
DB-LSH: Locality-Sensitive Hashing with
Query-based Dynamic Bucketing

Yao Tian, Xi Zhao, Xiaofang Zhou
The Hong Kong University of Science and Technology

Hong Kong SAR, China
{ytianbc@cse.ust.hk, xizhao@ust.hk, zxf@cse.ust.hk}

Abstract—Among many solutions to the high-dimensional
approximate nearest neighbor (ANN) search problem, locality
sensitive hashing (LSH) is known for its sub-linear query time
and robust theoretical guarantee on query accuracy. Traditional
LSH methods can generate a small number of candidates quickly
from hash tables but suffer from large index sizes and hash
boundary problems. Recent studies to address these issues often
incur extra overhead to identify eligible candidates or remove
false positives, making query time no longer sub-linear. To
address this dilemma, in this paper we propose a novel LSH
scheme called DB-LSH which supports efficient ANN search
for large high-dimensional datasets. It organizes the projected
spaces with multi-dimensional indexes rather than using fixed-
width hash buckets. Our approach can significantly reduce the
space cost by avoiding the need to maintain many hash tables for
different bucket sizes. During the query phase of DB-LSH, a small
number of high-quality candidates can be generated efficiently by
dynamically constructing query-based hypercubic buckets with
the required widths through index-based window queries. For
a dataset of n d-dimensional points with approximation ratio c,
our rigorous theoretical analysis shows that DB-LSH achieves
a smaller query cost O(nρ∗

d logn), where ρ∗ is bounded
by 1/cα versus a bound of 1/c in the existing work. An
extensive range of experiments on real-world data demonstrate
the superiority of DB-LSH over state-of-the-art methods on both
efficiency and accuracy.

Index Terms—Locality Sensitive Hashing, Approximate Near-
est Neighbor Search, High-Dimensional Spaces

I. INTRODUCTION

The nearest neighbor (NN) search finds the closest point in
a point dataset to a given query point. As the points which
are closer to each other can often be considered ‘similar’
to each other in many applications when a proper distance
measure is used, this search operation plays a vital role
in a wide range of areas, such as pattern recognition [1],
information retrieval [36], and data mining [13]. However,
it is well known that finding the exact NN in large-scale
high-dimensional datasets can be very time-consuming. People
often conduct approximate nearest neighbor (ANN) searches
instead [18], [35]. The c-approximate nearest neighbor (c-
ANN) search and (r, c)-nearest neighbor ((r, c)-NN) search
are two representative queries to trade result accuracy for
query efficiency. Specifically, c-ANN search aims to find a
point whose distance to the query point q is bounded by cr∗,
where r∗ is the distance from q to its exact NN and c is a given
approximation ratio (see Definition 1, Section III). (r, c)-NN
search can be considered as a decision version of c-ANN,

which aims to determine whether there exists a point whose
distance to q is at most cr, where r is a given search range
(see Definition 2, Section III).

Locality-Sensitive Hashing (LSH) [3], [9]–[11], [35], [39]
is one of the most popular tools for computing c-ANN in
high-dimensional spaces. LSH maps data points into buckets
using a set of hash functions such that nearby points in the
original space have a higher probability to be hashed into the
same bucket than those which are far away. When a query
arrives, the probability to find its c-ANN is guaranteed to be
sufficiently high by only checking the points in the bucket
where the query point falls in. In order to achieve this goal,
the original LSH-based methods (E2LSH) [3] design a set
of K independent hash functions with which all data points
in the original d-dimensional space are mapped into a K-
dimensional space, K � d. These K-dimensional points are
assigned into a range of buckets which are K-dimensional
hypercubes. This process is repeated L times to generate L
K-dimensional hash buckets (we term this type of approach
(K,L)-index). Intuitively, as K increases, the probability
of two different points being hashed into the same bucket
decreases. On the contrary, the collision probability, which
is the probability of two different points being mapped into
the same bucket, increases as L increases because two points
are considered as a ‘collision’ as long as they are mapped
into the same bucket at least once. As shown in [8], [11], by
choosing K = log1/p2 n and L = nρ, where ρ = ln 1/p1

ln 1/p2
,

p1, p2 are constants depending on r and c (for the meaning
of p1 and p2, see Definition 3, Section III), E2LSH can solve
the (r, c)-NN problem in sub-linear time O(nρd log n) with
constant success probability of 1/2−1/e. Accordingly, E2LSH
finds c-ANN in sub-linear time by answering a series of (r, c)-
NN queries with r = 1, c, c2, However, to achieve a good
accuracy, E2LSH needs to prepare a (K,L)-index for each
(r, c)-NN and L is typically large, which causes prohibitively
large storage costs for the indexes. LSB [35] alleviates this
issue by building a (K,L)-index for (1, c)-NN and repeatedly
merging small hash buckets into a large one, which effectively
enlarges r. However, LSB only works for (r, c)-NN queries
at some discrete integer r, which imposes the limitation that
LSB cannot answer the c-ANN query with c < 4. C2LSH [9]
proposes a new LSH scheme called collision counting (C2). By
relaxing the collision condition from the exactly K collisions
to any l collisions where l < K is a given value, C2LSH only

ar
X

iv
:2

20
7.

07
82

3v
2

 [
cs

.D
B

]
 2

0
Ju

l 2
02

2

TABLE I: Comparison of Typical LSH Methods

Algorithms Indexing Query Index Size Query Cost Comment

KL
DB-LSH Dynamic Query-centric O(n1+ρ∗

d logn) O(nρ∗
d logn) ρ∗ ≤ 1/cα

E2LSH [3] Static Query-oblivious O(Mn1+ρd logn) O(nρd logn) ρ ≤ 1/c

LSB-Forest [35] Static Query-oblivious O(n1+ρd logn) O(nρd logn) ρ ≤ 1/c, c ≥ 2

C2
QALSH [14] Dynamic Query-centric O(nK) O(nK + d) K = O(logn)

VHP [27] Dynamic Query-centric O(nK) O(n(K + d)) K = O(1)

R2LSH [26] Dynamic Query-centric O(nK) O(n(K + d)) K = O(1)

MQ
SRS [34] Dynamic Query-centric O(n) O(βn(logn+ d)) β � 1

PM-LSH [38] Dynamic Query-centric O(n) O(βnd) β � 1

needs to maintain K one-dimensional hash tables (instead of
L K-dimensional hash tables). However, the query cost of C2
is no longer sub-linear [9] because it is expensive to count the
number of collisions between a large number of data points
and the query point dimension by dimension.

In addition to the dilemma between space and time, the
above methods also suffer from the candidate quality issue
(a.k.a. the hash boundary issue). That is, no matter how large
the hash buckets are, some points close to a query point may
still be partitioned into different buckets. Several dynamic
bucketing techniques are proposed to address this issue. The
main idea of dynamic bucketing is to leave the bucketing
process to the query phase in the hope of generating buckets
such that the nearby points are more likely to be in the same
bucket as the query point. The C2 approach is extended to
dynamic scenarios by using B+-trees to locate points falling in
a query-centric bucket in each dimension [14], [26], [27], at the
cost of increased query time because of a large number of one-
dimensional searches. [34], [38] explore a new dynamic metric
query (MQ) based LSH scheme to map data points in a high-
dimensional space into a low-dimensional projected space via
K independent LSH functions, and determine c-ANN by exact
nearest neighbor searches in the projected space. However,
even in a low-dimensional space, finding the exact NN is
still inherently computationally expensive. More importantly,
at least βn exact distance computations are needed to perform
in case of missing correct c-ANN, which incurs a linear time
complexity. Here β is an estimated ratio for the number of K
dimensional NN searches such that the d dimensional ANN
results can be found safely [34], [38].

Table 1 summarizes the query and space costs of typical
LSH methods. As shown in the table, among the existing
solutions to the c-ANN search problem, (K,L)-index based
methods are the only ones that can achieve sub-linear query
cost, i.e., O(nρd log n), where ρ is proven to be bounded by
1/c. M in E2LSH is the number of (K,L)-indexes prepared
ahead [35]. Note that the value of ρ is bounded by 1/c only
when the bucket size is very large [8]. This implies a very
large value of K is necessary to effectively differentiate points
based on their distances. It remains a significant challenge to
find a smaller and truly bounded ρ without using a very large
bucket size.

Motivated by the aforementioned limitations, in this paper

we propose a novel (K,L)-index approach with a query-
centric dynamic bucketing strategy called DB-LSH to solve the
high-dimensional c-ANN search problem. DB-LSH decouples
the hashing and bucketing processes of the (K,L)-index,
making it possible to answer (r, c)-NN queries for any r and
c-ANN for any c > 1 with only one suit of indexes (i.e.,
without the need to perform LSH L times for each possible
r). In this way the space cost is reduced significantly, and a re-
duction of L value becomes possible. DB-LSH builds dynamic
query-centric buckets and conducts multi-dimensional window
queries to eliminate the hash boundary issues for selecting the
candidates. Different from other query-centric methods, the
region of our buckets are still multi-dimensional cubes like in
static (K,L)-index methods, which enables DB-LSH to not
only generate high-quality candidates but also to achieve sub-
linear query cost, as shown in Table I. Furthermore, DB-LSH
achieves a much smaller bound at a proper and finite bucket
size, denoted as ρ∗, which is bounded by 1/cα (e.g., α = 4.746
when choosing 4c2 as the width of the initial hypercubic
bucket). With theoretical analysis and an extensive range of
experiments, we show that DB-LSH outperforms the existing
LSH methods significantly for both efficiency and accuracy.

The main contributions of this paper include:
• We propose a novel LSH framework, called DB-LSH,

to solve the high-dimensional c-ANN search problem. It
is the first work that combines the static (K,L)-index
approach with a dynamic search strategy for bucketing.
By taking advantages from both sides, DB-LSH can
reduce the index size and improve query efficiency si-
multaneously.

• A rigorous theoretical analysis shows that DB-LSH can
achieve the lowest query time complexity so far for
any approximation ratio c > 1. DB-LSH answers a
c2-ANN query with a constant success probability in
O(nρ

∗
d log n) time, where ρ∗ is bounded by 1/cα, e.g.,

α = 4.746 when initial bucket width is 4c2, which is
smaller than ρ in other (K,L)-index methods.

• Extensive experiments on 10 real datasets with different
sizes and dimensionality have been conducted to show
that DB-LSH can achieve better efficiency and accuracy
than the existing LSH methods.

The rest of the paper is organized as follows. The related
work is reviewed in Section II. Section III introduces the basic

concepts and the research problem formally. The construction
and query algorithms of DB-LSH are presented in Section IV,
with a theoretical analysis in Section V and an experimental
study in VI. We conclude this paper in Section VII.

II. RELATED WORK

LSH is originally proposed in [11], [18]. Due to its sim-
ple structure, sub-linear query cost, and a rigorous quality
guarantee, it has been a prominent approach for processing
approximate nearest neighbor queries in the high dimensional
spaces [6], [8], [11], [28]. We give a brief overview of the
existing LSH methods in this section.

A. Mainstream LSH Methods

(K,L)-index based methods. Although the basic LSH [11]
is used in the Hamming space, (K,L)-index methods ex-
tend from it to provide a universal and well-adopted LSH
framework for answering the c-ANN problem in other metric
spaces. E2LSH [3] is a popular (K,L)-index method in the
Euclidean space and adopts the p-stable distribution-based
function proposed in [8] as the LSH function. Its applications
are limited by the hash boundary problem and undesirably
large index sizes. These two shortcomings are shared by other
(K,L)-index methods due to the fact that static buckets are
used in these methods. To reduce index sizes, Tao et al. [35]
consider answering (r, c)-NN queries at different radii via an
elegant LSB-Tree framework, although it only works for c-
ANN query with c ≥ 4. SK-LSH [25] is another approach
based on the idea of static (K,L)-index, but proposes a novel
search framework to find more candidates.

To address the limitations of static (K,L)-index methods,
dynamic query strategies are developed to find high-quality
candidates using smaller indexes. These methods can be
classified into two categories as follows.
Collision counting based methods (C2). The core idea of C2
is to generate candidates based on the collision numbers. It is
proposed in C2LSH [9], which uses the techniques of collision
counting and virtual rehashing to reduce space consumption.
QALSH [14] improves C2LSH by adopting query-aware buck-
ets rather than static ones, which alleviates the hash boundary
issue. R2LSH [26] improves the performance of QALSH by
mapping data into multiple two-dimensional projected spaces
rather than one-dimensional projected spaces as in QALSH.
VHP [27] considers the buckets in QALSH as hyper-planes
and introduces the concept of virtual hyper-sphere to achieve
smaller space complexity than QALSH. C2 can find high-
quality candidates with a larger probability but its cost of
finding the candidates is expensive due to the unbounded
search regions, which makes all points likely to be counted
once in the worst case.
Dynamic metric query based methods (MQ). SRS [25]
and PM-LSH [38] are representative dynamic MQ approaches
that map data into a low-dimensional projected space and
determine candidates based on their Euclidean distances via
queries in the projected space. It is proven that this strategy can

accurately estimate the distance between two points in high-
dimensional spaces [38]. However, answering metric queries
in the projected space is still computationally expensive and as
many as βn candidates have to be checked to ensure a success
probability of 1/2 − 1/e, where β is a constant mentioned
earlier. Therefore, MQ can incur a high query cost of βnd.

B. Additional LSH Methods

There are other LSH methods that come from two cate-
gories: the methods that design different hash functions and
the methods that adopt alternative query strategies. The former
includes studies that aim to propose novel LSH functions in
Euclidean space with smaller ρ [2], [4], [5]. However, these
functions are highly theoretical and difficult to use. The latter
focuses on finding better query strategies to further reduce
the query time or index size [6], [20], [20], [23], [24], [28],
[31], [32], [39]. LSH forest [6] offers each point a variable-
length hash value instead of a fixed K hash value as in
(K,L)-index methods. It can improve the quality guarantee
of LSH for skewed data distributions while retaining the same
space consumption and query cost. Multi-Probe LSH [28]
examines multiple hash buckets in the order of a probing
sequence derived from a hash table. It reduces the space
requirement of E2LSH at the cost of the quality guarantee.
Entropy-based LSH [31] and BayesLSH [32] adopt similar
multi-probing strategies as in Multi-Probe LSH, but have a
more rigorous theoretical analysis. Their theoretical analysis
relies on a strong assumption on data distribution which can
be hard to satisfy, leading to poor performance for some
datasets. LazyLSH [39] supports c-ANN queries in multiple
p-norm spaces with only one suit of indexes, thus effectively
reducing the space consumption. I-LSH [23] and EI-LSH [24]
design a set of adaptive early termination conditions so that the
query process can stop early if a good enough result is found.
Developed upon SK-LSH [25] and Suffix Array [29], Lei et
al. [20] propose a dynamic concatenating search framework,
LCCS-LSH, that also achieves sub-linear query time and sub-
quadratic space.

Recently, researchers have adopted the LSH framework to
solve other kinds of queries, such as maximum inner product
search [16], [30], [33], [37] and point-to-hyperplane NN search
[15] in high dimensional spaces. These examples demonstrate
the superior performance and great scalability of LSH.

III. PRELIMINARIES

In this section, we present the definition of the ANN search
problem, the concepts of LSH, and an important observation.
Frequently used notations are summarized in Table II.

A. Problem Definitions

Let Rd be a d-dimensional Euclidean space, and ‖·, ·‖
denote the distance between points.

Definition 1 (c-ANN Search). Given a dataset D ⊆ Rd, a
query point q ∈ Rd and an approximation ratio c > 1, c-ANN
search returns a point o ∈ D satisfying ‖q, o‖ ≤ c · ‖q, o∗‖,
where o∗ is the exact nearest neighbor of q.

TABLE II: List of Key Notations.

Notation Description
Rd d-dimensional Euclidean space

D The dataset

n The cardinality of dataset

o A data point

q A query point

‖o1, o2‖ The distance between o1 and o2
f(x) The pdf of standard normal distribution

h(x) Hash function

Remark 1. (c, k)-ANN search is a natural generalization of c-
ANN search. It returns k points, say o1, . . . , ok that are sorted
in ascending order w.r.t. their distances to q, such that for
∀oi, i = 1, . . . , k, we have ‖q, oi‖ ≤ c · ‖q, o∗i ‖, where o∗i is
the i-th nearest neighbor of q.

(r, c)-nearest neighbor search is often used as a subroutine
when finding c-ANN. Following [35], it is defined formally as
follows:

Definition 2 ((r, c)-NN Search). Given a dataset D ⊆ Rd,
a query point q ∈ Rd, an approximation ratio c > 1 and a
distance r, (r, c)-NN search returns:
(1) a point o ∈ D satisfying ‖q, o‖ ≤ c · r, if there exists a

point o′ ∈ D such that ‖q, o′‖ ≤ r;
(2) nothing, if there is no point o ∈ D such that ‖q, o‖ ≤ c·r.
(3) otherwise, the result is undefined.

The result of case 3 remains undefined since case 1 and
case 2 suffice to ensure the correctness of a c-ANN query.
By setting r = ‖q, o∗‖, where o∗ is the nearest neighbor of
q, a c-ANN can be found directly by answering an (r, c)-NN
query. As ‖q, o∗‖ is not known in advance, a c-ANN query
is processed by conducting a series of (r, c)-NN queries with
increasing radius, i.e., it begins by searching a region around
q using a small r value. Without loss of generality, we assume
r = 1. Then, it keeps enlarging the search radius in multiples
of c, i.e., r = c, c2, c3, . . . until a point is returned. In this way,
as shown in [3], [11], [18], a c-ANN query can be answered
with an approximation ratio of c2.

Example 1. Figure 1 shows an example where D has 12 data
points. Suppose approximation ratio c = 1.5. Consider the
first (r, c)-NN search with r = 1 (the yellow circle). Since
there is no point o ∈ D such that ‖q, o‖ ≤ cr = 1.5 (the red
circle), it returns nothing. Then, consider (r, c)-NN with r =
c = 1.5. Since there exists no point o such that ‖q, o‖ ≤ r, but
‖q, o4‖ ≤ cr (the blue circle), the returned result is undefined,
i.e., it is correct to return either nothing or any found point,
such as o4. Finally, consider (r, c)-NN with r = c2 = 2.25.
Since ‖q, o4‖ ≤ 2.25, the query must return a point, which
can be any point from o4, o6, o9, o11 as all of them satisfy
‖q, o‖ ≤ cr (the green circle). The above procedures also
elaborate the process of answering a c2-ANN query. Any point
from o4, o6, o9, o11 can be considered as a result. Apparently,
they are correct c2-ANN results of q.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 o1

 o2

 o3 o4

 o5

 o6 o7

 o8

 o9
 o10

 o11

 o12

q

Fig. 1: An illustration of (r, c)-NN and c-ANN

B. Locality-Sensitive Hashing

Locality-sensitive hashing is the foundation of our method.
For a hash function h, two points o1 and o2 are said to collide
over h if h(o1) = h(o2), i.e., they are mapped into the same
bucket using h. The formal definition of LSH is given below
[11]:

Definition 3 (LSH). Given a distance r ≥ 0 and an ap-
proximation ratio c > 1, a family of hash functions H =
{h : Rd → R} is called (r, cr, p1, p2)-locality-sensitive, if for
∀o1, o2 ∈ Rd, it satisfies both conditions below:
(1) If ‖o1, o2‖ ≤ r,Pr[h(o1) = h(o2)] ≥ p1;
(2) If ‖o1, o2‖ > cr,Pr[h(o1) = h(o2)] ≤ p2,

where h ∈ H is chosen at random, p1, p2 are collision
probabilities and p1 > p2.

A typical LSH family for Euclidean space in static LSH
methods (e.g., E2LSH) is defined as follows [8]:

h(o) =

⌊
~a · ~o+ b

w

⌋
, (1)

where ~o is the vector representation of a point o ∈ Rd,
~a is a d-dimensional vector where each entry is chosen
independently from a 2-stable distribution, i.e.,the standard
normal distribution, b is a real number chosen uniformly from
[0, w), and w is a pre-defined integer. Denote the distance
between any two points as τ , then the collision probability
under such hash function can be computed as:

p(τ ;w) = Pr[h(o1) = h(o2)] = 2

∫ w

0

1

τ
· f(t

τ
) · (1− t

w
) dt,

(2)
where f(x) = 1√

2π
e−

x2

2 is the probabilistic density func-
tion (pdf) of the standard normal distribution. For a given
w, it is easy to see that p(τ ;w) decreases monotonically
with τ . Therefore, the hash family defined by Equation 1
is (r, cr, p1, p2)-locality-sensitive, where p1 = p(r;w) and
p2 = p(cr;w).

C. Locality-Sensitive Hashing with Dynamic Bucketing

A typical dynamic LSH family for the Euclidean space is
defined as follows [14]:

h(o) = ~a · ~o, (3)

where ~a is the same as in Equation 1. For a hash function h,
two points o1 and o2 are said to collide over h if |h(o1) −
h(o2)| ≤ w

2 . In this sense, the collision probability can be
computed as:

p(τ ;w) = Pr[|h(o1)− h(o2)| ≤
w

2
] =

∫ w
2τ

− w
2τ

f(t) dt, (4)

It is easy to see that the hash family defined by Equation
3 is (r, cr, p1, p2)-locality-sensitive, where p1 = p(r;w) and
p2 = p(cr;w). In what follows, H = {h : Rd → R} refers to
the LSH family identified by Equation 3 and p(τ ;w) refers to
the corresponding collision probability in Equation 4 unless
otherwise stated.

Next, we introduce a simple but important observation that
inspires us to design a dynamic (K,L)-index.

Observation 1. The hash family is (r, cr, p(1, w0), p(c, w0))-
locality-sensitive for any search radius r and w = rw0, where
w0 is a positive constant.

Proof. It is easy to see that for any search radius r and w =
rw0, the following equation holds:

p(r;w0r) =

∫ w0r
2r

−w0r
2r

f(t) dt =

∫ w0
2

−w0
2

f(t) dt = p(1;w0). (5)

That is, H is (r, cr, p(1, w0), p(c, w0))-locality-sensitive.

By the above observation, we do not need to physi-
cally maintain multiple (K,L)-indexes from (r, cr, p(r, w),
p(cr, w))-locality-sensitive hash family in advance to support
the corresponding (r, c)-NN queries with different r. Instead,
we can dynamically partition buckets with the width required
by different queries via only one (K,L)-index, where K =

log1/p(c;w0)(
n
t), L = (nt)

ρ∗ , ρ∗ = ln 1/p(1;w0)
ln 1/p(c;w0)

and t is a con-
stant to balance the query efficiency and space consumption
(see Remark 2, Section V). As explained in Section V, the
choice of K and L guarantees correctness of DB-LSH for
(r, c)-NN search and c-ANN search. This is a key observation
that leads to our novel approach to be presented next.

IV. OUR METHOD

DB-LSH consists of an indexing phase for mapping and a
query phase for dynamic bucketing. We first give an overview
of this novel approach, followed by detailed descriptions of
the two separate phases.

A. Overview of DB-LSH

Considering the limitations of C2 and MQ discussed earlier,
we propose to keep the basic idea of the static (K,L)-index,
which provides an opportunity to answer c-ANN queries with
the sub-linear query cost. To remove the inherent obstacles
in static (K,L)-index methods, DB-LSH develops a dynamic
bucketing strategy that constructs query-centric hypercubic
buckets with the required width in the query phase. In the
indexing phase, DB-LSH projects each data point into L
K-dimensional spaces by L × K independent LSH func-
tions. Unlike static (K,L)-index methods that quantify the

projected points with a fixed size, we index points in each
K-dimensional space with a multi-dimensional index. In the
query phase, an (r, c)-NN query with sufficiently small r,
say r = 1, is issued at the beginning. To answer this
query, L query-centric hypercubic buckets with width w0 are
constructed and the points in them are found by window
queries. If the retrieved point is within cr of q, DB-LSH
returns it as a correct c-ANN result. Otherwise, the next (r, c)-
NN query with r = c is issued, and the width of the dynamic
hypercubic bucket w is updated from w0 to cw0 accordingly.
By gradually extending the search radii r = c2, c3 . . . and
bucket width w = w0r, DB-LSH achieves finding c-ANN with
a constant success probability on top of just one (K,L)-index
after accessing a maximum of 2tL+ 1 points.

-2 -1 0 1 2 3 4 5 6
2

3

4

5

6

7

8

9

10 o1

 o2

 o3

 o4

 o5

 o6

 o7 o8

 o9

 o10

 o
11

 o12

q

Fig. 2: Search regions of DB-LSH and other LSH methods

Figure 2 gives an intuitive explanation of the advantages
of DB-LSH on the search region. The dotted purple square
is the search region in E2LSH. We can notice that points
close to the query might be hashed to a different bucket
(e.g., o4), especially when q is near to the bucket boundary,
which jeopardizes the accuracy. The gray cross-like region
is the search region of C2. Such an unbounded region is
much bigger than that of DB-LSH (the red square), which
leads to the number of points accessed arbitrarily large in the
worst case and thus incurs a large query cost. The dotted blue
circle is the search region of MQ. Although it is a bounded
region, finding the points in it becomes more complex than in
other regions. DB-LSH still uses hypercubic buckets (search
region) as used in static (K,L)-index methods, but achieves
much better accuracy. The query-centric bucketing strategy
eliminates the hash boundary issue. The overhead of dynamic
bucketing is affordable because of efficient window queries
via multi-dimensional indexes.

To summarize, DB-LSH is hopeful of reaching a given
accuracy with the least query cost among all these methods.
In what follows, we give everything that a practitioner needs
to know to apply DB-LSH.

B. Indexing Phase

The indexing phase consists of two steps: constructing
projected spaces and indexing points by multi-dimensional
indexes.
Constructing projected spaces. Given a (1, c, p1, p2)-
locality-sensitive hash family H, let G be the set of all subsets

with K hash functions chosen independently from H, i.e.,
each element G ∈ G is a K-dimensional compound hash of
the form:

G(o) = (h1(o), h2(o), . . . , hK(o)), (6)

where hj
i.i.d∼ H, j = 1, . . . ,K. Then, we sample L instances

independently from G denoted as G1, G2, . . . , GL, and com-
pute projections of each data object o ∈ D as follows:

Gi(o) = (hi1(o), hi2(o), . . . , hiK(o)); i = 1, . . . , L. (7)

Indexing points by multi-dimensional indexes. In each K-
dimensional projected space, we index points with a multi-
dimensional index. The only requirement of the index is that it
can efficiently answer a window query in the low-dimensional
space. In this paper, we simply choose the R∗-Tree [17] as
our index due to an ocean of optimizations and toolboxes,
which enables the R∗-Tree to perform robustly in practice.
The CR∗-Tree [19], X-tree [7] or multi-dimensional learned
index [21] can certainly be used to potentially further improve
our approach.

C. Query Phase

DB-LSH can directly answer an (r, c)-NN query with
any search radius r by exploiting the (K,L)-index that
has been built for (1, c)-NN in the indexing phase, as de-
scribed in Section IV-B. Algorithm 1 outlines the query
processing. To find the (r, c)-NN of a query q, we con-
sider L K-dimensional projected spaces in order. For each
space, we first compute the hash values of q, i.e., Gi(q) =
(hi1(q), hi2(q), . . . , hiK(q)) (Line 3). Then, a window query,
denoted as W(Gi(q), w0r), is conducted using the R∗-Tree.
To be more specific, W(Gi(q), w) means a query that needs
to return points in the following hypercubic region:

[hi1(q)−
w

2
, hi1(q)+

w

2
]×· · ·×[hiK(q)−w

2
, hiK(q)+

w

2
]. (8)

Without confusion, we also use W(Gi(q), w) to denote a
region as above. For each point falling in such a region, we
compute its distance to q. If the distance is less than cr or we
have verified 2tL+1 points, the algorithm reports the current
point and stops. Otherwise, the algorithm returns nothing.
According to Lemma 2, to be introduced in Section V, DB-
LSH is able to correctly answer an (r, c)-NN query with a
constant success probability.
c-ANN. A c-ANN query can be answered by conducting a
series of (r, c)-NN queries with r = 1, c, c2, Algorithm
2 demonstrates the details of finding c-ANN. Given a query
q and an approximation ratio c, the algorithm starts by the
(1, c)-NN query. After that, if we have found a satisfying
object or have accessed enough points i.e., o 6= ∅ (Line
4), the algorithm reports the current point and terminates
immediately. Otherwise, it enlarges the query radius by a factor
of c and invokes the (r, c)-NN query (Algorithm 1) again till
the termination conditions are satisfied. According to Theorem
1, to be introduced in Section V, DB-LSH is able to correctly
answer a c-ANN query with a constant success probability.

Algorithm 1: (r, c)-NN Query
Input: q: a query point; r: query radius; c: the

approximation ratio; t: a positive integer
Output: A point o or ∅

1 cnt← 0;
2 for i = 1 to L do
3 Compute Gi(q);
4 while a point o ∈ W(Gi(q), w0 · r) is found do
5 cnt← cnt + 1;
6 if cnt = 2tL+ 1 or ‖q, o‖ ≤ cr then
7 return o;

8 return ∅;

Algorithm 2: c-ANN Query
Input: q: a query point; c: the approximation ratio;
Output: A point o

1 r ← 1;
2 while TRUE do
3 o← call (r, c)-NN;
4 if o 6= ∅ then
5 return o;
6 else
7 r ← cr;

Example 2. Figure 3 gives an example of answering a 1.52-
ANN query by DB-LSH, where we choose K = 2 and L = 1
for simplicity. Figure 3(a) and Figure 3(b) exhibit the points in
the original and projected space, respectively. Assume w0 is set
to 1.5. First of all, we issue a (1, c)-NN query in the original
space (the yellow circle in Figure 3(a)). To answer this query,
we conduct window queryW(G(q), w0) in the projected space
(the yellow square in Figure 3(b)). Since no point is found, an
(r, c)-NN query with larger r, i.e., r = c (the red circle in
Figure 3(a)) is issued, and window query W(G(q), w0c) (the
red square in Figure 3(b)) is performed accordingly. Then,
o4 is found as a candidate and we verify it by computing its
original distance to q. Since ‖q, o4‖ = 2 < cr = 2.25 (the
blue circle in Figure 3(a)), o4 is returned as the result.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 o1

 o2

 o3 o4

 o5

 o6

 o7

 o8

 o9

 o10

 o11

 o12

q

(a) Original Space

-2 -1 0 1 2 3 4 5 6
2

3

4

5

6

7

8

9

10 o1

 o2

 o3

 o4

 o5

 o6

 o7 o8

 o9

 o10

 o11

 o12

q

(b) Projected Space

Fig. 3: An example of c-ANN search using DB-LSH

(c, k)-ANN. Algorithm 2 can be easily adapted to answer
(c, k)-ANN queries. Specifically, it suffices to modify the two
termination conditions to the following:
• At a certain (r, c)-NN query, the total number of objects

accessed so far exceeds 2tL + k (corresponding to the
first case in Line 6 of Algorithm 1).

• At a certain (r, c)-NN query, the k-th nearest neighbor
found so far is within distance cr of q (corresponding to
the second case in Line 6 of Algorithm 1).

DB-LSH terminates if and only if one of the situations
happens. Also, apparently Line 7 in Algorithm 1 (or Line 5
in Algorithm 2) should return the k nearest neighbors.

V. THEORETICAL ANALYSIS

It is essential to provide a theoretical analysis of DB-LSH.
First, we discuss the quality guarantees for DB-LSH. Then,
we prove that DB-LSH achieves lower query time and space
complexities, with an emphasis on deriving a smaller ρ∗.

A. Quality Guarantees

We demonstrate that DB-LSH is able to correctly answer a
c2-ANN query. Before proving it, we first define two events
as follows:
E1: If there exists a point o satisfying ‖o, q‖ ≤ r, then

Gi(o) ∈ W(Gi(q), w0r) for some i = 1, . . . , L;
E2: The number of points satisfying two conditions below

is no more than 2tL: 1) ‖o, q‖ > cr; and 2) Gi(o) ∈
W(Gi(q), w0r) for some i = 1, . . . , L.

Lemma 1. For given w0 and t, by setting K = log1/p2(
n
t)

and L = (nt)
ρ∗ where p1 = p(1;w0), p2 = p(c;w0) and

ρ∗ = ln 1/p1
ln 1/p2

, the probability that E1 occurs is at least 1−1/e

and the probability that E2 occurs is at least 1/2.

Proof. If there exists a point o satisfying ‖o, q‖ ≤ r, then the
LSH property implies that for any hij ∈ H, i = 1, . . . L, j =
1, . . . ,K, Pr[|hij(o) − hij(q)| ≤ w0r

2] ≥ p(r;w0r) = p1.
Then, the probability that Gi(o) ∈ W(Gi(q), w0r) ≥ pK1 , and
thus the probability that E1 does not occur will not exceed
(1 − pK1)L. Therefore, Pr[E1] ≥ 1 − (1 − pK1)L ≥ 1 − 1/e
when K and L is set as above. Likewise, if there exists a
point o satisfying ‖o, q‖ > cr, we have Pr[|hij(o)−hij(q)| ≤
w0r
2] ≤ p(cr;w0r) = p2. Then, the probability that Gi(o) ∈
W(Gi(q), w0r) ≤ pK2 = t

n , and thus the expected number
of such points in a certain projected space does not exceed
t
n · n = t. Therefore, the expected number of such points in
all L projected spaces is upper bounded by tL. By Markov’s
inequality, we have Pr[E2] > 1− tL

2tL = 1/2.

It is easy to see that the probability that E1 and E2 hold
at the same time is a constant, which can be computed as
Pr[E1E2] = Pr[E1]− Pr[E1E2] > Pr[E1]− Pr[E2] = 1/2−
1/e. Next, we demonstrate that when E1 and E2 hold at the
same time, Algorithm 1 is correct for answering an (r, c)-NN
query.

Lemma 2. Algorithm 1 answers the (r, c)-NN query with at
least a constant probability of 1/2− 1/e.

Proof. Assume that E1 and E2 hold at the same time, which
occurs with at least a constant probability 1/2 − 1/e. In this
case, if Algorithm 1 terminates after accessing 2tL+1 points,
then the current point o must satisfy ‖q, o‖ ≤ cr due to E2,
and thus a correct result is found. If Algorithm 1 terminates
because of finding a point satisfying ‖q, o‖ ≤ cr, this point is
obviously a correct (r, c)-NN. If L window queries are over
(the algorithm does not terminate because of either already
accessing 2tL + 1 points or finding a point within cr of q),
it indicates that no point satisfying ‖q, o‖ ≤ r due to E1.
According to the definition of (r, c)-NN search, it is reasonable
to return nothing. Therefore, when E1 and E2 hold at the same
time, an (r, c)-NN query is always correctly answered when
Algorithm 1 terminates. That is, Algorithm 1 can answer the
(r, c)-NN query with at least a constant probability of 1/2−
1/e.

Theorem 1. Algorithm 2 returns a c2-ANN (c > 1) with at
least constant probability of 1/2− 1/e.

Proof. We show that when E1 and E2 hold at the same time,
Algorithm 2 returns a correct c2-ANN result. Let o∗ be the
exact NN of query point q in D and r∗ = ‖q, o∗‖. Without
loss of generality, we assume r∗ ≥ 1. Obviously, there must
exist a integer l such that cl ≤ r∗ < c(l+1). Let r0 = cl. When
enlarging the search radius r = 1, c, c2, . . . , we know that r
at termination of Algorithm 2 is at most cr0 due to E1. In
this case, according to Lemma 2, the returned point o satisfies
that ‖q, o‖ ≤ c ·cr0 ≤ c2r∗, and thus a correct c2-ANN result.
Clearly, if Algorithm 1 stops in a smaller r case for either
condition, the returned point satisfy ‖q, o‖ ≤ cr < c · cr0 <
c2r∗. Therefore, Algorithm 2 returns a c2-ANN (c > 1) with
at least constant probability of 1/2− 1/e.

Remark 2. Unlike the classic (K,L)-index methods, where
K and L are set as K = log1/p2 n and L = nρ, we introduce
a constant t to lessen K and L. In this manner, the total
space consumption will be greatly reduced. The overhead of
this strategy is the need to examine at most 2tL candidates
instead of 2L ones, which seems to cause a higher query cost.
However, in fact, none of the efficient LSH methods really
build nρ hash indexes and only check 2 candidates in each
index. Usually, hash indexes much fewer than nρ are already
able to return a sufficiently accurate c-ANN. Therefore, by
introducing t, we tend to get 2t candidates in one index. This
kind of parameter setting is more reasonable and practical.

B. The bound of ρ∗

As proven in [8], ρ is strictly bounded by 1/c when w0

is large enough. Such a large bucket size can not be used
experimentally since it implies a very large value of K to
effectively differentiate points based on their distance. In
contrast, we find that ρ∗ has a smaller bound than 1/c that
can be taken even when the bucket width is not too large. To
make a better understanding and simplify the proof, we prove
the bound of ρ∗ in a special case where w0 is set as 2γc2,
where γ > 0.

Lemma 3. By setting w0 = 2γc2, γ > 0, ρ∗ can be bounded
by 1/cα, where α = γ·f(γ)∫ +∞

γ
f(x)dx

and f(x) is the pdf of the

standard normal distribution.

Proof. Recall that ρ∗ = ln 1/p1
ln 1/p2

, we have

ρ∗ ≤ 1− p1
1− p2

=

∫ +∞
γc2

f(x)dx∫ +∞
γc

f(x)dx
, (9)

according to Lemma 1 in [8]. Given a γ, we prove∫ +∞
γc2

f(x)dx∫ +∞
γc

f(x)dx
≤ 1/cα holds for any c > 1, which is equivalent

to prove the following inequality:

(c2)α
∫ +∞

γc2
f(x)dx ≤ cα

∫ +∞

γc

f(x)dx. (10)

Define a function ϕ(u) = uα
∫ +∞
γu

f(x), u > 1. Inequality 10
holds when ϕ(u) decreases monotonically with u. To ensure
this, let ϕ′(u) < 0, where ϕ′(u) is the derivative function of
ϕ(u), then we have α < γu·f(γu)∫ +∞

γu
f(x)dx

. That is to say, inequality

10 holds when α < γu·f(γu)∫ +∞
γu

f(x)dx
. Denote ξ(v) = v·f(v)∫ +∞

v
f(x)dx

, it

can be proven that ξ(v) increases monotonically with v when
v > 0. Since γ > 0 and u > 1, we have γu > γ, and
thus ξ(γu) = γu·f(γu)∫ +∞

γu
f(x)dx

is greater than ξ(γ) = γ·f(γ)∫ +∞
γ

f(x)dx
.

Therefore, α can be set as ξ(γ) and then ρ∗ is always bounded
by 1/cα when w0 = 2γc2.

ξ(γ) > 1 holds when γ > 0.7518, which subsequently
provides ρ∗ a bound smaller than 1/c. The value of α increases
with w0, and ρ∗ approaches to 0 when w0 approaches to
infinity. That is, the query cost can be very small when w0

is large enough. However, a large bucket size implies a very
large K in order to reduce the number of false positives, so w0

should typically be set to a similar interval range as in other
(K,L)-index methods. Recall that LSB [35] sets the bucket
size to 16 with approximate ratio c = 2, we can equivalently
set γ = 2 (i.e., w0 = 4c2) to make w0 also be 16 when c = 2.
Then, according to Lemma 3, α = 4.746 and the bound is
1/c4.746 as compared to the bound of 1/c in [35]. Note that
α can be less than 1 when γ < 0.7518. In this case, 1/cα no
longer seems to be a better bound than 1/c. However, it will
not necessarily lead to ρ∗ > ρ. Figure 4(a) gives an example
that ρ∗ < ρ when α < 1. By setting w = 0.4c2, ρ exceeds 1/c
when c < 2, which means it is not bounded by 1/c, while ρ∗ is
always bounded by 1/cα and smaller than ρ. The main reason
is that 1/c is just an asymptotic bound of ρ approachable only
by a very large bucket size, while 1/cα is a non-asymptotic
result and ρ∗ is always much smaller than 1/cα. Besides, it is
not necessary to set γ < 0.7518, since it implies a very large
value of L. For example, if w is close to 0, L will be O(n)
which makes (K,L)-index based methods unpractical. Figure
4(b) gives a clear comparison for the decided advantage of
ρ∗ over ρ by setting a reasonable value w = 4c2. ρ is very
close to 1/c, while ρ∗ has a much smaller bound and decreases
rapidly to 0.

1 10 20 30 40 50 60 70 80 90 100
k

0.98

0.99

1.00

1.01
* 1/c 1/c

1 2 3 4
 c

0

0.2

0.4

0.6

0.8

1

(a) w = 0.4c2

1 2 3 4
 c

0

0.2

0.4

0.6

0.8

1

(b) w = 4c2

Fig. 4: ρ∗ v.s. ρ

C. Complexity Analysis

Similar to other (K,L)-index based methods whose time
complexity and space complexity are affected by ρ, the com-
plexities of DB-LSH are affected by ρ∗.

Theorem 2. DB-LSH answers a c2-ANN query in
O(nρ

∗
d log n) time and O(n1+ρ

∗
log n) index size, where

ρ∗ is bounded by 1/cα and smaller than ρ defined in static
(K,L)-index methods.

Proof. It is obvious that K = O(log n) and L = O(nρ
∗
).

Therefore, the index size is O(KL · n) = O(n1+ρ
∗
log n).

In DB-LSH, we need to first compute K × L hash val-
ues of query point, the computational cost of which is
O(KL · d) = O(nρ

∗
d log n). When finding candidates, it

takes O(log n) time to find a candidate using R∗-Trees. Since
we need to retrieve at most 2tL candidate points, the cost
of generating candidates is O(log n · 2tL) = O(nρ

∗
log n).

In the verification phase, each candidate point spends O(d)
time on distance computation, so the total verification cost is
O(2tL · d) = O(nρ

∗
d). Therefore, the query time of DB-LSH

is bounded by O(nρ
∗
d log n) + O(nρ

∗
log n) + O(nρ

∗
d) =

O(nρ
∗
d log n).

VI. EXPERIMENTAL STUDY

We implement DB-LSH1 and the competitors in C++ com-
piled in a single thread with g++ using O3 optimization. All
experiments are conducted on a server running 64-bit Ubuntu
20.04 with 2 Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz
and 254 GB RAM.

A. Experimental Settings

Datasets and Queries. We employ 10 real-world datasets
varying in cardinality, dimensionality and types, which are
used widely in existing LSH work [20], [21], [26], [27], [38].
For the sake of fairness, we make sure that each dataset is
used by at least one of our competitors. Table III summarizes
the statistics of the datasets. Note that both SIFT10M and
SIFT100M consist of points randomly chosen from SIFT1B
dataset2. For queries, we randomly select 100 points as queries
and remove them from the datasets.

1https://github.com/Jacyhust/DB-LSH
2http://corpus-texmex.irisa.fr/

TABLE III: Summary of Datasets

Datasets Cardinality Dim. Types
Audio 54,387 192 Audio

MNIST 60,000 784 Image
Cifar 60,000 1024 Image
Trevi 101,120 4096 Image
NUS 269,648 500 SIFT Description

Deep1M 1,000,000 256 DEEP Description
Gist 1,000,000 960 GIST Description

SIFT10M 10,000,000 128 SIFT Description
TinyImages80M 79,302,017 384 GIST Description

SIFT100M 100,000,000 128 SIFT Description

Competitors. We compare DB-LSH with 5 LSH methods as
mentioned in Section II, i.e., LCCS-LSH [20], PM-LSH [38],
VHP [27] and R2LSH [26] and LSB-Forest [35]. LCCS-LSH
adopts a query-oblivious LSH indexing strategy with a novel
search framework. PM-LSH is a typical dynamic MQ method
that adopts PM-Tree to index the projected data. R2LSH and
VHP are representative C2 methods that improve QALSH
from the perspective of search regions. LSB-Forest is a static
(K,L)-index method that can answer c-ANN queries for any
c > 1 with only one suit of indexes. In addition, to study the
effectiveness of query-centric dynamic bucketing strategy in
DB-LSH, we design a static (K,L)-index method called Fixed
Bucketing-LSH (FB-LSH) by replacing the dynamic bucketing
part in DB-LSH with the fixed bucketing. Note that FB-LSH is
not equivalent to E2LSH since only one suit of (K,L)-index
is used.
Parameter Settings. By default, all algorithms are conducted
to answer (c, k)-ANN queries with k = 50. For DB-LSH, we
set the approximation ratio c = 1.5 and w = 4c2. L is fixed
as 5. K = 12 for the datasets with cardinality greater than
1M and K = 10 for the rest datasets. Parameter settings of
competitors follow the original papers or their source codes.
Specifically, for LCSS-LSH, we set m = 64 and #probes ∈
{256, 512}. For PM-LSH, we set c = 1.5 and use m = 15
hash functions, β = 0.08. For R2LSH, we are recommended
to set λ, m and β to 0.7, 40 and 30. For VHP, we set t0 = 1.4
and m = 60 for the datasets except Gist, Trevi and Cifar. For
these three datasets, m is set as 80 since they have much higher
dimensionality. For LSB-Forest, we set B = 1024 ∼ 4096KB
based on the dimensionality of the datasets. Then l and m
can be computed by l =

√
dn/B and m = log1/p2 dn/B. To

achieve comparable query accuracy with the competitors, we
increase the total number of leaf entries in LSB-Forest from
4Bl/d to 40Bl/d. For FB-LSH, we set the approximation ratio
c = 1.5 and w = 4c2. K is fixed as 5 and L ranges from 10
to 12 based on the cardinality of the datasets.
Evaluation Metric. There are five metrics in total. Two
metrics are used to evaluate the indexing performance: namely,
index size and indexing time. Three metrics are used to
evaluate the query performance: query time, overall ratio
and recall. For a (c, k)-ANN query, let the returned set be

R = {o1, . . . , ok} with points sorted in ascending order
of their distances to the query point and the exact k-NN
R∗ = {o∗1, . . . , o∗k}, then the overall ratio and recall are defined
as follows [38].

OverallRatio =
1

k

k∑
i=1

‖q, oi‖
‖q, o∗i ‖

(11)

Recall =
|R ∩R∗|

k
(12)

We repeatedly conduct each algorithm 10 times for all 100
queries and report the average query time, overall ratio and
recall. Since LSB-Forest, R2LSH and VHP are disk-based
methods, we only take their CPU time as the query time for
fairness. For FB-LSH, we omit the search time for candidates
in R∗-Tree when computing the query time so as to mimic the
fast lookup of candidates through hash tables in static (K,L)-
index methods. Such time cannot be ignored in DB-LSH.

B. Performance Overview

In this subsection, we provide an overview of the average
query time, overall ratio, recall and indexing time of all
algorithms with default parameter settings on all datasets, as
shown in Table IV. We do not run LSB-Forest on TinyIm-
ages80M and SIFT100M, since their storage consumption is
considerably huge (more than 10TB to store the indexes).

1) DB-LSH and FB-LSH: we first make a brief compar-
ison of DB-LSH and FB-LSH, where the number of hash
functions K ×L is set to the same value. The only difference
between them is whether a query-centric bucket is used or not.
As we can see from Table IV, DB-LSH saves 10-70% of the
query time compared to FB-LSH but reaches a higher recall
and smaller overall ratio. In other words, DB-LSH achieves
better accuracy with higher efficiency. The main reason is that
although DB-LSH spends more time searching for candidates
in the R∗-Trees, the number of required candidates is reduced
due to the high quality of candidates in query-centric buckets.

2) Indexing Performance: The indexing time and index
size of all algorithms with the default settings are considered in
this set of experiments. Since the index size of all algorithms
except LSB-Forest can be easily estimated by IndexSize =
n × #HashFunctions, we compare the index size by the
number of hash functions used in each algorithm as mentioned
in the parameter settings and do not list them again in the Table
IV. We can see that the index sizes are close for all algorithms
except PM-LSH, which demonstrates that DB-LSH eliminates
the space consumption issue in (K,L)-index methods. In LSB-
Forest, data points are also stored in each indexes, which leads
to extremely large space consumption. Besides, the value of L
in LSB-Forest is O(

√
n). It also makes LSB-Forest ill-adapted

to the large-scale datasets. For example, L reaches to 485 for
Gist and 560 for SIFT10M. For the indexing time, as shown
in Table IV, we have the following observations: (1) DB-LSH
achieves the smallest indexing time on all datasets. The reason
is twofold. First, DB-LSH adopts the bulk-loading strategy
to construct R∗-Trees, which is a more efficient strategy than

TABLE IV: Performance Overview

DB-LSH FB-LSH LCCS-LSH PM-LSH R2LSH VHP LSB-Forest
Query Time (ms) 4.962 5.434 5.797 5.459 8.748 11.32 18.52

Overall Ratio 1.003 1.008 1.006 1.003 1.005 1.006 1.005
Recall 0.9268 0.8512 82.04 0.9212 0.868 0.8580 0.4676

Audio

Indexing Time (s) 0.099 0.164 2.126 0.166 2.764 1.626 19.55

Query Time (ms) 7.684 9.304 19.89 13.87 12.95 15.37 37.35
Overall Ratio 1.005 1.018 1.007 1.005 1.005 1.008 1.010

Recall 0.9130 0.7580 0.8038 0.9098 0.8756 0.8426 0.3734
MNIST

Indexing Time (s) 0.149 0.192 1.942 0.189 6.231 5.457 92.26

Query Time (ms) 12.54 16.37 17.66 17.53 21.81 19.31 59.66
Overall Ratio 1.002 1.006 1.006 1.004 1.003 1.014 1.010

Recall 0.9156 0.8018 0.7150 0.8742 0.8784 0.6322 0.1496
Cifar

Indexing Time (s) 0.149 0.209 1.941 0.199 8.261 6.844 146.27

Query Time (ms) 48.20 61.74 113.7 52.23 53.10 176.47 271.56
Overall Ratio 1.001 1.010 1.003 1.002 1.003 1.003 1.007

Recall 0.9338 0.6818 0.7816 0.8918 0.8100 0.8798 0.1588
Trevi

Indexing Time (s) 0.232 0.374 6.572 0.386 46.08 44.05 1347.9

Query Time (ms) 36.07 58.75 79.15 68.38 93.13 103.33 155.72
Overall Ratio 1.0008 1.011 1.004 1.011 1.012 1.010 1.009

Recall 0.5532 0.4656 0.5376 0.4637 0.4494 0.4972 0.1080
NUS

Indexing Time (s) 0.768 1.655 40.032 1.190 23.40 15.86 798.45

Query Time (ms) 127.16 170.24 163.24 327.58 188.84 243.53 377.60
Overall Ratio 1.004 1.010 1.004 1.004 1.005 1.014 1.003

Recall 0.8784 0.7376 0.8530 0.8594 0.8354 0.5048 0.4524
Deep1M

Indexing Time (s) 5.704 7.856 159.41 6.141 61.79 34.57 3498.3

Query Time (ms) 164.03 265.90 335.67 339.63 288.63 384.77 761.02
Overall Ratio 1.004 1.007 1.003 1.006 1.010 1.016 1.005

Recall 0.8098 0.7360 0.7248 0.7566 0.6442 0.5180 0.2736
Gist

Indexing Time (s) 6.056 7.811 178.74 8.038 139.93 105.98 11907

Query Time (ms) 963.17 2633.9 2774.66 1922.4 3998 9723.4 2667.9
Overall Ratio 1.001 1.002 1.002 1.001 1.001 1.006 1.001

Recall 0.9602 0.9420 0.9192 0.9469 0.9560 0.8248 0.7206
SIFT10M

Indexing Time (s) 86.49 123.46 159.31 101.71 506.13 263.19 23631

Query Time (ms) 14511 28854 21101 29023 35396 164194 \
Overall Ratio 1.002 1.004 1.002 1.005 1.035 1.014 \

Recall 0.8922 0.8144 0.8384 0.8164 0.6303 0.7720 \
TinyImages80M

Indexing Time (s) 1198.9 2663.3 23911 2153.5 6508.1 4265.1 \

Query Time (ms) 7961.6 10287 25342 26724 25467 163531 \
Overall Ratio 1.001 1.009 1.004 1.001 1.019 1.006 \

Recall 0.9618 0.7960 0.8568 0.9597 0.6180 0.7980 \
SIFT100M

Indexing Time (s) 1638.1 3414.3 10912 2552.6 5404.6 3442.9 \

conventional insertion strategies. It takes less time to construct
5 R∗-Trees than PM-LSH to build a PM-Tree. Second, DB-
LSH requires only 5 indexes, which is much smaller than
those in LCCS-LSH, R2LSH and VHP. In addition, R2LSH
and VHP have close indexing time since they both adopt B+-
Trees as indexes. LCSS has a much longer indexing time than
other algorithms due to its complex index structure, CSA. The
indexing time of LSB-Forest is also very long because LSB-
Forest uses several times the number of indexes than other
algorithms. (2) The indexing time is almost determined by
the cardinality of the dataset and it increases super-linearly

with cardinality in all algorithms. For example, MNIST and
Cifar have the same cardinality and almost the same indexing
time. All algorithms take more than 10 times longer to build
indexes on dataset SIFT100M than on SIFT10M. It implies
that it is time-consuming to construct indexes for very large-
scale datasets, and therefore, the smallest indexing time gives
DB-LSH a great advantage.

3) Query Performance: In this set of experiments, we
study the average query time, recall and overall ratio of all
algorithms in the default settings. According to the results
shown in Table IV, we have the following observations: (1)

DB-LSH offers the best query performance on all datasets.
The higher recall, smaller overall ratio and shorter query time
indicate DB-LSH outperforms all competitor algorithms on
both efficiency and accuracy. In particular, on very large-
scale datasets TinyImages80M and SIFT100M (14.5s and
7.9s), DB-LSH not only takes just about half query time of
PM-LSH, R2LSH, VHP and LSB-Forest, but also reaches
a higher accuracy. Only LCCS-LSH and FB-LSH achieve
the comparable query time on these two large-scale datasets
(21s and 10.3s). The reason DB-LSH achieves the best per-
formances can be concluded as follows: a) compared with
query-oblivious methods (LCCS-LSH, LSB-Forest), query-
centric methods can obtain higher quality candidates since
they address the hash boundary issue; b) compared with other
query-centric methods (C2), both MQ and DB-LSH perform
better due to the bounded search region; c) compared with
MQ that adopts only one index, DB-LSH uses L indexes to
miss fewer exact NNs, and thus achieving better recall and
ratio. (2) The query accuracy, especially recall, varies with
datasets. All algorithms can achieve 80-90% recall on most
datasets. On NUS, all algorithms perform slightly inferior due
to intrinsically complex distribution (that can be quantified
by relative contrast and local intrinsic dimensionality [12],
[22], [38]), but DB-LSH still has a lead. (3) The query
performance of VHP and R2LSH are considerably worse than
other algorithms on large-scale datasets TinyImages80M and
SIFT100M. VHP takes as long as linear scan (164s and 163s)
and R2LSH is difficult to reach an acceptable recall (0.63
and 0.61) or overall ratio. Therefore, we do not report the
results of them on TinyImages80M and SIFT100M in the
subsequent experiments. (4) No matter which datasets, LSB-
Forest always needs the longest query time to reach a similar
accuracy. Its query time grows rapidly with the cardinality
and dimensionality of the dataset. As many as O(

√
nd) index

accesses make LSB-Forest not comparable to others, so we do
not report it in the rest experiments.

C. Evaluation of Query Performance

1) Effect of n: In order to investigate how the dataset
cardinality affects the query performance, we randomly pick
up 0.2n, 0.4n, 0.6n, 0.8n and n data points from the original
dataset and compare the query performance of all algorithms
on them in the default parameters. Due to the space limitation,
we only report the results on Gist and TinyImages80M,
which are representative due to their different cardinality and
dimensionality. The comparative results are shown in Figure 5-
7. Clearly, DB-LSH has a lead advantage over all competitors
under all evaluation metrics when varying the cardinality.
Although the query time increases with the cardinality, DB-
LSH grows much slower than other algorithms. The reason
is that DB-LSH truly achieves a sub-linear query cost. In
terms of query accuracy, all algorithms, especially DB-LSH,
LCCS-LSH and PM-LSH, achieve relatively stable recall and
overall ratio, because query accuracy depends mainly on the
data distribution. Although the cardinality increases, the data
distribution remains essentially the same, and therefore the

1 10 20 30 40 50 60 70 80 90 100
k

0.98

0.99

1.00

1.01

DB-LSH

FB-LSH

LCCS-LSH

PM-LSH

R2LSH

VHP

0.2 0.4 0.6 0.8 1.0
n

0

100

200

300

400
Time (ms)

(a) Gist

0.2 0.4 0.6 0.8 1.0
n

5

10

15

20

25

30
Time (s)

(b) TinyImages80M

Fig. 5: Query Time when Varying n

0.2 0.4 0.6 0.8 1.0
n

0.5

0.6

0.7

0.8
Recall

(a) Gist

0.2 0.4 0.6 0.8 1.0
n

0.6

0.7

0.8

0.9

Recall

(b) TinyImages80M

Fig. 6: Recall when Varying n

0.2 0.4 0.6 0.8 1.0
n

1.005

1.010

1.015

1.020

Ratio

(a) Gist

0.2 0.4 0.6 0.8 1.0
n

1.002

1.004

1.006

1.008
Ratio

(b) TinyImages80M

Fig. 7: Overall Ratio when Varying n

accuracy does not change much. The accuracy of FB-LSH is
a bit unsteady due to hash boundary issue. As we can see, DB-
LSH keeps performing better than all competitor algorithms.

2) Effect of k: In this set of experiments, we study the
query performance in the default parameters when varying k
in {1, 10, 20, · · · , 100}. Due to the space limitation, we only
report recall and overall ratio on Gist and TinyImages80M
in Figure 8. The query time is omitted because the curve
does not change much with k. As expected, DB-LSH again
yields the best accuracy, i.e., the highest recall and the smallest
overall ratio. As k increases, all algorithms have slightly
worse accuracy because the average number of candidates
checked for one result decreases, making the probability of
missing some exact NNs slightly higher and thus affecting the
accuracy. At each k, DB-LSH keeps outperforming the second
best algorithms by an average of 5-10% recall. Considering
the smaller query time in DB-LSH (see Table IV), DB-LSH
achieves better accuracy with higher efficiency for all k.

3) Recall-Time and OverallRatio-Time Curves: In this set
of experiments, we plot the recall-time and overall ratio-time
curves by varying the approximation ratio c for all algorithms
to get a complete picture of the trade-off between the query

1 10 20 30 40 50 60 70 80 90 100
k

0.98

0.99

1.00

1.01
DB-LSH FB-LSH LCCS-LSH PM-LSH R2LSH VHP

1 10 20 30 40 50 60 70 80 90 100
k

0.5

0.6

0.7

0.8

0.9

1.0Recall

(a) Recall on Gist

1 10 20 30 40 50 60 70 80 90 100
k

1.000

1.005

1.010

1.015

1.020
Ratio

(b) OverRatio on Gist

1 10 20 30 40 50 60 70 80 90 100
k

0.75

0.80

0.85

0.90

0.95
Recall

(c) Recall on TinyImages80M

1 10 20 30 40 50 60 70 80 90 100
k

1.000

1.002

1.004

1.006Ratio

(d) OverRatio on TinyImages80M

Fig. 8: Performance when Varying k

0 50 100 150
Time (ms)

0.2

0.4

0.6

0.8

1.0Recall

(a) Trevi

200 400 600
Time (ms)

0.2

0.4

0.6

0.8

Recall

(b) Gist

1 2 3 4
Time (s)

0.4

0.6

0.8

1.0
Recall

(c) SIFT10M

20 40 60 80 100
Time (s)

0.4

0.6

0.8

1.0

Recall

(d) TinyImages80M

Fig. 9: Recall-Time Curves

0 50 100 150
Time (ms)

1.00

1.01

1.02

1.03

1.04
Ratio

(a) Trevi

200 400 600
Time (ms)

1.00

1.02

1.04

Ratio

(b) Gist

1 2 3 4
Time (s)

1.00

1.01

1.02

1.03

Ratio

(c) SIFT10M

20 40 60 80 100
Time (s)

1.00

1.01

1.02

1.03
Ratio

(d) TinyImages80M

Fig. 10: Ratio-Time Curves

efficiency and query accuracy. Figures 9-10 present the results
on datasets Trevi, Gist, SIFT10M and TinyImages80M. From
the figures, we have the following observations: (1) Among
all algorithms, DB-LSH takes the least time to reach the same
recall or overall ratio, which indicates DB-LSH achieves the
best trade-off between accuracy and efficiency. The reason is
that DB-LSH requires the fewest number of candidates to be
accessed for a given accuracy among all algorithms. Compared
to the second best algorithm on different datasets, DB-LSH can
reduce the query time by 10-70% for given recall. (2) DB-LSH
always performs best, but the second best algorithms vary:
R2LSH and PM-LSH on Trevi, R2LSH and FB-LSH on Gist,
PM-LSH and FB-LSH on SIFT10M, PM-LSH and LCCS-LSH
on TinyImages80M. R2LSH performs well on small datasets
but becomes worse on larger datasets. (3) As the query time
increases, all algorithms return more accurate results, which
is in line with the philosophy of LSH methods, i.e., trading
accuracy for efficiency.

VII. CONCLUSION

In this paper, we have proposed a novel LSH approach
called DB-LSH for approximate nearest neighbor query pro-

cessing in high-dimensional spaces with strong theoretical
guarantees. By decoupling the hashing and bucketing pro-
cesses of the (K,L)-index and managing the projected points
with a multi-dimensional index, DB-LSH can significantly
reduce index size. A query-centric dynamic bucketing strategy
has been developed to avoid the hash boundary issue and
thus generate high-quality candidates. We proved theoretically
that DB-LSH can achieve a smaller ρ∗ bounded by 1/c4.746

when the initial bucket size is w0 = 4c2, which enables us
to simultaneously reduce the query processing time and index
space complexity of (K,L)-index methods. A thorough range
of experiments showed that DB-LSH comprehensively out-
performs all competitor algorithms in terms of both efficiency
and accuracy without the need for large indexes. DB-LSH can
reduce the query time by an average of 40% compared to the
second best competitors. In the future, we plan to improve this
work further by considering more efficient search strategies
and early termination conditions.

ACKNOWLEDGMENT

This research is partially supported by The Hong Kong
Jockey Club Charities Trust.

REFERENCES

[1] M. A. Abdulhayoglu and B. Thijs. Use of locality sensitive hashing
(LSH) algorithm to match web of science and scopus. Scientometrics,
116(2):1229–1245, 2018.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions. In FOCS, pages 459–468.
IEEE Computer Society, 2006.

[3] A. Andoni and P. Indyk. LSH algorithm and implementation (E2LSH),
2016.

[4] A. Andoni, P. Indyk, T. Laarhoven, I. P. Razenshteyn, and L. Schmidt.
Practical and optimal LSH for angular distance. In NIPS, pages 1225–
1233, 2015.

[5] A. Andoni and I. P. Razenshteyn. Optimal data-dependent hashing for
approximate near neighbors. In STOC, pages 793–801, 2015.

[6] M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-tuning indexes
for similarity search. In WWW, pages 651–660, 2005.

[7] S. Berchtold, D. A. Keim, and H. Kriegel. The x-tree : An index structure
for high-dimensional data. In VLDB, pages 28–39. Morgan Kaufmann,
1996.

[8] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Symposium on
Computational Geometry, pages 253–262, 2004.

[9] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme
based on dynamic collision counting. In SIGMOD, pages 541–552,
2012.

[10] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi. DSH: data sensitive
hashing for high-dimensional k-nnsearch. In SIGMOD, pages 1127–
1138, 2014.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, pages 518–529, 1999.

[12] J. He, S. Kumar, and S. Chang. On the difficulty of nearest neighbor
search. In ICML, 2012.

[13] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural
collaborative filtering. In WWW, pages 173–182, 2017.

[14] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-aware locality-
sensitive hashing for approximate nearest neighbor search. PVLDB,
9(1):1–12, 2015.

[15] Q. Huang, Y. Lei, and A. K. H. Tung. Point-to-hyperplane nearest
neighbor search beyond the unit hypersphere. In SIGMOD Conference,
pages 777–789. ACM, 2021.

[16] Q. Huang, G. Ma, J. Feng, Q. Fang, and A. K. H. Tung. Accurate and
fast asymmetric locality-sensitive hashing scheme for maximum inner
product search. In KDD, pages 1561–1570, 2018.

[17] S. Hwang, K. Kwon, S. K. Cha, and B. S. Lee. Performance evaluation
of main-memory r-tree variants. In SSTD, volume 2750 of Lecture Notes
in Computer Science, pages 10–27. Springer, 2003.

[18] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC, pages 604–613, 1998.

[19] K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional index
trees for main memory access. In SIGMOD Conference, pages 139–150.
ACM, 2001.

[20] Y. Lei, Q. Huang, M. S. Kankanhalli, and A. K. H. Tung. Locality-
sensitive hashing scheme based on longest circular co-substring. In
SIGMOD Conference, pages 2589–2599. ACM, 2020.

[21] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan. LISA: A learned index
structure for spatial data. In SIGMOD Conference, pages 2119–2133.
ACM, 2020.

[22] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin.
Approximate nearest neighbor search on high dimensional data - ex-
periments, analyses, and improvement. IEEE Trans. Knowl. Data Eng.,
32(8):1475–1488, 2020.

[23] W. Liu, H. Wang, Y. Zhang, W. Wang, and L. Qin. I-LSH: I/O efficient
c-approximate nearest neighbor search in high-dimensional space. In
ICDE, pages 1670–1673, 2019.

[24] W. Liu, H. Wang, Y. Zhang, W. Wang, L. Qin, and X. Lin. Ei-lsh: An
early-termination driven i/o efficient incremental c-approximate nearest
neighbor search. VLDBJ, pages 1–21, 2020.

[25] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen. SK-LSH: an efficient
index structure for approximate nearest neighbor search. PVLDB,
7(9):745–756, 2014.

[26] K. Lu and M. Kudo. R2LSH: A nearest neighbor search scheme based
on two-dimensional projected spaces. In ICDE, pages 1045–1056. IEEE,
2020.

[27] K. Lu, H. Wang, W. Wang, and M. Kudo. VHP: approximate nearest
neighbor search via virtual hypersphere partitioning. Proc. VLDB
Endow., 13(9):1443–1455, 2020.

[28] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe
LSH: efficient indexing for high-dimensional similarity search. In VLDB,
pages 950–961, 2007.

[29] U. Manber and G. Myers. Suffix arrays: A new method for on-line
string searches. In SODA, pages 319–327. SIAM, 1990.

[30] B. Neyshabur and N. Srebro. On symmetric and asymmetric lshs for
inner product search. In ICML, volume 37, pages 1926–1934, 2015.

[31] R. Panigrahy. Entropy based nearest neighbor search in high dimensions.
In SODA, pages 1186–1195, 2006.

[32] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive hashing for
fast similarity search. PVLDB, 5(5):430–441, 2012.

[33] A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for sublinear time
maximum inner product search (MIPS). In NIPS, pages 2321–2329,
2014.

[34] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving c-
approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index. PVLDB, 8(1):1–12, 2014.

[35] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In SIGMOD, pages 563–576, 2009.

[36] A. A. Winecoff, F. Brasoveanu, B. Casavant, P. Washabaugh, and
M. Graham. Users in the loop: a psychologically-informed approach
to similar item retrieval. In RecSys, pages 52–59. ACM, 2019.

[37] X. Yan, J. Li, X. Dai, H. Chen, and J. Cheng. Norm-ranging LSH for
maximum inner product search. In NeurIPS, pages 2956–2965, 2018.

[38] B. Zheng, X. Zhao, L. Weng, N. Q. V. Hung, H. Liu, and C. S. Jensen.
PM-LSH: A fast and accurate LSH framework for high-dimensional
approximate NN search. Proc. VLDB Endow., 13(5):643–655, 2020.

[39] Y. Zheng, Q. Guo, A. K. H. Tung, and S. Wu. Lazylsh: Approximate
nearest neighbor search for multiple distance functions with a single
index. In SIGMOD, pages 2023–2037, 2016.

	I Introduction
	II Related Work
	II-A Mainstream LSH Methods
	II-B Additional LSH Methods

	III Preliminaries
	III-A Problem Definitions
	III-B Locality-Sensitive Hashing
	III-C Locality-Sensitive Hashing with Dynamic Bucketing

	IV Our Method
	IV-A Overview of DB-LSH
	IV-B Indexing Phase
	IV-C Query Phase

	V Theoretical Analysis
	V-A Quality Guarantees
	V-B The bound of *
	V-C Complexity Analysis

	VI Experimental study
	VI-A Experimental Settings
	VI-B Performance Overview
	VI-B1 DB-LSH and FB-LSH
	VI-B2 Indexing Performance
	VI-B3 Query Performance

	VI-C Evaluation of Query Performance
	VI-C1 Effect of n
	VI-C2 Effect of k
	VI-C3 Recall-Time and OverallRatio-Time Curves

	VII Conclusion
	References

