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Abstract—Regular path queries (RPQs) find pairs of vertices of
paths satisfying given regular expressions on an edge-labeled,
directed multigraph. When evaluating an RPQ, the evaluation
of a Kleene closure (i.e., Kleene plus or Kleene star) is very
expensive. Furthermore, when multiple RPQs include a Kleene
closure as a common sub-query, repeated evaluations of the
common sub-query cause serious performance degradation. In
this paper, we present a novel concept of RPQ-based graph
reduction, which significantly simplifies the original graph
through edge-level and vertex-level reductions. Interestingly,
RPQ-based graph reduction can replace the evaluation of
the Kleene closure on the large original graph to that of the
transitive closure to the small reduced graph. We then propose
a reduced transitive closure (RTC) as a lightweight structure
for efficiently sharing the result of a Kleene closure. We also
present an RPQ evaluation algorithm, RTCSharing, which treats
each clause in the disjunctive normal form of the given RPQ
as a batch unit. If the batch units include a Kleene closure as
a common sub-query, we share the lightweight RTC instead
of the heavyweight result of the Kleene closure. RPQ-based
graph reduction further enables us to formally represent the
result of an RPQ including a Kleene closure as a relational
algebra expression including the RTC. Through the formal
expression, we optimize the evaluation of the batch unit by
eliminating useless and redundant operations of the previous
method. Experiments show that RTCSharing improves the
performance significantly by up to 73.86 times compared with
existing methods in terms of query response time.

Index Terms—regular path queries (RPQ), query optimization,
graph reduction, reduced transitive closure (RTC), RTCSharing

I. INTRODUCTION

A regular path query (RPQ) is a regular expression that

finds ordered pairs of vertices of paths satisfying the RPQ on

an edge-labeled, directed multigraph [1]. Here, paths satisfy an

RPQ when a sequence of labels matches the RPQ. The RPQ

is attracting attention as an essential and important operation

for graph data such as social networks and the Semantic

Web and is supported by typical graph query languages such

as SPARQL 1.1 [2] and Cypher [3]. RPQs can be used in

*A corresponding author.

a variety of applications such as signal path detection in

protein networks, recommending friends in social networks,

and extracting information from linked open data [4], [5].

To evaluate an RPQ, it is necessary to traverse the graph

from each vertex and perform pattern matching for labels of

edges accessed during the traversal, finding the paths that

satisfy the query. As such, evaluating an RPQ is a complex op-

eration that combines graph traversal and pattern matching [6].

In particular, when an RPQ includes a Kleene closure (i.e.,

Kleene plus or Kleene star), the evaluation is more expensive

because there can be long paths of varying lengths satisfying

the RPQ [7]. Therefore, optimization of evaluating RPQs is

actively being studied as an important issue [4], [5], [8]–[11].

Optimization of evaluating RPQs needs more attention when

evaluating multiple RPQs. When there is a common sub-query

among multiple RPQs, evaluating these RPQs individually

leads to repeated evaluations of the common sub-query. This

problem of repeated evaluations can be solved by evaluating

the common sub-query once and sharing the result among the

RPQs. However, when a common sub-query includes a Kleene

closure, evaluating the common sub-query itself is expensive.

In this paper, we present a novel concept of RPQ-based

graph reduction, which converts an original labeled multigraph

G to an unlabeled simple graph GR. RPQ-based graph reduc-

tion consists of two levels: 1) edge-level reduction producing

an unlabeled graph GR from G by mapping paths satisfying R

on G to edges of GR and 2) vertex-level reduction producing

a much reduced graph GR from GR by representing each

strongly connected component (SCC) as one vertex, which we

define in Section 3. Interestingly, RPQ-based graph reduction

can replace the evaluation of the Kleene closure on the large

original graph G to that of the transitive closure to the small

reduced graph GR. Even though the graph reduction incurs

a little overhead, the performance gain of using the reduced

graph is much larger than the overhead. Based on the RPQ-

based graph reduction, we then propose a reduced transitive

closure (RTC) as a lightweight structure for efficiently sharing

the result of a Kleene closure. Let R+
G (or R*

G) be the evaluation

result of a Kleene closure R+ (or R*) for any regular expression

R on the graph G. Since R*
G can be easily derived from R+

G, we

hereafter use R+ and R+
G only unless confusion occurs. In the

final algorithms (Algorithms 1 and 2), we also deal with R* by
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simply deriving it from R+. In Theorem 1, we formally show

that R+
G, the evaluation result of R+ on the original graph G,

can be easily calculated from the transitive closure (i.e., RTC)

of the reduced graph GR.

We also propose an RPQ evaluation algorithm, Reduced

Transitive Closure Sharing (RTCSharing), which converts the

given RPQ to a logically equivalent disjunctive normal form

(DNF) and evaluates it treating each clause as a batch unit. As

in [15], we can convert all RPQs to a logically equivalent DNF

treating each outermost Kleene closure as a literal. If multiple

batch units include a Kleene closure as a common sub-query,

we share the lightweight RTC instead of the heavyweight

result of the Kleene closure. RPQ-based graph reduction

further enables us to represent the result of an RPQ including

a Kleene closure as a relational algebra expression in the

form of a join sequence including the RTC. By representing

the batch unit as a relational algebra expression, RTCSharing

optimizes the evaluation of the batch unit by eliminating

redundant and useless operations (see Section 4.2 for formal

definitions) as follows: (1) it eliminates redundant operations

(in effect, mostly duplicate check operations) that might occur

in the next step removing redundant elements by unioning the

intermediate results of each join step; and (2) it also eliminates

useless operations caused by selection through Prefix and by

the property of the reduced graph GR.

The contributions of this paper are summarized as follows:

• We present a novel notion of RPQ-based graph reduction

that converts a labeled multigraph to an unlabeled simple

graph for the efficient evaluation of a Kleene closure.

• We propose an RTC as a lightweight structure to effi-

ciently share the result of a common sub-query among

RPQs whose common sub-query is a Kleene closure R+

for any regular expression R.

• We show that R+ can be evaluated as the transitive closure

of the edge-level reduced graph GR (Lemma 1), and

further, can be calculated from the transitive closure of

the two-level reduced graph GR (i.e., the RTC) (Lemma 3

and Theorem 1).

• We propose an RPQ evaluation algorithm, RTCSharing,

that uses each clause in the DNF of the given RPQ as

a batch unit. RTCSharing shares the RTC instead of R+
G

among batch units as the result of the common sub-query

R+.

• We show that the result of an RPQ including a Kleene

closure can be represented as a relational algebra ex-

pression including the RTC and exploit it for optimizing

the evaluation of the RPQ by eliminating useless and

redundant operations.

• Through experiments with synthetic and real datasets, we

show that RTCSharing significantly outperforms existing

algorithms: 1) the recent algorithm that shares R+
G among

RPQs [8] and 2) the naive algorithm that shares nothing

among RPQs [5].

The paper is organized as follows. Section II describes

the preliminary background. Section III proposes RPQ-based

graph reduction and the RTC. Section IV describes the RTC-

Sharing algorithm with the optimization. Section V shows the

results of performance evaluation for the proposed methods

in comparison with existing RPQ evaluation algorithms. Sec-

tion VI summarizes the related work. Section VII concludes

the paper.

II. PRELIMINARIES

In this section, we introduce the background of regular path

query research. Section II-A describes the data model used

for regular path queries. Section II-B describes the definition

of regular path queries and methods of evaluating them.

Section II-C describes methods of evaluating multiple regular

path queries.

A. Data Model

The data used for regular path queries is an edge-labeled,

directed multigraph G, which is defined as a 5-tuple (V, E, f,

Σ , l) [1]. V is a set of vertices. E is a set of directional edges.

f : E → V×V is a function that maps each edge to an ordered

pair of two vertices connected by the edge. Σ is a set of labels.

l: E → Σ is a function that maps each edge to its label. In G,

multiple edges between any two vertices are allowed, but the

labels of these edges must be distinct. Fig. 1 shows a graph,

which will be used as an example graph throughout the paper.

TABLE I summarizes the notation related to G to be used

in this paper. Each vertex has a unique ID (VID). A vertex

with VID i is denoted by vi. A label has a unique ID (LID). A

label with LID i is denoted by li. An edge from vs to vd with

label li is denoted by e(vs, li, vd). A path from vs to vd, which

is a sequence of e(vs, li1 , vj1 ), e(vj1 , li2 , vj2 ), · · · , e(vjn-1
, lin ,

vd) is denoted by p(vs, li1 , vj1 , li2 , vj2 , · · · , lin , vd). A sequence

of labels li1 li2 · · · lin is called a path label [1], [5]. If it is not

ambiguous, p(vs, li1 , vj1 , li2 , vj2 , · · · , lin , vd) is simply denoted

by p(vs, vd).

v0 v2

v3 v6

v5

v1 v4

c
c

c
b

b

c

a

c

v7
a

b bb

v8
e

v9
f

d

Fig. 1: An edge-labeled, directed multigraph.

TABLE I: The notation related to G.

Notation Description

vi A vertex with VID i

li A label with LID i

e(vs , li, vd) An edge from vs to vd with label li

p(vs, li1 ,· · · , lin , vd)

or p(vs, vd)

A path from vs to vd, which is a sequence of

e(vs , li1 , vj1 ), · · · , e(vjn-1
, lin , vd)

li1 li2 · · · lin
The path label of a path

p(vs , li1 , vj1 , li2 , vj2 , · · · , lin , vd)
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B. Regular Path Query(RPQ)

A regular path query (RPQ) R on a graph G is a regular

expression over Σ and finds a set of ordered vertex pairs (start

vertex, end vertex) of the paths satisfying R in G [1] (Defini-

tion 1). That is, the evaluation result RG of RPQ R on G is a

set of ordered vertex pairs as is defined in Definition 2.

Definition 1. A path satisfies an RPQ R when a path label of

the path matches R [1].

Definition 2. Given a graph G and an RPQ R,

RG = {(vi, vj) | a p(vi, vj) that satisfies R exists in G}.

Example 1. Fig. 2 shows an example of RG. (d·(b·c)+·c)G is

the result of RPQ d·(b·c)+·c on G where G is an example

graph shown in Fig. 1. The left side of the figure shows the

paths that satisfy d·(b·c)+·c. The path labels of these paths are

dbcc, dbcbcc, etc., all of which match d·(b·c)+·c. The right

side shows (d·(b·c)+·c)G. (v7, v5) is included in (d·(b·c)+·c)G

because paths p1, p3, etc., satisfying d·(b·c)+·c exist between

vertices v7 and v5. (v7, v3) is also included in (d·(b·c)+·c)G

because paths p2, p4, etc., satisfying d·(b·c)+·c, exist between

vertices v7 and v3.

To evaluate an RPQ R on G, we traverse G from each

vertex vi and find the set of end vertices of the paths starting

from vi that satisfy R. To find the paths satisfying R, pattern

matching is done on the labels of the edges that are accessed

during traversal. Finite automata are usually used for pattern

matching [1], [4], [5], [10], [11]. Each traversal has a state of

the finite automaton as the current state. If the state can be

transited to the next state using the label of an edge originating

from the current state, the traversal continues through that

edge. If the current state is an accept state, (start vertex,

end vertex) of the traversal is included in RG. The traversal

continues until there are no more traversable edges or the

state is not able to be transited. Among algorithms based on

finite automata, we use recent used one by Yakovets [5] in

experiments in Section V.

Example 2. Fig. 3 shows an example of RPQ evaluation —

evaluation of the RPQ d·(b·c)+·c using the finite automata (i.e.,

<(d·(b·c)+·c)G><Paths satisfying d·(b·c)+·c>

…

v7
d

p1: v4
b
v1
c
v2
c
v5

p4:
cv7

d v4
b v1

c v2
b v5

v4
b v1

c v2
b v5

c v6
c v3

(v7, v3)}

{(v7, v5),

…

p3:
cv7

d v4
b v1

c v2
b v5

v4
b v1

c v2
c v5

p2:
cv7

d v4
b v1

c v2
b v5

v6
c v3

Fig. 2: An example of RG.

Traversal

: The end vertex of the path satisfying the RPQ

: The vertex which is already visited in the same state from 
the same start vertex

NFA

b

q0

q2

q4
d

c
q3
c

q1

b

v2

v3

v5v1v4
b c

v7
d b

b

c

c

v6

c

c

(q0) (q1) (q2) (q3) (q2) (q3)

(q3) (q4)(q2)

(q4)

v5

v4

v3

(q2)

v1
b

Fig. 3: An example of RPQ evaluation.

NFA in Fig. 3) on the graph of Fig. 1. Through the traversal,

(v7, v5) and (v7, v3) are included in (d·(b·c)+·c)G since p(v7, d,

v4, b, v1, c, v2, c, v5) and p(v7, d, v4, b, v1, c, v2, b, v5, c, v6,

c, v3), which satisfies d·(b·c)+·c starting from v7, are found.

In the case of p(v7, d, v4, b, v1, c, v2, b, v3), there is an edge

e(v3, b, v2) accessible from v3, but state transition cannot be

done through the edge. Therefore, the traversal of the path is

terminated. p(v7, d, v4, b, v1, c, v2, b, v5, c, v4, b, v1) is a

special case. Since the end vertex v1 of the path has already

been visited by p(v7, d, v4, b, v1) in the same state (i.e., q2 in

Fig. 3), the subsequent traversals overlap with an earlier one.

That is, the vertices that are included in (d·(b·c)+·c)G by paths

from v7 found through subsequent traversals are duplicated.

Therefore, if the end vertex of the path has already been visited

in the same state from the start vertex of the path, the traversal

is terminated to avoid duplication.

As we can see in Example 2, evaluation of RPQ R on G

is a complex operation since it requires both graph traversal

and pattern matching [6]. In particular, evaluation of an RPQ

with Kleene closures is more expensive and the result is larger

than those of RPQs without them because the former can have

long paths of varied lengths that satisfy the RPQ [7]. Time and

space complexities of the naive RPQ evaluation depends on

those of Kleene closure evaluation, which are O(|V|×|E|) and

O(|V|2), respectively. Therefore, optimization of the evaluation

of an RPQ with Kleene closures is a very important issue.

C. Evaluation of Multiple RPQs

A naive method of evaluating multiple RPQs is to evaluate

them individually. However, if there is a common sub-query

among RPQs, the sub-query is evaluated repeatedly. To avoid

the problem, Abul-Basher’s method [8] shares the evaluation

result of the common sub-query among the RPQs. We call

the method FullSharing and use it as a baseline solution in

the experiment. However, if a common sub-query is a Kleene

closure, the one-time evaluation of the common sub-query

itself is expensive and the size of the result could be large as

mentioned in Section II-B. In addition, useless and redundant

operations can occur when each RPQ is evaluated using the

result of the common sub-query. We discuss the details of

these problems and propose solutions in Section IV.
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III. RPQ-BASED GRAPH REDUCTION

In this section, we present a novel concept of RPQ-based

graph reduction. Fig. 4 shows an overview of RPQ-based

graph reduction. The first-level reduction (G → GR of Sec-

tion III-A) reduces a graph G at the edge level for RPQ R,

which maps the paths satisfying R on G to edges on GR. The

second-level reduction (GR → GR of Section III-B) reduces GR

at the vertex level, which maps each SCC of GR to a vertex of

GR. Based on these graph reductions, we show that R+ can be

evaluated as the transitive closure of the edge-level reduced

graph GR (Lemma 1), and further, can be calculated as the

transitive closure of the two-level reduced graph GR and the

Cartesian product of vertices of SCCs mapped to vertices of

GR (Lemma 3 and Theorem 1). We also propose the transitive

closure of GR as a lightweight structure for efficiently sharing

the result of R+, which we call a reduced transitive closure

(RTC of Section III-C).

TABLE II summarizes the notation related to GR and GR.

Vertex, edge, and path notations of GR are the same as those

of G in TABLE I except that we use eR and pR instead of e

and p to distinguish GR and G. Each SCC of GR has a unique

ID (SID). An SCC with SID i is denoted by si. If it is not

ambiguous, the set of vertices in the SCC with SID i is also

denoted by si. Each vertex of GR has the same unique ID as

that of the SCC of GR mapped to it. A vertex with VID i is

denoted by vi. An edge from vs to vd is denoted by eR(vs, vd).

A. Edge-Level Graph Reduction (G → GR)

The edge-level reduction maps all the paths satisfying R

between each pair of vertices of G to one edge of GR. Graph

GR is an unlabeled, directed graph that reduces G at the edge

level for R. GR is defined as a 3-tuple (VR, ER, fR). VR is a set

of vertices: {vi | (∃vj)((vi, vj) ∈ ER ∨ (vj, vi) ∈ ER)}. ER is

a set of edges: {eR(vi, vj) | there exists p(vi, vj) satisfying R

on G}. fR: ER → VR×VR is a function that maps each edge to

an ordered pair of vertices connected by the edge. Reduction

of G to GR through the edge-level reduction has the following

aspects.

• Vertices and edges that do not belong to a path satisfying

R are excluded. To obtain R+
G we only need the paths

satisfying R. Thus, we don’t need to consider vertices

and edges not belonging to the paths satisfying R on G.

Evaluate 
RPQ R+

on 

Compute
transitive 
closure 

of 

Compute 
transitive 
closure 

of 

Two-Level Graph Reduction

edge-level
reduction

path edge SCC vertex

edge-labeled,
directed 

multigraph G
(V, E, f, , l)

unlabeled,
directed 
graph GR

(VR, ER, fR)

unlabeled,
directed 
graph GR

(VR, ER, fR)

vertex-level
reduction

(equivalent) (equivalent)

Fig. 4: An overview of RPQ-based graph reduction.

TABLE II: The notation related to GR and GR.

Notation Description

GR

vi A vertex of GR with VID i

eR(vs, vd) An edge of GR from vs to vd

pR(vs, vd)
A path of GR from vs to vd, which is a sequence
of eR(vs , vj1 ), · · · , eR(vjn-1

,vd)

si
An SCC of GR with SID i or the set of vertices in
the SCC

GR

vi
The vertex of GR to which si of GR is mapped
(VID is i)

eR(vs, vd) An edge of GR from vs to vd

• Labeled graph → unlabeled graph. Since only the paths

satisfying R are mapped to edges, labels of edges are no

longer needed. (i.e., every label is R.)

• Multigraph → simple graph. Since labels of edges are

excluded, paths in the same direction between each vertex

pair are mapped to one edge.

Example 3. Fig. 5 shows an example of edge-level graph

reduction. Here, the graph G in Fig. 1 is reduced at the edge

level for b·c. In G, the paths satisfying b·c are p(v2, v4), p(v2,

v6), p(v3, v5), p(v4, v2), and p(v5, v3). Since these paths are

mapped to edges of Gb·c, Eb·c becomes {eb·c(v2, v4), eb·c(v2,

v6), eb·c(v3, v5), eb·c(v4, v2), eb·c(v5, v3)}.

We show that the problem of evaluating RPQ R+ can be

reduced to a problem of computing the transitive closure of

the edge-level reduced graph GR (denoted by TC(GR)) in

Lemma 1.

Lemma 1 . R+
G is equivalent to TC(GR).

Proof. We prove R+
G = TC(GR) by showing R+

G ⊆ TC(GR)

and R+
G ⊇ TC(GR), respectively.

• R+
G ⊆ TC(GR)

Suppose (vi, vj) ∈ R+
G. Then, there exists a path p(vi,

vj) satisfying Rn (concatenation of R n times, n ≥ 1) on

G. p(vi, vj) can be represented as a sequence of n paths

p(vi, vk1
), p(vk1

, vk2
), · · · , p(vkn-1

, vj) each satisfying R. By

edge-level reduction, all the paths satisfying R between

each pair of vertices maps to one edge in GR. That is,

because there exist eR(vi, vk1
), eR(vk1

, vk2
), · · · , eR(vkn-1

,

vj) in GR, there exist pR(vi, vj) in GR. Hence, (vi, vj) ∈
TC(GR) and R+

G ⊆ TC(GR).

Edge-level
reduction v2

v3 v6

v5

v4

<Gb·c>

v0 v2

v3 v6

v5

v1 v4

c

c

c

b

b

c

a

c

v7
a

b bb

v8
e

v9
f

d

<G>

: Edges belong to paths satisfying b·c in G

Fig. 5: An example of edge-level reduction.
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• R+
G ⊇ TC(GR)

Suppose (vi, vj) ∈ TC(GR). Then, there exists a path pR(vi,

vj) of length n(n ≥ 1) on GR. pR(vi, vj) can be represented

as a sequence of n edges eR(vi, vk1
), eR(vk1

, vk2
), · · · ,

eR(vkn-1
, vj). By the definition of GR, there exist paths

p(vi, vk1
), p(vk1

, vk2
), · · · , p(vkn-1

, vj) each satisfying R

in G. That is, there exists a path p(vi, vj) satisfying Rn.

Hence, (vi, vj) ∈ R+
G and R+

G ⊇ TC(GR).

Example 4. In Fig. 5, (b·c)+
G is equivalent to TC(Gb·c):

{(v2, v2), (v2, v4), (v2, v6), (v3, v3), (v3, v5), (v4, v2), (v4, v4),

(v4, v6), (v5, v3), (v5, v5)}.

B. Vertex-Level Graph Reduction (GR → GR)

The vertex-level reduction maps each SCC of GR to one

vertex of GR. The graph GR is an unlabeled, directed graph.

GR is defined as a 3-tuple (VR, ER, fR). VR is a set of vertices:

{vi | (∃sj)(sj is an SCC of GR ∧ i = j)}. ER is a set of edges:

{eR(vi, vj) | (∃ sk)(∃ sl)(∃ vm)(∃ vn)(sk and sl are SCCs of GR

∧ vm ∈ sk ∧ vn ∈ sl ∧ eR(vm, vn) ∈ ER ∧ i = k ∧ j = l)}. fR: ER

→ VR×VR is a function that maps each edge to an ordered pair

of vertices connected by the edge. The vertex-level reduction

has the following characteristics:

• Edges between any pair of vertices in the same SCC of

GR are mapped to one self-loop edge in GR.

• Edges with the same direction between any pair of

vertices in two different SCCs of GR are mapped to one

edge in GR.

Example 5. Fig. 6 shows an example of vertex-level graph

reduction. Here, Gb·c in Fig. 5 is reduced to Gb·c at the vertex

level. There are three SCCs in Gb·c: s0, s1, s2. Since each of

these SCCs is mapped to one vertex of Gb·c, Vb·c becomes

{v0, v1, v2}. There exists an edge from v2 in s0 to v6 in

s1; these vertices belong to different SCCs. This edge of GR

is mapped to the edge eb·c(v0, v1) of GR. The SCC s0 (s2)

has edges between the vertices that belong to s0 (s2) itself.

These edges are mapped to the edge eb·c(v0, v0) (eb·c(v2, v2))

in GR constituting an self-loop edge. Thus, Eb·c is {eb·c(v0,

v0), eb·c(v0, v1), eb·c(v2, v2)}.

Using Lemma 3 below, we can efficiently compute the

TC(GR) (and accordingly, R+
G) by computing the transitive

closure of GR (denoted by TC(GR)). Purdom [12] provided

the following Lemma 2.

v2

v3 v6

v5

v4

s0

s2

s1

<Gb·c>

Vertex-level

reduction v0

v1

v2

<Gb·c >

Fig. 6: An example of vertex-level reduction.

Lemma 2 [12]. For any pair of vertices vi and vj, if there is a

path from vi to vj, there are paths from each vertex belonging

to the same SCC as that of vi to all vertices belonging to the

same SCC as that of vj.

We now introduce the following Lemma 3.

Lemma 3 . TC(GR) = {(vi, vj) | (vk, vl) ∈ TC(GR) ∧ (vi, vj)

∈ sk×sl}, where vk, vl are vertices of GR to which sk and sl

of GR are mapped, respectively.

Proof.

• TC(GR) ⊆ {(vi, vj) | (vk, vl) ∈ TC(GR) ∧ (vi, vj) ∈ sk×sl}.

Suppose (vi, vj) ∈ TC(GR). Then, there is a path from a

vertex of GR which is mapped to the SCC containing vi

to a vertex of GR which is mapped to the SCC containing

vj by the definition of GR. Hence, (vi, vj) ∈ {(vi, vj) | (vk,

vl) ∈ TC(GR) ∧ (vi, vj) ∈ sk×sl} holds.

• {(vi, vj) | (vk, vl) ∈ TC(GR) ∧ (vi, vj) ∈ sk×sl} ⊆ TC(GR).

Lemma 2 means that if there is a path from vi in sk to

vj in sl, then there exist a path from each vertex in sk to

each vertex in sl. Hence, {(vi, vj) | (vk, vl) ∈ TC(GR) ∧
(vi, vj) ∈ sk×sl} ⊆ TC(GR) holds by Lemma 2.

The transitive closure algorithms in [12] and [13] are

instances of implementation of Lemma 3 (without a formal

correctness proof). Purdom [12] proposed an algorithm that

essentially computes the transitive closure of GR, and then,

the Cartesian product sk×sl without formally introducing the

concept of the vertex-reduced graph, but instead, treating the

nodes in an SCC of the original graph as an equivalent class.

Nuutila [13] improved Purdom’s algorithm by obtaining the

transitive closure of GR and the Cartesian product sk×sl in

one step in an interleaved way. In this paper, we formalize

the concept implied by the algorithm by Prudom [12] with

a formal definition of the vertex reduced graph and the

correctness proof.

Theorem 1. R+
G = {(vi, vj) | (vk, vl) ∈ TC(GR) ∧ (vi, vj) ∈

sk×sl} where vk, vl are vertices of GR to which sk and sl of

GR are mapped, respectively.

Proof. Derived from Lemmas 1 and 3.

Example 6. In Fig. 6, TC(Gb·c) is {(v0,v0), (v0,v1), (v2,v2)}.

For each vertex pair (vi, vj), the union of the Cartesian product

of si and sj is {(v2, v2), (v2, v4), (v4, v4), (v4, v2), (v2, v6), (v4,

v6), (v3, v3), (v3, v5), (v5, v3), (v5, v5)}, which is the same as

TC(Gb·c).

C. Reduced Transitive Closure (RTC)

We use TC(GR) (denoted by R+
G) as a reduced transitive

closure to share the result of a Kleene plus R+. As illustrated

in Section III-B, we can efficiently enumerate R+
G by using R+

G.

Moreover, R+
G is computationally simpler and smaller than R+

G

as shown in TABLE III. Although both computing R+
G on GR

and computing R+
G on G find pairs of vertices by traversing

a graph, the former is simpler than the latter because of the

following differences:
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• The size of the target graph to be traversed is smaller (|VR|
<< |VR| in general). GR is a two-level reduced graph of

G, which is reduced in size. Thus, the former target graph

GR is generally smaller than the latter target graph G.

• The operations performed when traversing the graph are

simpler. The former traverses the graph using only oper-

ations that identify reachability. The latter, on the other

hand, performs additional pattern matching operations for

the labels of the edges as well. Therefore, the former

operations are simpler.

TABLE III summarizes the computational and space com-

plexity of R+
G and R+

G. R+
G is computed on GR after two-level

graph reduction: G → GR → GR. R+
G is computed using RG

after evaluating R on G. The main operation required when

reducing the graph G → GR is to evaluate R on G. As ex-

plained in Section II-B, evaluating R on G is computationally

simpler than and relatively negligible with evaluating R+ on

G. Therefore, we exclude the computation for reducing the

graph G → GR from the computational complexities of both

R+
G and R+

G. The computational complexity of evaluating R+
G is

O(|VR|×|ER|). The main operation required when reducing the

graph GR → GR is to find all SCCs of GR. The most efficient

method for this operation is known as the Tarjan’s algorithm

[14], whose computational complexity is O(|VR|+|ER|) <<

O(|VR|×|ER|). Since the overhead of reducing the graph GR →
GR is negligible compared with the computational complexity

of evaluating R+ on GR, we exclude it from the comparison

in TABLE III. The computational complexity of comput-

ing R+
G on GR is O(|VR|×|ER|) which is generally smaller

than O(|VR|×|ER|). Therefore, R+
G has smaller computational

complexity than R+
G. This observation is demonstrated in

performance evaluation of Section V. In the worst case, R+
G

and R+
G are all vertex pairs of the target graph, so that the

space complexity is O(|VR|
2) and O(|VR|

2), respectively. By

the vertex-level reduction O(|VR|) << O(|VR|) in general. That

is, R+
G has a generally smaller space complexity than R+

G.

IV. REDUCED TRANSITIVE CLOSURE SHARING

(RTCSHARING)

In this section, we propose an RPQ evaluation algorithm,

which we call RTCSharing. RTCSharing recursively evaluates

RPQs calling EvalBatchUnit, which evaluates batch units of

the RPQs. RTCSharing also share the RTC among the batch

units. Section IV-A proposes RTCSharing and Section IV-B

optimizes the evaluation of batch units.

A. RTCSharing: an RPQ Evaluation Algorithm

In RTCSharing, we first convert the given RPQ to a logically

equivalent disjunctive normal form (DNF). Since all logical

formulas can be converted to a logically equivalent DNF [15],

TABLE III: Complexity of R+
G and R+

G.

Complexity R+
G R+

G

Computational O(|VR|×|ER|) O(|VR|×|ER|)

Space O(|VR|
2) O(|VR|

2)

we can convert all RPQs to a logically equivalent DNF treating

each outermost Kleene closure as a literal. Then, we evaluate

each clause in the DNF treating it as a batch unit. The batch

unit is in the form of Prefix·R+·Postfix or Prefix·R*·Postfix

where Prefix and R are any regular expressions that can include

multiple or nested Kleene closures and Postfix is a regular

expression without a Kleene closure, i.e., the R+ or R* is the

rightmost Kleene closure in the clause. For concise notation,

we denote Prefix and Postfix as Pre and Post, respectively. If

the batch unit includes multiple or nested Kleene closures, we

recursively evaluate it using the result of the previous recursive

step until the batch unit does not include any Kleene closures.

It means that an escape hatch of the recursion is the batch unit

that does not include any Kleene closures. When evaluating

batch units including a Kleene closure as a common sub-query,

we share the RTC among batch units using Theorem 1. That

is, since we evaluate it only once, the performance degradation

from the DNF transformation does not occur. We can further

improve the performance by optimizing the evaluation order

of the batch units, and we leave the optimization issue as a

future work. We explain the details of the evaluation of the

batch unit in Section IV-B.

Algorithm 1 shows the details of RTCSharing. First, in line

2, we convert the given RPQ Q to a logically equivalent DNF

Q DNF. Here, we treat each outermost Kleene closure as

a literal. Then, we evaluate each clause in Q DNF treating

it as the batch unit in lines 4 to 12 and union the result

in line 13. In line 4, we decompose the batch unit clause

into Pre, R, Type (+, *, or NULL), and Post. If clause does

not include a Kleene closure, both Pre and R are ǫ, Type is

NULL, and Post is the entire clause. In line 6, we evaluate

the entire clause Post calling EvalRPQwithoutKC, which uses

any existing method [5]. Otherwise, R+ or R* is the rightmost

Kleene closure, Type is + or *, and Post does not include any

Kleene closures. In line 8, we evaluate Pre recursively calling

RTCSharing with Pre as a query. If the RTC for R exists, we

Algorithm 1: RTCSharing.

Input: Query Q
Output: The set of results QG

1 QG ← ∅
2 Q DNF ← ConvertRPQtoDNF(Q)
3 foreach clause ∈ Q DNF do
4 Pre, R, Type, Post ← DecomposeCL(clause)
5 if Type == NULL then

/* clause has no Kleene closure */
6 clauseG ← EvalRPQwithoutKC(Post)

7 else
/* clause has a Kleene closure */

8 PreG ← RTCSharing(Pre)
9 if the RTC for R does not exist then

/* Compute RTC: R+
G and SCC */

10 RG ← RTCSharing(R)

11 R+
G, SCC ← Compute RTC(RG)

12 clauseG ← EvalBatchUnit(PreG, R+
G, SCC, Type, Post)

13 QG ← QG ∪ clauseG
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reuse them. Otherwise, we compute and store them to share in

lines 10 and 11. In line 10, we evaluate R recursively calling

RTCSharing with R as a query. Since RG is the same with

the edge set of GR, we can compute the RTC using RG. In

line 11, we compute the RTC R+
G calling Compute RTC that

uses Tarjan’s algorithm [14]. In line 12, we evaluate the batch

unit Pre·R+·Post calling EvalBatchUnit. We note that, unlike

Pre, Post is not pre-evaluated. Post is directly handled by

EvalBatchUnit. EvalBatchUnit will be given by Algorithm 2.

Example 7. We show three examples of RPQ evaluation using

RTCSharing. To focus on the method we propose, we only

consider the sequential evaluation of the given RPQs in the

DNF. Fig. 7 shows recursion trees of the RPQs.

• RPQ = a.

(The query does not include a Kleene closure.)

We first decompose the query so that both Pre and R is ǫ,

Type is NULL, and Post is a. We then evaluate the query

calling EvalRPQwithoutKC in line 6.

• RPQ = a·(a·b)+·b.

(The query includes a Kleene closure.)

We first decompose the query so that Pre is a, R is a·b,

Type is +, and Post is b. We evaluate a in line 8 and

compute the RTC for a·b in lines 10 and 11. Then, we

evaluate the query calling EvalBatchUnit with aG and the

RTC for a·b in line 12.

• RPQ = (a·b)*·b+·(a·b+·c)+.

(The query includes multiple and nested Kleene closures.)

We first decompose the query so that Pre is (a·b)*·b+,

R is a·b+·c, Type is +, and Post is ǫ. We evaluate

(a·b)*·b+ calling RTCSharing recursively in line 8. In this

recursive step, Pre is (a·b)* and R is b, Type is + and

Post is ǫ. When evaluating (a·b)*, we reuse the RTC for

a·b, which was already computed when evaluating the

above query a·(a·b)+·b. When evaluating (a·b+·c)+, we

also reuse the RTC for b, which was already computed

when evaluating (a·b)*·b+. Finally, we evaluate the query

calling EvalBatchUnit with ((a·b)*·b+)G and the RTC for

a·b+·c in line 12.

(a b) b a b c

+a b c(a b) b

ca+(a b) b +b

a b

Pre R Post
Type

Pre R PostTypePre R PostType

Pre R PostType Share the RTC

a (a b) b

+ ba a b

Pre R PostType

a

NULL a

Pre R Type

Share the RTC

Post

Pre: Prefix
Type: closure type
Post: Postfix

Fig. 7: Recursion trees of the example queries.

B. Evaluation of the Batch Unit

When evaluating the batch unit, especially Pre·R+, useless

and redundant operations can occur because of PreG. These

are sources of performance degradation. Among vertex pairs

in R+
G, we need only those that are connected from a vertex

pair in PreG. That is, operations that evaluate R+ starting from

vertices that are not connected from any vertex pair in PreG

are useless. We call them useless-1 operations.

Vertex pairs in PreG whose start vertices are the same

can cause duplicate results in (Pre·R+)G. The concatenations

of those vertex pairs and vertex pairs in R+
G whose end

vertices are the same produce the same result. Therefore, when

evaluating R+ starting from vertex pairs in PreG whose start

vertices are the same, operations that find vertex pairs in R+
G

whose end vertices are the same are redundant operations. We

classify the redundant operations as redundant-1 operations as

in Definition 3 and redundant-2 operations as in Definition 4.

Definition 3. Redundant-1 operations are those that find

vertex pairs in R+
G whose end vertices are the same when

evaluating R+ starting from vertex pairs in PreG whose start

vertices are the same and end vertices belong to the same

SCC.

Definition 4. Redundant-2 operations are those that find

vertex pairs in R+
G whose end vertices are the same when

evaluating R+ starting from vertex pairs in PreG whose start

vertices are the same but end vertices belong to different SCCs.

Example 8. Fig. 8 shows an example evaluation of Pre·R+

involving useless-1, redundant-1, and redundant-2 operations.

The paths satisfying R+ from the vertices belonging to sh to

the vertices belonging to sg and sf are not connected from

vertex pairs in PreG. Therefore, operations that find them are

useless-1 operations.

Operations that evaluate Pre·R+ starting from v0 via vertices

in s0 or those in si produce the same results (i.e., (v0,

vk), · · · , (v0, vj)). That is, these operations are redundant

operations. Among them, operations via vertices in the same

SCC are redundant-1 operations (e.g., the operations from v0

…

v0

…
…

v1

vn
vm

vl

Pre R
s0

si

sh

…
…

…

vk

vj
sg

sf

sm

redundant-1,
redundant-2
operations

useless-1
operations

Fig. 8: An example of evaluating Pre·R+ involving redundant

and useless operations.
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via vertices in s0). Otherwise, the operations via vertices in

different SCCs are redundant-2 operations (e.g., the operations

from v0 via a vertex in s0 and one in si).

These useless and redundant operations are the major cause

of performance degradation, and we need to optimize the

evaluation of batch units. To efficiently evaluate the batch

units, we first formally represent the result as a relational

algebra expression including R+
G. We first define the notation:

• RG(START V, END V) = {(vi, vj)|(vi, vj) ∈ RG}: a relation

corresponding to RG for any regular expression R

• SCC(V, S) = {(vi, sj)|vi ∈ sj}: a relation that represents

the relationship between each vertex of GR and the SCC

containing the vertex

• R+
G(START S, END S) = {(si, sj)|(vi, vj) ∈ R+

G}: a relation

corresponding to R+
G, the transitive closure of GR

Using the notation above, we represent an equivalent (1) as

Lemma 4.

Lemma 4 .

(A · B)G(START V,END V)

=πAG.START V,BG.END V

[

AG(START V,END V)

⊲⊳AG.END V=BG.START V BG(START V,END V)
]

(1)

Proof. Because of space limitations in proof, we omit the

attribute names of the relations.

• (A·B)G ⊆ πAG.START V, BG.END V (AG⊲⊳AG.END V=BG.START VBG).

Suppose (A·B)G ∋ (vi, vj). Then, there exists a path p(vi,

vj) satisfying A·B on G. p(vi, vj) can be decomposed into

a path p(vi, vk) satisfying A and a path p(vk, vj) satisfying

B. Because (vi, vk) ∈ AG and (vk, vj) ∈ BG, (vi, vj) ∈
πAG.START V, BG.END V (AG⊲⊳AG.END V=BG.START VBG).

• (A·B)G ⊇ πAG.START V, BG.END V (AG⊲⊳AG.END V=BG.START VBG).

Suppose πAG.START V, BG.END V (AG⊲⊳AG.END V=BG.START VBG)

∋ (vi, vj). Then, there must exist (vi, vk) and (vk, vj) where

(vi, vk) ∈ AG, (vk, vj) ∈ BG. Because there exists a path

p(vi, vk) satisfying A and a path p(vk, vj) satisfying B on

G, there must exist a p(vi, vj) satisfying A·B. Therefore,

(vi, vj) ∈(A·B)G holds.

Theorem 2 shows a relational algebra expression for eval-

uation of RPQ R+ on G using the RTC. The result of RPQ

R+ on G is represented as a relational algebra expression in

Theorem 2. Equation (2) represents the union of Cartesian

products of si and sj for every vertex pair(vi, vj)(i.e., an element

in the RTC). That is, we can efficiently evaluate R+ by using

the RTC.

Theorem 2. The result of RPQ R+ on G is represented as

a relational algebra expression in (2) for any RPQ R. Here,

ρSSCC and ρESCC are renaming operations.

R+
G(START V,END V)

=πSSCC.V,ESCC.V

[

ρSSCC(SCC(V, S))

⊲⊳S=START S R+
G(START S,END S)

⊲⊳END S=S ρESCC(SCC(V, S))
]

(2)

Proof. Theorem 1 can be represented as the following tuple

relational calculus expression.

R+
G = {res | (∃rtc)(∃sscc)(∃escc) R+

G(rtc) AND

SCC(sscc) AND SCC(escc) AND

sscc[S] = rtc[START S] AND rtc[END S] = escc[S] AND
/* (vi, vj) ∈ sk×sl */

res[START V] = sscc[V] AND res[END V] = escc[V]}
/* projection */

Equation (2) is derived from the above relational calculus

expression in a straightforward manner [16].

We now expand the result of the batch unit to eliminate

useless and redundant operations. Using Lemma 4 and (1),

the result of the batch unit can be represented as in (3) to (5).

Using (2) we can expand (4) as in (7) to (9). When evaluating

(4), we can eliminate useless-1 operations by using R+
G instead

of the entire R+
G and evaluating R+ starting only from tuples

(i.e., vertex pairs) in PreG(START V, END V).

(Pre · R+ · Post)G(START V,END V)

=πPreG.START V,PostG.END V

[

PreG(START V,END V) (3)

⊲⊳PreG.END V=R+
G.START V R+

G(START V,END V) (4)

⊲⊳R+
G.END V=PostG.START V PostG(START V,END V)

]

(5)

(Pre · R+ · Post)G(START V,END V)

=πPreG.START V,PostG.END V

[

PreG(START V,END V) (6)

⊲⊳END V=V SCC(V, S) (7)

⊲⊳S=START S R+
G(START S,END S) (8)

⊲⊳END S=S SCC(V, S) (9)

⊲⊳V=START V PostG(START V,END V)
]

(10)

To eliminate redundant-1 and redundant-2 operations, we

union the intermediate results, i.e., the RTCs, at each join

step. For each vertex pair (vi, vj) in PreG, (7) finds the

SCC sk containing vj and returns (vi, sk) as the result. The

intermediate results of (7) are duplicated for vertex pairs whose

start vertices are the same and end vertices belong to the same

SCC. Thus, we can eliminate redundant-1 operations in the

next join step by unioning (i.e., eliminating duplicates in) the

intermediate results of (7). For each pair of vertex and SCC

(vi, sk) in PreG ⊲⊳ SCC, (8) finds the SCC sl that is reachable

from sk and returns (vi, sl) as the result. If, in the results of

(7), there exist paths from vertex pairs whose start vertices are

the same but end vertices belong to different SCCs to vertices

belonging to the same SCC, the intermediate results of (8) for

those paths are duplicated. Therefore, we find unique SCCs

containing end vertices of the paths satisfying R+ by unioning

(i.e., eliminating duplicates in) the intermediate results of (8).

Thus, we can eliminate subsequent redundant-2 operations.

Because sets of vertices belonging to different SCCs are
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mutually disjoint, if the results of (8) are distinct, there are

no duplicates in the result of (9). That is, an operation that

checks duplicates for union when performing (9) is useless.

We call them useless-2 operations. We can eliminate useless-2

operations by not performing duplicate checks.

Example 9. Fig. 9 shows an example of evaluating Pre·R+

where useless-1, redundant-1, and redundant-2 operations are

eliminated. We evaluate R+ starting from vertex pairs in PreG

using R+
G instead of R+

G. Therefore, the paths satisfying R+

from the vertices belonging to sn+1 to the vertices belonging

to sk and sk+1 are not found. Thus, useless-1 operations are

eliminated.

We next eliminate duplicates of the intermediate results of (7).

Therefore, vertex pairs in (6) whose start vertices are the same

and end vertices belong to the same SCC become one pair of

vertex and SCC in (7). That is, (v0, v1), · · · , (v0, vn) in (6)

become (v0, s0) in (7). Therefore, when evaluating R+ starting

from (v0, v1), · · · , (v0, vn) in PreG, we find vk, · · · , vj only

once by going through s0. Thus, redundant-1 operations are

eliminated.

We also eliminate duplicates of the intermediate results of (8).

Therefore, if there exist paths from vertex pairs whose start

vertices are the same but end vertices belong to different SCCs

to vertices belonging to a same SCC, those vertex pairs in (6)

become one pair of vertex and SCC in (8). That is, (v0, v1)

and (v0, vm) in (6) become (v0, sm) in (8). Therefore, when

evaluating Pre·R+ starting from v0 via each vertex belonging

to s0 and sn, respectively, we find vk, · · · , vj only once by

going through the unique sm. Thus, subsequent redundant-2

operations are eliminated.

Algorithm 2 shows EvalBatchUnit that evaluates a batch

unit in an optimized way of eliminating useless and redundant

operations explained so far. First, in line 1 to 3, we initialize

variables storing the results of (7) to (10). Here, we deal with

Pre·R*·Post by initializing ResEq9 with PreG. Then, in line 4,

we eliminate useless-1 operations. By line 4, lines 5 to 12 that

evaluate R+ are executed only for vertex pairs existing in PreG.

Otherwise, these operations are useless-1 operations. In lines

5 to 7, we eliminate redundant-1 operations. In line 5, for each

…

s0

Pre

v0

R

…

si

…

sh

…

sm

…

sg

…

sf

v1

vn
vm

vl

vk

vj

SCC SCC

Fig. 9: An example of evaluating Pre·R+ eliminating redundant

and useless operations.

Algorithm 2: EvalBatchUnit.

Input: PreG, R+
G, SCC, Type, Post

Output: ResEq10
/* Initialize variables storing the results of (7) to (10) */

1 ResEq7, ResEq8, ResEq9, ResEq10 ← ∅
2 if Type is * then

3 ResEq9 ← PreG // Initialization for Pre·R*·Post

/* Compute PreG ⊲⊳ R+
G: (7) to (9) */

4 foreach (vi, vj) ∈ PreG do
/* Eliminate useless-1 ops. */

5 sj ← πS(σV = vj SCC)

6 if (vi, sj) 6∈ ResEq7 then // duplicate check for (7)
7 Insert (vi, sj) into ResEq7 // union the result of (7)

/* Eliminate redundant-1 ops. */

8 foreach (sj, sk) ∈ σSTART S = sj R
+
G do

9 if (vi, sk) 6∈ ResEq8 then // duplicate check for (8)
10 Insert (vi, sk) into ResEq8 // union the result of (8)

/* Eliminate redundant-2 ops. */
11 foreach (sk, vk) ∈ σS = sk

SCC(S, V) do
/* Eliminate useless-2 ops. */

12 Insert (vi, vk) into ResEq9 // add the result of (9)

/* Compute (Pre·R+)G ⊲⊳ PostG: (10) */
13 foreach (vi, vk) ∈ ResEq9 do
14 foreach (vk, vl) ∈ EvalRestrictedRPQ(Post, vk) do
15 if (vi, vl) 6∈ ResEq10 then // duplicate check for (10)
16 Insert (vi, vl) into ResEq10 // union the result of (10)

vertex pair (vi, vj) we find the SCC sk of GR containing vj. In

lines 6 and 7, we union (vi, sj) into ResEq7. Then, lines 8 to

12 are executed only when (vi, sj) does not exist in ResEq7.

Otherwise, these operations are redundant-1 operations. In

lines 8 to 10, we eliminate redundant-2 operations. In line

8, we find sk, which is reachable from sj. In lines 9 and 10,

we union (vi, sk) into ResEq8. Lines 11 and 12 are executed

only when (vi, sk) does not exist in ResEq8. Otherwise, these

operations are redundant-2 operations. In lines 11 and 12,

we eliminate useless-2 operations. Here, we add (vi, vk) into

ResEq9 for each vertex vk contained in sk without duplicate

checks, which are useless-2 operations. Lines 13 to 16 that

evaluate Post are executed only for vertex pairs existing in

ResEq9 (i.e., (Pre·R+)G). EvalRestrictedRPQ(Post, vk) finds

paths satisfying Post from the vertex vk on G and returns (vk,

vl) for each path p(vk, vl).

V. PERFORMANCE EVALUATION

In this section, we focus on evaluating multiple RPQs in

the form of the batch unit. With this, we can easily control

parameters synthetically to generate complete test cases.

A. Experimental Environment

We use synthetic datasets generated by the RMAT

model [17] using TrillionG [18] and four real

datasets: Yago2s [19], Robots [20], Advogato [21], and

Youtube Sampled [22]. Using TrillionG we generate

synthetic graphs of various average vertex degrees per label

(i.e.,
|E|

|V||Σ | ) where the other characteristics except the degree
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are kept the same. Since TrillionG generates edge-unlabeled,

directed multigraphs, we randomly added a label to each edge

to make edge-labeled graphs. We denote the RMAT graph

with 213 vertices and 2N+13 edges by RMAT N. Yago2s,

Robots, and Advogato are edge-labeled, directed multigraphs.

Youtube Sampled is a subset of Youtube, which is an edge-

labeled, undirected multigraph. Since the data subject to RPQs

is a directed graph, we randomly added a direction to each

edge of Youtube Sampled. We construct Youtube Sampled

from Youtube using random vertex sampling. V is the set of

randomly sampled vertices, and E is the set of edges between

sampled vertices. We simply denote Youtube Sampled by

Youtube. TABLE IV summarizes the statistics of the datasets.

We use synthetic multiple RPQ sets where each RPQ is in

the form of the batch unit. To create a controlled environment,

we simulate the effects of Pre and Post using single labels

and model R as a concatenation of labels in Σ (i.e., a clause

without Kleene closure) whose length varies from 1 to 3. First,

we randomly select a total of 90 Rs (one for each multiple

RPQ set), 10 for each length, and then, randomly select from

Σ pairs of Pre and Post for each R. The number of RPQs in

each multiple RPQ set is 1, 2, 4, 6, 8, and 10, and a larger

multiple RPQ set contains smaller multiple RPQ sets.

The multiple RPQ evaluation methods to be tested for com-

parison are as follows. Since the source codes for NoSharing

and FullSharing have not been released, we implement them

ourselves based on the literature [5], [8].

• RTCSharing(RTC): A method sharing R+
G among RPQs.

• NoSharing(No): A method individually evaluating RPQs

using the single RPQ evaluation method proposed by

Yakovets et al. [5].

• FullSharing(Full): A method sharing R+
G among RPQs

proposed by Abul-Basher [8]

All experiments have been conducted on a Linux (kernel

version: 2.6.32) machine equipped with an Intel Core i7-7700

CPU and 64GB main memory. All the multiple RPQ evalu-

ation methods used in the experiment including RTCSharing

have been implemented in C++.

B. Performance Evaluation

In the experiment, we compare the performance of evaluat-

ing multiple RPQs whose common sub-query is a Kleene plus

R+. Section V-B1 compares the performance as we vary the

average vertex degrees per label (i.e.,
|E|

|V||Σ | ). In Section V-B2,

we vary the number of RPQs constituting a multiple RPQ set

to see the amortization effect of sharing the data, R+
G or R+

G,

among RPQs.

TABLE IV: Statistics of datasets used in the experiments.

Dataset |V| |E| |Σ |
|E|

|V||Σ |

Real

graph datasets

Yago2s 108,048,761 244,796,155 104 0.02

Robots 1,725 3,596 4 0.52

Advogato 6,541 51,127 3 2.61

Youtube 1,600 91,343 5 11.42

Synthetic

graph datasets

RMAT N

(N = 0..6)
213 2N+13 4 2N-2

The performance metrics are multiple RPQ sets’ average

query response time (query response time in short) and average

size of data shared among RPQs (shared data size in short).

The query response time includes the time taken 1) to construct

the two-level reduced graph in RTCSharing, 2) to compute

the shared data (R+
G in RTCSharing or R+

G in FullSharing),

and 3) to complete the evaluation of all RPQs. We also

divide the query evaluation into three parts and compare

each part between RTCSharing and FullSharing to show the

effects of different aspects of RTCSharing on performance.

First, to show that RTCSharing is simpler than FullSharing

for computing the data shared among RPQs, we compare

the computation time of R+
G in RTCSharing with that of

R+
G in FullSharing. This computation time is denoted by

Shared Data. Since the two methods compute RG identically,

we exclude the computation time of RG from Shared Data

of both methods. Second, to show the effects of avoiding

redundant and useless operations by representing each RPQ as

a relational algebra expression and optimizing its evaluation,

we compare the computation time of PreG(START V, END V)

⊲⊳ R+
G(START V, END V) (denoted by PreG ⊲⊳ R+

G) of each

method. The only difference between two methods in PreG

⊲⊳ R+
G is the optimization related to useless and redundant

operations. Finally, we compare the computation time of the

remainder evaluation (i.e., computing PreG, RG, and comput-

ing (Pre·R+·Post)G from (Pre·R+)G) for which the comparison

methods operate identically. Since NoSharing does not share

data among RPQs, for NoSharing, we present only the overall

query response time. The shared data size is the number of

pairs in R+
G for RTCSharing or that for R+

G for FullSharing.

Since the size of data shared among RPQs is not dependent

on the number of RPQs, we present it only in Section V-B1.

1) Experiment 1: Average vertex degree per label is varied.:

We experiment the graphs having different average vertex

degree per label (vertex degree in short). We use synthetic

and real datasets described in TABLE IV. We use multiple

RPQ sets consisting of 4(median) RPQs among the multiple

RPQ sets generated as described in Section V-A.

Query response time Fig. 10 shows (a) the query response

time on the synthetic datasets and (b) the normalized query

response time on the real datasets. Not only the vertex degree

but also the size of the dataset (the number of vertices and the

number of edges) affect the performance. When experimenting
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Fig. 10: Computational performances of No, Full, and RTC as

the vertex degree is varied (♯ RPQs = 4).
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Fig. 11: Computation time of three parts of Full and RTC as the vertex degree is varied (♯ RPQs = 4).

on different real datasets, it is not easy to show the effect of

the vertex degree only because the sizes of the datasets are

different. To remedy this problem, we compare the relative

performance by normalizing the query response time of the

comparison methods by that of RTCSharing on the real

datasets. As shown in Fig. 10, RTCSharing improves the query

response time by 1.63 to 20.20 over FullSharing on all graphs

except Yago2s.

Fig. 11 shows the computation time of three detailed

parts. The figure confirms that RTCSharing beats FullSharing

through the improvement of Shared Data and PreG ⊲⊳ R+
G.

RTCSharing improves Shared Data by 7.78 to 9013.64 times

and PreG ⊲⊳ R+
G by 1.30 to 19.11 times over FullSharing on

all graphs except Yago2s. Shared Data is improved because

the computation of R+
G is simpler than that of R+

G. PreG ⊲⊳

R+
G is improved because RTCSharing eliminates redundant-

1, redundant-2 and useless-1 operations by processing and

optimizing each RPQ as a relational algebra expression. When

we compare RTCSharing with NoSharing, RTCSharing sig-

nificantly improves the performance by up to 73.86 times

over NoSharing on all graphs except Yago2s. The reason is

that NoSharing computes R+
G repeatedly for each RPQ while

RTCSharing avoids the overhead by sharing R+
G among RPQs.

For Yago2s, however, Fig. 10(b) shows that RTCSharing is

up to 1.36 times slower than FullSharing and 1.07 times slower

than NoSharing in the query response time. Fig. 11(b) shows

that it is slower 1.82 times in Shared Data; 1.88 times in PreG

⊲⊳ R+
G. Yago2s is an exceptional case, in which vertex degree is

extremely small, 0.02, and the average number of vertices in an

SCC of GR is 1.00, which means that the vertex-level reduction

is not very effective. Thus, GR and GR are similar (almost

the same) in size, so that the computation times of R+
G and

R+
G also are similar. However, RTCSharing has the overhead

of reducing the graph, and thus, RTCSharing is slower than

FullSharing in Shared Data. RTCSharing is slower in PreG

⊲⊳ R+
G because the average number of vertices in an SCC of

GR is 1.00, and there are few redundant-1 and redundant-2

operations that RTCSharing can eliminate; on the other hand,

RTCSharing has additional join overheads.

In Figs. 10 and 11, we note that, as the vertex degree

increases, RTCSharing improves the performance gradually.

In Figs. 10(a) and 11(a) on the synthetic datasets, as the

vertex degree increases from 2-2 to 24, the ratio of the query

response time of FullSharing over RTCSharing increases from

1.88 to 20.20; that of Shared Data from 10.40 to 9013.64;

that of PreG ⊲⊳ R+
G from 2.03 to 19.11. Also in Figs. 10(b)

and 11(b) on the real datasets, as the vertex degree increases

from 0.02 to 0.52, 2.61, and 11.42, the ratio of the query

response time of FullSharing over RTCSharing increases from

0.74 to 1.63, 2.92, and 4.20; that of Shared Data from 0.55

to 7.78, 129.40, and 671.86; that of PreG ⊲⊳ R+
G from 0.53

to 1.30, 2.95, and 11.97. The reasons are as follows. As the

vertex degree increases, the average number of vertices of

GR reduced to one vertex of GR increases, so that the size

of reduced graph GR decreases. Thus, the computation time

for R+
G becomes smaller, and the ratio of FullSharing over

RTCSharing also becomes large in Shared Data. In addition,

since the number of vertices in each SCC of GR increases, the

number of redundant-1 and redundant-2 operations that are

eliminated in RTCSharing increases, and the ratio becomes

larger in PreG ⊲⊳ R+
G. As a result, the ratio becomes larger in

the query response time as well. We note, however, that the

ratio is smaller in the query response time than in Shared Data

or PreG ⊲⊳ R+
G. The reason is as follows. As the vertex degree

increases, the length of the path satisfying the RPQ becomes

longer so that the number of final results increases, making the

time required to find (Pre·R+·Post)G from (Pre·R+)G increase.

Therefore, the portion of Remainder, which is largely the

same in both methods, in the query response time increases,

lowering the ratio of the query response time. When we

compare RTCSharing with NoSharing, as the vertex degree

increases, the ratio of NoSharing over RTCSharing in the

query response time increases from 1.68 to 73.86 on the

synthetic datasets and from 0.93 to 2.03, 7.13, and 10.45 on

the real datasets. The reason is that the overhead of repeated

computation of R+
G increases in NoSharing as the vertex

degree increases.

Shared data size Fig. 12 shows (a) the shared data size on

the synthetic datasets and (b) the normalized shared data size

on the real datasets. As the vertex degree increases, the size of

R+
G in FullSharing increases. On the other hand, even as the

vertex degree increases, the size of R+
G in RTCSharing does

not increase much. The reason is that as the vertex degree

increases, the average number of vertices of GR reduced to

one vertex of GR increases, so that the size of reduced graph

GR decreases (see Fig. 13). As a result, as the vertex degree

increases from 2-2 to 24 on the synthetic datasets, the shared

11



Full RTC

105

106

107

108

2-2 2-1 20 21 22 23 24 S
h
ar

ed
 d

at
a 

si
ze

(v
er

te
x
 p

ai
r)

Vertex degree

(a) Synthetic datasets.

10-1

100

101

102

2-- 2-4 2-2 20 22 24

Y�����

R���� 

A!"#$%&'

()*+,./

N
o
rm

al
iz

ed
sh

ar
ed

 d
at

a 
si

ze

Vertex degree

(b) Real datasets.

Fig. 12: Space performances of Full (R+
G) and RTC (R+

G) for

datasets as the vertex degree is varied (♯ RPQs = 4).
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Fig. 13: The number of vertices of Full (|VR|) and RTC (|VR|)
for datasets as the vertex degree is varied (♯ RPQs = 4).

data size of FullSharing over RTCSharing increases from 2.61

to 54.94. On real datasets, as the vertex degree increases from

0.02 to 0.52, 2.61, and 11.42 on the real datasets, that increases

from 1.05 to 2.09, 5.87, and 20.23. The reason that the Yago2s’

ratio is greater than 1.00 (the number of vertices in an SCC of

GR) is that Yago2s has two exceptional Rs, which have high

vertex degrees. for them, the size of R+
G over R+

G is only 1.05.

2) Experiment 2: The number of RPQs is varied.: In this

experiment, we vary the number of RPQs constituting each

multiple RPQ set. We use RMAT 3 and Advogato, which have

a median vertex degree among synthetic and real datasets,

respectively. We use multiple RPQ sets consisting of 1, 2,

4, 6, 8 and 10 RPQs generated as described in Section V-A.

Fig. 14 shows the query response time on (a) a synthetic

dataset (RMAT 3) and (b) a real dataset (Advogato) as the

number of RPQs is varied. Fig. 15 shows the computation

time of each part of RTCSharing and FullSharing. As the
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Fig. 14: Computational performances of No, Full, and RTC as

the number of RPQs is varied.
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Fig. 15: Computation time of three parts of Full and RTC as

the number of RPQs is varied.

number of RPQs increases, Shared Data in both RTCSharing

and FullSharing decreases. This is because the computation

time of R+
G or R+

G is amortized by the number of RPQs.

In the case of RTCSharing, the amortization effect is not

large since the portion of Shared Data in the total time is

much smaller than that of FullSharing due to efficiency of

RTCSharing (see Fig. 15). As a result, as the number of RPQs

increases from 1 to 10, the ratio of the query response time of

FullSharing over RTCSharing decreases from 24.35 to 4.25

on the synthetic dataset and from 7.17 to 2.08 on the real

dataset. The ratio of the query response time of NoSharing

over RTCSharing slightly increases from 23.11 to 25.38 on

the synthetic dataset and from 6.76 to 7.17 on the real dataset.

This gradual improvement also comes from the amortization

effect of Shared Data in RTCSharing despite that the portion

of Shared Data in the query response time is small.

VI. RELATED WORK

Transitive closure Purdom [12] and Nuutila [13] proposed

algorithms for computing transitive closure by using SCCs,

which essentially implemented Lemma 3, but without formal-

ization. Since they are only for an unlabeled graph, they alone

cannot be used to evaluate an RPQ. If combined with edge-

level reduction, they can be used for evaluating the entire R+.

However, they cannot efficiently process the RPQ Pre·R+ due

to incurring useless and redundant operations. Moreover, for

multiple RPQs evaluation, they can only facilitate FullSharing

and cannot directly support RTCSharing.

Reachability query The result of the RPQ R+ on G is

the same with the result of the reachability query on GR.

The main costs of this query are the index construction time,

the index size, and the query response time. Some of recent

approaches [23], [24] answer the query using the index only.

Some other recent approaches [25], [26] traverse a graph at
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run-time if needed. If combined with edge-level reduction,

those methods can also be used for evaluating the entire R+.

However, since all pairs of vertices O(|V|2) should be checked,

they cannot be efficient methods. In addition, they cannot avoid

redundant and useless operations.

Evaluation methods of single RPQ queries A few meth-

ods [4], [10] tried to reduce the number of edges unnecessarily

accessed when traversing the graph. The method proposed by

Koschmieder and Leser [10] compares the number of edges

of each label that is present in the given RPQ and traverses

the edge having the label that has the smallest number of

edges first. Then, it continues to traverse other edges only

when they are connected to those already traversed. Nguyen

and Kim [4] considered not only the number of edges of each

label but also the number of unique start and end vertices of

the edges. Yannakakis [27] proposed a method that reduced

the problem of evaluating an RPQ to a problem of finding the

paths between given vertices by constructing a graph. This

method is entirely different from the edge-level reduced graph

used in this paper. Yakovets et al. [5] proposed a cost model

for finding the optimal RPQ evaluation order and a method to

efficiently evaluate the Kleene star R*. The method is similar to

our edge-level graph reduction in that it traverses pre-evaluated

paths rather than edges, but does not consider vertex-level

graph reduction nor evaluation of multiple RPQs. Fletcher et

al. [9] and Tetzel et al. [28] proposed methods to evaluate

RPQs using indexes. The former finds all the paths in the graph

of the lengths less than a certain threshold in advance, creates

an index using the path labels of these paths as the keys, and

uses the index to evaluate an RPQ. The latter compares the

performance of the method using the compressed index and the

one using the uncompressed index. Pacaci et al. [29] focused

on the evaluation over streaming graphs. All of these existing

methods did not consider redundant and useless operations

and focused mainly on single RPQ evaluation.

Evaluation methods of multiple RPQs Abul-Basher [8]

proposed an optimization technique for evaluating multiple

RPQs. This method finds a common sub-query of given mul-

tiple RPQs, evaluates it first, and shares the results among the

RPQs to avoid repeated computations. This is the FullSharing

method we used for comparison in Section V. However, as

explained in Section V, when the common sub-query is R+,

its evaluation is costly. There are also redundant and useless

operations when evaluating each RPQ using R+
G.

VII. CONCLUSIONS

In this paper, we propose a notion of RPQ-based graph

reduction that replaces the evaluation of the Kleene closure

on the large original graph G to that of the transitive closure

to the small graph GR. We showed that R+
G can be easily

calculated from the transitive closure of GR (i.e., RTC), which

is computationally simpler and smaller than R+
G and R*

G, in

Theorem 1. We also proposed an RPQ evaluation algorithm,

RTCSharing, that takes advantage of this RTC. RTCSharing

treats each clause in the DNF of the given RPQ as a batch unit

that is in the form of Prefix·R+·Postfix or Prefix·R*·Postfix. In

RTCSharing, we represent the batch unit as a relational algebra

expression (join sequence) including the RTC and efficiently

evaluate it sharing the RTC among batch units. We also

eliminate useless-1 operations by evaluating R+ only starting

from vertex pairs in PrefixG, redundant-1 and redundant-2

operations by unioning on the intermediate result of each

join step, and useless-2 operations by using the mutually

disjoint property of SCCs. We formally explain that useless-1,

redundant-1, and redundant-2 operations are caused by having

Prefix, and useless-2 operation is caused by structural property

of R+
G. Experiments using synthetic and real datasets show that

RTCSharing significantly improves the performance by up to

73.86 times over NoSharing and 20.20 times over FullSharing

in terms of average query response time.
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