning
problem that aims at reducing the query cost for any unknown
future workload QF . Although existing works assume QF are
exactly the same as the historical workload QH , we allow
them to be slightly different (within a distance threshold). We
formally define such concept δ-similar workload and show that
the worst case query cost is achieved when QF = Q∗F , which
could be derived from the historical queries QH . Our proposed
partitioning based on Q∗F allows us to avoid overfitting,
causing the future workload to intersect with fewer partitions
in PAW than in the Qd-tree (see Figure 14).

In order to further reduce the query cost on Q∗F , we
propose the Multi-Group Split partition methods to maximize
the pruning of non-queried regions, which is also the first
partition method that exploits irregular shape partitions and
non-axis parallel splits. We combine Multi-Group Split with
existing split methods to form a general partition framework
PAW. Our experiment results show that PAW could be 10X
faster than the state-of-the-art method in query response time
in default settings and up to 70X more efficient in certain
workload conditions.

In the future, we could have the following explore direc-
tions. (1) Algorithms 1 and 2 are based on range queries.
How to support more SQL and analytic query operations (e.g.,
KNN) that could benefit from partitioning? (2) Other than
the I/O cost, how to take the storage layer’s data placement
and network latency issues into one cost model and generate
partitions according to it? (3) When more split functions
are considered, how to automatically determine their apply
conditions?

REFERENCES

[1] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li, U. F. Minhas,
P. Larson, D. Kossmann, and R. Acharya, “Qd-tree: Learning data
layouts for big data analytics,” in SIGMOD, 2020, pp. 193–208.

[2] A. Shanbhag, A. Jindal, S. Madden, J. Quiané-Ruiz, and A. J. Elmore,
“A robust partitioning scheme for ad-hoc query workloads,” in SoCC,
2017, pp. 229–241.

[3] A. M. Aly, H. Elmeleegy, Y. Qi, and W. G. Aref, “Kangaroo: Workload-
aware processing of range data and range queries in hadoop,” in
Proceedings of the Ninth ACM International Conference on Web Search
and Data Mining, 2016, pp. 397–406.

[4] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani,
H. Elmeleegy, and T. Qadah, “AQWA: adaptive query-workload-aware
partitioning of big spatial data,” PVLDB, vol. 8, no. 13, pp. 2062–2073,
2015.

[5] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework
for spatial data,” in ICDE, 2015, pp. 1352–1363.

[6] A. Bozzon, M. Brambilla, S. Ceri, and D. Mazza, “Exploratory search
framework for web data sources,” VLDB J., vol. 22, no. 5, pp. 641–663,
2013.

[7] M. Singh, M. J. Cafarella, and H. V. Jagadish, “Dbexplorer: Exploratory
search in databases,” in EDBT, 2016, pp. 89–100.

[8] B. Qarabaqi and M. Riedewald, “Merlin: Exploratory analysis with
imprecise queries,” IEEE TKDE, vol. 28, no. 2, pp. 342–355, 2016.

[9] O. B. El, T. Milo, and A. Somech, “Automatically generating data
exploration sessions using deep reinforcement learning,” in SIGMOD,
2020, pp. 1527–1537.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[11] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[12] IBM, “Multidimensional clustering tables,”
https://www.ibm.com/support/producthub/db2/docs/content/SSEPGG -
11.5.0/com.ibm.db2.luw.admin.partition.doc/doc/c0021560.html.

[13] MySQL, “Subpartitioning,” https://dev.mysql.com/doc/mysql-
partitioning-excerpt/8.0/en/partitioning-subpartitions.html.

[14] Hive, https://hive.apache.org/.
[15] Spark, “Parquet Files,” https://spark.apache.org/docs/latest/sql-data-

sources-parquet.html.
[16] D. Comer, “The ubiquitous b-tree,” ACM Comput. Surv., vol. 11, no. 2,

pp. 121–137, 1979.
[17] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”

in SIGMOD, 1984, pp. 47–57.
[18] S. Agrawal, N. Bruno, S. Chaudhuri, and V. R. Narasayya, “Autoadmin:

Self-tuning database systems technology.” IEEE Data Eng. Bull., vol. 29,
no. 3, pp. 7–15, 2006.

[19] J. Rao, C. Zhang, N. Megiddo, and G. M. Lohman, “Automating physical
database design in a parallel database,” in SIGMOD, 2002, pp. 558–569.

[20] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and
A. Ailamaki, “Slalom: Coasting through raw data via adaptive parti-
tioning and indexing,” PVLDB, vol. 10, no. 10, pp. 1106–1117, 2017.

[21] A. Pavlo, C. Curino, and S. B. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems,” in SIGMOD,
2012, pp. 61–72.

[22] E. Wu and S. Madden, “Partitioning techniques for fine-grained index-
ing,” in ICDE, 2011, pp. 1127–1138.

[23] S. Agrawal, V. R. Narasayya, and B. Yang, “Integrating vertical and
horizontal partitioning into automated physical database design,” in
SIGMOD, 2004, pp. 359–370.

[24] M. Athanassoulis, K. S. Bøgh, and S. Idreos, “Optimal column layout
for hybrid workloads,” PVLDB, vol. 12, no. 13, pp. 2393–2407, 2019.

[25] S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,” in
CIDR, 2007, pp. 68–78.

[26] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap, “Stochastic database
cracking: Towards robust adaptive indexing in main-memory column-
stores,” PVLDB, vol. 5, no. 6, pp. 502–513, 2012.

[27] N. Bruno and S. Chaudhuri, “An online approach to physical design
tuning,” in ICDE, 2007, pp. 826–835.

[28] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin, “Fine-grained
partitioning for aggressive data skipping,” in SIGMOD, 2014, pp. 1115–
1126.

[29] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden, “Schism: a
workload-driven approach to database replication and partitioning,”
PVLDB, vol. 3, no. 1, pp. 48–57, 2010.

[30] J. Zhou, N. Bruno, and W. Lin, “Advanced partitioning techniques for
massively distributed computation,” in SIGMOD, 2012, pp. 13–24.

[31] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc,
S. Madden, H. Mao, and V. Nathan, “Sagedb: A learned database
system,” in CIDR, 2019.

[32] B. Hilprecht, C. Binnig, and U. Röhm, “Towards learning a partitioning
advisor with deep reinforcement learning,” in aiDM@SIGMOD, 2019,
pp. 6:1–6:4.

[33] J. Ding, U. F. Minhas, B. Chandramouli, C. Wang, Y. Li, Y. Li,
D. Kossmann, J. Gehrke, and T. Kraska, “Instance-optimized data
layouts for cloud analytics workloads,” in SIGMOD. ACM, 2021, pp.
418–431.

[34] G. Moerkotte, “Small materialized aggregates: A light weight index
structure for data warehousing,” in VLDB, 1998, pp. 476–487.

[35] Oracle, “Oracle documentation,” https://docs.oracle.com/en/.
[36] PostgreSQL, “Postgresql documentation,”

https://www.postgresql.org/docs/.
[37] P. Larson, C. Clinciu, C. Fraser, E. N. Hanson, M. Mokhtar,

M. Nowakiewicz, V. Papadimos, S. L. Price, S. Rangarajan, R. Rusanu,
and M. Saubhasik, “Enhancements to SQL server column stores,” in
SIGMOD, 2013, pp. 1159–1168.

[38] L. Sun, M. J. Franklin, J. Wang, and E. Wu, “Skipping-oriented
partitioning for columnar layouts,” PVLDB, vol. 10, no. 4, pp. 421–432,
2016.

[39] F. C. Dictionary, “beam search http://foldoc.org/beam+search.”
[40] “OpenStreetMap dataset,” https://registry.opendata.aws/osm/.
[41] “Parquet Filter Pushdown,” https://drill.apache.org/docs/parquet-filter-

pushdown/.

