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Abstract—As real-time analysis on the fresh data become in-
creasingly compelling, more organizations deploy Hybrid Trans-
actional/Analytical Processing (HTAP) systems to support real-
time queries on data recently generated by online transaction
processing. This paper argues that real-time queries, semantically
consistent schema, and domain-specific workloads are essential
in benchmarking, designing, and implementing HTAP systems.
However, most state-of-the-art and state-of-the-practice bench-
marks ignore those critical factors. Hence, at best, they are
incommensurable and, at worst, misleading in benchmarking,
designing, and implementing HTAP systems. This paper presents
OLxPBench, a composite HTAP benchmark suite. OLxPBench
proposes: (1) the abstraction of a hybrid transaction, performing
a real-time query in-between an online transaction, to model
widely-observed behavior pattern — making a quick decision
while consulting real-time analysis; (2) a semantically consistent
schema to express the relationships between OLTP and OLAP
schema; (3) the combination of domain-specific and general
benchmarks to characterize diverse application scenarios with
varying resource demands. Our evaluations justify the three
design decisions of OLxPBench and pinpoint the bottlenecks
of two mainstream distributed HTAP DBMSs. International
Open Benchmark Council (BenchCouncil) sets up the OLxP-
Bench homepage at https://www.benchcouncil.org/olxpbench/. Its
source code is available from https://github.com/BenchCouncil/
olxpbench.git.

Index Terms—HTAP, benchmark, real-time analysis, semanti-
cally consistent schema, domain-specific workload.

I. INTRODUCTION

In recent years, hybrid transaction/analytical processing
(in short, HTAP) systems are proliferating fast. Many giant
companies provide HTAP systems, including Oracle database
in-memory [23], SQL Server [20], SAP HANA [33], Mem-
SQL [14] and TiDB [4]. HTAP systems are popular for two
reasons. First, giant companies are demanding fresher data in
shorter shipping duration for real-time customer analysis [12].
Throughout this paper, real-time emphasizes performing a task
like data analysis or user behavior simulation interactively
in contexts like financial fraud monitoring or recommenda-
tion [47] [48]. Our usage of real-time is different from its
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Fig. 1. This figure reveals the impact of a hybrid workload — performing a
real-time query in-between an online transaction on the performance of TiDB
— a state-of-the-art HTAP system against that of only an online transaction.
The significant performance gap justifies why we should consider real-time
queries in benchmarking HTAP systems. The other two critical factors that
the HTAP benchmarks must consider are semantically consistent schema and
domain-specific workloads.

traditional definition that limits the operations to completion
within a hard or soft deadline [8]. The value of mass business
data will diminish with time [39]. Moving data from the OLTP
system to the OLAP system is complex and time-consuming.
Meanwhile, it is impossible to perform real-time analysis on
data that has passed a long turnaround time. Besides, soft-
ware development and maintenance for two separate systems
are also expensive. Second, the advanced modern software
and hardware technologies, including in-memory computing
(IMC) techniques [13], multi-core processors, various levels
of memory caches, and large memories [25] [26], contribute
to the HTAP systems’ rapid development.

There are three primary architectures for HTAP systems
design and implementation. The first one introduces extract-
transform-load (ETL) processing [27] between the OLTP
DBMS and the data warehouse to complete data migra-
tion, data format transformation, and complex data analysis.
However, the ETL systems are not competent for real-time
analysis as they introduce time and space costs that can not
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be neglected. The second one is to utilize a stream processing
system [21] [29] that feeds the incoming data to a batch pro-
cessing system [30] [31]. Due to several unfavorable factors
such as strong consistency semantics and double operating
cost, it is not easy to use separate stream processing systems
as HTAP solutions. The other architecture uses a single HTAP
DBMS [4], [24], [32], [33], achieving high performance
for OLTP and OLAP. It eliminates data movement overhead
but adds pressure to performance isolation or consistency
guarantees. In the face of numerous HTAP solutions, it is hard
to compare different system performances. We describe these
three architectures in detail in Section III-A.

The HTAP benchmarks provide quantitative metrics,
methodology, and tools to evaluate different systems and
their specific design decisions, offering valuable design and
implementation inputs. However, as summarized in Table I,
most state-of-the-art [41] and state-of-the-practice [40] HTAP
benchmarks fail to consider real-time, semantically consistent,
and domain-specific [37] in benchmarking, designing, and im-
plementing HTAP systems. Hence, at best, they are incommen-
surable and, at worst, misleading in benchmarking, designing,
and implementing HTAP systems. We quantitatively justify
why we consider those three critical factors.

First, being real-time is essential. On the one hand, real-
time is crucial to customer analysis — the fresher the data, the
higher the value. On the other hand, there are widely-observed
user behavior patterns — performing real-time analysis before
making a quick decision. For example, if the customer wants
to order an item in e-commerce, a query to get the lowest
price rather than the random price of the item is most likely
to happen before ordering the item. We propose the abstraction
of a hybrid transaction, which performs a real-time query in-
between an online transaction, to model this user behavior pat-
tern, which the previous HTAP benchmarks overlook. Figure 1
shows the impact of a hybrid transaction on the performance of
the online transactions in TiDB [4] — a state-of-the-art HTAP
system against that of a sole online transaction as a baseline.
The real-time query increases the baseline latency by a factor
of 5.9, and decreases the baseline throughput by a factor of
5.9.

Second, the previous works use stitch schema. For example,
the stitch schema in state-of-the-art HTAP benchmarks [40]
[41] just reuses the schema from TPC-C [7] and TPC-H [9].
Instead, in real-world application scenarios, the data operated
by the analytical query is generated by the online transaction,
so the OLAP schema is a subset of the OLTP schema. We call
this characteristic semantically consistent. The stitch schema
can not disclose the severe interferences between analytical
workload and transactional workloads in real-world scenarios.
Our experiment result shows that the analytical workloads de-
crease transactional throughput by 89% using the semantically
consistent schema, rather than 10% using stitch schema in the
previous work [4].

Last but not least, most of the previous works only provide
a general HTAP benchmark. The generic benchmark reflects
a wide range of use cases. Instead, real-world applications

have different workloads and schema with varying resource
demands. So we propose the domain-specific benchmarks,
which are specialized to evaluate the performance of HTAP
systems in one or several specific scenarios. In Section VI,
our evaluation shows that the peak transactional throughput
of a general benchmark is nearly 20 times that of a domain-
specific benchmark on the same testbed. Their performance
varies greatly depending on the complexity of the relationships
in the table, the read/write ratio of the transaction, and different
system resource requirements.

We propose an HTAP benchmark suite in addition to a
benchmarking framework named OLxPBench to help users
perform performance comparisons. The main contributions of
this paper are as follows. (1) We quantitatively justify why
we should consider real-time queries, semantically consistent
schema, and domain-specific workloads in HTAP benchmark-
ing [2]. OLxPBench proposes new built-in hybrid workloads
that perform a real-time query in-between an online trans-
action; a semantically consistent HTAP schema; one general
benchmark; and two domain-specific benchmarks to evaluate
the HTAP systems, including retail, banking, and telecommu-
nications [12].

(2) We design and implement an extensible HTAP bench-
marking framework and three comprehensive HTAP bench-
marks: subenchmark, fibenchmark, and tabenchmark; Com-
pared against the most related work — CH-benCHmark [40],
our work is not trivial because there are eighteen analytical
queries and seventeen hybrid queries tailored for different
benchmarks. OLxPBench provides valuable experience in de-
signing and implementing schematically consistent schema,
hybrid workloads, and domain-specific benchmarks in HTAP
benchmarking.

(3) Extensive experiments are conducted on the two main-
stream HTAP systems: MemSQL and TiDB using OLxPBench
against CH-benCHmark [40]. We have observed the following
insights. The vertical table technique adopted by MemSQL is
not very helpful to deal with the hybrid workloads because
a large number of join operations generated by relationship
query statements increases the waiting time of the hybrid
transactions; The mainstream HTAP systems have poor perfor-
mance in scanning operations for composite primary keys; The
mutual interference between online transactions and analytical
queries causes poor performance isolation.

II. RELATED WORKS

We compare OLxPBench with five other state-of-the-art
and state-of-the-practice HTAP benchmarks in Table 1. We
classify the HTAP benchmarks into two groups according to
the complexity of their workloads. The one contains intri-
cate transactions and queries, such as CH-benCHmark [40],
CBTR [25], and HTAPBench [41]. The other includes a
mix of simple insert/select operations, i.e., ADAPT [42] and
HAP [43]. The real-time queries generally involve simple
aggregate operations and the analytical queries include more
complex operations.



TABLE I
COMPARISON OF OLXPBENCH WITH STATE-OF-THE-ART AND STATE-OF-THE-PRACTICE BENCHMARKS.

Name Online transaction | Analytical query | Hybrid transaction | Real-time query | Semantically consistent schema | General benchmark | Domain-specific benchmark
CH-benCHmark V Vv X X X Vi X
CBTR v v X X v X N
HTAPBench NV V4 X X X vV X
ADAPT X X X X Vi v X
HAP X X X X Vi ¥ X
OLxPBench V N Vv N N vV N

CH-benCHmark launches the online transactions adopted
from TPC-C and analytical queries from TPC-H concurrently
on the stitch schema; however, they have different business
semantics. Moreover, CH-benCHmark never updates the Sup-
plier, Nation, and Region tables used by OLAP since the online
transactions only update partial OLAP tables using stitch
schema. Thus, its OLTP and OLAP operate different data and
further cover up the contention in massive concurrency. HTAP-
Bench uses the same schema model with CH-benCHmark.
Besides, HTAPBench [41] implements the Client Balancer
to control the number of analytical queries to avoid too
many analytical queries affecting the performance of online
transactions. CBTR mimics the order-to-cash process of real
enterprise systems [25] and provides more complex as well as
dynamic workloads. It is indisputable that CBTR has effective
instruction for ad-hoc database design. Unfortunately, CBTR
does not include the real-time query and is not open-source.
Besides, its single domain-specific benchmark is insufficient
to evaluate HTAP solutions in various scenarios.

ADAPT benchmark has two tables — a narrow table and a
wide table [42]. The operations are abstracted from a natural
productive environment, and the read-only operations are 80%.
The HAP benchmark is based on the ADAPT benchmark
and expands the update and deleted operation to test the
storage engine. The read-only operations are 50%. Overall, the
operations are too simple to represent complex transactions in
natural business environments.

When designing OLxPBench, we choose the semantically
consistent schema rather than the stitched schema [41] [40] to
expose the original interference between OLTP workloads and
OLAP workloads. Besides, we increase the real-time query
for real-time user behavior analyzing and simulating. We also
obey both general [7] and domain-specific [22] principles.
The general benchmark helps designers perform performance
comparisons, and the domain-specific benchmarks help the
user select the HTAP DBMS that best support their specific
workloads. Moreover, we compare the semantically consistent
schema to stitched schema [40] in Section V-B1 because
CH-benCHmark [40] originates from the HTAP transactional
benchmark.

III. BACKGROUND AND MOTIVATION

A. The Background of HTAP Systems

HTAP DBMSs need to perform trade-offs considering
different performance requirements of different workloads.
Currently, there are three types of HTAP solutions, and we
compare their pros and cons in the following subsections.

The first solution is to use separate DBMSs [16], [19], [44],
[45] to achieve high performance of online transactions and
analytical queries. Generally, online transactions adopt a row-
based store due to its high efficiency for records insert and
update. Analytical queries often adopt a column-based data
warehouse since it supports efficient data scans. However,
separate DBMS needs to convert row-based data to column-
based ones, i.e., ETL processing, which is too time-consuming
to analyze the latest data and make instant decisions. For
example, Pavlo et al. [39] [26] refer to the standard ETL
process to migrate data from the OLTP system to the OLAP
system as one of the solutions to HTAP.

Second, the lambda architecture [28], [34], [36], which con-
sists of a real-time stream processing system and a batch pro-
cessing system, can perform real-time analytics on incoming
data, but it is expensive. The real-time stream processing [21]
systems provide views of online data while simultaneously
using batch processing [6] to provide comprehensive and
accurate views of batch data. Besides, the serving layer merges
the real-time view with the batch views and then responses
to the end-user. The lambda architecture provides a real-time
analysis at a considerable cost, including double write costs,
double or more development costs, and so on. In brief, the
cost of maintaining two systems is also very high.

Third, using a single HTAP DBMS to handle online trans-
actions and real-time queries. Because real-time analytics on
fresh data is valuable, the lightweight propagation technique is
developed to transfer recent transactional logs to the analytical
storage node in a more short and flexible schedule [24]. Mi-
crosoft SQL Server [20] stores hot inserted and updated rows
in middle delta storage to transfer them to OLAP storage and
speed up query processing. Oracle in-memory database [23]
keeps a dual-format store for OLTP and OLAP workloads
without double memory requirements. It uses a read-only
snapshot maintained in memory for analysis. Their latest
work [35] provides a more available distributed architecture
and fault tolerance than the original. MemSQL uses an in-
memory row-store and an on-disk column-store to handle
highly concurrent operational and analytical workloads [14].
The storage layer of TiDB consists of a row-based store and
a column-based store. To analyze real-time queries of the
fresh data, TiDB uses asynchronous log replication to keep the
data consistent [4]. The IBM Db2 Analytics Accelerator uses
replication technology to enhance its real-time capacity [17].
VEGITO [46] retrofits the high availability mechanism to
support HTAP workloads.

B. Motivation



1) It is mandatory to include real-time queries in HTAP
benchmarking: HTAP benchmarking should contain real-time
queries for the following reasons. First, real-time queries mat-
ter in customer analysis. HTAP DBMSs enable more informed
and in-business real-time decision-making [11]. Real-time
customer analysis is crucial because it is the basis of instant
decision-making and fraud detection. The fresher the data, the
higher the value. Real-time queries are usually executed on
the recent data committed by transactions. For example, if an
item requested by a customer has been sold out according
to the real-time inventory, similar ones will be recommended
instantly.

Second, real-time queries can be used to mimic real-time
user behavior. For example, if a customer wants to create a
New_Order transaction in TPC-C [7], what is most likely to
happen before selecting an item during the New_Order trans-
action [40] is a real-time query that finds the lowest price of the
goods, rather than the random price. However, none state-of-
the-art [41] and state-of-the-practice [40] HTAP benchmarks
provide the workloads that include real-time queries imitating
user behavior.

Figure 1 shows the impact of a real-time query on the
performance of TiDB [4] — a state-of-the-art HTAP system.
The New_Order transaction is the same as the New_Order
transaction in TPC-C [7]. The real-time query is an aggregate
operation that gets the item’s lowest price in real time. Real-
time queries in the subenchmark are from a top-tier E-
commerce internet service provider. The experimental setup is
the same as Section V-A. When a real-time query is injected
in the New_Order transaction [41] [40], the average latency
increases by 5.9x, and the throughput reduces by 5.9x. So it
is mandatory to include real-time queries in the HTAP bench-
marks, or else the evaluation result will be misleading [2].

2) Semantically consistent schema is essential: The state-
of-the-art [41] and state-of-the-practice [40] HTAP bench-
marks all use stitch schema. The stitch schema integrates the
TPC-C schema [7] with TPC-H [9] schema and includes 12
tables. The NEW — ORDER, STOCK, CUSTOMER,
ORDERLINE, ORDERS, and IT EM tables are accessed
by TPC-C and TPC-H. The WAREHOUSE, DISTRICT,
and HISTORY tables are only accessed by TPC-C. The
SUPPLIER, NATION, and REGION tables are ac-
cessed by TPC-H only. Both TPC-C and TPC-H keep the third
normal form to reduce data duplication.

There are two flaws in such a stitch schema: First, OLTP
and OLAP operate on the same business data in real scenarios;
however, the query only analyzes one-sided business data with
the stitch schema, leading to biased decisions. For example,
in CH-benCHmark, the stitch schema only allows queries to
analyze data from the shared six tables between TPC-C and
TPC-H. When the Payment transaction in CH-benCHmark
is completed, a record will be written in the history table.
The records in the history table are essential for analyzing
the custom’s behavior. However, none of the analysis queries
in previous benchmarks [41] [40] can analyze the tens of
thousands of records in the history table. In addition, there

is no query to analyze the warehouse table and district table
of TPC-C [41] [40]. It is very costly to discard valuable
parts of OLTP data. The stitch schema leads the results of the
analytical queries to be partial, perplexing, and incorrect.
Second, with stitch schema, the competitions between an-
alytical workload and transactional workloads are hidden,
making it impossible to fairly evaluate the interference be-
tween analytical workload and transactional workloads in real-
world scenarios. The online transactions and analytical queries
operate on the same business data in the real world, so intense
competitions for resources are not avoidable. However, in the
previous benchmark [40], [41], 45.4%, 40.9%, and 13.6% of
the 22 queries on the stitch schema access the SUPPLIER,
NATION, and REGION tables that never update or insert
records, respectively. The low competition between analytical
and transactional workload will propagate a false image that
the HTAP system can guarantee the isolated performance for
separate OLTP and OLAP workloads [4]. In Section VI-A2,
we use the general benchmark in OLxPBench, which uncovers
the high competition between the OLTP and OLAP workloads,
to evaluate the TiDB and find the throughput interference of
OLTP and OLAP is as high as 89% and 59%, respectively.

3) Domain-specific benchmarks should be included: CH-
benCHmark [40] is a general benchmark that fails to evaluate
the HTAP system performance in a particular application sce-
nario. In Section VI, our evaluation shows that the peak trans-
actional throughput of a general benchmark is nearly 20 times
that of a domain-specific benchmark on the same testbed.
In the face of numerous HTAP solutions, there is an urgent
need to consider generic and domain-specific HTAP DBMS
benchmarks. OLxPBench provides one generic benchmark
and two domain-specific benchmarks for evaluating HTAP
systems. In Sections VI-B1 and VI-C1, our evaluation shows
that the peak transactional throughput of a domain-specific
benchmark is nearly 200 times that of another domain-specific
benchmark on the same testbed. OLxPBench implements an
extensible framework that makes it easy for developers to add
a new benchmark.

IV. THE DESIGN AND IMPLEMENTATION

To fully evaluate HTAP DBMSs, we present OLxP-
Bench, consisting of a general benchmark and two domain-
specific benchmarks. The general benchmark, which we name
subenchmark, extracts complex operations from the retail
activity and does not attempt to model an actual application
scenario [7], which intends to perform performance compar-
ison for HTAP DBMSs. Meanwhile, OLxPBench has two
domain-specific benchmarks, which we name fibenchmark
and tabenchmark, model the financial [1] and telecommuni-
cation [10] scenarios, and help the users select the HTAP
DBMS that best support their specific workloads. This section
introduces the OLxPBench suite from the schema model
design, the details of workloads, the benchmark categories,
and implementation.



TABLE II
FEATURES OF THE OLXPBENCH WORKLOADS.

Benchmark Tables Columns Indexes  OLTP Transactions Read-only OLTP Transactions  Queries  Hybrid Transactions  Read-only Hybrid Transactions
Subenchmark 9 92 3 5 8.0% 9 5 60.0%
Fibenchmark 3 6 4 6 15.0% 4 6 20.0%
Tabenchmark 4 51 5 7 80.0% 5 6 40.0%

A. HTAP Schema model design

We follow three principles in designing the HTAP schema.

(1) Any record accessible to OLTP should be accessible
to OLAP. Because online transactions generate the data that
the analytical queries will analyze. The OLTP schema set
should include the OLAP schema. We first propose that in
the HTAP benchmarks, the mixed workloads, including OLTP
and OLAP workloads, should use the semantically consistent
schema. They will reveal the inherent interference between
OLTP workload and OLAP workloads.

(2) The schema models should be diverse and practical
for thoroughly evaluating the various HTAP solutions. The
diversity of schema models is reflected in the diversity of
practical uses. Therefore, we provide the generic schema
model for performance comparisons and two domain-specific
schema models for users to select the HTAP DBMS that best
support their specific workloads. We choose schema models
for retail, banking, and telecommunications activities because
the above practitioners were among the first to adopt the HTAP
solutions [12].

(3) The design of integrity constraints should be relevant to
implementing a specific HTAP database. For example, some
HTAP DBMSs (such as MemSQL [14]) do not currently
support foreign keys. As a result, OLxPBench’s schema mod-
els come in two versions, one with no fundamental foreign
constraint and one with foreign constraint, which users can
choose on-demand.

B. The details of HTAP Workloads

OLxPBench contains nine built-in workloads with different
types and complexity. Three online transaction workloads
are extracted from popular benchmarks [10] [7] [38]. In
addition, we add three analytical query workloads and three
hybrid transaction workloads for real-time customer analysis
and simulating the real-time user behaviors. We distill the
E-commerce services from an industry partner, which we
keep anonymously at its request, into representative real-time
queries. The analytical workloads contain complex analytical
operations such as multi—join, sub—selection, Group— By,
and Order — By operations based on the different schema
models. Table II describes the features of these benchmarks.

In more specific implementations, we modify the integrity
constraints of the schema of SmallBank [1] and TATP [10] to
adapt the implementation of the MemSQL [14]. Furthermore,
we increase the composite primary key to TATP [10], which
is common in real business scenarios. OLxPBench provides
valuable experience for schema model design and hybrid
transaction abstraction. The request rates, transaction/query
weights, and schema relations are configurable for different

testing purposes. This subsection will introduce the details of
these benchmarks in turn.

1) Subenchmark: The subenchmark is inspired by TPC-
C [7], which is not bound to a specific scenario, and the
community considers a general benchmark for OLTP system
evaluation. The online workloads of the subenchmark are the
same as TPC-C’s transactions, which are write-heavy and
merely 8% read-only transactions. The online transactions in-
clude NewOrder, Payment, OrderStatus, Delivery, and
Stock Level.

The nine analytical queries in the subenchmark keep the
essential characteristics such as the complexity of opera-
tions. The analytical queries perform multi-join, aggregation,
grouping, and sorting operations on a semantically consistent
schema. For example, the Orders Analytical Report Query
(Q1) is designed for getting the magnitude summary for all
ORDER_LINE items as of a given date. The query lists the
total quantity, total amount, average quantity, and average
amount for further analysis. The above aggregates are grouped
by their number and listed in ascending order. We newly
increase five hybrid transactions, and the default configuration
of the subenchmark has 60% read-only hybrid transactions.
The real-time queries that simulate the user behavior are
the representative aggregation operations in the actual E-
commerce production application: if the customer wants to
create a New_Order transaction, a query to get the lowest
price rather than the random price of the item (X1).

2) Fibenchmark: The fibenchmark is inspired by Small-
Bank [1], which aims at bank scenarios. Hence, it is a
domain-specific benchmark. The fibenchmark contains three
tables: ACCOUNT, SAVING, and CHECKING, and the trans-
actions mainly modify the customers’ accounts. The on-
line transactions are Amalgamate, Balance, DepositChecking,
SendPayment, TransactSavings, and WriteCheck. Fifteen per-
cent of the above transactions are real-only in the default
configuration. We keep all the online transactions of Small-
Bank [1], and we newly increase the analytical workloads and
the hybrid transactions in fibenchmark.

The analytical workloads perform real-time customer
account analytics. The complex queries include join,
aggregate, sub — selection, Order — By and Group — By
operations. For example, the Account Name Query (Ql)
lists the name in the combining row from ACCOUNT and
CHECKING tables. Besides, the real-time queries in hybrid
transactions are generally the aggregate operations and per-
form the real-time financial analysis on the user’s account.
There are six hybrid transactions, and the default configuration
of the fibenchmark has 20% read-only hybrid transactions.
For example, the Checking Balance Transactions (X6) checks
whether the cheque balance is sufficient and aggregates the
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Fig. 2. OLxPBench architecture.

value of the minimum savings. The volatility of extreme values
is also an important research topic in the financial field.

3) Tabenchmark: The tabenchmark is inspired by
TATP [10], which aims at telecom scenarios. Hence, it is
a domain-specific benchmark. The online transactions in
the tabenchmark simulate a typical Home Location Register
(HLR) database used by a mobile carrier [10]. Eighty percent
of online transactions are real-only and the transactions are
DeleteCallForwarding, GetAccessData, GetNewDestination,
GetSubscriberData, InsertCallForwarding, UpdateLocation
and UpdateLocation. We modify the primary key of the
SUBSCRIBER table from s_id to (s_id, sf_type), because
the composite primary key is standard in the real business sce-
nario. The original data definition language file is a choice. We
keep all the online transactions of TATP [10], and we newly
increase the analytical workloads and the hybrid transactions
in fibenchmark.

The analytical queries help the mobile network operators
to analyze user behavior in real-time. The analytical queries
also comprise the arithmetic operation besides the opera-
tions in the fibenchmark. For example, the Start Time Query
(Q3) calculates the average of the starting time of the call
forwarding. The average value of start time is essential for
load forecasting. The real-time queries perform the real-time
activities on practical mobile users. The real-time query not
only performs aggregation operation but also does a fuzzy
search based on the sub-string. For example, the Fuzzy Search
Transaction (X6) queries all information about the subscriber.
It selects the subscriber IDS whose user data matches the fuzzy
search criteria.

C. The implementation of OLxPBench

OLxPBench is used for evaluating distributed HTAP
DBMSs and other HTAP DBaaS systems that support SQL
through JDBC. The architecture of the OLxPBench is shown
in Figure 2. OLxPBench parses configuration files at runtime
and generates the corresponding hybrid workloads. Then the
hybrid workloads are populated in request queues. The request

rates, transaction types, real-time query types, weights, and
target DB configuration are specified in the XML file. The
thread connects to the target database by JDBC pool and pulls
requests from the request queue. The threads also measure the
latency and throughput metrics. Finally, the statistics module
aggregates the above metrics and stores the min, max, medium,
90th, 95th, 99.9th, and 99.99th percentile latency in a file
specified by the user in the terminal.

The open-loop mode sends the requests with the precise
request rate control mechanism because the open-loop load
generator sends the request without waiting for the previous
request to come back. However, in a closed-loop mode,
the response of a request triggers the sending of a new
request. Besides, the users can customize the weights of
various online transactions and analytical queries. OLxPBench
is inspired by the OLTP-Bench’s OLTP module [18] and
newly increased analytic and hybrid modules. OLxPBench
achieves three online and analytical agent combination modes
for different HTAP solutions. The first mode sequentially sends
the online transactions or analytical queries. The second mode
concurrently invokes the transactional workload and analytical
workload. The last mode sends hybrid transactions performing
a real-time query in-between an online transaction to simulate
the user behavior. The OLxPBench client is a java program
and is easy to extend with new hybrid database back-ends.

V. EVALUATION

Our evaluation illustrates the effectiveness of OLxPBench.
In Section V-B, we compare OLxPBench with the state-of-
the-practice [40] work, testing the key features of OLxPBench
and reporting the standard deviation of absolute value. From
Section VI-A to Section VI-D, we evaluate the mainstream
distributed HTAP DBMSs using OLxPBench and pinpoint the
bottlenecks of two mainstream distributed HTAP DBMSs. In
Section VI-E, we evaluate the scaling capability of TiDB,
MemSQL, and OceanBase.

A. Experimental Setup

1) Cluster Deployment: ~ We deploy a 4-node cluster
for our evaluation. Each server includes 2 Intel Xeon ES5-
2620@2.40GHz CPUs, 64 GB memory, and 1TB SSD. Each
CPU has 6 physical cores, and hyper-thread is enabled.
We used all of the 24 hardware threads. For the scaling
capability experiments in Section VI-E, we deploy a 16-
node cluster, with each cloud server including 8 Intel Xeon
Platinum 8269CY @2.50GHz virtual CPUs, 32 GiB memory,
and 140GiB enhanced solid-state disk (ESSD). We used all of
the 8 threads. All machines are configured with Intel Ethernet
1GbE NICs. The operating system is ubuntu 16.04 with the
Linux kernel 4.4.

2) Database Deployment: In our experiments, 4-node
configuration ensures that the components of systems are
under test are distributed deployed. TiDB [4] is a Raft-based
HTAP database. TiSpark is a powerful analysis engine to help
TiDB connect to the Hadoop ecosystem. The SQL engine
processes process online transactions and analytical queries.
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The distributed storage layer consists of a row store (TiKV)
and a columnar store (TiFlash). Two TiKV instances are
deployed on two servers with a TiDB SQL engine instance.
Two TiFlash instances are deployed on the other servers with
a TiSpark instance. The TiDB [4] version is 5.0.0-RC, and the
number of replication is two. TiDB provides snapshot isolation
or repeatable read isolation levels, and we choose repeatable
read isolation in the experiments. The MemSQL [14] cluster
consists of aggregator nodes and leaf nodes. The aggregator
nodes receive queries and distribute them to leaf nodes. The
leaf nodes store data and execute queries issued by the aggre-
gator nodes. The version of MemSQL is 7.3, and the number
of replication is two. A MemSQL cluster consists of at least
one master aggregator node and one leaf node. We keep two
leaf nodes, one aggregator node, one master aggregator node in
4 separate servers. MemSQL only supports a read committed
isolation level. We remain the default configurations of the
above two distributed hybrid databases.

3) Workloads Deployment: The workloads in the following
experiments have three sources: subenchmark, fibenchmark,
and tabenchmark. Each benchmark contributes two composites
of workloads: (1) the OLTP agents and OLAP agents launch
the mixtures of online transactions with analytical queries; (2)
The hybrid agents send the hybrid workloads performing a
real-time query in-between an online transaction to simulate
the user behavior. We do not test the performance of the
cold start procedures, so there is a 60-second warm-up period
before the 240-second run time. All the workloads are open-
loop, and the request rates used in the experiment depend
on the cluster’s peak performance. The requested rates vary
during the experiment, and the warehouse quantity is 50.
The interference between online transactions and analytical
queries increases with the increasing request rates. The trans-

actional/analytical request rate unit is transactions per second
(tps). OLxPBench reports the average latency, tail latency, and
throughput.

B. The evaluation of OLxPBench key design features

In this subsection, we demonstrate the design features of
OLxPBench. (1) Which schema model to adopt, (2) how the
real-time query impacts the performance of HTAP systems,
and (3) Why the domain-specific benchmark should be
considered. The following results are the average results of
the three runs.

1) Schema Model: We explore the performance difference
between the semantically consistent and traditional stitched
schema in the same TiDB [4] cluster. We choose the state-
of-the-practice HTAP benchmark, CH-benCHmark [40], as
the reference. Because CH-benCHmark [40] is still the most
popular HTAP benchmark. The average number of requests L
equals the long-term average arrival rate A multiplied by the
average latency W that a request spends in the system. The
Little’s Law [3] is

L=\W (1

According to Little’s Law [3], the load stress in the TiDB
is directly influenced by the average number of requests L
rather than the different average request arrival rates A\ of open
data generator (OLxPBench) and closed data generator (CH-
benCHmark). So, when the average number of requests L in
the queuing system (TiDB) is fixed, the load stress in the TiDB
is fixed. The average number of online transactions in a stable
TiDB cluster over the long term is around 45. We drop the
write-heavy transactions such as NewOrder and Payment to
reduce the possibility of load imbalance.

Test Case 1: Varied OLAP pressures. The sum of the
OLAP thread increases from zero to two. We put the incre-
mental OLAP pressure on the tested systems to disturb the
performance of online transactions and compare the latency of
the different schema designs. We normalized the baseline of
OLxPBench and CH-benCHmark to make a fair comparison.
Little’s Law does not guarantee that OLxPBench and CH-
benCHmark have the same transmission rate of request, so
the absolute value comparison is unfair. Figure 3 shows
that the normalized average latency of online transactions
in OLxPBench is more than double with the lowest OLAP
pressure compared to without the OLAP pressure. However,
the normalized average latency of online transactions in CH-
benCHmark increases by no more than one-fifth of the base-
line under the same OLAP pressure. Under the enormous
OLAP pressure, the normalized average latency of online
transactions in OLxPBench increases more than three times.
Each OLAP thread sends one OLAP query per second. The
OLAP queries are time-consuming scan tables operations that
bring a large amount of data into the buffer pool and evict
an equivalent amount of older data. Two OLAP threads can
generate enormous pressure and cause a significant increase
in server-side average CPU utilization. At the same time,
the normalized average latency of online transactions in CH-
benCHmark increases by around 48 percent of the baseline.
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TiDB [4] provides a row-based store, TiKV, and a column-
based store, TiFlash. The data in TiFlash keep consistent
with the data in TiKV using asynchronous log replication.
Nevertheless, the scan tables operations can occur in the
row store of TiKV or the column store of TiFlash. As the
number of OLAP agents increases, the number of scan table
operations increases. We use the performance monitoring unit
tool such as Perf to obtain the performance events and count
the overhead of the lock. According to the Linux Perf tool’s
manual, samples are performance data collected using the ’
perf record” command. Lock samples indicate the number of
samples collected in the lock function. Lock overhead includes
the syscall overhead of mutual exclusion (mutex) locks, fast
userspace mutex (futex), and spinlock. Lock overhead LO
equals the number of lock samples LS divided by the total
number of samples 7S. The baseline lock overhead BLO is
the lock overhead of the online transactions without analytical
query influencing. The normalized lock overhead NLO is the
lock overhead LO divided by the baseline lock overhead BLO.

B LS
T TS % BLO

When the analytical agent increases, the throughputs of online
transactions will be influenced. So the normalized lock over-
head decreases with the analytical agent increases in Figure 4.
The difference in performance isolation measured by OLxP-
Bench is far more significant than CH-benCHmark. Better
performance isolation indicates that the execution of OLTP
with OLAP workloads affects the other one’s performance
much lighter. Figure 4 reports that the lock overhead gap
between semantically consistent schema and stitched schema
is 1.76x using one OLAP thread and 1.68x using two OLAP
threads. It indicates that the shared data between OLTP and
OLAP on a semantically consistent schema is more significant
than stitched ones. The low competition in CH-benCHmark
between OLTP and OLAP workloads will propagate a false
image that the HTAP system can guarantee isolated perfor-
mance.

Implication 1 Experiments show that semantically consis-
tent schema reveals inherent competition between OLTP and
OLAP than stitched schema.

2) Real-time Query: ~We now compare the two main
queries common in real-world scenarios: analytical queries
and real-time queries. First, the analytical queries keep the
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Fig. 6. Comparing the generic benchmark to the domain-specific benchmarks
on TiDB cluster.

essential characteristics such as the complexity of operations
and perform multidimensional customer analysis. Second, the
real-time queries in OLxPBench are extracted from the exist-
ing production applications. The real-time queries are used in
the production applications to perform real-time user behavior
simulations. However, none state-of-the-art [41] and state-of-
the-practice [40] HTAP benchmarks provide the workloads
that include real-time queries imitating user behavior. We
compare the two different intentional queries on the TiDB
cluster.

Test Case 2: Queries comparison. We run the subench-
mark using the semantically consistent schema at 30 on-
line transactions per second as the baseline. Then we inject
analytical queries at 1 query per second into the baseline
as experimental group one. Meanwhile, we send the hybrid
transaction performing a real-time query in-between an online
transaction at 30 requests per second as the experimental
group two. Figure 5 shows that the analytical queries increase
the baseline latency by around three times. The real-time
queries in hybrid transactions increase the baseline latency by
more than nine times. The hybrid transaction contains both
OLTP statements and OLAP statements, but the SQL engine
can only choose a row-based store or column-based store to
handle the hybrid transaction. However, the analytical queries
and the online transactions can be handled separately by the
column-based TiFlash and the row-based TiKV. Therefore,
the impact of real-time query simulating the user behavior
is more significant than the impact of analytical queries on
the performance of online transactions. Besides, the standard
deviation of the average baseline latency is 2.21. With the an-
alytical queries interference, the standard deviation of average
baseline latency increases from 2.21 to 9.16. Under the real-
time queries interference, the standard deviation of average
baseline latency increases from 2.21 to 38.91. It indicates
that interference of real-time queries to online transactions
is greater than that of analytical queries. So it is necessary
to include the real-time queries extracted from the production
environment in the HTAP benchmark for helping users choose
the appropriate HTAP system to handle real-time queries.

Implication 2 It is necessary to include the real-time
queries in the HTAP benchmark for testing whether the HTAP
system can handle real-time queries from users.

3) Domain-specific Benchmark: 1In this paper, we classify
the benchmarks into two categories: generic benchmark and
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domain-specific benchmark. The subenchmark is inspired by
TPC-C [7], which is not bound to a specific scenario, and the
community considers a general benchmark. The fibenchmark
and the tabenchmark model a banking scenario and a telecom
scenario. Hence, they are domain-specific benchmarks.

Test Case 3: Domain-specific benchmark. We run the
subenchmark, the fibenchmark, and the tabenchmark at 80
online transactions per second as the baseline. Then we send
the analytical queries at 1 query per second with the baseline.
Figure 6 shows that the baseline of the above three benchmarks
is 53.47ms, 10.25ms, and 69.53ms. Moreover, the standard
deviations of the baseline of the above three benchmarks are
0.23, 0.05, and 0.47. The online transactions of fibenchmark
perform read-heavy and simple update operations, so its base-
line latency is the smallest one. Slow queries took longer
than one second in tabenchmark’s online transactions. So the
baseline of the tabenchmark is the biggest one. We will analyze
the reason for slow queries in Section VI-E. Only 8% of
online transactions in subenchmark do not modify the table,
and the tables in subenchmark contain complex relations. So
its baseline average latency is the median.

Under the OLAP pressure, the OLTP latency of subench-
mark increases by more than five times, and the OLTP latency
of fibenchmark increases by less than forty percent. And the
OLTP latency of tabenchmark increases by less than twenty
percent.

Meanwhile, the standard deviations of the above three
benchmarks increase to 14.10, 0.58, and 4.05 under the
analytical queries interference. The complex analytical queries
in subenchmark generate many table scan operations, which
increase the waiting time of online transactions. The read-
heavy online transactions of fibenchmark are mostly neg-
ligible by OLAP agents. Therefore, online transactions of
subenchmark are most affected by OLAP pressure, followed
by fibenchmark’ online transactions, and tabenchmark’ online
transactions are the least affected.

Implication 3 The domain-specific benchmarks help users
identify system bottlenecks in their specific scenarios. Besides,
it also helps system designers point in the direction of system
optimization.
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VI. EVALUATION OF THE MAINSTREAM DISTRIBUTED
HTAP DBMSs

In addition to the feature evaluation of OLxPBench, we
also thoroughly test end-to-end performance for mainstream
distributed HTAP DBMSs. We will provide detailed evaluation
data in the following subsections, including peak performance.
The peak performance refers to the saturation value that a
single workload can reach in the test cluster. Furthermore,
we will describe and deeply analyze the mutual interference
between OLTP and OLAP [5] using the control variate method.
The transactional/analytical request rates are divided into four
numerically increasing groups with the same interval based
on peak throughput. The transactional/analytical request rates
in each group are the same, and the analytical/transactional
request rates increase from zero to peak to explore the in-
fluence of the analytical/transactional agents on the transac-
tional/analytical agents. Besides, CH-benCHmark [40] uses
the stitch schema while OLxPBench uses a semantically
consistent one. In addition, OLxPBench uses hybrid work-
loads. The difference in performance isolation measured by
OLxPBench is far more significant than CH-benCHmark.
Better performance isolation indicates the execution of OLTP
with OLAP workloads affects the other one’s performance
much lighter. Moreover, we find that the lock overhead gap
between the OLxPBench and CH-benCHmark is 1.76x under
the same OLAP pressure in TiDB. The low competition in
CH-benCHmark between OLTP and OLAP workloads will
propagate a false image that the HTAP system can guarantee
isolated performance. So, we do not report the experimental
results of CH-benCHmark.

A. Subenchmark evaluation

1) Peak performance: Figure 7(a) shows that the transac-
tional throughput increases with the incremental transactional
request rates. In the MemSQL cluster, the throughput reaches
the top when the transactional request rates are 2400 tps. The
average latency of transactions is 29.7 milliseconds without
OLAP agent inferences. And the 95th percentile latency of
transactions is 78.53 milliseconds. In the TiDB cluster, the
maximum transactional throughput is 800 tps. Figure 7(a) il-
lustrates that the throttled transactional throughput of subench-
mark in the TiDB cluster is one-third that of the MemSQL
cluster. The above result is the data processing of MemSQL
in memory rather than in solid-state disk. Figure 7(b) shows
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that the maximum analytical throughput is around eight tps
in the MemSQL cluster. Moreover, the analytical throughput
reaches the top when the analytical request rates are four tps
in the TiDB cluster. Under the same analytical request rates,
the average latency of OLAP increases with the incremental
transactional request rates.

The performance of OLXP in the different hybrid request
rates is shown in Figure 7(c). The OLxP workloads include hy-
brid transactions, which perform a real-time query in-between
an online transaction to simulate the user behavior. The real-
time query is a time-consuming aggregate operation. So, the
transactional statements behind the real-time query must wait
for the real-time query execution because of the atomicity
property of the transaction. So, the maximum throughput of
OLXxP is 4.28tps and 15.98tps in Figure 7(c). In the MemSQL
cluster, the maximum average hybrid latency is 133.44 sec-
onds. The gap between the maximum and minimum average
delays is 223 times. And the 95th percentile latency of hybrid
workload is 209.50 seconds. MemSQL adopts the vertical
partitioning technology, which results in many join operations
generated by relationship query statements in hybrid transac-
tions and increases the waiting time of hybrid transactions. In
the TiDB cluster, the throttled OLxP throughput is 16 tps, and
the maximum average hybrid latency is 397 milliseconds. The
maximum average delay is 1.47 times the minimum average
delay. And the 95th percentile latency of hybrid workload is
905.36 milliseconds. The above results indicate that TiDB’s
separated storage engine can handle the OLxP workloads
compared to MemSQL’s single storage engine.

2) Performance interference between OLTP agents and
OLAP agents: The performance impact of analytical agents
on transactional agents is shown in Figure 7(a). When the
transactional request rates are controlled, the average latency
of the transactional agents increases by up to 17.4 times
compared with the absence of the analytical agents in the
MemSQL cluster. And the gap of the 95th percentile latency
is 33.7x. The performance impact of the online transactions
on the analytical queries is shown in Figure 7(b). When the
analytical request rates are controlled, the average latency of
the analytical agents increases by up to 2.2 times compared
with the absence of the transactional agents. And the gap of
the 95th percentile latency is 2.0x. It indicates that violent
interference exists between transactional agents and analytical
agents. The expensive analytical queries compete for the
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resource with the online transactions in the single storage and
increase the latency of online transactions.

In the TiDB cluster, under the same analytical request rates,
the analytical throughput decreases to the baseline of 59%
as the transactional request rate increases. Furthermore, when
the transactional request rates are 800 tps, the transactional
throughput plummets as the analytical request rates increase,
up to 89%. The transactional agents significantly affect the
execution of analytical agents. The higher the request rates,
the more table scan operations. Time-consuming table scan
operations increase the waiting time of requests and reduce
requests throughput.

B. Fibenchmark evaluation

1) Peak performance: As shown in Figure 8(a), the peak
transactional throughput is around 23476 tps in the Mem-
SQL cluster. The maximum transactional throughput is 9165
tps in the TiDB cluster. The read-only transaction ratio of
fibenchmark is higher than that of subenchmark, so the peak
transactional throughput of fibenchmark is higher than that
of subenchmark. A large number of queries are blocked
until the previous complex queries are completed. So the
peak analytical throughput of MemSQL is around 0.12 tps
in Figure 8(b). And the maximum analytical throughput of
TiDB is 0.25 tps. There are a lot of scan table operations
in the workloads of fibenchmark, and scanning row-format
tables in TiKV [4] is stochastic and expensive, explained in
Section V-B1. Figure 8(c) shows that the hybrid throughput
increases as the hybrid request rates increase when the hybrid
request rates are no more than four tps. In the MemSQL
cluster, the peak hybrid throughput is 2.9 tps. In the TiDB
cluster, the peak hybrid throughput is 4 tps. The average
hybrid latency increases at most 17.2% as the hybrid request
rates increase. And the 95th percentile latency increases up to
36.4% as the hybrid request rates increase. The hybrid latency
increase as the hybrid request rates increase without bound.
The increasing average and 95th percentile latency of hybrid
transactions result from more waiting time with the higher
hybrid request rates.

2) Performance interference between OLTP agents and
OLAP agents: The performance impact of analytical agents
on transactional agents is shown in Figure 8(a). And the per-
formance impact of transactional agents on analytical agents
is shown in Figure 8(b). In the MemSQL cluster, the trans-
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actional throughput decreases with the analytical request rates
increasing under the same transactional request rates. And the
average latency of the transactional request rates increases as
the analytical request rates increase. The analytical throughput
decreases with the incremental transactional request rates
when the analytical request rates are less than three tps, and
the transactional request rates are less than 7000 tps. The
analytical throughput fluctuates wildly when the analytical
request rates exceed the processing capacity of the MemSQL.
Meanwhile, the long-term running analytical queries increase
the waiting time of online transactions.

In the TiDB cluster, under the same transactional request
rates, the transactional throughput decreases as the analytical
request rates increase when the analytical request rates are
no more than 3 tps. Under the same analytical request rates,
the analytical throughput decreases as the transactional request
rates increase when the analytical request rates are no more
than 2 tps, and the transactional request rates are no more
than 5000 tps. And the average analytical latency increases as
the transactional request rates increase when the transactional
request rates are no more than 2500 tps.

C. Tabenchmark evaluation

1) Peak performance: Figure 9(a) shows that the maxi-
mum transactional throughput is 124 tps in the MemSQL
cluster. The transactional throughput increases as the trans-
actional request rates increase when the transactional request
rate is no more than 140 tps. The maximum transactional
throughput is 43 tps in the TiDB cluster. The transactional
throughput increases as the transactional request rates increase
when the transactional request rates are no more than 50
tps. Tabenchmark has the highest percentage of read-only
transactions among the three benchmarks. However, there is
a slow query in the DeleteCallForwarding transaction that
took longer than one second, so tabenchmark has the lowest
transactional throughput of the three benchmarks. The SQL
statement is “explain SELECT s_id FROM SUBSCRIBER
WHERE sub_nbr = ?”. The s_id and sub_nbr are the com-
posite keys of the SUBSCRIBER table. The full table scan in
memory is time-consuming when the slow query is executed
in MemSQL. Even worse, when a slow query is executed
in the storage engine of the TiDB, the index full scan will
perform a random read on the solid-state disk. Therefore, the
maximum transactional throughput of MemSQL is higher than

Analytical requests per second (TiDB)

(b) Throughput of OLAP.

n -~
o
£ 150 ; . £ 0.9 - ‘ ~15 T r r
et Analytical request rates o Transactional request rates wn —4—MemsQL
5 MO41e2+3e4MemsQL | -~ W0 ¢ 356 70 # 105 @ 140 MemSQL | Q. -2-TiDB
_g. 00102% 30 4TDB 8 000 250 50 & 100 O 150 TiDB e
e 2 o
2100 \ [ N £0.6 [ [ [ 310
e H £
z £ °
¢ 50 Zo03 .\y'\. £ 5
5 ‘D~4}‘DO 0‘900 5 \g \Q | s
g BgO®o| ©FO | Tow | 0 5 B I o o1 [ X
[ I I I S 9 SO0 59 Ot0o | moa.a0 ° o
o 25 50 100 150 < 1 2 a4 2 4 6 10
=

OLXP requests per second (TiDB)

(c) Throughput of OLXP.

OLTP, OLAP and OLxP performance of tabenchmark.

the maximum transaction throughput of TiDB. Figure 9(b)
shows that the maximum analytical throughput is 0.7 tps in
MemSQL cluster. The analytical throughput increases as the
analytical request rates increase when the analytical request
rates are no more than two tps. And the maximum analytical
throughput is 0.23 tps in the TiDB cluster. The analytical
throughput increases as the analytical request rates increase
when the analytical request rates are no more than two tps.

Figure 9(c) shows that the MemSQL cluster is saturated
when the hybrid request rate increases to 12 tps. Figure 9(c)
shows that the maximum hybrid throughput is around five tps
in the TiDB cluster. And the average latency increases with
hybrid request rates increases without bound. The gap between
95th percentile latency and average latency is up to 2.2x.

2) Performance interference between OLTP agents and
OLAP agents: Figure 9(a) shows that the performance impact
of analytical agents on transactional agents. The performance
impact of transactional agents on analytical agents is shown
in Figure 9(b). In the MemSQL cluster, OLxPBench executes
the precisely transactional request rates control when the
transactional request rates are no more than 105 tps, and the
analytical request rates are no more than three tps. Under
the same transactional request rates, the average transactional
latency increases more than 34.4 times. And the 95th per-
centile latency increases by 12.8x. The analytical throughput
decreases when the analytical request rates are identical as the
transactional request rates rise, which are no more than 50 tps.

The transactional throughput decreases to 49.8% with the
analytical agents’ inference in the TiDB cluster. It indicates the
analytical agents significantly increase the online transaction
waiting time. The performance impact of transactional agents
on the analytical agents is shown in Figure 9(b). The analytical
throughput decreases up to 89% under the transactional agents’
inference. The average latency increases 30.8% under the
transactional agents’ inference. And the 95th percentile latency
increases 12.2% under the transactional agents’ inference. It
indicates that the slow queries in the online transaction block
the analytical agents’ execution.

D. The main findings of differences between MemSQL and
TiDB

First, the enormous transactional performance gap between
MemSQL and TiDB results from the different storage medi-
ums for data processing, i.e., memory for MemSQL and
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Fig. 10. OLTP, HTAP and OLXP latency as cluster size increases.

solid-state disk for TiDB. The peak transactional throughput
gap between MemSQL and TiDB is 3.0x, 2.6x, and 2.9x
using subenchmark, fibenchmark, and tabenchmark. Second,
compared to the single storage engine of MemSQL, the
separated storage engines (row-based and column-based) of
TiDB handle the hybrid workload better, performing real-time
queries in-between an online transaction. The peak hybrid
workload throughput gap between TiDB and MemSQL is 3.7x
and 1.4x using subenchmark and fibenchmark. Third, both
MemSQL and TiDB handle the query using the composite
keys awkwardly. MemSQL uses time-consuming full table
scans in memory, while TiDB uses index full scans that
perform a random read on the solid-state disk. The maximum
hybrid workload throughput of MemSQL is 2.2x than that of
TiDB.

E. Scalability

We choose the mainstream HTAP DBMSs — TiDB [4],
MemSQL [14], and OceanBase [15] for scale-out experiments.
We test the scaling capability of TiDB and OceanBase by
varying the cluster sizes from 4 to 16 nodes !. Meanwhile,
the data size and target request rates rise in proportion to the
increasing cluster size. The following results are the average
results of the five runs. TiDB decouples the computational
engine layer and storage layer. Due to complex execution plans
and compute-intensive queries, we set the ratio of storage
instances(SI) to computational instances(CI) at 2:1 in the
TiDB cluster. Storage instances are deployed on all servers
in the cluster, and computational instances are deployed on
half of the servers in the cluster. Oceanbase is shared-nothing
architecture, and each OceanBase server (OBServer) is the
same. The number of OBServers is the cluster size.

The average latency and 95th percentile latency for work-
loads in subenchmark are shown in Figure 10. First, OLxP-
Bench clients run on a separate eight vCPU machine and
can spawn up to 300 threads to generate target request rates.
OLxPBench clients can be deployed on separate client servers,
so client servers are not a bottleneck. The more OLxPBench
clients are deployed, the more requests are generated. Second,
OceanBase and TiDB cannot scale-out well when dealing with
the OLTP workloads, OLxXP workloads, and the mixtures of
OLTP and OLAP workloads. In the OceanBase cluster, the av-
erage latency and 95th percentile latency of OLTP workloads

! For too high cost for commercial software, we test MemSQL on four servers.

increase by 20% and 24% as the cluster size increase from 4
to 16 nodes. In the TiDB cluster, the average latency and 95th
percentile latency of OLTP workloads increase more than 1x as
the cluster size increase from 4 to 16 nodes. Significantly, the
latency of OLxP workloads increases sharply as the cluster
size increase from 4 to 16 nodes. It is challenging for the
above HTAP DBMSs to deal with the OLxP workloads. Third,
compared with OceanBase, TiDB provides better performance
isolation as the cluster size increases. Under the same OLAP
pressure, the average latency of OLTP workloads increases
by 6% and 18% in the TiDB cluster and OceanBase cluster.
Meanwhile, TiDB is better than OceanBase at dealing with
OLxP workloads. The performance isolation benefits from the
decoupled storage layer consisting of a row store (TiKV) and
a columnar store (TiFlash).

VII. CONCLUSIONS

This paper quantitatively discloses that the previous HTAP
benchmarks provide misleading information in evaluating,
designing, and implementing HTAP systems. We design and
implement an extensible HTAP benchmarking framework
named OLxPBench. OLxPBench proposes the abstraction of
a hybrid transaction to model the widely-observed behavior
pattern — making a quick decision while consulting real-time
analysis; a semantically consistent schema to express the rela-
tionships between OLTP and OLAP schemas; the combination
of domain-specific and general benchmarks to characterize
diverse application scenarios with varying resource demands.
Extensive experiments demonstrate its merit and pinpoint the
bottlenecks of the mainstream distributed HTAP DBMSs.
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