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Abstract—Finding dense components in graphs is of great
importance in analysing the structure of networks. Popular
and computationally feasible frameworks for discovering
dense subgraphs are core and truss decompositions. Recently,
Sarıyüce et al. introduced nucleus decomposition, which uses
r-cliques contained in s-cliques, where s > r, as the basis for
defining dense subgraphs. Nucleus decomposition can reveal
interesting subgraphs that can be missed by core and truss
decompositions.

In this paper, we present nucleus decomposition in probabilistic
graphs. The major questions we address are: How to define mean-
ingfully nucleus decomposition in probabilistic graphs? How hard
is computing nucleus decomposition in probabilistic graphs? Can
we devise efficient algorithms for exact or approximate nucleus
decomposition in large graphs?

We present three natural definitions of nucleus decomposition
in probabilistic graphs: local, global, and weakly-global. We show
that the local version is in PTIME, whereas global and weakly-
global are #P-hard and NP-hard, respectively. We present an
efficient and exact dynamic programming approach for the local
case. Further, we present statistical approximations that can scale
to bigger datasets without much loss of accuracy. For global and
weakly-global decompositions we complement our intractability
results by proposing efficient algorithms that give approximate
solutions based on search space pruning and Monte-Carlo
sampling. Extensive experiments show the scalability and
efficiency of our algorithms. Compared to probabilistic core
and truss decompositions, nucleus decomposition significantly
outperforms in terms of density and clustering metrics.

Index Terms—Probabilistic Graphs, Dense Subgraphs, Nucleus
Decomposition

I. INTRODUCTION

Probabilistic graphs are graphs where each edge has a prob-
ability of existence (cf. [1]–[8]). Many real-world graphs, such
as social, trust, and biological networks are associated with
intrinsic uncertainty. For instance, in social and trust networks,
an edge can be weighted by the probability of influence or
trust between two users that the edge connects [9]–[11]. In
biological networks of protein-protein interactions (cf. [12])
an edge can be assigned a probability value representing the
strength of prediction that a pair of proteins will interact in a
living organism [13]–[15].

Mining dense subgraphs and discovering hierarchical rela-
tions among them is a fundamental problem in graph analysis
tasks. For instance, it can be used in visualizing complex net-
works [16], finding correlated genes and motifs in biological
networks [17], [18], detecting communities in social and web
graphs [19], [20], summarizing text [21], and revealing new
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research subjects in citation networks [22]. Core and truss
decompositions are popular tools for finding dense subgraphs.
A k-core is a maximal subgraph in which each vertex has at
least k neighbors, and a k-truss is a maximal subgraph whose
edges are contained in at least k triangles. Core and truss
decompositions have been extensively studied for deterministic
as well as probabilistic graphs (cf. [1], [23]–[27]).

A recent notion of dense subgraphs is nucleus introduced
by Sarıyüce et al. [28], [29]. Nucleus decomposition is a
generalization of core and truss decompositions that uses
higher-order structures to detect dense regions. It can reveal
interesting subgraphs that can be missed by core and truss
decompositions. In a nutshell, a k-(r, s)-nucleus is a maximal
subgraph whose r-cliques are contained in at least k of s-
cliques, where s > r. For r = 1, s = 2 and r = 2, s = 3
we obtain the notions of k-core and k-truss, respectively. For
r = 3, s = 4, r-cliques are triangles, s-cliques are 4-cliques,
and k-(3, 4)-nucleus is strictly stronger than k-truss and k-
core. Sarıyüce et al. in [28], [29] observed that, in practice,
k-(3, 4)-nucleus is the most interesting in terms of the quality
of subgraphs produced for a large variety of graphs. As such,
in this paper we also focus on this decomposition. To the best
of our knowledge, nucleus decomposition over probabilistic
graphs has not been studied yet.

As pointed out by [28], [29], nucleus decomposition can
uncover a finer grained structure of dense groups not possible
using other dense subgraph mining methods; as such, nucleus
decomposition can be beneficial for a large variety of applica-
tions, e.g. community structure discovery [30], mining dense
regions in internet of things [31], financial fraud detection [32],
extracting brain connectome subgraph hierarchy [33], detec-
tion of complexes in biological networks [34], etc. All these
applications of nucleus decomposition extend naturally to
the probabilistic networks. Ignoring probabilities and using
deterministic methods amounts to setting all probabilities to
1, which not only misses salient information, but could prove
detrimental in applications such as finding cohesive subnet-
works of proteins from probabilistic PPI networks which has
valuable implications to disease diagnosis [13]. Last but not
the least, computing probabilistic nucleus is highly beneficial
for task driven team formation in probabilistic social networks,
demonstrated later in our case study using a DBLP network.

A. Contributions

We are the first to study nucleus decomposition in prob-
abilistic graphs. The major questions we address are: How
to define meaningfully nucleus decomposition in probabilistic
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graphs? How hard is computing nucleus decomposition in
probabilistic graphs? Can we devise efficient algorithms for
exact or approximate nucleus decomposition in large graphs?

Definitions. We start by introducing three natural notions of
probabilistic nucleus decomposition (Section III). They are
based on the concept of possible worlds (PW’s), which are
instantiations of a probabilistic graph obtained by flipping
a biased coin for each edge independently, according to its
probability. We define local, global, and weakly-global notions
of nucleus as a maximal probabilistic subgraph H satisfying
different structural conditions for each case.

In the local case, we require a good number of PW’s of
H to satisfy a high level of density around each triangle (in
terms of 4-cliques containing it) in H. This is local in nature
because the triangles are considered independently of each
other. To contrast this, we introduce the global notion, where
we request the PW’s themselves be deterministic nuclei. This
way, not only do we achieve density around each triangle but
also ensure the same is achieved for all the triangles of H
simultaneously. Finally, we relax this strict requirement for
the weakly-global case by requiring that PW’s only contain a
deterministic nucleus that includes the triangles of H.

Global and Weakly-Global Cases. We show that comput-
ing global and weakly-global decompositions are intractable,
namely #P-hard and NP-hard, resp. (Section IV). We comple-
ment these results with efficient algorithms for these two cases
that give approximate solutions based on search space pruning
combined with Monte-Carlo sampling (Section VI).

Local Case. We show that local nucleus decomposition is in
PTIME (Section V). The main challenge is to compute the
probability of each triangle to be contained in k 4-cliques. We
present a dynamic programming (DP) solution for this task,
which combined with a triangle peeling approach, solves the
problem of local nucleus decomposition efficiently. While this
is welcome result, we further propose statistical methods to
speed-up the computation. Namely, we provide a framework
where well-known distributions, such as Poisson, Normal, and
Binomial, can be employed to approximate the DP results. We
provide detailed conditions under which the approximations
can be used reliably, otherwise DP is used as fallback. This
hybrid approach speeds-up the computation significantly and
is able to handle datasets, which DP alone cannot.

Experiments. We present extensive experiments which show
that our DP method for local nucleus decomposition is efficient
and can handle large datasets; when combined with our
statistical approximations, the process is significantly sped-
up and can handle much larger datasets. We demonstrate
the importance of nucleus decomposition by comparing it to
probabilistic core and truss decomposition using density and
clustering metrics. The results show that nucleus decomposi-
tion significantly outperforms core and truss decompositions
in terms of these metrics.

II. DETERMINISTIC NUCLEI

Let G = (V,E) be an undirected graph, where V is a set
of vertices, and E is a set of edges. For a vertex v ∈ V , let
N(v) be the set of v’s neighbors: N(v) = {u : (u, v) ∈ E}.
The (deterministic) degree of v in G, is equal to |N(v)|.
Nucleus decomposition in deterministic graphs. Nucleus
decomposition is a generalization of core and truss decompo-
sitions [28], [29]. Each nucleus is a subgraph which contains a
dense cluster of cliques. The formal definitions are as follows.

Let r, s with r < s be positive integers. We call cliques of
size r, r-cliques, and denote them by R,R′, etc. Analogously,
we call cliques of size s, s-cliques, and denote them by S, S′,
etc.

Definition 1: The s-support of an r-clique R in G, denoted
by s-suppG(R), is the number of s-cliques in G that contain
R.

Definition 2: Two r-cliques R and R′ in G, are s-connected,
if there exists a sequence R = R1, R2, · · · , Rk = R′ of r-
cliques in G such that for each i, there exists some s-clique
in G that contains Ri ∪Ri+1.

Now nucleus decomposition is as follows.
Definition 3: Let k be a positive integer. A k-(r, s)k-(r, s)k-(r, s)-nucleus

is a maximal subgraph H of G with the following properties.
1) H is a union of s-cliques: every edge in H is part of an

s-clique in H .
2) s-suppH(R) ≥ k for each r-clique R in H .
3) Each pair R,R′ of r-cliques in H is s-connected in H .
For simplicity, whenever clear from the context, we will

drop the use of prefix s from the definition of support and
connectedness.

When r = 1, s = 2, r-cliques are nodes, s-cliques are edges,
and k-(1, 2)-nucleus is the well-known notion of k-core. When
r = 2, s = 3, r-cliques are edges, s-cliques are triangles,
and k-(2, 3)-nucleus is the well-known notion of k-truss.
[28] shows that k-(3, 4)-nucleus, where we consider triangles
contained in 4-cliques, provides much more interesting
insights compared to k-core and k-truss in terms of density and
hierarchical structure. As such, in this paper, we also focus on
the r = 3, s = 4 case. For simplicity, we will drop using r and
s and assume them to be 3 and 4, respectively. In particular,
we will refer to k-(3, 4)-nucleus as simply k-nucleus.

III. PROBABILISTIC NUCLEI

Probabilistic Graphs. A probabilistic graph is a triple
G = (V,E, p), where V and E are as before and
p : E → (0, 1] is a function that maps each edge e ∈ E to its
existence probability pe. In the most common probabilistic
model (cf. [1], [3], [4]), the existence probability of each
edge is assumed to be independent of other edges.

In order to analyze probabilistic graphs, we use the concept
of possible worlds that are deterministic graph instances of
G in which only a subset of edges appears. Conceptually, the
possible worlds are obtained by flipping a biased coin for each
edge independently, according to its probability. We write G v
G to say that G is possible world for G. The probability of a



possible world G = (V,EG) v G is as follows: Pr[G | G] =∏
e∈EG

pe
∏
e∈E\EG

(1− pe).
We will use G, G′, H, H′ to denote probabilistic graphs.

Nucleus decomposition in probabilistic graphs. We now
define three variants of nucleus decomposition in probabilistic
graphs which are based on Definitions 4 and 5 we give below.
These variants relate to the nature of nucleus and we refer to
them as local (`), global (g), and weakly-global (w).

Definition 4: Let H be a probabilistic graph, 4 a triangle,
and µ a mode in set {`, g,w}. Then, XH,4,µ is a random
variable that takes integer values k with tail probability

Pr(XH,4,µ ≥ k) =
∑
HvH

Pr[H | H] · 1µ(H,4, k), (1)

where indicator variable 1µ(H,4, k) is defined depending on
mode µ as follows.
1`(H,4, k) = 1 if 4 is in H , and the support of 4 in H is

at least k.
1g(H,4, k) = 1 if 4 is in H , and H is a deterministic k-

nucleus.
1w(H,4, k) = 1 if 4 is in H , and there is a subgraph H ′

of H that contains 4 and is a deterministic k-nucleus.
It is clear that (1g(H,4, k) = 1) =⇒ (1w(H,4, k) = 1)

=⇒ (1`(H,4, k) = 1).
In the above definition, 1`(H,4, k) has a local quality

because a possible world G satisfies its condition if it
provides sufficient support to triangle 4 without considering
other triangles in H . On the other hand, 1g(H,4, k) and
1w(H,4, k) have a global quality because a possible world
H satisfies their conditions only when other triangles in H
are considered as well (creating a nucleus together).

In the following, as preconditions for cohesiveness, we will
assume cliqueness and connectedness for the nuclei subgraphs
we define. Specifically, we will only consider subgraphs H,
which, ignoring edge probabilities, are unions of 4-cliques,
and where each pair of triangles in H is connected in H.

Definition 5: Let G = (V,E, p) be a probabilistic graph.
Given threshold θ ∈ [0, 1], integer k ≥ 0, and µ ∈ {`, g,w},
a µ-(k, θ)-nucleus H is a maximal subgraph of G, such that
Pr(XH,4,µ ≥ k) ≥ θ for each triangle 4 in H.

Moreover, the µ-(k, θ)- nucleusness (or simply nucleusness
when µ, k, and θ are clear from context) of a triangle 4 is
the largest value of k such that 4 is contained in a µ-(k, θ)-
nucleus.

Intuitively for µ = `, from a probabilistic perspective, a
subgraph H of G can be regarded as a cohesive subgraph of G
if the support of every triangle in H is no less than k with high
probability (no less than a threshold θ). We call this version
local nucleus.

Local nucleus is a nice concept for probabilistic subgraph
cohesiveness, however, it has the following shortcoming.
While it ensures that every triangle4 in H has support at least
k in a good number of instantiations of H, it does not ensure
those instantiations are deterministic nuclei themselves or they
contain some nucleus which in turn contains 4. Obviously,
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Fig. 1: [Left] Probabilistic graph G. Red edges have
probability P = 0.9, blue edges have probability P ′ = 0.8,
the green dashed edge has probability 1, and the black dot-
dashed edge has probability P ′′ = 0.5. [Right] Subgraph
H which is w-(2, 0.13) nucleus. H1 and H2 induced by
{1, 2, 3, 4, 7} and {2, 3, 4, 6, 7} are g-(2, 0.13) nuclei.

nucleusness is a desirable property to ask for in order to
achieve a higher degree of cohesiveness and this leads to the
other two versions of probabilistic nucleus of a global nature,
which we call global and weakly-global (obtained for µ = g
and µ = w).

In general, g-(k, θ)-nuclei are smaller and more cohesive
than w-(k, θ)-nuclei. We remark that, every g-(k, θ)-nucleus
is contained in a w-(k, θ)-nucleus which in turn is contained
in an `-(k, θ)-nucleus.

Example 1: Consider graph G shown in Figure 1 [Left].
Let us assume that the red edges have probability P = 0.9,
the blue edges have probability P ′ = 0.8, the green dashed
edge has probability 1, and the black dot-dashed edge has
probability P ′′ = 0.5. Let θ = 0.13. It can be verified that
each triangle 4 in G is contained in at least 2 4-cliques with
probability at least 0.134, i.e. Pr(XG,4,` ≥ 2) ≥ 0.134 ≥ θ.
Thus, G is a `-(2, 0.13) nucleus.

However, G cannot be a w-(2, 0.13) or g-(2, 0.13) nucleus.
For instance, consider triangle 4 = (3, 5, 6). In all the
possible worlds of G, the clique on vertices {3, 4, 5, 6, 8}
should exist since this is the only deterministic 2-nucleus
which contains 4. Thus, the edges of this clique (9 blue
and 1 red) should exist and the other edges in G can either
exist or not in the possible worlds of G. As a result, we get
Pr(XG,4,w ≥ 2) = 0.89 · 0.9 = 0.120 < θ.

Now, consider subgraph H induced by vertices
{1, 2, 3, 4, 6, 7}, Figure 1 [Right]. We show that H is
w-(2, 0.13)-nucleus. Our reasoning is as follows. Ignoring
probabilities, H consists of two deterministic 2-nuclei, one
induced by {1, 2, 3, 4, 7} (call it cl1) and the other induced by
{2, 3, 4, 6, 7} (call it cl2). Triangles in H can belong to either
cl1 or cl2. Consider an arbitrary triangle 4 in cl1. To compute
Pr(XH,4,w ≥ 2), all the possible worlds of H which contain
cl1 as a deterministic 2-nucleus are valid. As a result, all the
edges in cl1 should exist, and the edges (2, 6), (3, 6) and (4, 6)
can either exist or not exists in the valid possible worlds (edge
(7, 6) has probability 1). As such, we have 23 = 8 valid pos-
sible worlds. Summing over the existence probability of each
possible world, we get Pr(XH,4,w ≥ 2) = 0.910 = 0.348 >
θ. A similar reasoning can be applied for an arbitrary triangle
4′ in cl2 which gives Pr(XH,4′,w ≥ 2) = 1·0.5·0.82 ·0.96 =
0.170 > θ. Thus, we can say that H is a w-(2, 0.13)-nucleus.

Let us consider H in more detail. This subgraph cannot



be a g-(2, 0.13)-nucleus. For instance, consider triangle
4 = (1, 2, 3). For this triangle, there are only two valid
possible worlds which are deterministic 2-nucleus: (1) the
one in which all the edges exist (H1), (2) the one in which
none of edges (2, 6), (3, 6) and (4, 6) exist (H2). Adding
one of the edges (2, 6), (3, 6) and (4, 6) creates one extra
triangle which will not be part of two cliques. This results
in the possible world not being a deterministic 2-nucleus. So,
summing over these two possible worlds we get:

Pr(XH,4,g ≥ 2) = 0.910 · 1 · 0.5 · 0.82

+ 0.910 · 1 · (1− 0.5) · (1− 0.8)2 = 0.118 < θ.

However consider subgraphs H1 and H2 induced by
{1, 2, 3, 4, 7} and {2, 3, 4, 6, 7}, respectively. The only
possible worlds of H1 and H2 that are deterministic
2-nuclei are the ones in which all their edges exist.
So for each triangle 4 and 4′ in H1 and H2, we
have Pr(XH1,4,g ≥ 2) = 0.910 = 0.348 > θ and
Pr(XH2,4′,g ≥ 2) = 1 · 0.5 · 0.82 · 0.96 = 0.170 > θ. Thus,
H1 and H2 are global g-(2, 0.13)-nuclei subgraphs.
Nucleus Decomposition. The nucleus decomposition finds the
set of all the µ-(k, θ)-nuclei for different values of k. We
will study the problem in the three different modes we con-
sider. Specifically, we call nucleus-decomposition problems
for the different modes `-NuDecomp, g-NuDecomp, and w-
NuDecomp, respectively.

In the following, we prove uniqueness and hierarchical-
containment properties of probabilistic nucleus decomposition.

Proposition 1: The local, weakly-global, and global nucleus
decompositions are unique.

Proof: The uniqueness is based on the definitions of local,
weakly-global, and global nucleus decomposition. Specifically,
the uniqueness follows from the property that each nucleus (lo-
cal, weakly-global, or global) is a maximal subgraph satisfying
the required property. As such, the set of maximal nuclei is
unique.

Proposition 2: There exists a hierarchical-containment prop-
erty for local, weakly-global, and global decomposition.

Proof: Let θ be an arbitrary and fixed user-defined
threshold. To prove the hierarchical-containment property for
local nucleus decomposition, let F be a local `-(k + 1, θ)-
nucleus. By the definition of local nucleus, each triangle in F
has support at least k + 1 in F , with probability no less than
θ. Since k + 1 > k, each triangle in F has also support at
least k in F . Thus, F is contained in a `-(k, θ)-nucleus. This
proves the property for local nucleus decomposition.

For weakly-global decomposition, let H be a weakly-global
w-(k+1, θ)-nucleus. Referring to Definition 4 for each triangle
4 ∈ H we have

Pr(XH,4,w ≥ k+1) =
∑
HvH

Pr[H | H]·1w(H,4, k+1) ≥ θ,

(2)
where 1w(H,4, k+ 1) = 1 means that 4 is in H , and there
is a subgraph H ′ of H that contains 4 and is a deterministic

(k+1)-nucleus in H . Since every deterministic (k+1)-nucleus
is contained in a deterministic k-nucleus [28], we have that
there exist a deterministic k-nucleus H ′′ in H that contains H ′.
Clearly, H ′′ contains 4, and we have that 1w(H,4, k+1) =
1 implies 1w(H,4, k) = 1, thus Pr(XH,4,w ≥ k) ≥ θ, i.e.
H is contained in a w-(k, θ)-nucleus.

A similar reasoning holds for the global case as its definition
is based on possible worlds which are deterministic nuclei.

We show that `-NuDecomp can be computed in polynomial
time and furthermore we give several algorithms to achieve
efficiency for large graphs. Before this, we start by showing
that g-NuDecomp and w-NuDecomp are #P -hard and NP-
hard, respectively. Nevertheless, as we show later in the paper,
once we obtain the `-NuDecomp, we can use it as basis, com-
bined with sampling techniques, to effectively approximate g-
NuDecomp and w-NuDecomp.

IV. HARDNESS RESULTS

In this section, we show that g-NuDecomp and w-
NuDecomp are NP-hard. For this we use a reduction from
the k-clique problem. Furthermore, we can show that g-
NuDecomp is even harder, namely #P-hard, using a reduction
from the network reliability problem.

Definition 6: The k-clique Problem [3]. Given a graph
G, and input parameter k, the k-clique problem is to check
whether there is a clique of size k in the graph. The k-clique
problem is NP-complete.

We note the following interesting property about k-nucleus.
Lemma 1: For any k, the only graph on (k + 3) vertices

which is a deterministic k-nucleus is a (k + 3)-clique.
Proof: Recall that based on the definition of the k-

nucleus, each triangle is contained in at least k 4-cliques.
Given the vertices {v1, v2, · · · , vk+3}, without loss of gen-
erality, let 4123 = (v1, v2, v3) be a triangle with vertices
v1,v2, and v3. The triangle 4123 must be part of k 4-cliques;
therefore, there must be an edge between each of the remaining
k vertices and all the vertices of the triangle 4123. Now,
new triangles are created, containing vertices {v4, · · · , vk+3}.
Let 4ijt be one of them, where i, j = 1, 2, i 6= j, and
t = 4, · · · , k + 3. This triangle must be contained in k 4-
cliques as well. Thus, there should be edges between each
vertex in the triangle 4ijt to the other k vertices. Thus, each
vertex vt becomes connected to all the other vertices creating
a clique on k + 3 vertices.

Theorem 4.1: w-NuDecomp and g-NuDecomp are NP-hard.
Proof: Given a graph G = (V,E), we define a proba-

bilistic graph G = (V,E, p) as follows: For each edge e in G,
p(e) = 1

22m+1 , where m is the number of the edges in G. Let

θ =
(

1
22m+1

)(k+3)·(k+2)/2

.

We prove that w-(k, θ)-nucleus
(
g-(k, θ)-nucleus

)
of G

exists if and only if a (k + 3)-clique exists in G. Let C
be a (k + 3)-clique in G. Since C has (k + 3) · (k + 2)/2

edges, its existence probability is
(

1
22m+1

)(k+3)·(k+2)/2

= θ.
In addition, in a (k + 3)-clique, each triangle is contained in



exactly k 4-cliques. Thus, as a subgraph, C is a both w-(k, θ)-
nucleus and g-(k, θ)-nucleus of G.

In the following we show that if G does not contain a (k+
3)-clique, the w-(k, θ)-nucleus and g-(k, θ)-nucleus are empty.
We prove the case for weakly-global, and the same reasoning
can be applied for the global case as well.

Suppose that G does not contain a (k + 3)-clique. For a
contradiction, let us assume that a w-(k, θ)-nucleus of G exists
and denote it by H. Based on Lemma 1, a (k+3)-clique is the
only graph which has k+ 3 vertices and is a deterministic k-
nucleus. Since, ignoring edge probabilities,H cannot be a (k+
3)-clique, it must have at least (k + 4) vertices. Furthermore,
since it contains a k-nucleus for each triangle in it, the degree
of each vertex is at least (k + 2).

Let 4 ∈ H and let {H1, H2, · · · , Hl} be a set of all
the valid possible worlds of H, i.e. 1w(Hi,4, k) = 1
(1g(Hi,4, k) = 1 for the proof of the global case), for all
Hi (refer to Definition 4). The maximum value for l can
be 2m. For each Hi, Pr(Hi) ≤ p(e)(k+4)·(k+2)/2. There-
fore, for triangle 4 ∈ H, Pr(XH,4,w ≥ k) is at most:

β = l ·
(

1
22m+1

)(k+4)·(k+2)/2

. Thus, we have

β ≤ 2m ·
(

1
22m+1

)((k+4)·(k+2))/2

= 2m · θ ·
(

1
22m+1

)(k+2)/2

< 2m · θ ·
(

1
22m+1

)
< θ. Thus, w-(k, θ)-nucleus is empty.

In the extended version of this paper [35], we show that
that g-NuDecomp is even harder, namely #P-hard.

V. LOCAL NUCLEUS DECOMPOSITION

Here we propose efficient algorithms for solving `-
NuDecomp. Peeling is a general strategy that has been used
broadly in core and truss decompositions as well as in deter-
ministic nucleus decomposition [28]. However, generalizing
peeling to compute `-NuDecomp creates significant compu-
tational challenges. For example, a challenge is finding the
support score for each triangle. This is because of the combi-
natorial nature of finding the maximum value of k such that
Pr(XG,4,` ≥ k) ≥ θ for a triangle 4. In particular, triangle 4
in a probabilistic graph can be part of different numbers of 4
cliques with different probabilities. As a result, considering all
the subsets of 4-cliques which contain4 results in exponential
time complexity. In our algorithm, we identify two challenging
tasks, namely computing and updating nucleus scores.

A. Computing initial nucleus scores

Our process starts by computing a nucleus score κ4 for
each triangle 4, which initially is the maximum k for which
Pr(XG,4,` ≥ k) ≥ θ.

Given a probabilistic graph G = (V,E, p), let4 = (u, v, w)
be a triangle in G. For i = 1, . . . , c4, where c4 = |N(u) ∩
N(v) ∩ N(w)|, let zi ∈ N(u) ∩ N(v) ∩ N(w) and Si =
{u, v, w, zi}. In other words, for each i, Si is the set of vertices
of a 4-clique that contains4. For notational simplicity, we will
also denote by Si the 4-clique on {u, v, w, zi}.

Similarly, for each i, let Ei = {(u, zi), (v, zi), (w, zi)} be
the set of edges which connect vertex zi to vertices of 4.

Let Pr(Ei) = p(u, zi) · p(v, zi) · p(w, zi) be the existence
probability of Ei. We have:

Pr(XG,4,` ≥ k) = Pr(XG,4,` ≥ k− 1)− Pr(XG,4,` = k− 1)
(3)

Thus, we need to compute Pr(XG,4,` = k) for any k, and
find the maximum value of k for which the probability on
the left-hand side of Equation 3 is greater than or equal to
θ. In fact, Pr(XG,4,` = k) gives the probability that 4 is
contained in k number of 4-cliques in G. Under the condition
that 4 exists, we denote X (S4, k, j) to be the probability that
4 is contained in k of 4-cliques from {S1, · · · , Sj} ⊆ S4,
where S4 the set of 4-cliques containing 4 in G. In other
words, X (S4, k, j) is conditional probability (conditioning on
the existence of 4).

We fix an arbitrary order on S4. The event that 4 is con-
tained in k of 4-cliques from {S1, · · · , Sj}, can be expressed
as the union of the following two sub-events: (1) the event that
the 4-clique Sj exists and4 is contained in (k−1) of 4-cliques
from {S1, · · · , Sj−1}, and (2) the event that the Sj does not
exist and 4 is part of k of 4-cliques from {S1, · · · , Sj−1}.
Thus, we have the following recursive formula:

X (S4, k, j) = Pr(Ej) · X (S4, k − 1, j − 1) (4)
+ (1− Pr(Ej)) · X (S4, k, j − 1),

where k ∈ [0, c4], and j ∈ [0, c4]. Initially, we set
X (S4, 0, 0) = 1, X (S4,−1, j) = 0 for any j, and
X (S4, k, j) = 0, if k > j. Setting j = c4 in Equation 4,
and multiplying X (S4, k, j) by Pr(4) (existence probability
of 4), gives the desired probability Pr(XG,4,` = k). Thus,
we have:

Pr(XG,4,` = k) = Pr(4) · X (S4, k, c4), (5)

Given a triangle 4, let the neighbor triangles of 4 be those
triangles which form a 4-clique with 4. In the following we
show how we can update Pr(XG,4,` ≥ k) when a neighbor
triangle is processed in the decomposition.

B. Updating nucleus scores

Once the κ scores have been initialized as described above,
a process of peeling “removes” the triangle 4∗ of the lowest
κ-score, specifically marks it as processed, and updates the
neighboring triangles4 (those contained in the same 4-cliques
as the removed triangle) in terms of Pr(XG,4,` ≥ k). Because
of the removal of 4∗ the cliques containing it cease to exist,
thus Pr(XG,4,` ≥ k) of the neighbors 4 will change. We
recompute this probability using the formula in Equation 4,
where the sets of cliques S4 are updated to remove the cliques
containing 4∗.
Algorithm 1 computes the nucleusness of each triangle in
G. In line 3, for each triangle 4, κ(4) is initialized using
Equation 4. Array processed records whether a triangle has
been processed or not in the algorithm (line 4). At each
iteration (line 5-11), an unprocessed triangle4 with minimum
κ(4) is considered, and its nucleus score is set and stored in



Algorithm 1 `-NuDecomp

1: function `-NUCLEUSNESS(G, θ)
2: for all triangles 4 ∈ G do
3: κ(4)← arg maxk{X (S4, k, c4) ≥ θ}
4: processed[4]← false
5: for all unprocessed 4 ∈ G with minimum κ(4) do
6: ν(4)← κ(4)
7: Find set S4 of 4-cliques containing 4
8: for all S ∈ S4 with non-processed triangles do
9: for all 4′ ⊂ S, 4′ 6= 4, κ(4′) > κ(4) do

10: κ(4′)← arg maxk{X (S4′\S, k, c4′−1) ≥
θ}

11: processed[4]← true
12: return array ν(·)

array ν (line 6). Then, the κ(4′) values of all the neighboring
triangles 4′ are updated using Equation 4. The affected
triangles are those unprocessed triangles which are part of the
same 4-clique with triangle 4. The algorithm continues until
all the triangles are processed. At the end, each triangle obtains
its nucleus score and array ν with these scores is returned
(line 12). Once all the nucleus scores are obtained, we build
`-(k, θ)-nuclei for each value of k.

Observe that the κ values for each triangle at each iteration
decrease or stay the same. This implies that κ for each triangle
4 is a monotonic property function similar to properties
described in [36] for vertices. Now, we can use a reasoning
similar to the one in [36] to show that our algorithm, which
repeatedly removes a triangle with the smallest κ value, gives
the correct nucleusness for each triangle.

Time complexity: Using dynamic programming, Lines 2-3
take O

(∑
4∈G κ4 · c4

)
, where κ4 is the nucleusness

obtained for each triangle 4 in line 3. Let κmax be
the maximum κ4 over all the triangles in G. Since
c4 ∈ O(d(u) + d(v) + d(w)) ⊆ O(dmax), running time of
line 3 is O

(∑
4∈G κ4 · c4

)
= O

(∑
4∈G κmax · dmax

)
=

O (κmaxdmaxTG) , where TG is the total number of
triangles in the graph, and dmax is the maximum
degree in G. For each triangle 4, finding all S4’s in
line 7, takes O (d(u) + d(v) + d(w)) = O(dmax). In
addition, lines 9-10 take O

(∑
4′∈N(4)(κ4′ · c4′)

)
time, where N(4) is the triangles which form a 4-
clique with 4. Note that N(4) = O(c4). Therefore,
the running time for processing all the triangles is
O
(∑

4∈G

(
d(u) + d(v) + d(w) +

∑
4′∈N(4) κ4′ · c4′

))
= O

(
κmaxd

2
maxTG

)
.

Thus, the total running time of Algorithm 1 is bounded by
O
(
κmaxd

2
maxTG

)
, and we can state the following.

Theorem 5.1: `-NuDecomp can be computed in polynomial
time.

The space complexity is O(TG). This space is needed to
store triangles (not 4-cliques) and their κ values. This is

the same as the space complexity of deterministic nucleus
decomposition.

While being able to compute `-NuDecomp in polyno-
mial time is good news, finding the maximum k such that
Pr(XG,4,l ≥ k) ≥ θ is quadratic in c4 which is not
efficient for large probabilistic graphs. As an alternative ap-
proach, we will now propose efficient methods to approximate
Pr(XG,4,l ≥ k) in O(c4) time such that the results are practi-
cally distinguishable from the exact values. The approximation
is based on limit theorems, such as Le Cam’s Poisson Limit
Theorem [37] and Lyapunov’s Central Limit Theorem [38].

C. Approximating κ scores

Framework. Given a triangle 4 = (u, v, w), let Si =
{u, v, w, zi} for i = 1, . . . , c4, as before. Also, let Ei =
{(u, zi), (v, zi), (w, zi)} be the edges that connect zi to the
vertices of 4.

With slight abuse of notation, we also define each Ei as an
indicator random variable which takes on 1, if all the edges
in Ei exist, and takes on 0, if at least one of the edges in
the set does not exist. We observe that the variables Ei are
mutually independent since the sets Ei do not share any edge.
Also, each Bernoulli variable Ei takes value 1 with probability
p(u, zi) · p(v, zi) · p(w, zi) and 0 with 1− (p(u, zi) · p(v, zi)) ·
p(w, zi)).

Let ζ =
∑c4
i=1 Ei. We can verify the following proposition.

Proposition 3: Pr(XG,4,` ≥ k) = Pr(4) · Pr[ζ ≥ k].
The expectation and variance of ζ are µ =

∑c4
i=1 Pr(Ei) and

σ2 =
∑c4
i=1

(
Pr(Ei) · (1−Pr(Ei)

)
, respectively. Now we show

that we can approximate the distribution of ζ using Le Cam’s
Theorem which makes use of Poisson Distribution [37].
Poisson Distribution [39]: A discrete random variable X is
said to have Poisson distribution with positive parameter λ, if
the probability mass function of X is given by:

Pr[X = k] =
λke−k

k!
, k = 0, 1, · · · , (6)

The expected value of a Poisson random variable is λ.
Setting λ to µ, we can approximate the distribution of ζ by
the Poisson distribution. Using Le Cam’s Theorem [37], the
error bound on the approximation is as follows:
c4∑
k=0

∣∣∣∣Pr(ζ = k)− λke−λ

k!

∣∣∣∣ < 2

c4∑
i=1

(
Pr(Ei)

)2
= 2(µ− σ2).

(7)
Equation 7 shows that the Poisson distribution is reliable if

Pr(Ei) and c4 are small.
We observe that computing tail probabilities for the Poisson

distribution is easy in practice as these probabilities satisfy a
simple recursive relation.

Pr[ζ < k] ≈
∑
j<k

e−λλj

j!
=
∑
j<k−1

e−λλj

j!
+
e−λλk−1

(k − 1)!

= Pr[ζ < k − 1] +
λ

k − 1
Pr[ζ = k − 2] (8)



with base case Pr[ζ < 1] = Pr[ζ = 0] = e−λ. Using Equation
8, and iterating over all values of k from 1 to c4, we can
evaluate each term Pr[ζ ≥ k] = 1−Pr[ζ < k] in constant time,
and find the maximum k such that Pr(4)·Pr[ζ ≥ k] ≥ θ. Thus,
the time complexity of obtaining Pr(XG,4,` ≥ k) is O(c4).

In some applications,
∑c4
i=1

(
Pr(Ei)

)2
in Equation 7 can be

large, even if each Pr(Ei) is small. As a result, the difference
between the variance σ2 =

∑c4
i=1 Pr(Ei)−

∑c4
i=1 (Pr(Ei))2 of

ζ, and the variance λ =
∑c4
i=1 Pr(Ei) of the Poisson approx-

imation becomes large. To tackle the problem, we define a
Translated Poisson [40] random variable Y = bλ2c+Πλ−bλ2c,
where λ2 = λ − σ2 and Π is Poisson distribution with
parameter λ − bλ2c. In this formula λ =

∑c4
i=1 Pr(Ei) is the

expected value of distribution ζ. Thus, the difference between
the variance of Y and ζ can be written as:

Var(Y)− Var(ζ) = λ− bλ2c − σ2 = λ− σ2 − bλ2c,
= λ2 − (λ2 − {λ2}) = {λ2} < 1, (9)

where {λ2} = λ2 − bλ2c . As can be seen the difference
between the variances becomes small in this case.

Equation 8 for translated Poisson changes to

Pr[ζ < k] ≈ Pr[Y < k] = Pr
[(
bλ2c+ Πλ−bλ2c

)
< k

]
,

= Pr[Πλ−bλ2c < k − bλ2c] = Pr[Πλ−bλ2c < k − bλ2c − 1],

+
λ− bλ2c

k − bλ2c − 1
Pr[Πλ−bλ2c = k − bλ2c − 2], (10)

and the complexity of obtaining Pr(XG,4,` ≥ k) remains the
same.

We will now consider the scenario when c4 is large. In
this case, the variance of ζ will be large. In the following, we
show the use of Central Limit Theorem for this case.

Central Limit Theorem. An important theorem in statistics,
Lyapunov’s Central Limit Theorem (CLT) [38] states that,
given a set of random variables (not necessarily i.i.d.), their
properly scaled sum converges to a normal distribution under
certain conditions.

If c4 and hence σ2 are large, then by [38], Z =
1
σ

∑c4
i=1(Ei − µi) has standard normal distribution, where

µi = Pr(Ei). To approximate Pr[ζ ≥ k] = Pr[
∑c4
i=1 Ei ≥ k]

using CLT we can subtract
∑c4
i=1 µi from the sum of Ei’s and

divide by σ. As a result, we have:

Pr

[ c4∑
i=1

Ei ≥ k

]
= Pr

[
1

σ

c4∑
i=1

(Ei − µi) ≥
1

σ

(
k −

c4∑
i=1

µi

)]
(11)

Since Z = 1
σ

∑c4
i=1(Ei − µi) has standard normal distri-

bution, we can find the maximum value of k such that the
right-hand side of Equation 11 is at equal or greater than
the threshold. Evaluation of each probability can be done in
constant time. Thus, finding the maximum value of k can be
done in O(c4) time.

Binomial Distribution. In many networks, edge probabilities
are close to each other and as a result, for each triangle
4, Pr(Ei)’s are also close to each other. In that case,

the distribution of support of the triangle 4 can be well
approximated by Binomial distribution. A random variable X
is said to have Binomial distribution with parameters p and
n, if the probability mass function of X is given by [41]:

Pr[X = k] =

(
n

k

)
pk(1− p)(n−k). (12)

In the above equation, p is success probability, and n is the
number of experiments. In statistics, the sum of non-identically
distributed and independent Bernoulli random variables can be
approximated by the Binomial distribution [42]. As discussed
in [42], the Binomial distribution provides a good approxi-
mation, if its variance is close to the variance of ζ. For the
approximation, we set n = c4 and n · p = µ.

We observe that tail probabilities for the Binomial distri-
bution can be calculated inexpensively as these probabilities
satisfy the following well-known recursive relation

Pr[ζ = k] =
(n− k + 1)p

k(1− p)
Pr[ζ = k − 1]. (13)

Using Equation 13, and iterating over values of k from 1 up
to c4, we can evaluate Pr[ζ ≥ k] in O(1) time, and find the
maximum k such that Pr(4) · Pr[ζ ≥ k] ≥ θ. Thus, the time
complexity of obtaining probabilistic support for a triangle 4
in this case is O(c4).

Summary. We compute Pr(XG,4,` ≥ k) using the following
set of conditions based on four thresholds A,B,C,D.

1) If c4 is large (c4 ≥ A), the CLT approximation is used.
2) If (1) does not hold, then if c4 and Pr(Ei)’s are small

(c4 < B and Pr(Ei)′s < C), the Poisson approximation
is used.

3) If (1) and (2) do not hold, then if
∑c4
i=1

(
Pr(Ei)

)2
> 1,

the Translated Poisson approximation is used.
4) If (1), (2), and (3) do not hold, then if the ratio of the

variance of ζ to the variance of the Binomial distribution
with n = c4 and p = µ/n is close to 1 (e.g. not less
than a number D), the Binomial approximation is used.

5) Otherwise, Dynamic Programming is used.
For selecting the thresholds we refer to the literature in

statistics. In particular, CLT gives a good approximation if the
number (for our problem c4) of random variables in the sum is
at least 30 ( [43], p. 547). In fact, we set our threshold A = 200
to much higher than what is suggested by the literature. Also,
regarding Poisson distribution, the existence probability (for
our problem Pr(Ei)’s) of the indicator random variables in the
sum should be less than 0.25 (see [37]). So, we set C = 0.25.
We set B to be half of A so that it is considerably far from A
(threshold on c4). We set D = 0.9 which is close enough to 1.

When using A = 200, B = 100, C = 0.25, D = 0.9,
we observed that the results of computing Pr(XG,4,` ≥ k)
using an approximation are practically indistinguishable
from the solution of dynamic programming. Furthermore,
as we observed in our experiments, falling back to dynamic
programming in point (5) happens only in a small amount of
cases, i.e. most triangles in real world networks satisfy one



of the earlier conditions (1)-(4). This means we can avoid
dynamic programming for most of the triangles.

VI. GLOBAL AND WEAKLY-GLOBAL NUCLEUS
DECOMPOSITION

In this section, we propose algorithms for computing global
and weakly-global nucleus decomposition. Given a graph H,
computing Pr(XH,4,g ≥ k) and Pr(XH,4,w ≥ k) requires
finding all the possible worlds ofH, which are in total 2|E(H)|,
where E(H) is the number of edges in H. This is prohibitive.
Thus, we use Monte Carlo sampling to estimate the probabil-
ities, denoted by P̂r(XH,4,g ≥ k) and P̂r(XH,4,w ≥ k). The
following lemma states a special version of the Hoeffding’s
inequality [44] that provides the minimum number of samples
required to obtain an unbiased estimate.

Lemma 2: Let Y1, · · · , Yn be independent random variables
bounded in the interval [0, 1]. Also, let Ȳ = 1

n

∑n
i=1 Yi. Then,

we have that

Pr
[
|Ȳ − E[Ȳ ]| ≥ ε

]
≤ 2e−2nε

2

. (14)

In other words, for any ε, δ ∈ (0, 1], Pr
[
|Ȳ − E[Ȳ ]| ≥ ε

]
≤ δ,

if n ≥
⌈

1
2ε2 ln

(
2
δ

)⌉
.

Based on the above, using Monte Carlo sampling, we can
obtain an estimate of Pr(XH,4,g ≥ k), and Pr(XH,4,w ≥ k)
for any subgraph H by sampling n possible worlds of H,
{H1, · · · , Hn}, where n =

⌈
1

2ε2 ln
(
2
δ

)⌉
, ε is an error bound,

and δ is a probability guarantee. In particular, we have:

P̂r(XH,4,µ ≥ k) =

n∑
i=1

1µ(Hi,4, k)/n, (15)

where µ = g or w, and the indicator function 1µ(Hi,4, k) is
given in Definition 4. Based on Lemma 2, what we obtain is
an unbiased estimate. Thus, setting µ = g,w, we have

Pr
[∣∣∣Pr (XH,4,µ ≥ k)− P̂r (XH,4,µ ≥ k)

∣∣∣ ≥ ε] ≤ δ. (16)

g-(k, θ)(k, θ)(k, θ)-nucleus. In what follows, we propose an algorithm
for finding all g-(k, θ)-nuclei for different values of k =
1, . . . , kmax, where kmax is the largest value for which the
local nucleus is non-empty. This is because we extract global
nuclei from local ones since every g-(k, θ)-nucleus is part of
an `-(k, θ)-nucleus. The main steps of our proposed algorithm
are given in Algorithm 2.

Given a positive integer k, threshold θ, error-bound ε, and
confidence level δ, the algorithm starts by creating subgraph
Ck as the union of all `-(k, θ)-nuclei (line 4). Then, the
algorithm incrementally builds a candidate g-(k, θ)-nucleus
H as follows. For each triangle 4 in Ck, it adds to H all
the 4-cliques in Ck containing 4 (line 6). By this process
other triangles 4′ could potentially be added to H such that
the number of 4-cliques containing 4′ is less than k. In
order to remedy this, the algorithm adds all the 4-cliques of
Ck containing 4′ to H. This process continues until all the
triangles in H are contained in at least k 4-cliques (lines 7-8).
Once the candidate graph H is obtained, n samples of possible
worlds of H are obtained (line 10). Then, the algorithm checks

if the condition P̂r(XH,4,g ≥ k) ≥ θ is satisfied for each
triangle4 inH (lines 11-13). At the end, the algorithm returns
all g-(k, θ)-nuclei H (line 15-17), for all the possible values
of k.

Algorithm 2 g-NuDecomp

1: function g NUCLEUS(G, θ, ε, δ)
2: solution ← {}
3: for all k ← 1 to kmax do
4: Ck ← the union of `-(k, θ)-nuclei by Algorithm 1
5: for all 4 ∈ Ck do
6: H ← all 4-cliques in Ck containing 4
7: while ∃4′ ∈ H with less than k 4-cliques ∈ H

containing it do
8: add all 4-cliques of Ck containing 4′ to H

9: condition hold ← true
10: sample← {H1, · · · , Hn}
11: for all 4 ∈ H do P̂r(XH,4,g ≥ k)← Eq.(15)

12: if P̂r(XH,4,g ≥ k) < θ then
13: condition hold ← false
14: break
15: if condition hold == true then
16: solution← solution ∪H
17: return solution

Algorithm 3 w-NuDecomp

1: function w NUCLEUS(G, θ, ε, δ)
2: solution ← {}
3: for all k ← 1 to kmax do
4: for all `-(k, θ) H do
5: global score[4] ← 0 for each 4 ∈ H
6: sample← {H1, · · · , Hn}
7: for all H ∈ sample do
8: H ′ ← k-nucleus of H
9: for all triangle 4 ∈ H ′ do

10: global score[4] ++

11: for all 4 ∈ H do
12: P̂r(XH,4,w ≥ k)← global score[4]/n

13: solution ← solution ∪ connected union of 4’s
with P̂r(XH,4,w ≥ k) ≥ θ

14: return solution

w-(k, θ)-nucleus. In what follows, we propose an algorithm
for finding all w-(k, θ)-nuclei, for different values of k =
1, . . . , kmax, where kmax is as before. We begin by noting
that each w-(k, θ)-nucleus is an `-(k, θ)-nucleus. The steps of
our proposed algorithm are given in Algorithm 3.
We use array global score to store the number of deterministic
k-nuclei that each triangle belongs to. The array is initialized
to zero for all the triangles in the candidate graph (line 5). For
each candidate graph which is a `-(k, θ)-nucleus, we obtain
the required number n of possible worlds for the given ε and



δ. Then, we perform deterministic nucleus decomposition on
each world (lines 6-8). If triangle 4 is in a deterministic k-
nucleus of that possible world, the corresponding index of 4
in array global score is incremented by one (lines 9-10). In
line 12, the approximate value P̂r(XH,4,w ≥ k) is obtained
for each triangle. Then, we start creating the connected compo-
nents H using triangles with P̂r(XH,4,w ≥ k) ≥ θ (line 13).
At the end, the algorithm returns all w-(k, θ)-nuclei, for all
the possible values of k.
Remark. Both of these algorithms run in polynomial time.
They compute the correct answer provided the estimation
of the threshold probabilities using Monte-Carlo sampling is
close to the true value. If not, they give approximate solutions.
Space Complexity. For global and weakly global
decompositions the space needed is O(TG + m · n),
where m is the number of edges in H and n is the number
of possible worlds for H we sample.

From a theoretical point of view, n, the number of samples,
is constant for fixed values of ε and δ, and since m, number
of edges, is absorbed by TG , we can say that the above
complexity is again O(TG), i.e. same as the space complexity
for deterministic nucleus.

From a practical point of view, for each sample graph
(possible world) we use a bit array to record whether an edge
exists in the sample or not. For practical values of ε and δ,
m ·n is about 200 ·m bits, which is 200/(32 + 32) ∼ 3 times
more than the space needed to store the edges as adjacency
lists (assuming an integer node id is 32 bits, and the graph is
undirected, i.e. each edge is represented as two directed edges).
In other words, to store the n possible worlds we only need
about three times more space than what is needed to store G.

VII. EXPERIMENTS

We present our extensive experimental results to test the
efficiency, effectiveness, and accuracy of our proposed algo-
rithms. Our implementations are in Java and the experiments
are conducted on a commodity machine with Intel i7, 2.2Ghz
CPU, and 12Gb RAM, running Ubuntu 18.04.

Datasets and Experimental Framework. Statistics for
our datasets are in Table I. We order the datasets based
on the number of triangles they contain. Datasets with real
probabilities are flickr, dblp, and biomine from [1], [45] and
krogan from [46].

We also consider datasets ljournal-2008 and pokec.
ljournal-2008 is obtained from Laboratory of Web
Algorithmics (http://law.di.unimi.it/datasets.php) and
pokec is from the Stanford Network Analysis Project
(http://snap.stanford.edu). For these networks, we generated
edge probabilities uniformly distributed in (0, 1].

We evaluate our algorithms on three important aspects. First
is the efficiency. For this, we report the running time of our
algorithms in Subsection VII-A. Second is the accuracy and
closeness of our approximation methods. We discuss this in
Subsection VII-B. Third is the quality of the output nucleus
as measured by density and probabilistic clustering coefficient

Graph |V | |E| dmax pavg |4|
krogan 2,708 7,123 141 0.68 6,968
dblp 684,911 2,284,991 611 0.26 4,582,169
flickr 24,125 300,836 546 0.13 8,857,038
pokec 1,632,803 22,301,964 14,854 0.50 32,557,458
biomine 1,008,201 6,722,503 139,624 0.27 93,716,868
ljournal-2008 5,363,260 49,514,271 19,432 0.50 411,155,444

TABLE I: Dataset Statistics

which are discussed in Subsection VII-C. Finally, in Subsec-
tion VII-D we show the usefulness of our nucleus definitions
over probabilistic graphs by presenting a detailed use-case.

A. Efficiency Evaluation

In this section, we report the running times of our pro-
posed algorithms for local nucleus decomposition: one that
uses dynamic programming and the other that uses statistical
approximations for computing and updating the support of
triangles. We denote them by DP and AP, respectively. Next,
we report the running times of our (fully) global and weakly-
global nucleus decomposition algorithms, which we denote by
FG and WG. We set error-bound ε = 0.1 and confidence level
δ = 0.1. Based on these values and Lemma 2, we set the
number of samples to n = 200 >

⌈
1

2ε2 ln
(
2
δ

)⌉
(i.e. greater

than what is required by Hoeffding’s inequality). As such, our
results for global and weakly-global notions of nuclueus are
approximate but come with strong quality guarantees.

Running time results for DP and AP are shown in Figure 2
for different values of θ. Y-axis for the last 3 plots is in
log-scale.

Both algorithms perform well on medium-size datasets,
dblp and flickr; computing the nucleus decomposition of these
two graphs takes less than 1 sec. For a larger-size dataset,
pokec, both algorithms complete in less than 10 min. Note
that AP clearly outperforms DP on large-size datasets such as
biomine and ljournal-2008 for small values of θ. For instance,
for ljournal-2008 with θ = 0.1, it is only AP that can run to
completion, whereas DP could not complete after one day.
Nevertheless, both DP and AP are able to run in reasonable
time for all the other cases, which is good considering that
nucleus decomposition is a harder problem than core and
truss decomposition.

In general, the running times of both DP and AP decrease
significantly as θ increases. This is because the number of
triangles which, (a) exist with probability greater than θ and
(b) have a support at least k again with probability greater
than θ, decreases. As can be seen, AP is faster than DP on all
datasets for different values of θ. In addition to the ljournal-
2008 case for which only AP could complete, when θ = 0.1,
the gain of AP over DP is about 24% and 30% for biomine
and pokec, respectively.

For speed-up evaluation of AP vs. DP we added two more
datasets. The statistics of these datasets are given in Table II.
The first dataset is enwiki-2013. What is special about this
dataset is that its maximum initial nucleus score is 2, 813,
which is much larger than in other graphs we consider. We
set θ = 0.1; when θ is small, more triangles can have enough

http://law.di.unimi.it/datasets.php
http://snap.stanford.edu
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Fig. 2: Run times of DP and AP for varying θ (x axis). Both perform well on medium datasets. For bigger datasets,
biomine and ljournal, the difference is more pronounced. For ljournal, for θ = 0.1, it is only AP that can complete
within one day.

probability to be part of a much larger number of 4-cliques.
This can cause too much work for DP to compute nucleus
scores and update these values when the triangles are being
processed in the peeling step. For this dataset, DP was not able
to complete the computation within one week. In contrast, AP
completed in about 80K sec (less than a day).

The other additional dataset we considered is itwiki-2013.
The maximum initial nucleus score in this dataset is 1, 866.
In this graph, using the same θ = 0.1, DP needs about 40h,
whereas AP 16h, i.e. AP is 2.5 times faster than DP.

Moreover, we ran DP and AP on biomine with θ = 0.01.
DP took about 37.5h, whereas AP 2.5h, thus being 15 times
faster than DP.

Graph |V | |E| dmax pavg |4|
enwiki-2013 4,206,785 91,939,728 432,260 0.5 304,083,160
itwiki-2013 1,016,867 23,429,644 91,517 0.5 89,901,299

TABLE II: Additional datasets. |V ||V ||V |, |E||E||E|, dmaxdmaxdmax, pavgpavgpavg , 444,
are number of vertices, edges, maximum degree, average
edge probability, and number of triangles in the graph,
respectively.

We report the running time of FG and WG in Figure 3
along with the running time of local (denoted by L in the
figure) nucleus decomposition for θ = 0.1 (which as explained
above is more difficult than θ = 0.2, . . . , 0.5). Note that the
global and weakly-global nuclei are obtained from the local
ones using Algorithms 2 and 3. Therefore, their running time
includes the time required for obtaining local nuclei. For local
decomposition, we use DP to obtain the probabilistic support
of the triangles, except for ljournal-2008 for which we use
AP since DP does not scale for this threshold. Also, we report
running times averaged across 5 runs, since the solutions of
FG and WG depend on the random sampling steps.

In general WG is faster than FG. This is because WG
performs deterministic nucleus decomposition only on a fixed
number of sample graphs while FG does the decomposition
every time that a candidate graph is detected. We also note
that as the graph becomes larger, WG will have to perform
nucleus decomposition on larger sample graphs leading to
increased running time. For FG, usually candidate graphs are
small even for large graphs. So, when the graph becomes
lager, the runtime of WG increases more compared to FG.
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Fig. 3: Run time of L, FG, and WG. FG and WG
include the time for L. WG is faster because it performs
deterministic decomposition only on a fixed number of
sample graphs while FG does so each time a candidate
graph is discovered.

Moreover, we compare the running time of nucleus de-
composition algorithms, local, weakly-global, and global, on
biomine with θ = 0.1 and θ = 0.01 in Figure 4. For the local
decomposition (L) we used DP because we are interested in
the relative difference in running time for the different nucleus
notions and L is the initial step for computing WG and FG.

When θ decreases, running times increase since more tri-
angles can have enough probability to be contained in a local
nucleus subgraph. In terms of the size of the results, Table III
shows the average number of vertices and edges for the L,
WG, and FG subgraphs aggregated over all k ∈ [1, kmax]. In
general, the average values increase as we decrease threshold.
This is due to the fact that by decreasing θ more triangles can
have enough probability to be contained in 4-cliques.
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Fig. 4: Running time (in sec) of local (L), weakly-global
(WG), and (fully) global (FG) decomposition on biomine
for θ = 0.1 and θ = 0.01.

B. Accuracy Evaluation
To evaluate the accuracy of the AP algorithm, we compare

the final nucleus scores obtained by DP and AP algorithms.



θ = 0.1

Model Number of Vertices Number of edges

Local 75 3455
Weakly-Global 15 157
Global 4 6

θ = 0.01

Local 93 3785
Weakly-Global 55 2332
Global 5 10

TABLE III: Average number of vertices and edges for
local, weakly-global, and global nucleus subgraphs with θ
equal to 0.1 and 0.01.

Dataset
Avg Error % of 4 with Error

θ = 0.2/θ = 0.4

krogan 0.0524/0.0209 5.24/2.08
dblp 0.0069/0.0041 0.69/ 0.41
flickr 0.0031/0.0 0.31/0.0
pokec 0.0014/4.15e-5 0.14/0.004
biomine 0.0/0.0 0.0/0.0
ljournal-2008 0.0179/0.0070 1.79/0.69

TABLE IV: Avg difference (error) of AP scores from true DP
scores and pct’s of triangles with error. Errors are very small.

We report the results in Table IV. We show the results for θ
equal to 0.2 and 0.4, since for the remaining values the error
results do not differ significantly. The second column shows
the average difference (error) from true value over the total
number of triangles. The last column shows the percentage of
triangles whose value is different from their exact value.

As can be seen, the average error is quite small for all the
datasets we consider. Particularly, for flickr with θ = 0.4 and
biomine with θ = 0.2 and θ = 0.4 we have that AP computes
nucleus decomposition with zero error. Also, the percentage
of triangles with an error score is very small, namely less than
1% for all the datasets, except krogan and ljournal-2008. For
these two, the percentages are still small, 5.24% and 1.79%,
respectively. These results show that the output of AP is very
close to that of exact computation by DP, and thus, AP is a
reliable approximation methodology.
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Fig. 5: Average PD and PPC, average number of edges,
average number of `-(k, θ)(k, θ)(k, θ)-nuclei for flickr with θ = 0.3θ = 0.3θ = 0.3.
C. Quality Evaluation of Nucleus Subgraphs

Here we compare the cohesiveness of `-(k, θ)-nucleus with
the cohesiveness of local (k, γ)-truss [24] and (k, η)-core [1].

We use two metrics. The first metric is the probabilistic
density (PD) of a graph G, which we denote by PD(G) and
is defined as follows [24]:

PD(G) =

∑
e∈E p(e)

1
2 |V | · (|V | − 1)

. (17)

In words, PD of a probabilistic graph is the ratio of the sum of
edge probabilities to the possible number of edges in a graph.

The second metric is probabilistic clustering coefficient
(PCC). It measures the level of tendency of the nodes to cluster
together. Given a probabilistic graph G, its PCC is defined as
follows [24], [47]:

PCC(G) =
3
∑
4uvw∈G p(u, v) · p(v, w) · p(u,w)∑
(u,v),(u,w),v 6=w p(u, v) · p(u,w)

. (18)

For probabilistic nucleus, probabilistic truss and probabilis-
tic core subgraphs, we use the same threshold θ = γ = η,
set to 0.1 and 0.3. (γ is used as threshold in the truss case
[24], and η is used as threshold in the core case [1]). Table V
reports results on dblp, pokec, and biomine. Results for the
other datasets are similar. For a given threshold, we report
the statistics of local (kNmax, θ)-nucleus, (kTmax, γ)-truss,
and (kCmax, η)-core, where kNmax, kTmax, and kCmax are
maximum nucleus, truss and core scores, respectively. Also,
for kNmax, kTmax, and kCmax, we might obtain more than
one connected component; we report the average statistics over
such components. We denote by VN , VT , VC , the sets of nodes,
by EN , ET , EC , the sets of edges, by PDN , PDT , PDC , the
PD’s and by PCCN , PCCT , PCCC , the PCC’s of nucleus,
truss, and core components, respectively. The last column
shows the running time for computing each decomposition. We
observe that sometimes nucleus decomposition is faster than
truss decomposition. This is because in nucleus decomposition
there could be fewer triangles that survive the specified thresh-
old in terms of support than edges in truss decomposition.

As can be seen in the table, (kNmax, θ)-nucleus produces
high quality results in terms of PD and PCC. We achieve a
significantly higher PD and PCC for nucleus compared to truss
and core. For instance, for dblp the PD for nucleus is 0.8
versus 0.611 and 0.264 for truss and core, which translates
for nucleus being about 30% and 200% more dense than truss
and core. Similar conclusions can be drawn for PCC as well.

Moreover, Figure 5 reports the average PD, average
PCC, average edges in each `-(k, θ)-nucleus, and number
of connected components (`-(k, θ)-nuclei) for an example
dataset flickr with fixed θ = 0.3 and varying k. We see that
even for small values of k, PD and PCC are considerably high
(above 70-80%). In general, PD and PCC become larger as
k increases, since denser nuclei will be detected by removing
triangles having low support probability to be part of a
4-clique. This causes the final subgraphs to have edges with
high probability only. Furthermore, since `-(k, θ)-nucleus
implies connectivity, the number of connected components
increases as k decreases. It results in an increase in the
average number of edges in each `-(k, θ)-nucleus.



Graph θ |VN | / |VT | / |VC | |EN | / |ET | / |EC | kNmax/kTmax/kCmax PDN/PDT /PDC PCCN/PCCT /PCCC TimeN/TimeT /TimeC

dblp 0.1 19/34/115 171/561/6555 9/14/26 0.800/0.611/0.264 0.790/0.620/0.317 25/100/15.86
dblp 0.3 14/26/138 108/366/6693 7/11/23 0.9917/0.785/0.277 0.9918/0.789/0.384 11/30/16.99

pokec 0.1 13/72/288 121/1335/10592 3/8/27 0.678/0.341/0.129 0.636/0.393/0.170 672/1162/4401
pokec 0.3 6/71/278 21/1031/10142 2/6/25 0.815/0.321/0.132 0.793/0.406/0.172 298/980/4349

biomine 0.1 103/102/430 5231/5127/92200 18/33/79 0.540/0.538/0.211 0.540/0.538/0.217 1098/7642/5792
biomine 0.3 7/102/431 23/5125/92625 2/28/73 0.714/0.538/0.212 0.701/0.539/0.218 939/1563/5685

TABLE V: Cohesiveness statistics of lll-(k, θ)(k, θ)(k, θ)-nucleus N, (k, θ)(k, θ)(k, θ)-truss, T, and (k, θ)(k, θ)(k, θ)-core, C on dblp, pokec, and biomine.
The number of vertices (|VN | / |VT | / |VC ||VN | / |VT | / |VC ||VN | / |VT | / |VC |), the number of edges (|EN | / |ET | / |EC ||EN | / |ET | / |EC ||EN | / |ET | / |EC |), maximum nucleus/truss/core
score (kNmax/kTmax/kCmaxkNmax/kTmax/kCmaxkNmax/kTmax/kCmax), the probabilistic density (PDN/N/N/PDT /T /T /PDC/C/C/), and the probabilistic clustering coefficient
(PCCN/N/N/PCCT /T /T /PCCC/C/C/), respectively.
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Fig. 6: PD and PCC for g-(k, θ)(k, θ)(k, θ), w-(k, θ)(k, θ)(k, θ), and `-(k, θ)(k, θ)(k, θ)
nuclei on krogan, flickr, and dblp.

n AV(PD) AV(PCC) AV(Edge) AV(Vertex) ε δ

150 .905 .726 .903 .770 12.744 55.631 5.336 11.971 0.1 0.1
300 .906 .733 .903 .773 12.725 52.960 5.334 11.543 0.07 0.05
500 .906 .729 .903 .767 13.005 53.883 5.383 11.703 0.05 0.06

1000 .905 .725 .902 .766 12.823 53.772 5.356 11.745 0.05 0.01
2000 .906 .727 .903 .768 12.782 54.264 5.350 11.792 0.03 0.05

AV .906 .728 .903 .769 12.816 54.102 5.352 11.751
SD .0004 .003 .0003 .002 .112 .978 .020 .155

TABLE VI: Effect of sample size (n), ε, and δ on different
average metrics, average PD, average PCC, average number of
edges, and average number of vertices for global and weakly-
global nuclei. The first and second columns for each metric are for
global and weakly-global nuclei, respectively. The results shown
here are on krogan with θ = 0.1. Observe that standard deviation
(SD) is not more than 1.8% of the average for all columns. For
some of the columns SD is much smaller, e.g. for average PD
(first column) it is only 0.05%.

Finally, we compare the PD and PCC values of g-(k, θ)-
nucleus, w-(k, θ)-nucleus over 5 runs of these algorithms, and
`-(k, θ)-nucleus, for krogan, flickr, and dblp datasets using
θ = 0.001, and averaging over all the possible values of k.
The results are shown in Figure 6. We see that g-(k, θ)-nucleus
achieves higher cohesiveness as expected. In addition, w-
(k, θ)-nucleus exhibits quite good PD and PCC values higher
than those for `-(k, θ)-nucleus.
Effect of ε and δ. We consider krogan dataset with θ = 0.1.
The choice of ε and δ influence the number n of possible
worlds we sample. For ε = 0.1 and δ = 0.1 we obtain n =
150. In order to see the fidelity of our results, we experiment
by increasing n to higher values, namely 300, 500, 1000, 2000.
As the results in Table VI show, the following metrics about
global and weakly-global nuclei: average PD, average PCC,
average number of vertices, and average number of edges

change very little. Specifically, the first two metrics are dis-
persed by not more than 0.4% around their mean over the
different values of n, and the last two metrics are dispersed
by not more than 1.8%. There can be many ε and δ values
corresponding to a given sample size; for illustration, for
n = 150, we can have ε = 0.1, δ = 0.1, whereas for
n = 2000, we can have ε = 0.03, δ = 0.05, i.e. we see that
even though in the latter case the ε and δ decrease by a factor
of 3 and 2, respectively, still the nuclei results in terms of the
aforementioned metrics are almost the same. This validates
the choice of ε and δ to 0.1 since lower values do not offer
significant improvement in the quality of results.
D. Case Study

Analysis of DBLP Collaboration Network for task-
driven team formation. To show the usefulness of nucleus
decomposition in probabilistic graphs, we apply our decom-
position algorithms to solve the task-driven team formation
problem for a DBLP network. In task-driven team formation
[1], we are given a probabilistic graph GT = (V,E, pT ),
which is particularly obtained for task T . Vertices in GT are
individuals and edge probabilities are obtained with respect
to task T as described in [1]. Given a query 〈Q,T 〉, where
Q ⊂ V , and T is a set of keywords describing a task, the
goal is to find a set of vertices that contain Q and make a
good team to perform the task described by the keywords in
T . By a good team we mean a good affinity among the team
members in terms of collaboration for the given task. To solve
task-driven team formation using nucleus decomposition, we
extend the definition of [1] to employ probabilistic nucleus:
Given a probabilistic graph GT = (V,E, pT ) with respect
to a task T , a query set Q of vertices, and a threshold θ,
apply nucleus decomposition on GT and find a (k, θ)-nucleus
(local/weakly-global/global) which (1) contains the vertices
in Q, and (2) has the highest value of k for the given θ, and
return the obtained subgraph as a solution.

In our experiment, we use a DBLP collaboration network
from [1], where vertices are authors, and edges represent
collaboration on at least one paper. The dataset has 1, 089, 442
vertices and 4, 144, 697 edges. For each edge, we take the
bag of words of the title of all papers coauthored by the two
authors connected by the edge and apply Latent Dirichlet
Allocation (LDA) [1], [48] to infer its topics and calculate
the edge probability. Given a task T with keywords, and the
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Fig. 7: a) A case study of task-driven team formation with key-
word {“algorithm”}, and query vertices {“Erik D. Demaine”,
“J. Ian Munro”, “John Iacono”}, k = 2, and θ = 10−11.
The depicted graph with thick blue edges corresponds to a g-
(k, θ) nucleus. The whole graph (of 10 vertices) is a `-(k, θ)
nucleus which coincides with a w-(k, θ) nucleus in this exam-
ple. b) A weakly-global w-(k, θ) nucleus for task-driven team
formation with query nodes {“Xindong Wu”, “Bing Liu 0001”,
“Vipin Kumar”}, and keyword { “algorithm”}. k = 1, and
θ = 10−11.

input collaboration network, we obtain a probabilistic graph
GT , in which p(u, v) represents the collaboration level in the
papers co-authored by u and v related to task T ( [1], [24]).

The first sample query we consider is 〈{“algorithm”},
{“Erik D. Demaine”, “J. Ian Munro”, “John Iacono”}〉. Fig-
ure 7a shows the subgraph obtained by `-(k, θ)-nucleus and w-
(k, θ)-nucleus decompositions, where k = 2 and θ = 10−11.
The threshold is the same as the ones used in case studies of
previous works (on truss and core). As discussed in [1], the
edge probabilities in the data are very small, which requires
setting threshold θ to a small value.

Remark. It should be noted that picking an appropriate
value for the threshold can be done using binary search over
(0, b], where b ≤ 1. The subgraph contains all the three
authors in the query. It has 10 vertices and 33 edges. As
can be seen, the obtained subgraph is quite good for task-
driven team formation. All the authors in the subgraph are
well-known and have strong collaboration affinity to work on a
research paper related to algorithms. A g-(k, θ)-nucleus (same
k and θ) that contains the query vertices is shown with thick
blue edges in the same figure. As expected, this subgraph is
more cohesive and it happens to be a clique of size 6. Its
density and clustering coefficient (PCC) is 0.138 and 0.140 as
opposed to 0.099 and 0.110 for the local and weakly-global
subgraphs. From a research perspective the collaborations of
the academicians in the blue subgraph are more focused on
designing efficient data-structures.

We run the global truss algorithm on the dataset. As
expected the global truss subgraph which contains the query
authors is bigger than global nucelus (9 vertices and 18 edges)
and its density and PCC are lower (0.067 and 0.086).

We also run global core decomposition as in [26] for the
same value k and θ. It should be noted that the global definition
is different from global truss and global nucleus. Also, it does
not assume connectivity between nodes. However, for fairness
of comparison, we considered a connected component of this

subgraph which contains query authors. The obtained subgraph
contains 569 vertices and 5294 edges, with density 0.003 and
PCC 0.061.

Regarding local truss, we obtained a subgraph with 170
vertices and 1033 edges with density equal to 0.008 and PCC
equal to 0.0872. On the other-hand, local core decomposition
results in density and PCC being equal to 0.0084 and 0.0659
with 226 vertices and 2631 edges. As can be seen, our nucleus
decomposition algorithm results in much better subgraphs in
terms of vertex size and cohesiveness.

The second query we use shows the usefulness of the
weakly-global notion. It has keyword {“algorithm”} and ver-
tices {“Xindong Wu”, “Bing Liu 0001”, “Vipin Kumar”}.
Figure 7b shows the w-(k, θ) nucleus for this query, where
the threshold is the same as before, and k = 1. The local
nucleus containing the query authors had more than 100 nodes
while the global nucleus containing these three query authors
was empty. This example shows that the weakly global notion
can discover interesting teams when the other two notions
produce teams that are too big or too small (or empty). In
particular, all the authors in the resulting subgraph are very
well-know and have similar research area which can form a
good team related to keyword algorithm (query keyword).
On the other-hand, using global truss decomposition we could
not obtain any subgraph. In addition, both local truss and
core decompositins, did not lead to a desired team as the
number of vertices in such graphs is very large, 16663 and
31300, respectively. In fact, it is not realistic for this amount
of authors to collaborate on paper related to algorithm. The
density and PCC for weakly-global subgraph is 0.036 and
0.0388, as opposed to density 0.00005 and PCC 0.0280 in
local truss and density 0.000001 and PCC 0.0236 in local
core. The same argument hold for global core with 2997
vertices, 35354 edges, density 0.0004, and PCC 0.0294. For
local nucleus decomposition cohesiveness results show density
0.03 and and PCC 0.0331 with vertices 100 which is much
smaller than local core and local truss.

Compared to other notions of dense subgraphs in
probabilistic graphs, such as truss decomposition of
[24], we observed that our nuclei notions capture
denser subgraphs better than the truss counterparts. For
instance, in the example of [24] for task-driven query of
〈{“data”, “algorithm”}, {“Jeffrey D. Ullman”, “Piotr Indyk”}〉,
local nucleus gives a smaller community than local truss,
namely the community obtained by the global truss:
(“Jeffrey D. Ullman”, “Shinji Fujiwara”, “Aristides Gionis”,
“Rajeev Motwani”, “Mayur Datar”, “Edith Cohen”,
“Cheng Yang”, “Piotr Indyk”). This is interesting as it
shows that, in some cases, communities obtained by the
exponential time algorithm of [24] for global truss can be
obtained by our polynomial time algorithm for local nucleus.

In summary, our case study shows that we can discover good
communities with reasonable cohesiveness using the efficient
algorithm for local nucleus. However, some local nuclei can
be too big. If so, we can apply the algorithms for weakly-
global or global nucleus decomposition on the local nuclei to
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Fig. 8: w-(k, θ) nucleus (green and pink nodes) and a g-
(k, θ)-nucleus (pink nodes) which contain protein nodes
of interest; P04626, P12931, P42684, where k = 1 and
θ = 0.001.

Notion Max k Nodes Density
l-core 88 2408 0.04
g-core 31 10026 0.01
l-truss 4 5787 0.01
l-nucleus 1 95 0.06
g-truss 2 10 0.44
w-nucleus 1 8 0.51
g-nucleus 1 4 0.56

TABLE VII: Comparison of different dense subgraph
notions with respect to (1) max k for which the subgraph
contains the proteins of interest, (2) number of nodes in
the subgraph, and (3) density of the subgraph. Parameter
θ is set to 0.001 for all the notions. We see that l-nucleus
is denser than l-truss and both l-core and g-core. Also, w-
nucleus and g-nucleus are denser than g-truss. In terms of
nodes, l-nucleus gives a subgraph which is much smaller
than the subgraphs of l-core, g-core, and l-truss. Such a
graph of 95 nodes is more amenable for further processing
by human analysts.

get smaller and denser communities.
Nucleus Decomposition on the Human Biomine Dataset.
We use the human biomine dataset [49], which has 861,812

nodes and 8,666,287 edges. This dataset is different from the
biomine dataset we used for our efficiency evaluation. We
consider how our notions perform in detecting proteins/genes
that interact with the SARS-CoV-2 coronavirus. Bouhaddou
et al. [50] found that during the SARS-CoV-2 virus infection,
changes in activities can happen for human kinases. We
select three proteins, P04626, P12931 and P42684; they
are tyrosine kinase-related proteins and come from UniProt,
which is a freely accessible database of protein sequences and
functional information. The gene names associated with these
proteins are SRC, ERBB2, and ABL2. These proteins have
received literature support for interaction with SARS-CoV-2
coronavirus [50]–[56]. We refer to them as proteins of interest.
We find the subgraphs obtained by local, weakly-global, and
global nucleus decomposition which contain these three nodes.
Moreover, at the same time we compare these graphs with their
counterparts, truss and core in terms of density and size of the
subgraph. For all the notions we set threshold θ = 0.001.

Table VII shows the comparison of different dense sub-

graph notions with respect to (1) largest k for which the
subgraph contains the proteins of interest, (2) number of
nodes in the subgraph, and (3) density of the subgraph. We
see that l-nucleus is denser than l-truss and both l-core and
g-core. Also, w-nucleus and g-nucleus are denser than g-
truss. In terms of nodes, l-nucleus gives a subgraph which
is much smaller than the subgraphs of l-core, g-core, and
l-truss. More precisely, with respect to l-nucleus, the three
proteins of interest appear in a nucleus of 95 vertices and
509 edges. To see which kind of biology function/process
our detected community represent, we use Metascape (https:
//metascape.org/gp/index.html#/main/step1). Metascape [57] is
a web-based portal that provides comprehensive gene list
annotation and analysis resources. Using Metascape, we find
that the proteins in the local nucleus are associated with several
diseases, most of them being forms of cancer (16 out 20).
The p-values of the association are less than 10−18, which is
statistically very significant.

Figure 8 shows the weakly global and global nuclei which
contain the proteins of interest. All the nodes (green and pink)
comprise the weakly global subgraph. The pink nodes com-
prise the global nucleus subgraph. Using Metascape, we find
that the proteins in our weakly-global and global subgraphs
are associated with some more specific forms of cancer such
as Uterine Carcinosarcoma and Hormone Refractory Prostate
Cancer, respectively, with p-values less than 10−6, which are
statistically quite significant, especially given the fact that
these subgraphs are much smaller than the local nucleus (in
general, the more observations we have, the smaller the p-
values become). These findings are useful to biologists in order
to perform targeted tests for checking whether drugs for the
treatment of these diseases can also be repurposed for treating
COVID-19 [54]. There are over 250 anticancer drugs approved
by the FDA, but far fewer for specific kinds of cancer. Thus,
showing connections to specific forms helps narrow the choice
of drugs to repurpose.

In summary, it is running all the three versions of nucleus
decomposition on the Biomine dataset that gives surprising
subgraphs pointing to potentially useful further investigation
by biologists. Running only local nucleus decomposition will
miss such interesting groups, no matter how we set the values
of k and θ.

Discussion of the difference between weakly-global and
global definitions on BrightKite. To show more applications
on the difference between weakly-global and global definitions
of nucleus decomposition in probabilistic graphs, we consider
social network data from BrightKite (https://snap.stanford.edu/
data/loc-brightkite.html).
BrightKite was once a location-based social networking ser-
vice provider where users shared their locations by checking-
in. The friendship network was collected using their public
API, and consists of 58,228 nodes and 214,078 edges, and
4,491,143 checkins between April 2008 and October 2010.
We generated probabilities for each edge based on the Jac-
card similarity between the neighborhoods of two endpoints.
Running weakly-global and global nucleus decompositions on

 https://metascape.org/gp/index.html#/main/step1
 https://metascape.org/gp/index.html#/main/step1
https://snap.stanford.edu/data/loc-brightkite.html
https://snap.stanford.edu/data/loc-brightkite.html
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Fig. 9: Top enriched terms related to diseases in the detected subgraphs by local, weakly-global, and global nucleus
decompsoitions. Variable P on the x-axis refers to p-value.

this dataset with θ = 0.1, we retrieve 300 and 20 g-(k, θ) and
w-(k, θ) nuclei, respectively. For weakly-global subgraphs, k
ranges in [1, 5], and for global subgraphs, k can take on values
of 1 and 2.

As expected, global nuclei obtain better cohesiveness in
terms of density and clustering coefficient. In particular, the
average density and clustering coefficient in global nuclei over
all values of k, is 0.6951 and 0.6947 as opposed to 0.4844
and 0.5052 in weakly-global nuclei. We also report another
interesting observation on this dataset. We obtain the average
number of checkins by users in the detected subgraphs. The
average number of user checkins in global nuclei is about 6%
more than those in weakly-global nuclei. Moreover, there exist
periods, for instance, the period between August 2008 and
April 2009, in which the average number of checkins of the
users in the global nuclei is 57% more than the average number
of checkins in the weakly-global subgraphs. These results
show that global nuclei can capture better user engagement
(as measured by the number of checkins) than weakly-global
nuclei.
Remark. we explain that all our three models are useful and
they should be used in tandem. Local nucleus helps to identify
dense subgraphs of interest. We can adjust k and θ to obtain
smaller and denser subgraphs. However, global and weakly
global nuclei can identify pockets that are impossible to obtain
with local nucleus no matter how we adjust k and θ. For
instance, in Example 1 in the paper, it is only the global
nucleus that can identify H1 and H2; no other notion can.
In our DBLP use case, the local and weakly-global notions
helped us identify a dense subgraph of researchers working
on Algorithms, however, the global nucleus gave a particular
pocket of researchers, who, after close examination, turned out
to be especially focused on designing efficient data-structures.
Then in the same case study, we were able to identify a useful
weakly-global nucleus of five researchers, who are well known
to work on algorithms for data mining. The local nucleus was
too big (more than 100 nodes), whereas the global nucleus was
empty. All these examples show that an analyst should run all
the three versions of nucleus decomposition in tandem on a
dataset and then closely examine the results. We stress out
that this is not just to obtain denser subgraphs as we go from
local to weakly-global and global. More than density, what

is important is the detection of small pockets of nodes with
nice properties that escape getting identified by other notions.
Finally, in the Biomine dataset, we observe that the group of
proteins in a local nucleus containing three proteins of interest
were related to many forms of cancer even though the proteins
of interest have received literature support related to COVID-
19. Based on consultations with Bioinformatics researchers,
this finding is of great importance in finding relationships
between seemingly distant diseases. Regarding weakly-global
and global notions, they were able to find subgraphs of the
local nucleus that were comprised of proteins related to more
specific cancer diseases. Investigating the connection of these
diseases to COVID-19 is an interesting avenue to explore for
a biologist researcher. To reiterate, a researcher should use
all three notions of nucleus decomposition as they provide
different different view-points and can reveal subgraphs which
can be missed by other notions.

VIII. RELATED WORK

In deterministic graphs, core and truss decompositions have
been studied extensviely [58]–[69]. Core decomposition in
probabilistic graphs has been studied in [1], [23], [26], [70].
Bonchi et al. [1] were the first to introduce core decomposition
for such graphs. They focus on finding a subgraph in which
each vertex is connected to k neighbors within that subgraph
with high probability. In [23] more efficient algorithms were
proposed which can also handle graphs that do not fit in main
memory. In [26], the authors focus on finding a subgraph
which contains nodes with high probability to be k-core
member in the probabilistic graph. In [70], an index-based
structure is defined for processing core decomposition in
probabilistic graphs.

In the probabilistic context, the notion of local (k, η)-truss
is introduced by Huang, Lu, and Lakshmanan in [24]. Their
proposed algorithm for computing local (k, η)-truss is based
on iterative peeling of edges with support less than k and
updating the support of affected edges. Also, [24] proposed
the notion of global (k, η)-truss based on the probability of
each edge belonging to a k-truss in a possible world. In [71]
an approximate algorithm for the local truss decomposition
is proposed to efficiently compute the tail probability of
edge supports in the peeling process of [24]. In [72] truss
decomposition is computed using an index-based approach.



Building on the well-studied notions of core and truss
decomposition, Sarıyüce et al. [28] introduce nucleus
decomposition in deterministic graphs. They propose an
algorithm for computing (3, 4)-nuclei. In a more recent work,
Sarıyüce et al. [22] propose efficient distributed algorithms
for nucleus decomposition. Our work is the first to study
nucleus decomposition in probabilistic graphs.

IX. CONCLUSIONS

In this work, we made several key contributions. We in-
troduced the notion of local, weakly-global and global nuclei
for probabilistic graphs. We showed that computing weakly-
global and global nuclei is intractable. We complemented these
hardness results with effective algorithms to approximate them
using techniques from Monte-Carlo sampling.

We designed a polynomial time, peeling based algorithm
for computing local nuclei based on dynamic programming
and showed that its efficiency can be much improved using
novel approximations based on Poisson, Binomial and Normal
distributions. Finally, using an in-depth experimental study, we
demonstrated the efficiency, scalability and accuracy of our
algorithms for nucleus decomposition on real world datasets.
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bilité,” Mémoires de l’Academie Impériale des Sci. de St. Petersbourg,
vol. 12, pp. 1--24, 1901.

[39] F. A. Haight, “Handbook of the poisson distribution,” 1967.
[40] A. Röllin, “Translated poisson approximation using exchangeable pair

couplings,” The Annals of Applied Probability, vol. 17, no. 5/6, pp.
1596–1614, 2007.

[41] A. Papoulis and S. U. Pillai, Probability, random variables, and stochas-
tic processes. Tata McGraw-Hill Education, 2002.

[42] W. Ehm, “Binomial approximation to the poisson binomial distribution,”
Statistics & Probability Letters, vol. 11, no. 1, pp. 7–16, 1991.

[43] N. Mukhopadhyay, Probability and statistical inference. CRC Press,
2000.

[44] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding. Springer,
1994, pp. 409–426.

[45] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest neighbors
in uncertain graphs,” PVLDB, vol. 3, no. 1-2, pp. 997–1008, 2010.

[46] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis et al., “Global landscape of protein
complexes in the yeast saccharomyces cerevisiae,” Nature, vol. 440, no.
7084, p. 637, 2006.

[47] J. J. Pfeiffer and J. Neville, “Methods to determine node centrality and
clustering in graphs with uncertain structure,” in Fifth International AAAI
Conference on Weblogs and Social Media, 2011.

[48] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.
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