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Abstract—Due to the increasing privacy concerns and data
regulations, training data have been increasingly fragmented,
forming distributed databases of multiple “data silos” (e.g.,
within different organizations and countries). To develop effective
machine learning services, there is a must to exploit data from
such distributed databases without exchanging the raw data. Re-
cently, federated learning (FL) has been a solution with growing
interests, which enables multiple parties to collaboratively train
a machine learning model without exchanging their local data.
A key and common challenge on distributed databases is the
heterogeneity of the data distribution among the parties. The data
of different parties are usually non-independently and identically
distributed (i.e., non-IID). There have been many FL algorithms
to address the learning effectiveness under non-IID data settings.
However, there lacks an experimental study on systematically
understanding their advantages and disadvantages, as previous
studies have very rigid data partitioning strategies among parties,
which are hardly representative and thorough. In this paper, to
help researchers better understand and study the non-IID data
setting in federated learning, we propose comprehensive data
partitioning strategies to cover the typical non-IID data cases.
Moreover, we conduct extensive experiments to evaluate state-of-
the-art FL algorithms. We find that non-IID does bring significant
challenges in learning accuracy of FL algorithms, and none of
the existing state-of-the-art FL algorithms outperforms others in
all cases. Our experiments provide insights for future studies of
addressing the challenges in “data silos”.

I. INTRODUCTION

In recent years, we have witnessed some promising ad-
vancement with leveraging machine learning services, such
as learned index structures [12], [54] and learned cost esti-
mation [24], [55]. As such, machine learning services have
become emerging data-intensive workloads, such as Ease.ml
[46], Machine Learning Bazaar [69] and Rafiki [74]. Despite
the success of machine learning services, their effectiveness
highly relies on large-volume high-quality training data. How-
ever, due to the increasing privacy concerns and data regula-
tions such as GDPR [70], training data have been increasingly
fragmented, forming distributed databases of multiple “data
silos” (e.g., within different organizations and countries). Due
to the deployed data regulations, raw data are usually not al-
lowed to transfer across organizations/countries. For example,
a multinational corporation (MNC) provides services to users
in multiple nations, whose personal data usually cannot be
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centralized to a single country due to the data regulations in
many countries.

To develop effective machine learning services, it is neces-
sary to exploit data from such distributed databases without
exchanging the raw data. While there are many studies work-
ing on privacy-preserving data management and data mining
[3], [31], [60], [64], [66] in a centralized setting, they cannot
handle the cases of distributed databases. Thus, how to con-
duct data mining/machine learning from distributed databases
without exchanging local data has become an emerging topic.

To address the above challenge, we borrow the federated
learning (FL) [33], [43], [44], [77] approach from the machine
learning community. Originally proposed by Google, FL is
a promising solution to enable many parties jointly train a
machine learning model while keeping their local data decen-
tralized. Here we focus on horizontal federated learning, where
the parties share the same feature space but different sample
space. Instead of exchanging data and conducting centralized
training, each party sends its model to the server, which
updates and sends back the global model to the parties in each
round. Since their raw data are not exposed, FL is an effective
way to address privacy concerns. It has attracted many research
interests [9], [25], [35], [42], [45], [52], [75] and been widely
used in practice [5], [23], [34]. Thus, we consider FL to
develop machine learning services for distributed databases.

One key and common data challenge in such distributed
databases is that data distributions in different parties are
usually non-independently and identically distributed (non-
IID). For example, different areas can have very different
disease distributions. Due to the ozone hole, the countries in
the Southern Hemisphere may have more skin cancer patients
than the Northern Hemisphere. Then, the label distributions
differ across parties. Another example is that people have
different writing styles even for the same world. In such a
case, the feature distributions differ across parties. According
to previous studies [28], [35], [47], the non-IID data settings
can degrade the effectiveness of machine learning services.

There have been some studies trying to develop effective
FL algorithms under non-IID data including FedProx [45],
SCAFFOLD [35], and FedNova [72]. However, there lacks
an experimental study on systematically understanding their
advantages and disadvantages, as the previous studies have
very rigid data partitioning strategies among parties, which
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are hardly representative and thorough. In the experiments of
these studies, they only try one or two partitioning strategies to
simulate the non-IID data setting, which does not sufficiently
cover different non-IID cases. For example, in FedAvg [56],
each party only has samples of two classes. In FedNova [72],
the number of samples of each class in each party follows
Dirichlet distribution. The above partitioning strategies only
cover the label skewed case. Thus, it is a necessity to evaluate
those algorithms with a systematic exploration of different
non-IID scenarios.

In this paper, we break the barrier of experiments on non-
IID data distribution challenges in FL by proposing NIID-
Bench. Specifically, we introduce six non-IID data partitioning
strategies which thoroughly consider different cases including
label distribution skew, feature distribution skew, and quantity
skew. Moreover, we conduct extensive experiments on nine
datasets to evaluate the accuracy of four state-of-the-art FL
algorithms including FedAvg [56], FedProx [45], SCAFFOLD
[35], and FedNova [72]. The experimental results provide
insights for the future development of FL algorithms. Last,
our code is publicly available 1. Researchers can easily use our
code to try different partitioning strategies for the evaluation
of existing algorithms or a new algorithm. We also maintain
a leaderboard along with our code to rank state-of-the-art
federated learning algorithms on different non-IID settings,
which can benefit the federated learning community a lot.

Through extensive studies, we have the following key
findings. First, we find that non-IID does bring significant
challenges in learning accuracy of FL algorithms, and none of
the existing state-of-the-art FL algorithms outperforms others
in all cases. Second, the effectiveness of FL is highly related
to the kind of data skews, e.g., the label distribution skew
setting is more challenging than the quantity skew setting.
This indicates the importance of having a more comprehensive
benchmark on non-IID distributions. Last, in non-IID data
setting, instability of the learning process widely exists due to
techniques such as batch normalization and partial sampling.
This can severely hurt the effectiveness of machine learning
services on distributed data silos.

Our main contributions are as follows:

• We identity non-IID data distributions as a key and
common challenge in designing effective federated learn-
ing algorithms for distributed data silos and develop a
benchmark for researchers’ study of federated learning
on non-IID data.

• We summarize six different partitioning strategies to
generate comprehensive non-IID data distribution cases.
Among six partitioning strategies, four simple and ef-
fective partitioning strategies are designed by our study,
while the other two strategies are adopted from existing
studies due to their popularity. We also demonstrate the
significance of those strategies. None of the previous
studies [28], [35], [45], [72] are as comprehensive as ours.

1https://github.com/Xtra-Computing/NIID-Bench
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Fig. 1. The FedAvg framework.

For example, paper [28] only covers a single partitioning
strategy to generate the label distribution skew setting.

• Using the proposed partitioning strategies, we conduct
an extensive experimental study on four state-of-the-
art algorithms, including FedAvg [56], FedProx [45],
SCAFFOLD [35], and FedNova [72]. Moreover, we
provide insightful findings and future directions for data
management and learning for distributed data silos, which
we believe are more and more common in the future.

The remainder of this paper is structured as follows. We
introduce the preliminaries in Section II. We review FL
algorithms handling non-IID data in Section III, and present
our non-IID data partition strategies in Section IV. Section
V present the experimental results, followed by the future
research directions in Section VI. We discuss the related work
in Section VII, and conclude in Section VIII.

II. PRELIMINARIES

A. Notations

Let D = {(x, y)} denote the global dataset. Suppose there
are N parties, denoted as P1, ..., PN . The local dataset of Pi
is denoted as Di = {(xi, yi)}. We use wt and wti to denote
the global model and the local model of party Pi in round
t, respectively. Thus, wt is the output model of the federated
learning process.

B. FedAvg

FedAvg [56] has been a de facto approach for FL. The
framework of FedAvg is shown in Figure 1. In each round,
first, the server sends the global model to the randomly
selected parties. Second, each party updates the model with its
local dataset. Then, the updated models are sent back to the
server. Last, the server averages the received local models as
the updated global model. Unlike traditional distributed SGD,
the parties update their local model with multiple epochs,
which can decrease the number of communication rounds and
is much more communication-efficient. However, the local
updates may lead to a bad accuracy, as shown in previous
studies [28], [35], [47].

https://github.com/Xtra-Computing/NIID-Bench
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Fig. 2. Example of a drift under the non-IID setting.

C. Effect of Non-IID Data

A key challenge in FL is the non-IID data among the parties
[33], [43]. Non-IID data can influence the accuracy of FedAvg
a lot. Since the distribution of each local dataset is highly
different from the global distribution, the local objective of
each party is inconsistent with the global optima. Thus, there
exists a drift in the local updates [35]. In other words, in
the local training stage, the local models are updated towards
the local optima, which can be far from the global optima.
The averaged model may also be far from the global optima
especially when the local updates are large (e.g., a large
number of local epochs) [35], [45], [71], [72]. Eventually, the
converged global model has much worse accuracy than IID
setting. Figure 2 demonstrates the issue of FedAvg under the
non-IID data setting. Under the IID setting, the global optima
w∗ is close to the local optima w∗1 and w∗2 . Thus, the averaged
model wt+1 is also close to the global optima. However, under
the non-IID setting, since w∗ is far from w∗1 , wt+1 can be far
from w∗. It is challenging to design an effective FL algorithm
under the non-IID setting. We will present the FL algorithms
on handling non-IID data in the next section.

III. FL ALGORITHMS ON NON-IID DATA

There have been some studies [35], [45], [72] trying to
address the drift issue in FL. Here we summarize several state-
of-the-art and popular approaches as shown in Algorithm 1
(FedAvg [56], FedProx [45], FedNova [72]) and Algorithm
2 (SCAFFOLD [35]). These approaches are all based on
FedAvg, and we use colors to mark the parts that specially
designed in FedProx (red), SCAFFOLD (blue), and FedNova
(orange). Note that the studied approaches have the same
objective, i.e., learning an effective global model under the
non-IID data setting. There are also other FL studies related
to non-IID data setting, such as personalizing the local models
for each party [13], [15], [22] and designing robust algorithms
against different combinations of local distributions [10], [57],
[63], which are out of the scope of this paper.

A. FedProx

FedProx [45] improves the local objective based on FedAvg.
It directly limits the size of local updates. Specifically, as
shown in Line 14 of Algorithm 1, it introduces an additional
L2 regularization term in the local objective function to limit
the distance between the local model and the global model.
This is a straightforward way to limit the local updates so
that the averaged model is not so far from the global optima.

Algorithm 1: A summary of FL algorithms including
FedAvg/FedProx/FedNova. We use red and orange
colors to mark the part specially included in FedProx
and FedNova, respectively.

Input: local datasets Di, number of parties N , number
of communication rounds T , number of local
epochs E, learning rate η

Output: The final model wT

1 Server executes:
2 initialize x0

3 for t = 0, 1, ..., T − 1 do
4 Sample a set of parties St
5 n←

∑
i∈St
|Di|

6 for i ∈ St in parallel do
7 send the global model wt to party Pi
8 ∆wti , τi ← LocalTraining(i, wt)

9 For FedAvg/FedProx:
wt+1 ← wt − η

∑
i∈St

|Di|
n ∆wtk

10 For FedNova:

wt+1 ← wt − η
∑

i∈St
|Di|τi
n

∑
i∈St

|Di|∆wt
i

nτi

11 return wT

12 Party executes:
13 For FedAvg/FedNova: L(w; b) =

∑
(x,y)∈b `(w;x; y)

14 For FedProx:
L(w; b) =

∑
(x,y)∈b `(w;x; y)+µ

2 ‖w − w
t‖2

15 LocalTraining(i, wt):
16 wti ← wt

17 τi ← 0
18 for epoch k = 1, 2, ..., E do
19 for each batch b = {x, y} of Di do
20 wti ← wti − η∇L(wti ; b)
21 τi ← τi + 1

22 ∆wti ← wt − wti
23 return ∆wti , τi to the server

A hyper-parameter µ is introduced to control the weight of
the L2 regularization. Overall, the modification to FedAvg is
lightweight and easy to implement. FedProx introduces addi-
tional computation overhead and does not introduce additional
communication overhead. However, one drawback is that users
may need to carefully tune µ to achieve good accuracy. If µ
is too small, then the regularization term has almost no effect.
If µ is too big, then the local updates are very small and the
convergence speed is slow.

B. FedNova

Another recent study, FedNova [72], improves FedAvg in
the aggregation stage. It considers that different parties may
conduct different numbers of local steps (i.e., the number of
mini-batches in the local training) each round. This can happen
when parties have different computation power given the same



time constraint or parties have different local dataset size given
the same number of local epochs and batch size. Intuitively, the
parties with a larger number of local steps will have a larger
local update, which will have a more significant influence on
the global updates if simply averaged. Thus, to ensure that the
global updates are not biased, FedNova normalizes and scales
the local updates of each party according to their number of
local steps before updating the global model (see Line 10
of Algorithm 1). FedNova also only introduces lightweight
modifications to FedAvg, and negligible computation overhead
when updating the global model.

C. SCAFFOLD

SCAFFOLD [35] models non-IID as introducing variance
among the parties and applies the variance reduction technique
[32], [65]. It introduces control variates for the server (i.e., c)
and parties (i.e., ci), which are used to estimate the update
direction of the server model and the update direction of each
client. Then, the drift of local training is approximated by the
difference between these two update directions. Thus, SCAF-
FOLD corrects the local updates by adding the drift in the
local training (Line 20 of Algorithm 2). SCAFFOLD proposes
two approaches to update the local control variates (Line 23 of
Algorithm 2), by computing the gradient of the local data at the
global model or by reusing the previously computed gradients.
The second approach has a lower computation cost while
the first one may be more stable. Compared with FedAvg,
intuitively, SCAFFOLD doubles the communication size per
round due to the additional control variates.

D. Other Studies

When preparing this paper, there are other contemporary
works [2], [40], [48], [73] on federated learning under non-IID
setting. [2] proposes FedDyn, which adds a regularization term
in the local training based on the global model and the model
from the previous round. [48] proposes FedBN for feature
shift non-IID setting, where the client batch-norm layers are
updated locally without communicating to the server. [73]
applies a monitor to detect class imbalance in the training
process, and proposes a new loss function to address it. [40]
proposes model-contrastive learning. Their approach corrects
the local training by comparing the representations learned
by the current local model, the local model from the previous
round, and the global model. We leave the comparison between
these studies as future studies.

E. Motivation of this study

Non-IID is a key and common data challenge for developing
effective federated learning algorithms. Although previous
studies [35], [45], [72] have demonstrated preliminary and
promising results over FedAvg on non-IID data, as we will
summarize in Table I in later section, all above studies have
evaluated only one or two non-IID distributions, and tried
rigid data partitioning strategies in the experiments. There is
still no standard benchmark or a systematic study to evaluate
the effectiveness of these FL algorithms. This motivates us to

Algorithm 2: The SCAFFOLD algorithm. We use
blue color to mark the part specially included in
SCAFFOLD compared with FedAvg.
Input: same as Algorithm 1
Output: The final model wT

1 Server executes:
2 initialize x0

3 ct ← 0
4 for t = 0, 1, ..., T − 1 do
5 Randomly sample a set of parties St
6 n←

∑
i∈St
|Di|

7 for i ∈ St in parallel do
8 send the global model wt to party Pi

∆wti ,∆c← LocalTraining(i, wt, ct)

9 wt+1 ← wt − η
∑
i∈St

|Di|
n ∆wtk

10 ct+1 ← ct + 1
N∆c

11 return wT

12 Party executes:
13 L(w; b) =

∑
(x,y)∈b `(w;x; y)

14 ci ← 0
15 LocalTraining(i, wt, ct):
16 wti ← wt

17 τi ← 0
18 for epoch k = 1, 2, ..., E do
19 for each batch b = {x, y} of Di do
20 wti ← wti − η(∇L(wti ; b)−cti + c)
21 τi ← τi + 1

22 ∆wti ← wt − wti
23 c∗i ← (i)∇L(wti), or(ii)ci − c+ 1

τiη
(wt − wti)

24 ∆c← c∗i − ci
25 ci ← c∗i
26 return ∆wti , ∆c to the server

develop a benchmark with more comprehensive data distribu-
tions as well as data partitioning strategies, and then we can
evaluate the pros and cons of existing algorithms and outline
the challenges and opportunities for future federated learning
on non-IID data.

IV. SIMULATING NON-IID DATA SETTING

As existing studies only adopt limited partitioning strategies,
they cannot represent a comprehensive view of non-IID cases.
To bridge this gap, we develop a benchmark named NIID-
Bench.

A. Research Problems

We need to address two key research problems. The first one
is on data sets: whether to use real-world non-IID datasets
or synthetic datasets. The second one is on how to design
comprehensive non-IID scenarios.

For the first problem, we choose to synthesize the distributed
non-IID datasets by partitioning a real-world dataset into



multiple smaller subsets. Many existing studies [35], [56], [72]
use the partitioning approach to simulate the non-IID federated
setting. Compared with using real federated datasets [6], [29],
adopting partitioning strategies has the following advantages.
First, while it is challenging to evaluate the imbalance prop-
erties (e.g., imbalanced level and imbalanced case) in real
federated datasets, partitioning strategies can easily quantify
and control the imbalance properties of the local data. Thus,
researchers can easily investigate the behavior of algorithms by
trying different imbalanced settings, which is essential to the
development of FL algorithms. Second, when using synthetic
datasets, one can easily set different factors (e.g., number of
parties, size of data) that are important in the FL experiments.
However, a real federated dataset usually corresponds to a
fixed federated setting. Last, due to data regulation and privacy
concerns, meaningful real federated datasets are difficult to
obtain [29]. Even if we can obtain such real datasets, they
do not have the previous two advantages of synthetic data
sets. It is more flexible to develop partitioning strategies on
existing widely used public datasets, which already have lots
of centralized training knowledge as reference, as well as to
simulate different non-IID scenarios. There are also limitations
of using generated datasets compared with using real federated
datasets. The generated datasets may not fully capture the real
data distributions, which can be complicated and challenging
to quantity. Note that the usage of generated federated datasets
and real federated datasets are orthogonal. It is an interesting
future study to find and study meaningful real-world data sets
and application scenarios.

For the second problem, an existing study [33] gives a very
good and comprehensive summary on non-IID data cases from
a distribution perspective. Specifically, considering the local
data distribution P (xi, yi) = P (xi|yi)P (yi) or P (xi, yi) =
P (yi|xi)P (xi), the previous study [33] summaries five dif-
ferent non-IID cases: (1) label distribution skew (i.e., P (yi)
is different among parties); (2) feature distribution skew (i.e.,
P (xi) is different among parties); (3) same label but different
features (i.e., P (xi|yi) is different among parties); (4) same
features but different labels (i.e., P (yi|xi) is different among
parties); (5) quantity skew (i.e., P (xi, yi) is same but the
amount of data is different among parties). Here the third
case is mainly related to vertical FL (the parties share the
same sample IDs but different features). As mentioned in the
third paragraph of Section I, we focus on horizontal FL in
this paper, where each party shares the same feature space but
owns different samples. The fourth case is not applicable in
most FL studies, which assume there is a common knowledge
P (y|x) among the parties to learn. Otherwise, techniques such
as domain adaption [61] or personalized federated learning
(i.e., each party learns a personalized local model) [13], [15]
can be applied in federated learning, which is out of the scope
of our paper. Thus, we consider label distribution skew, feature
distribution skew, and quantity skew as possible non-IID data
distribution cases in this paper. While the five non-IID data
cases cover all possible single type of skew, there may be
mixed types of skew, which we will discuss in Section V-G.

(a) The label distribution for Criteo. The value in cell (a, b) is the
amount of data samples of class b belonging to Party a.

(b) The feature distribution for Digits. The triangles are the
visualized features of SVHN and the circles are the visualized
features of MNIST.

Fig. 3. The non-IID properties of criteo and digits.

We use two real-world datasets, Criteo [11] and Digits
[61], to demonstrate the non-IID properties. Criteo contains
feature values and click feedback for millions of display ads,
which can be used for clickthrough rate prediction. Digits
contains multiple subsets for digit classification. In Criteo,
taking each user as a party, we select ten parties and draw
the label distribution as shown in Figure 3a. We can observe
that there exists both label distribution skew (e.g., Party 0
and Party 4) and quantity skew (e.g., Party 0 and Party 8)
among the parties. In Digits, taking each subset (e.g., MNIST
and SVHN) as a party, we train a model using these subsets
and draw the feature distribution using t-SNE [53] as shown
in Figure 3b. For each class, althougth MNIST and SVHN
have the same label, the feature distributions of MNIST and
SVHN are significantly different from each other. Feature skew
exists in the Digits dataset. These two examples show that the
considered non-IID data cases are reasonable and practical.

B. Label Distribution Skew

In label distribution skew, the label distributions P (yi) vary
across parties. Such a case is common in practice. For ex-
ample, some hospitals are more specialized in several specific
kinds of diseases and have more patient records on them. To
simulate label distribution skew, we introduce two different
label imbalance settings: quantity-based label imbalance and
distribution-based label imbalance.



Fig. 4. An example of distribution-based label imbalance partition on MNIST
[38] dataset with β = 0.5. The value in each rectangle is the number of data
samples of a class belonging to a certain party.

a) Quantity-based label imbalance: Here each party
owns data samples of a fixed number of labels. This is first
introduced in the experiments of FedAvg [56], where the data
samples with the same label are divided into subsets and
each party is only assigned 2 subsets with different labels.
Following FedAvg, such a setting is also used in many other
studies [19], [45]. [16] considers a highly extreme case, where
each party only has data samples with a single label. We
introduce a general partitioning strategy to set the number
of labels that each party has. Suppose each party only has
data samples of k different labels. We first randomly assign k
different label IDs to each party. Then, for the samples of each
label, we randomly and equally divide them into the parties
which own the label. In this way, the number of labels in each
party is fixed, and there is no overlap between the samples of
different parties. For ease of presentation, we use #C = k to
denote such a partitioning strategy.

b) Distribution-based label imbalance: Another way to
simulate label imbalance is that each party is allocated a
proportion of the samples of each label according to Dirichlet
distribution. Dirichlet distribution is commonly used as prior
distribution in Bayesian statistics [30] and is an appropriate
choice to simulate real-world data distribution. Specifically,
we sample pk ∼ DirN (β) and allocate a pk,j proportion
of the instances of class k to party j. Here Dir(·) denotes
the Dirichlet distribution and β is a concentration parameter
(β > 0). This partitioning strategy was first used in [78] and
has been used in many recent studies [41], [50], [71], [72]. An
advantage of this approach is that we can flexibly change the
imbalance level by varying the concentration parameter β. If β
is set to a smaller value, then the partition is more unbalanced.
An example of such a partitioning strategy is shown in Figure
4. For ease of presentation, we use pk ∼ Dir(β) to denote
such a partitioning strategy.

C. Feature Distribution Skew

In feature distribution skew, the feature distributions P (xi)
vary across parties although the knowledge P (yi|xi) is same.
For example, cats may vary in coat colors and patterns in
different areas. Here we introduce three different settings to
simulate feature distribution skew: noise-based feature im-
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(a) add noises from Gau(0.001)
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(b) add noises from Gau(0.01)

Fig. 5. An example of adding noises on FMNIST [76] dataset. On party P1,
noises sampled from Gau(0.001) are added into its images. On party P2,
noises sampled from Gau(0.01) are added into its images.

Fig. 6. The visualization of our FCUBE dataset. The data points within the
upper four cubes have label 0 and within the lower four cubes have label 1.
There are a total of eight cubes with four colors. The data points with the
same color are assigned to a party.

balance, synthetic feature imbalance, and real-world feature
imbalance.

a) Noise-based feature imbalance: We first divide the
whole dataset into multiple parties randomly and equally. For
each party, we add different levels of Gaussian noise to its local
dataset to achieve different feature distributions. We choose
Gaussian noise due to its popularity especially in images [79].
Specifically, given user-defined noise level σ, we add noises
x̂ ∼ Gau(σ · i/N) for Party Pi, where Gau(σ · i/N) is
a Gaussian distribution with mean 0 and variance σ · i/N .
Users can change σ to increase the feature dissimilarity among
the parties. Figure 5 is an example of noise-based feature
imbalance on FMNIST dataset [76]. For ease of presentation,
we use x̂ ∼ Gau(σ) to present such a partitioning strategy.

b) Synthetic feature imbalance: We generate a synthetic
feature imbalance federated dataset named FCUBE. Suppose
the distribution of data points is a cube in three dimensions
(i.e, (x1, x2, x3)) which have two different labels classified by
plane x1 = 0. As shown in Figure 6, we divide the cube into
8 parts by planes x1 = 0, x2 = 0, and x3 = 0. Then, we
allocate two parts which are symmetric of (0,0,0) to a subset
for each party. In this way, feature distribution varies among
parties while labels are still balanced.

c) Real-world feature imbalance: The EMNIST dataset
[8] collects handwritten characters/digits from different writ-
ers. Then, like [6], it is natural to partition the dataset into
different parties according to the writers. Since the character
features usually differ among writers (e.g, stroke width, slant),
there is a natural feature distribution skew among different
parties. Specifically, for the digit images of EMNIST, we



TABLE I
THE EXPERIMENTAL SETTINGS IN EXISTING STUDIES AND OUR BENCHMARK. NOTE THAT THE QUANTITY-BASED, NOISED-BASED, AND QUANTITY

SKEW PARTITIONING STRATEGIES IN THE EXISTING STUDIES ARE DIFFERENT FORM THE STRATEGIES PROPOSED IN OUR STUDY.

Partitioning strategies FedAvg FedProx SCAFFOLD FedNova NIID-Bench

Label distribution skew quantity-based 3 3 7 7 3
distribution-based 7 7 3 3 3

Feature distribution skew
noise-based 7 7 7 7 3

synthetic 7 3 7 7 3
real-world 7 3 7 7 3

Quantity skew 7 7 7 3 3

divide and assign the writers (and their digits) into each party
randomly and equally. Since each party has different writers,
the feature distributions are different among the parties. Like
[6], we call this federated dataset as FEMNIST.

D. Quantity Skew

In quantity skew, the size of the local dataset |Di| varies
across parties. Although data distribution may still be consis-
tent among the parties, it is interesting to see the effect of
the quantity imbalance in FL. Like distribution-based label
imbalance setting, we use Dirichlet distribution to allocate
different amounts of data samples into each party. We sample
q ∼ DirN (β) and allocate a qj proportion of the total data
samples to Pj . The parameter β can be used to control the
imbalance level of the quantity skew. For ease of presentation,
we use q ∼ Dir(β) to denote such a partitioning strategy.

E. Experiments in Existing Studies

Table I compares the partitioning strategies in NIID-bench
with the experimental settings in existing studies. We can
observe that each study only covers partial non-IID cases.
It is impossible to directly compare the results presented
in different papers. In contrast, NIID-bench consists of six
partitioning strategies, which are more comprehensive and
representative for representing different non-IID data cases.

V. EXPERIMENTS

To investigate the effectiveness of existing FL algorithms
on non-IID data setting, we conduct extensive experiments on
nine public datasets, including six image datasets (i.e., MNIST
[38], CIFAR-10 [36], FMNIST [76], SVHN [58], FCUBE,
FEMNIST [6]) and three tabular datasets (i.e., adult, rcv1,
and covtype)2. The statistics of the datasets are summarized
in Table II. For the image datasets, we use a CNN, which
has two 5x5 convolution layers followed by 2x2 max pooling
(the first with 6 channels and the second with 16 channels)
and two fully connected layers with ReLU activation (the first
with 120 units and the second with 84 units). For the tabular
datasets, we use a MLP with three hidden layers. The numbers
of hidden units of three layers are 32, 16, and 8. The number
of parties is set to 10 by default, except for FCUBE where
the number of parties is set to 4. All parties participate in
every round to eliminate the effect of randomness brought by
party sampling by default [56]. We use the SGD optimizer

2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

TABLE II
THE STATISTICS OF DATASETS IN THE EXPERIMENTS.

Datasets #training instances #test instances #features #classes
MNIST 60,000 10,000 784 10

FMNIST 60,000 10,000 784 10
CIFAR-10 50,000 10,000 1,024 10

SVHN 73,257 26,032 1,024 10
adult 32,561 16,281 123 2
rcv1 15,182 5,060 47,236 2

covtype 435,759 145,253 54 2
FCUBE 4,000 1,000 3 2

FEMNIST 341,873 40,832 784 10

with learning rate 0.1 for rcv1 and learning rate 0.01 for the
other datasets (tuned from {0.1, 0.01, 0.001}) and momentum
0.9. The batch size is set to 64 and the number of local epochs
is set to 10 by default.

Benchmark metrics. We use the top-1 accuracy on the test
dataset as a metric to compare the studied algorithms. We run
all the studied algorithms for the same number of rounds for
fair comparison. The number of rounds is set to 50 by default
unless specified.

Due to the page limit, for the experiments on the effect of
batch size and model architecture, please refer to Appendix D
and E of the technical report [39], respectively.

A. Overall Accuracy Comparison

The accuracy of existing approaches including FedAvg, Fed-
Prox, SCAFFOLD, and FedNova under different non-IID data
settings is shown in Table III. For comparison, we also present
the results for IID scenarios (i.e., homogeneous partitions).
Next we show the insights from different perspectives.

1) Comparison among different non-IID settings:
Finding (1): The label distribution skew case where each
party only has samples of a single class is the most challeng-
ing setting, while the feature distribution skew and quantity
skew setting have little influence on the accuracy of FedAvg.

From Table III, we can observe that there is a gap be-
tween the accuracy of existing algorithms on several non-IID
data settings and on the homogeneous setting. First, among
different non-IID data settings, all studied FL algorithms
perform worse on the label distribution skew case. Second,
in label distribution skew setting, the algorithms have the
worst accuracy when each party only has data from a single
label. As expected, the accuracy increases as the number of
classes in each party increases. Third, for feature distribution
skew setting, except for CIFAR-10, existing algorithms have

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


TABLE III
THE TOP-1 ACCURACY OF DIFFERENT APPROACHES. WE RUN THREE TRIALS AND REPORT THE MEAN ACCURACY AND STANDARD DERIVATION. FOR

FEDPROX, WE TUNE µ FROM {0.001, 0.01, 0.1, 1} AND REPORT THE BEST ACCURACY.

category dataset partitioning FedAvg FedProx SCAFFOLD FedNova

Label
distribution

skew

MNIST

pk ∼ Dir(0.5) 98.9%±0.1% 98.9%±0.1% 99.0%±0.1% 98.9%±0.1%
#C = 1 29.8%±7.9% 40.9%±23.1% 9.9%±0.2% 39.2%±22.1%
#C = 2 97.0%±0.4% 96.4%±0.3% 95.9%±0.3% 94.5%±1.5%
#C = 3 98.0%±0.2% 97.9%±0.4% 96.6%±1.5% 98.0%±0.3%

FMNIST

pk ∼ Dir(0.5) 88.1%±0.6% 88.1%±0.9% 88.4%±0.5% 88.5%±0.5%
#C = 1 11.2%±2.0% 28.9%±3.9% 12.8%±4.8% 14.8%±5.9%
#C = 2 77.3%±4.9% 74.9%±2.6% 42.8%±28.7% 70.4%±5.1%
#C = 3 80.7%±1.9% 82.5%±1.9% 77.7%±3.8% 78.9%±3.0%

CIFAR-10

pk ∼ Dir(0.5) 68.2%±0.7% 67.9%±0.7% 69.8%±0.7% 66.8%±1.5%
#C = 1 10.0%±0.0% 12.3%±2.0% 10.0%±0.0% 10.0%±0.0%
#C = 2 49.8%±3.3% 50.7%±1.7% 49.1%±1.7% 46.5%±3.5%
#C = 3 58.3%±1.2% 57.1%±1.2% 57.8%±1.4% 54.4%±1.1%

SVHN

pk ∼ Dir(0.5) 86.1%±0.7% 86.6%±0.9% 86.8%±0.3% 86.4%±0.6%
#C = 1 11.1%±0.0% 19.6%±0.0% 6.7%±0.0% 10.6%±0.8%
#C = 2 80.2%±0.8% 79.3%±0.9% 62.7%±11.6% 75.4%±4.8%
#C = 3 82.0%±0.7% 82.1%±1.0% 77.2%±2.0% 80.5%±1.2%

adult pk ∼ Dir(0.5) 78.4%±0.9% 80.5%±0.7% 76.4%±0.0% 52.3%±26.7%
#C = 1 82.5%±2.2% 76.4%±0.0% 23.6%±0.0% 50.8%±0.9%

rcv1 pk ∼ Dir(0.5) 48.2%±0.7% 70.3%±13.3% 64.4%±24.3% 49.3%±2.1%
#C = 1 51.8%±0.7% 51.8%±0.7% 51.8%±0.7% 51.8%±0.7%

covtype pk ∼ Dir(0.5) 77.2%±7.4% 70.9%±0.7% 67.7%±14.9% 74.8%±12.9%
#C = 1 48.8%±0.1% 59.1%±2.1% 49.6%±1.4% 50.4%±1.4%

number of times that performs the best 8 11 4 3

Feature
distribution

skew

MNIST

x̂ ∼ Gau(0.1)
99.1%±0.1% 99.1%±0.1% 99.1%±0.1% 99.1%±0.1%

FMNIST 89.1%±0.3% 89.0%±0.2% 89.3%±0.0% 89.0%±0.1%
CIFAR-10 68.9%±0.3% 69.3%±0.2% 70.1%±0.2% 68.5%±1.3%

SVHN 88.1%±0.5% 88.1%±0.2% 88.1%±0.4% 88.1%±0.4%
FCUBE synthetic 99.8%±0.2% 99.8%±0.0% 99.7%±0.3% 99.7%±0.1%

FEMNIST real-world 99.4%±0.0% 99.3%±0.1% 99.4%±0.1% 99.3%±0.1%
number of times that performs the best 4 3 5 2

Quantity
skew

MNIST

q ∼ Dir(0.5)

99.2%±0.1% 99.2%±0.1% 99.1%±0.1% 99.1%±0.1%
FMNIST 89.4%±0.1% 89.7%±0.3% 88.8%±0.4% 86.1%±2.9%

CIFAR-10 72.0%±0.3% 71.2%±0.6% 62.4%±4.1% 10.0%±0.0%
SVHN 88.3%±1.0% 88.4%±0.4% 11.0%±7.4% 41.3%±21.1%
adult 82.2%±0.1% 84.8%±0.2% 81.6%±4.5% 43.2%±33.9%
rcv1 96.7%±0.3% 96.8%±0.4% 49.0%±1.9% 51.8%±0.7%

covtype 88.1%±0.2% 84.6%±0.2% 63.2%±20.8% 51.2%±3.2%
number of times that performs the best 3 5 0 0

Homogeneous
partition

MNIST

IID

99.1%±0.1% 99.1%±0.1% 99.2%±0.0% 99.1%±0.1%
FMNIST 89.6%±0.3% 89.5%±0.2% 89.7%±0.2% 89.4%±0.2%

CIFAR-10 70.4%±0.2% 70.2%±0.1% 71.5%±0.3% 69.5%±1.0%
SVHN 88.5%±0.5% 88.5%±0.8% 88.0%±0.8% 88.4%±0.5%

FCUBE 99.7%±0.1% 99.6%±0.2% 99.8%±0.1% 99.9%±0.1%
FEMNIST 99.3%±0.1% 99.4%±0.1% 99.4%±0.0% 99.3%±0.0%

adult 82.6%±0.4% 84.8%±0.2% 83.8%±2.5% 82.6%±0.0%
rcv1 96.8%±0.4% 96.6%±0.6% 80.9%±27.8% 96.6%±0.4%

covtype 87.9%±0.1% 85.2%±0.0% 88.0%±2.3% 87.9%±0.2%
number of times that performs the best 2 3 5 1

a very close accuracy compared with the IID setting. Last,
in quantity skew setting, FedAvg has almost no accuracy
loss. Since the weighted averaging is adopted in FedAvg,
it can already handle the quantity imbalance well. Overall,
the label distribution skew influences the accuracy of FL
algorithms most among all non-IID settings. There is room
for existing algorithms to be improved to handle scenarios
such as quantity-based label imbalance.

We draw a decision tree to summarize the suitable FL
algorithm for each non-IID setting as shown in Figure 7
according to our observations. This decision tree is helpful

for users to choose the algorithm for their learning according
to the non-IID distribution and the datasets. For example, if the
local datasets are likely to have feature distribution skew (e.g.,
the digits from different writers), then SCAFFOLD may be the
best algorithm for FL. If the local datasets have almost the
same data distribution but different sizes (e.g., databases with
different capacities), then FedProx is likely the appropriate
algorithm. If there is no prior knowledge on the local datasets,
how to determine the distribution is a challenging problem and
more research efforts are needed (see Section VI-A).



Non-IID data setting

Label Distribution skew

Distribution-based label imbalance
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Fig. 7. The decision tree to determine the (almost) best FL algorithm given
the non-IID setting.

2) Comparison among different algorithms:
Finding (2): No algorithm consistently outperforms the other
algorithms in all settings. The state-of-the-art algorithms
significantly outperform FedAvg only in several cases.

We have the following observations in aspect of different
algorithms. First, in label distribution skew and quantity skew
cases, FedProx usually achieves the best accuracy. In feature
distribution skew case, SCAFFOLD usually achieves the best
accuracy. Second, in some cases (e.g., pk ∼ Dir(0.5), feature
distribution skew and quantity skew), the improvement of the
three non-IID FL algorithms is insignificant compared with
FedAvg, which is smaller than 1%. Third, when #C = 1, Fed-
Prox can significantly outperform FedAvg, SCAFFOLD and
FedNova. Fourth, for SCAFFOLD, its accuracy is quite unsta-
ble. It can significantly outperform the other two approaches
in some cases (e.g., Dir(0.5) and K = 1 on CIFAR-10).
However, it may also have much worse accuracy than the other
two approaches (e.g., K = 1 and K = 2 on SVHN). Last, for
FedNova, it does not show much superiority compared with
other FL algorithms. Compared with the accuracy of FedAvg
on the homogeneous partition, there is still a lot of room for
improvement in the non-IID setting.

3) Comparison among different tasks:
Finding (3): CIFAR-10 and tabular datasets are challenging
tasks under non-IID settings. MNIST is a simple task under
most non-IID settings where the studied algorithms perform
similarly well.

Among nine different datasets, while heterogeneity signifi-
cantly degrades the accuracy of FL algorithms on CIFAR-10
and tabular datasets, such influence is smaller in other datasets.
Among image datasets, the classification task on CIFAR-10 is
more complex than the other datasets in a centralized setting.
Thus, when each party only has a skewed subset, the task
will be more challenging and the accuracy is worse. Also,
it is interesting that all the four algorithms cannot handle
tabular datasets well in the non-IID setting. The accuracy loss
is quite large especially for the label distribution skew case.
We suggest that the challenging tasks like CIFAR-10 and rcv1
should be included in the benchmark for distributed data silos.
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Fig. 8. The training curves of different approaches on CIFAR-10.
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Fig. 9. The test accuracy with different numbers of local epochs on CIFAR-
10.

B. Communication Efficiency

Finding (4): FedProx has almost the same convergence speed
compared with FedAvg, while SCAFFOLD and FedNova are
more unstable in training.

Figure 8 shows the training curves of the studied algorithms
on CIFAR-10. Here we try two different partitioning strategies
that cover label skew and feature skew. For the results on
other partitioning strategies and other datasets, please refer to
Appendix A of our technical report [39]. For FedProx, we
show the curve with the best µ. First, for the #C = 1 setting,
FedAvg and FedProx are very unstable, while SCAFFOLD
and FedNova even cannot improve as the number of rounds
increases. Second, for the q ∼ Dir(0.5) setting, FedNova is
quite unstable and the accuracy changes rapidly as the number
of communication rounds increases. Moreover, FedProx is
very close to FedAvg during the whole training process in
many cases. Since the best µ is always small, the regularization
term in FedProx has little influence on the training. Thus,
FedProx and FedAvg usually have similar convergence speed
and final accuracy. How to achieve stable learning and fast
convergence is still an open problem on non-IID data.

C. Robustness to Local Updates

Finding (5): The number of local epochs can have a large
effect on the accuracy of existing algorithms. The optimal
value of the number of local epochs is very sensitive to non-
IID distributions.

We vary the number of local epochs from {10, 20, 40, 80}
and report the final accuracy on CIFAR-10 in Figure 9. Please
refer to Appendix B of our technical report [39] for the results
of other settings and datasets. On the one hand, we can find
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Fig. 10. The training curves of different approaches on CIFAR-10 with 100
parties and sample fraction 0.1.

that the number of local epochs has a large effect on the
accuracy of FL algorithms. For example, when #C = 2,
the accuracy of all algorithms generally degrades significantly
when the number of local epochs is set to 80. On the other
hand, the optimal number of local epochs differ in different
settings. For example, when #C = 1 and #C = 2, the optimal
number of local epochs is 20 for FedAvg, and is 10 on the
settings pk ∼ Dir(0.5) and #C = 3. In summary, existing
algorithms are not robust enough against large local updates.
Non-IID distributions have to be considered to determine the
best number of local epochs.

D. Party Sampling

Finding (6): In the partial participation setting, SCAFFOLD
cannot work effectively, while the other FL algorithms have
a very unstable accuracy during training.

In some scenarios, not all the data silos will participate
the entire training process. In such a setting, the sampling
technique is usually applied (Line 6 of Algorithm 1). To
simulate this scenario, we set the number of parties to 100 and
the sample fraction to 0.1. We run experiments on CIFAR-
10 and the results are shown in Figure 10. Please refer to
Appendix C of the technical report [39] for the results with
other partitioning strategies. We can find that the training
curves are quite unstable in most non-IID settings. Due to
the sampling technique, the local distributions among different
rounds can vary, and thus the averaged gradients may have
very different directions among rounds. Moreover, we can find
that SCAFFOLD has a bad accuracy on all settings. Since the
frequency of updating local control variates (Lines 23-25 of
Algorithm 2) is low, the estimation of the update direction
may be very inaccurate using the control variates.

E. Scalability

Finding (7): The accuracy of all approaches decrease when
increasing the number of parties.

We study the effect of number of clients on studied ap-
proaches as shown in Figure 11. Here we run all approaches
for 50 rounds. We can observe that the accuracy decreases
significantly when increasing the number of clients. When the
number of parties is large, the amount of local data is small
and it is easy to overfit in the local training stage. How to
design effective and communication-efficient algorithms on a

10 20 30 40
Number of parties

0.50

0.55

0.60

0.65

0.70

Te
st

 a
cc

FedAvg
FedProx, =0.001
SCAFFOLD
FedNova

(a) pk ∼ Dir(0.5)

10 20 30 40
Number of parties

0.50

0.55

0.60

0.65

0.70

Te
st

 a
cc

FedAvg
FedProx, =0.001
SCAFFOLD
FedNova

(b) x̂ ∼ Gau(0.1)

Fig. 11. The test accuracy with different number of parties on CIFAR-10.

TABLE IV
THE COMPUTATION TIME (SECOND) AND COMMUNICATION SIZE (MB)

PER ROUND OF DIFFERENT APPROACHES.

MNIST CIFAR-10 adult rcv1
FedAvg 73s 193s 15s 66s
FedProx 133s 233s 44s 76s

SCAFFOLD 77s 197s 14s 66s
FedNova 73s 189s 17s 65s
FedAvg 1.95MB 2.73MB 0.20MB 66.54MB
FedProx 1.95MB 2.73MB 0.20MB 66.54MB

SCAFFOLD 3.91MB 5.46MB 0.41MB 133.08MB
FedNova 1.95MB 2.73MB 0.20MB 66.54MB

large-scale setting with small data in the client is still an open
problem.

F. Efficiency

Finding (8): The computation overhead of FedProx is large
compared with FedAvg. Moreover, the communication cost
of SCAFFOLD is twice of that of FedAvg.

To compare the efficiency of different FL algorithms, we
show the overall computation time and communication costs
of each approach in Table IV. We can observe that the
computation costs of FedAvg, SCAFFOLD, and FedNova are
close. FedProx has a much higher computation cost than
the other algorithms. From Algorithm 1, FedProx directly
modifies the objective, which causes additional computation
overhead in the gradient descent of each batch. FedNova and
SCAFFOLD only introduce very small number of addition
and multiplication operations each round, which is negligible.
For the communication costs, since SCAFFOLD needs to
communicate control variates in each round as shown in
Algorithm 2, its communication cost is twice of that of the
other algorithms.

G. Mixed Types of Skew

Finding (9): FL is more challenging when there exists mixed
types of skew among the local data.

In practice, there may exist mixed types of skew among
parties. Here we combine multiple partitioning strategies to
generate such cases. We try two different settings: 1) we first
divide the whole dataset into each party by the distribution-
based label imbalanced partitioning strategy. Then, we add
noises to the data of each party according to the noise-based
feature imbalance strategy. Therefore, there exists both label



TABLE V
THE PERFORMANCE OF DIFFERENT APPROACHES WITH DIFFERENT

IMBALANCE CASES ON CIFAR-10.

Case 1 FedAvg FedProx SCAFFOLD FedNova
label skew 68.2% 67.9% 69.8% 66.8%

feature skew 68.9% 69.3% 70.1% 68.5%
label and feature skew 66.1% 64.8% 67.8% 65.9%

Case 2 FedAvg FedProx SCAFFOLD FedNova
feature skew 68.9% 69.3% 70.1% 68.5%

quantity skew 72.0% 71.2% 62.4% 10.0%
feature and quantity skew 69.1% 69.2% 62.2% 10.0%

distribution skew and feature distribution skew among the local
data of different parties. 2) we first divide the whole dataset
into each party by the quantity imbalanced partitioning strat-
egy. Then, we add noises to the data of each party according
to the noise-based feature imbalance strategy. Therefore, there
exists both feature distribution skew and quantity skew among
the local data of different parties. The results are shown in
Table V.

For the first case, we can observe that the accuracies of
all approaches degrade when there exists mixed types of skew
compared with a single type of skew, which is reasonable since
both label imbalance and feature imbalance bring challenges
in the training process.

For the second case, while quantity skew does not affect
the accuracy of FedAvg and FedProx, the accuracy of both
feature and quantity skew setting is close to the accuracy of the
feature skew setting. However, for SCAFFOLD and FedNova,
the accuracy of both feature and quantity skew setting is poor
since quantity skew degrades the accuracy significantly.

Overall, as we observe more significant model quality
degradation in mixed non-IID settings, it is an important
direction to design algorithms for settings with mixed types of
skew, which are common in reality. For example, the images
taken in different areas have different label distributions, while
the feature distributions also differ due to the cameras (e.g.,
contrast).

H. Insights on the Experimental Results

We summarized the insights from the experimental studies
as follows.
• The design and evaluation of future FL algorithms should

consider more comprehensive settings, including different
non-IID data partitioning strategies and tasks. There is not
a single studied algorithm that consistently outperforms
the other algorithms or has a good performance in all
settings. Thus, it is still a promising research direction to
address issues in distributed data silos with FL.

• Accuracy and communication efficiency are two impor-
tant metrics in the evaluation of FL algorithms under non-
IID data settings. Our study demonstrates the trade-off
between them, and also the stability of those two metrics
in the training process.

• FL introduces new training factors (e.g., number of local
epochs, batch normalization, party sampling, number of
parties) compared with centralized training due to non-
IID data setting, while some training factors share the

similar behavior as the centralized training (e.g., batch
size). These challenging factors deserve more attention
in the evaluation of future FL studies.

• Mixed types of skew brings more challenges than a
single type of skew. As we observe more significant
model quality degradation in mixed non-IID settings, it is
important to investigate effective algorithms working on
multiple types of skew, which is more practical in reality.

VI. FUTURE DIRECTIONS

We present some following promising future directions
for data management and federated learning on non-IID dis-
tributed databases.

A. Opportunities for data management

Integration with learned database systems: Existing learned
systems are mostly based on centralized databases, such as
learned index structures [12], [54] and learned cost estima-
tion [24], [55]. We believe that, as the concerns on data
privacy and data regulation grow, we will see more distributed
databases and existing learned systems and algorithms need
to be revisited. For example, it could be very interesting to
enable federated search and develop learned index structures
for multiple “data silos” without exchanging the local data.
Light-weight data techniques for profiling non-IID data:
From our experimental study, different non-IID distributions
have a large effect on the accuracy and stability of FL
algorithms. Thus, it would be helpful if we can know the non-
IID distribution in prior before conducting FL. This made a
decade of database research relevant, such as data sampling [7]
and sketching [20]. Another potential approach is to use mete
data to represent the non-IID distributions. However, it is still
an open problem on how to extend current statistics estimation
(such as cardinality estimation) to non-IID distribution.
Non-IID resistant sampling for partial participation: As in
Finding (8), the sampling approach can bring instability in FL.
Instead of random sampling, selective sampling according to
the data distribution features of the parties may significantly
increase the learning stability. One inspiration is from the skew
resistant data techniques [18], [37], which can be potentially
extended to the partial participation in FL training. Moreover,
stratified sampling [59] can be a good solution. By classifying
the parties to subgroups, representative parties can be selected
in each round in a more balanced way [1].
Privacy-preserving data mining: Although there is no raw
data transfer in FL, the model may still leak sensitive informa-
tion about the training data due to possible inference attacks
[17], [68]. Thus, techniques such as differential privacy [14]
are useful to protect the local databases. How to decrease the
accuracy loss while ensuring the differential privacy guarantee
is a challenge research direction.
Query on Federated Databases: As we focus on distributed
databases due to privacy concerns, federated databases [67]
also need to be revisited. On the one hand, how to combine
the SQL query with machine learning on federated databases
is an important problem. On the other hand, how to preserve



the data privacy while supporting both query and learning on
federated databases also needs to be investigated.

B. Opportunities for better FL design

A Party with a Single Label: From Table III, the accuracy
of FL algorithms is very bad if each party only has data of a
single label. This setting is seemingly unrealistic. However, it
has many real-world applications in practice. For example, we
can use FL to train a speaker recognition model, while each
mobile device only has the voices of its single user.
Fast Training: From Figure 8, the training speed of existing
FL algorithms are usually close to each other. FedProx,
SCAFFOLD, and FedNova do not show much superiority on
the communication efficiency. To improve the training speed,
researchers can work on the following two directions. One
possible solution is to develop communication-efficient FL al-
gorithms with only a few rounds. There are some studies [21],
[41] that propose FL algorithms using a single communication
round. In their studies, a public dataset is needed, which may
potentially limit the applications. Another possible solution is
to develop fast initialization approach to reduce the number
of rounds while achieving the same accuracy for FL. In the
experiments of a previous study [41], they show that their
approach is also promising if applied as an initialization step.
Automated Parameter Tuning for FL: FL algorithms suffer
from large local updates. The number of local epochs is an
important parameter in FL. While one traditional way is to
develop approaches robustness to the local updates, another
way is to design efficient parameter tuning approaches for
FL. A previous paper [9] studies Bayesian optimization in
the federated setting, which can be used to search hyper-
parameters. Approaches for the setting of number of local
epochs need to be investigated.
Towards Robust Algorithms against Different Non-IID Set-
tings: As in Finding (2), no algorithm consistently performs
the best in all settings. It is a natural question whether and
how we can develop a robust algorithm for different non-IID
settings. We may have to first investigate the common charac-
teristics of FL processes under different non-IID settings. The
intuitions of existing algorithms are same: the local model
updates towards the local optima, and the averaged model
is far from the global optima. We believe the design of FL
algorithms under non-IID settings can be improved if we can
observe more detailed and common behaviours in the training.
Aggregation of Heterogeneous Batch Normalization: From
our Finding (7), simple averaging is not a good choice for
batch normalization. Since the batch normalization in each
party records the statistics of local data distribution, there is
also heterogeneity among the batch normalization layers of
different parties. The averaged batch normalization layer may
not catch the local distribution after sending back to the parties.
A possible solution is to only average the learned parameters
but leave the statistics (i.e., mean and variance) alone [4]. More
specialized designs for particular layers in deep learning need
to be investigated.

VII. RELATED WORK

Although the existing study [33] provides non-IID data
cases, it does not provide the partitioning strategies to generate
the corresponding non-IID data distributions. We go beyond
the previous study and summarize six different partitioning
strategies to generate three non-IID data distribution cases.
Among these six partitioning strategies, the two partitioning
strategies in Section IV-A-b and Section IV-B-c are adopted
from existing FL studies due to their popularity, while the
other four effective partitioning strategies are designed by our
study. Next, we introduce these partitioning strategies in detail.

There are some existing benchmarks for federated learn-
ing [6], [26], [29], [49]. LEAF [6] provides some realistic
federated datasets including images and texts. Specifically,
LEAF partitions the existing datasets according to its data
recourses, e.g., partitioning the data in Extended MNIST [8]
based on the writer of the digit or character. OARF [29] pro-
poses federated datasets by combining multiple related real-
world public datasets. Moreover, it provides various metrics
including utility, communication overhead, privacy loss, and
mimics the federated systems in the real world. However,
both LEAF and OARF do not provide an algorithm-level
comparison. FedML [26] provides reference implementations
of federated learning algorithms such as FedAvg, FedNOVA
[72] and FedOpt [62]. There are no new datasets, metrics,
and settings in FedML. FLBench [49] is proposed for isolated
data island scenario. Its framework covers domains including
medical, finance, and AIoT. However, currently, FLBench is
not open-sourced and it does not provide any experiments.

The above benchmarks do not provide analysis of existing
federated learning algorithms on different non-IID settings,
which is our focus in this paper. To the best of our knowledge,
there is one existing benchmark [51] for federated learning
on the non-IID data setting. However, it only provides two
partitioning approaches: random split and split by labels. In
this paper, we provide comprehensive partitioning strategies
and datasets to cover different non-IID settings. Moreover,
we conduct extensive experiments to compare and analyze
existing federated learning algorithms.

VIII. CONCLUSION

There has been a growing interest in exploiting distributed
databases (e.g., in different organizations and countries) to
improve the effectiveness of machine learning services. In this
paper, we study non-IID data as one key challenge in such
distributed databases, and develop a benchmark named NIID-
bench. Specifically, we introduce six data partitioning strate-
gies which are much more comprehensive than the previous
studies. Furthermore, we conduct comprehensive experiments
to compare existing algorithms and demonstrate their strength
and weakness. This study sheds light on some future directions
to build effective machine learning services on distributed
databases.
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APPENDIX

A. Training Curves

Figures 12, 13, 14, 15, and 16 show the training curves of
different approaches on the studied datasets except CIFAR-10.

B. Number of Local Epochs

Figures 12, 18, 19, 20, and 21 show the accuracy with
different number of local epochs on the studied datasets except
CIFAR-10.

C. Party Sampling

Figure 22 shows the training curves of the studied ap-
proaches on CIFAR-10 under the party sampling setting.

D. Batch Size

Finding (10): The heterogeneity of local data does not appear
to influence the behaviors of different choices of batch sizes.

Batch size is an important hyper-parameter in deep learn-
ing. We choose FedAvg and FedProx as the representative
algorithms and study the effect of batch size in FL by varying
it from 16 to 256 as shown in Figure 23. Like centralized
training, a large batch size slows down the learning process.
Moreover, four studied algorithms have similar behaviours
given different batch sizes. The results demonstrate that there
is no clear relationship between the setting of batch size
and the heterogeneity of local data. The knowledge of the
behaviors of different batch sizes still applies in the non-IID
federated setting.
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Fig. 12. The training curves of different approaches on CIFAR-10.
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Fig. 13. The training curves of different approaches on MNIST.

E. Model Architectures
Finding (11): A simple averaging of batch normalization
layers introduces instability in non-IID setting.

In the previous experiments, the models we use are simple
CNNs and MLPs. Here we try more complex models including
VGG-9 and ResNet-50 [27]. The experimental results on
CIFAR-10 are shown in Figure 24. Overall, while the final
accuracies of using VGG-9 and ResNet-50 are usually close,
training a ResNet-50 appears to more unstable. ResNet-50 uses
batch normalization to standardize the inputs to a layer. A
challenge in training ResNet-50 is how to aggregate the batch
normalization layers. While the local batch normalization lay-
ers can handle the local distribution well, a simple averaging
of these layers may not be able to catch the statistics of global
distribution and introduces more instability.
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(e) x̂ ∼ Gau(0.1)
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Fig. 14. The training curves of different approaches on FMNIST.
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Fig. 15. The training curves of different approaches on SVHN.
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Fig. 16. The training curves of different approaches on FCUBE and FEMNIST.
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Fig. 17. The test accuracy with different numbers of local epochs on CIFAR-10.
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(e) x̂ ∼ Gau(0.1)
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Fig. 18. The test accuracy with different number of local epochs on MNIST.
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Fig. 19. The test accuracy with different number of local epochs on FMNIST.
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(e) x̂ ∼ Gau(0.1)
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Fig. 20. The test accuracy with different number of local epochs on SVHN.
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Fig. 21. The test accuracy with different number of local epochs on FCUBE and FEMNIST.

0 100 200 300 400 500
Communication round

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

FedAvg
FedProx, =0.01
SCAFFOLD
FedNova

(a) #C = 1

0 100 200 300 400 500
Communication round

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

FedAvg
FedProx, =0.001
SCAFFOLD
FedNova

(b) #C = 2

0 100 200 300 400 500
Communication round

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

FedAvg
FedProx, =0.001
SCAFFOLD
FedNova

(c) #C = 3

0 100 200 300 400 500
Communication round

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

FedAvg
FedProx, =0.01
SCAFFOLD
FedNova
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Fig. 22. The training curves of different approaches on CIFAR-10 with 100 parties and sample fraction 0.1.
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(b) FedProx (µ = 0.01)
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(c) SCAFFOLD
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Fig. 23. The training curves of different batch sizes on CIFAR-10 under pk ∼ Dir(0.5) partition.
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(a) VGG-9 under pk ∼ Dir(0.1) partition
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(b) VGG-9 under x̂ ∼ Gau(0.1) partition
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(c) VGG-9 under q ∼ Dir(0.1) partition
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(d) ResNet-50 under pk ∼ Dir(0.1) partition
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(e) ResNet-50 under x̂ ∼ Gau(0.1) partition
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(f) ResNet-50 under q ∼ Dir(0.1) partition

Fig. 24. The training curves of VGG-9/ResNet-50 on CIFAR-10 under different partitions.
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