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ABSTRACT
In temporal interaction networks, vertices correspond to entities,

which exchange data quantities (e.g., money, bytes, messages) over

time. Tracking the origin of data that have reached a given vertex at

any time can help data analysts to understand the reasons behind

the accumulated quantity at the vertex or behind the interactions

between entities. In this paper, we study data provenance in a tem-

poral interaction network. We investigate alternative propagation

models that may apply to different application scenarios. For each

such model, we propose annotation mechanisms that track the

origin of propagated data in the network and the routes of data

quantities. Besides analyzing the space and time complexity of these

mechanisms, we propose techniques that reduce their cost in prac-

tice, by either (i) limiting provenance tracking to a subset of vertices

or groups of vertices, or (ii) tracking provenance only for quantities

that were generated in the near past or limiting the provenance data

in each vertex by a budget constraint. Our experimental evaluation

on five real datasets shows that quantity propagation models based

on generation time or receipt order scale well on large graphs; on

the other hand, a model that propagates quantities proportionally

has high space and time requirements and can benefit from the

aforementioned cost reduction techniques.

1 INTRODUCTION
Many real world applications can be represented as temporal inter-
action networks (TINs) [21], where vertices correspond to entities

or hubs that exchange data over time. Examples of such graphs

are financial exchange networks, road networks, social networks,

communication networks, etc. Each interaction 𝑟 in a TIN is charac-

terized by a source vertex 𝑟 .𝑠 , a destination vertex 𝑟 .𝑑 , a timestamp

𝑟 .𝑡 and a quantity 𝑟 .𝑞 (e.g., money, passengers, messages, kbytes,

etc.) transferred at time 𝑟 .𝑡 .
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Figure 1: Example of quantity transfer (FIFO policy)

Objective andMethodology In this paper, we study a provenance

problem in TINs. Our goal is to track the origin (source) of the

quantities that are accumulated at the vertices over time. To do so,

we first need to specify how data are transferred from one vertex

to another and when new quantities are generated. In general, we

assume that each vertex 𝑣 has a buffer 𝐵𝑣 (e.g., bitcoin wallet) [12],

wherein it accumulates all incoming quantities to 𝑣 . Naturally, the

buffer 𝐵𝑣 changes over time. Specifically, each interaction 𝑟 from a

vertex 𝑟 .𝑣 to a vertex 𝑟 .𝑢 transfers 𝑟 .𝑞 units from 𝐵𝑟 .𝑣 to 𝐵𝑟 .𝑢 at time

𝑟 .𝑡 . If 𝐵𝑟 .𝑣 has less than 𝑞 units by time 𝑟 .𝑡 , then the difference must

be generated at 𝑟 .𝑣 before being transferred to 𝑟 .𝑢. In a financial

exchange network, generation of new quantities could mean that

new assets are brought into the network from external sources

(e.g., a user buys bitcoins by paying USD). In a road network, new

quantities are cars entering the network from a given location.

We propose solutions that proactively create and propagate light-
weight provenance information in the TIN for the generated quan-

tities, as they are transferred through the network. This way, we

can obtain the origins of the quantities at vertices at any time. We

define and study alternative information propagation models that

may apply to different application scenarios. Specifically, consider

an interaction 𝑟 from a vertex 𝑟 .𝑣 to a vertex 𝑟 .𝑢, which transfers

𝑟 .𝑞 units and assume that 𝑟 .𝑞 is smaller than the current number of

units in buffer 𝐵𝑟 .𝑣 . In this case, 𝑟 .𝑞 units should be selected from
the buffer to be transferred, based on a policy. The selection policy

could prioritize quantities based on the time they were first gen-

erated at their origins, or on the order they were added to 𝐵𝑟 .𝑣 , or

could select quantities proportionally based on their origins. For

instance, Figure 1 shows the buffers 𝐵𝑣 and 𝐵𝑢 of two vertices 𝑣

and 𝑢 before and after an interaction ⟨𝑣,𝑢, 𝑡𝑖 , 5⟩. The quantities in
the buffers are organized as a FIFO queue based on their origins

(e.g., 𝐵𝑣 contains 4 and 3 units originating from vertex𝑤 and ver-

tex 𝑧, respectively). Based on the FIFO policy, all 4 units from 𝑤

are selected to be transferred plus 1 unit from 𝑧. For each of the

selection policies that we consider, we propose provenance update

mechanisms and study efficient and space-economic algorithms for

annotation propagation.

Previous Work To our knowledge, there is no previous work that

studies data provenance in TINs. Within our framework, we define

and use data transfer models for TINs, which are based on data
relay, i.e., data units that move in the network are not cloned or

deleted. On the other hand, most previous works define and study

information diffusion models [29, 41], where data items (e.g., news,

rumors, etc.) are spread in the network and the main objective is

to identify the vertices of maximal influence in the network [25],

targeting applications such as viral marketing. Hence, previous

efforts on provenance tracing for social networks [3, 45] are based

on different information propagation models compared to our work.

Data provenance is a core concept in database query evaluation

[6] and workflow graphs [8, 40]. The main motivation is tracing the

raw data which contribute to a query output. Data provenance finds

use in most types of networks (e.g., threat identification in commu-

nication networks [19]). Data provenance can be categorized into:

where, how and why provenance [9]. Where-provenance identifies
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the raw data which contribute to some output, why-provenance

identifies the sources (e.g., tuples) that influenced the output [30–

32], and how-provenance explains how the input sources contribute

to the output. Our work focuses on solving both the where- and

why-provenance problem in TINs, i.e., find the vertices that con-

tribute to each vertex over time. We also extend our solution to

support how-provenance, i.e., capture the paths that have been

followed by quantities. Our solutions can shed light to the reasons

behind the accumulation of a quantity at a given vertex. Key differ-

ences to previous work on data provenance are: (i) in our problem,

any vertex of the graph can be the origin of a quantity and any ver-

tex can also be the destination of a propagated quantity; and (ii) we

support the maintenance of provenance information in real-time,

as new interactions take place in a streaming fashion.

Applications Solving our provenance problem in TINs finds appli-

cation in various domains. In financial networks, tracking the origin

of financial units that move between accounts can help in analyzing

their relationships. For example, we can identify the accounts that

(indirectly) contributed the most in financing a suspicious account.

We can also characterize accounts based on whether they receive

funds from numerous or few sources, or identify groups of users

that finance other groups of users. Another example of a TIN is a

communication network, where messages are transferred between

vertices and there is a need to trace the origins of malicious mes-

sages that reach a vertex. Tracing the origin of such messages can

be hard due to IP spoofing [35] and there is a need for specialized

techniques [44]. Similarly, in transportation networks (e.g., flight

networks or road networks) studying the provenance of problems

(e.g., traffic, delays, etc.) may help in finding and alleviating the

reasons behind them. As a provenance data analysis example, con-

sider one of the TINs used in our experiments, which captures the

transfers of passengers by taxi between NYC districts on 2019.01.01.

Figure 2 shows the number of passengers that are accumulated in

East Village from other districts. After each transfer, we can analyze

the provenance distribution of passengers (shown as pie charts).

This can be used to analyze the demographics of visitors over time

(e.g., for location-aware marketing).

Figure 2: Buffered quantities at vertex #79 (East Village) after
each interaction in Taxis Network

Contributions and outline Our main contribution is the formu-

lation of a provenance tracking problem in temporal interaction

networks with important applications. We define different selection

policies for the propagation of quantities and the corresponding

annotation generation and propagation algorithms. We analyze

the space and time complexity of the provenance mechanism that

we propose for each selection policy and find that the proportional
propagation policy is infeasible for large graphs because its space
complexity is quadratic to the number of vertices |𝑉 | and each

interaction bears a 𝑂 ( |𝑉 |) computational cost.

We propose restricted, but practical versions of provenance track-

ing under the proportional propagation policy. Our selective prove-
nance tracking approach maintains provenance data only from a

designated subset of 𝑘 vertices, which are of interest to the analyst,

reducing the space complexity to𝑂 (𝑘 · |𝑉 |) and the time complexity

to 𝑂 (𝑘) per interaction. The grouped provenance tracking approach
tracks provenance from groups of vertices instead of individual

vertices (e.g., categories of financial entities or accounts). Again,

the space and time complexity is reduced to 𝑂 (𝑘 · |𝑉 |) and 𝑂 (𝑘)
per interaction, respectively, if 𝑘 is the number of groups. We also

propose two techniques that limit the scope of provenance tracking

from all (individual) vertices. The first approach limits provenance

tracking up to a certain time in the past from the current interaction

(i.e., a time-window approach). The second approach allocates a

provenance budget to each vertex. Both techniques save resources,

while providing some guarantees with respect to either time or

importance of the tracked provenance information.

We extend our propagation algorithms for provenance annota-

tions to capture not only the origins of the generated data, but the

routes (i.e., the paths) that they travelled along in the graph until

they reached their destinations.

We experimentally evaluate the runtime and memory require-

ments of ourmethods on five real TINswith different characteristics.

Our results show the scalability and limitations of the different se-

lection policies and the corresponding propagation algorithms for

provenance data.

The rest of the paper is organized as follows. Section 2 reviews

related work on data provenance and TINs. In Section 3, we for-

mally define the provenance problem in TINs. Section 4 presents the

different information propagation policies and the corresponding

provenance tracking algorithms. In Section 5, we discuss scaleable

techniques for provenance tracking under the proportional prop-

agation policy. In Section 6, we show how to track the paths of

the propagated quantities in the TINs from their origin. Section 7

presents our experimental evaluation. Finally, Section 8 concludes

the paper with a discussion about future work.

2 RELATEDWORK
There has been a lot of research in data provenance over the years

[3, 10, 11, 32, 36, 37, 39, 43]. However, we are the first to study the

problem of tracking the origin of quantities that flow in temporal

interaction networks. In this section, we summarize representative

works in temporal interaction networks and provenance tracking.

2.1 Temporal Interaction Networks
Temporal interaction networks (TINs) capture the exchange of

quantities between entities over time and they have been studied

extensively in the literature [2, 33, 34]. For instance, Kosyfaki et al.

[27] studied the problem of finding recurrent flow path patterns in
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a TIN, during time windows of specific length. Pattern detection in

TINs with an application in social network analysis was also studied

in [4, 47]. A related problem is how to measure the total quantity

that flows between two specific vertices in a TIN [2, 28]. Zhou et

al. [46] study the problem of dynamically synthesizing realistic

TINs by learning from log data. Provenance in TINs can reveal data

that can be combined with the structural and flow information of a

TIN in order to make pattern detection and graph synthesis more

accurate or explain the mining results.

2.2 Theory and Applications in Provenance
Buneman et al. [6] were the first who defined and studied the

problem of data provenance in database systems. The goal of why-
provenance (a.k.a. lineage) is to explain the existence of a tuple 𝑡 in

a query result by finding the tuples present in the input that con-

tributed to the production of 𝑡 .Where-provenance finds the exact
attribute values from the input which were copied or transformed

to produce 𝑡 . An annotation mechanism for where-provenance

was proposed in [7] and implemented in DBNotes [5]. As query

operators (select, project, join, etc.) are executed, annotations are

propagated to eventually reach the query output tuples. Annotation

propagation depends on the way the query is written/evaluated.

Geerts et al. [15] introduced another annotation-based model for

the manipulation and querying of both data and provenance, which

allows annotations on sets of values and for effectively querying

how they are associated. The focus is on scientific database cura-

tion, where data from possibly multiple sources are integrated and

annotations are used to witness the association between the base

data that produced a curated tuple.

Although our solutions share some similarities to provenance

approaches for database systems, there are important differences in

the data and the propagation models. First, the TIN graphs that we

examine are very large (as opposed to small query graphs) and we

track provenance for any vertex in them (i.e., we do not distinguish

between input and output vertices). Second, the data transfer model

between vertices in TINs is very different compared to data transfer

in query graphs. Third, interactions can happen in any order in

our TINs, as opposed to query graphs, where edges have a specific

order (query graphs are typically DAGs).

Data Provenance has also been studied in social networks [3].

An important application is to detect where from a rumor has

started before spreading through the internet. Gundecha et al. [18]

represent social networks as directed graphs and try to recover

paths to find out how information spread through the network

by isolating important nodes (less than 1%). The importance of

the nodes is based on their centrality. Taxidou et al. [45] studied

provenance within an information diffusion model, based on the

W3C Provenance DataModel
1
. A related problem in social networks

is information propagation and diffusion. Domingos and Richardson

[13] were the first who studied techniques for viral marketing to

influence social network users. Kempe et al. [25] solved the problem

of selecting the most influential nodes by proposing a linear model,

where the network is represented as a directed graph and vertices

are categorized as active and inactive based on their neighbors.

These approaches are not applicable to TINs, because, in social

1
https://www.w3.org/TR/prov-dm/

networks, information is copied and diffused, whereas in TINs data

are moved (i.e., not copied) from one vertex to another. This key

difference makes the provenance problem in TINs unique compared

to related problems in previous work.

Savage et al. [44] propose a stochastic packet marking mecha-

nism that can be used for probabilistic tracing back packet-flooding

attacks in the Internet. The problem setup is quite different than

ours, since we target a more generic provenance problem in TINs

where information is propagated based on various different mod-

els that may not permit backtracing. Moreover, we aim at exact

provenance tracking wherever possible.

2.3 Provenance Systems
Over the years, a number of systems for provenance tracking have

been developed, mainly to serve the need of efficiently storing and

managing the annotation data. Chapman et al. [8] propose a fac-

torization technique, which identifies and unifies common query

evaluation subtrees for reducing the provenance storage require-

ments. Heinis and Alonso [20] represent workflow provenance

mechanisms as DAGs and compress DAGs with common nodes, in

order to save space.

Several systems [1, 17] have been developed to support the an-

swering of data provenance questions, where the objective is to find

how a data element has appeared in the query result. Karvounarakis

et al [23] developed ProQL, a query language which can be used

to detect errors and side effects during the updates of a database.

ProQL takes advantage of the graph representation and path ex-

pressions to simplify operations involving traversal and projection

on the provenance graph. Titian [22] adds provenance support to

Spark, aiming at identifying errors during query evaluation.

Glavic et al. [16] present a system for provenance tracking in

data stream management systems (DSMS). They propose an oper-
ator instrumentation model, which annotates data tuples that are

generated or propagated by the streaming operators with their

provenance. They also propose an alternative approach (called re-
play lazy), which uses the original operators and, whenever prove-

nance information is needed, the approach replays query process-

ing on the relevant inputs through a instrumented copy of the

network (hence, data processing and provenance computation are

decoupled). We also propose space-economic models for tracking

provenance. However, our input graphs (TINs) are larger and dif-

ferent than DSMS graphs and our propagation models consider the

transfer of quantities between vertices as a result of a stream of

interactions.

Provenance has also been studied in blockchain systems espe-

cially after the huge success of Bitcoin. In [42], a secure and efficient

system called LineageChain is implemented on top of Hyperledger
2
,

for capturing the provenance during contract execution and safely

storing it in a Merkle tree.

3 DEFINITIONS
In this section, we formally define the temporal interaction net-

work (TIN) onwhich our problem applies. Then, we present the data

propagation model, which determines the origins of the quantities

2
https://www.hyperledger.org
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which are transferred in the network. Finally, we define the prove-

nance problem that we study in this paper. Table 1 summarizes the

notation used frequently in the paper.

Definition 1 (Temporal Interaction Network). A temporal
interaction network (TIN) is a directed graph 𝐺 (𝑉 , 𝐸, 𝑅). Each edge
(𝑣,𝑢) in 𝐸 captures the history of interactions from vertex 𝑣 to vertex
𝑢. 𝑅 denotes the set of interactions on all edges of 𝐸. Each interaction
𝑟 ∈ 𝑅 is characterized by a quadruple ⟨𝑟 .𝑠, 𝑟 .𝑑, 𝑟 .𝑡, 𝑟 .𝑞⟩, where 𝑟 .𝑠 ∈ 𝑉

(𝑟 .𝑑 ∈ 𝑉 ) is the source (destination) vertex of the interaction, 𝑟 .𝑡 ∈ IR
+

is the time when the interaction took place and 𝑟 .𝑞 ∈ IR
+ is the

transferred quantity from vertex 𝑟 .𝑠 to 𝑟 .𝑑 , due to interaction 𝑟 .

𝑟 .𝑠 𝑟 .𝑑 𝑟 .𝑡 𝑟 .𝑞

𝑣1 𝑣2 1 3

𝑣2 𝑣0 3 5

𝑣0 𝑣1 4 3

𝑣1 𝑣2 5 7

𝑣2 𝑣1 7 2

𝑣2 𝑣0 8 1

(a) Interactions

v0 v1

v2

(7,2)

(4,3)

(3,5),(8,1)

(1
,3
),
(5
,7
)

1

(b) TIN

Figure 3: A set of interactions and the corresponding TIN

Figure 3 shows the set 𝑅 of interactions in a TIN and the cor-

responding graph. For example, sequence {(1, 3), (5, 7)} on edge

(𝑣1, 𝑣2) means that 𝑣1 transferred to 𝑣2 a quantity of 3 units at time

1 and then 7 units at time 5. The corresponding interactions in 𝑅

are ⟨𝑣1, 𝑣2, 1, 3⟩ and ⟨𝑣1, 𝑣2, 5, 7⟩.

Table 1: Table of notations

Notation Description

𝐺 (𝑉 , 𝐸, 𝑅) TIN (vertices, edges, interactions)

𝑟 .𝑠 source vertex of interaction 𝑟 ∈ 𝑅

𝑟 .𝑑 destination vertex of interaction 𝑟 ∈ 𝑅

𝑟 .𝑡 time when interaction 𝑟 ∈ 𝑅 took place

𝑟 .𝑞 transferred quantity during interaction 𝑟 ∈ 𝑅

𝐵𝑣 , |𝐵𝑣 | buffer of vertex 𝑣, total quantity in 𝐵𝑣

𝑂 (𝑡, 𝐵𝑣 ) origin (provenance) data for the quantity at 𝐵𝑣 by time 𝑡

(𝜏 .𝑜, 𝜏 .𝑞) quantity 𝜏 .𝑞 originating from 𝜏 .𝑜 in𝑂 (𝑡, 𝐵𝑣 )
p𝑣 provenance vector of a vertex 𝑣 ∈ 𝑉

We consider all interactions 𝑅 in the TIN in order of time and
assume that throughout the timeline, each vertex 𝑣 ∈ 𝑉 has a buffer
𝐵𝑣 , which stores the total quantity that has flown into 𝑣 but has not

been transferred yet to another vertex via an outgoing interaction

from 𝑣 . We use |𝐵𝑣 | to denote the quantity buffered at 𝐵𝑣 .

As an effect of an interaction ⟨𝑟 .𝑠, 𝑟 .𝑑, 𝑟 .𝑡, 𝑟 .𝑞⟩, vertex 𝑟 .𝑠 trans-
fers a quantity of 𝑟 .𝑞 to vertex 𝑟 .𝑑 . Quantity 𝑟 .𝑞 (or part of it) could

be data that have been accumulated at vertex 𝑟 .𝑠 by time 𝑟 .𝑡 , or 𝑟 .𝑞

could (partially) be generated at 𝑟 .𝑠 . More specifically, we distin-

guish between two cases:

• |𝐵𝑟 .𝑠 | ≤ 𝑟 .𝑞. In this case, all units from 𝐵𝑟 .𝑠 are transferred

to 𝐵𝑟 .𝑑 due to the interaction. In addition, 𝑟 .𝑞 − |𝐵𝑟 .𝑠 | units
are generated by the source vertex 𝑟 .𝑠 and transferred to 𝐵𝑟 .𝑑 .
Hence, |𝐵𝑟 .𝑠 | becomes 0 and |𝐵𝑟 .𝑑 | is increased by 𝑟 .𝑞.

• |𝐵𝑟 .𝑠 | > 𝑟 .𝑞. In this case, 𝑟 .𝑞 units are selected from 𝐵𝑟 .𝑠 to

be transferred to 𝐵𝑟 .𝑑 . Hence, |𝐵𝑟 .𝑠 | is decreased by 𝑟 .𝑞 and

|𝐵𝑟 .𝑑 | is increased by 𝑟 .𝑞. The selection policy may determine

the routes of the quantities in the network and may affect

the result of provenance tracking.

Algorithm 1 Propagation algorithm in a TIN

Require: TIN𝐺 (𝑉 , 𝐸, 𝑅)
1: for each 𝑣 ∈ 𝑉 do
2: |𝐵𝑣 | = 0 ⊲ Initialize buffers

3: end for
4: for each interaction 𝑟 ∈ 𝑅 in order of time do
5: 𝑞 = min{𝑟 .𝑞, 𝐵𝑟 .𝑠 } ⊲ relayed quantity from 𝐵𝑟 .𝑠

6: |𝐵𝑟 .𝑠 | = |𝐵𝑟 .𝑠 | − 𝑞 ⊲ decrease by 𝑞

7: |𝐵𝑟 .𝑑 | = |𝐵𝑟 .𝑑 | + 𝑟 .𝑞 ⊲ increase by 𝑟 .𝑞, 𝑟 .𝑞−𝑞 newborn units

8: end for

Algorithm 1 is a pseudocode of the data propagation procedure.

Interactions in 𝑅 are processed in order of time. For each inter-

action 𝑟 ∈ 𝑅, we first determine the relayed quantity 𝑞 from the

buffer of the source vertex 𝑟 .𝑠 (Line 5). This quantity cannot exceed

the currently buffered quantity |𝐵𝑟 .𝑠 | at 𝑟 .𝑠 . Line 6 decreases 𝐵𝑟 .𝑠 ,
accordingly. The target node’s buffer 𝐵𝑟 .𝑑 is increased by 𝑟 .𝑞 (Line

7). If 𝑟 .𝑞 > 𝑞, a new quantity 𝑟 .𝑞 −𝑞 is born by the source vertex 𝑟 .𝑠

to be transferred to 𝐵𝑟 .𝑑 as part of 𝑟 .𝑞.

Table 2 shows the changes in the buffers of the three vertices in

the example TIN (Figure 3), during the application of Algorithm

1. The values in the parentheses are the newborn quantities at 𝑟 .𝑠 ,

which are transferred to 𝑟 .𝑑 . In the beginning, all buffers are empty,

hence, as a result of the first interaction, 3 quantity units are born

at vertex 𝑣1 and transferred to 𝑣2, but no previously born quantity

is relayed from 𝐵𝑣1 to 𝐵𝑣2 . At the second interaction, 3 units move

from 𝐵𝑣2 to 𝐵𝑣0 and 2 newborn units at 𝑣2 are also transferred to

𝐵𝑣0 . At the third interaction, 3 units are selected to be transferred
from 𝐵𝑣0 to 𝐵𝑣1 and no new units are generated because the 𝐵𝑣0
had more units than 𝑟 .𝑞 = 3 before the interaction.

Table 2: Changes at buffers at each Interaction

𝑟 .𝑠 𝑟 .𝑑 𝑟 .𝑡 𝑟 .𝑞 |𝐵𝑣
0
| |𝐵𝑣

1
| |𝐵𝑣

2
|

𝑣1 𝑣2 1 3 0 0 3 (3)

𝑣2 𝑣0 3 5 5 (2) 0 0

𝑣0 𝑣1 4 3 2 3 0

𝑣1 𝑣2 5 7 2 0 7 (4)

𝑣2 𝑣1 7 2 2 2 5

𝑣2 𝑣0 8 1 3 2 4

Definition 2 formally defines the provenance problem that we

study in this paper.

Definition 2 (Provenance Problem). Given a TIN 𝐺 (𝑉 , 𝐸, 𝑅),
at any time moment 𝑡 and at any vertex 𝑣 ∈ 𝑉 determine the origin(s)
𝑂 (𝑡, 𝐵𝑣) of the total quantity accumulated at buffer 𝐵𝑣 by time 𝑡 .
𝑂 (𝑡, 𝐵𝑣) is a set of (𝜏 .𝑜, 𝜏 .𝑞) tuples 𝜏 , such that each quantity 𝜏 .𝑞 was
generated by vertex 𝜏 .𝑜 and

∑
𝜏 ∈𝑂 (𝑡,𝐵𝑣 ) 𝜏 .𝑞 = |𝐵𝑣 |.

At any time 𝑡 , during Algorithm 1, the objective is to be able

to identify the origin vertices which have generated the quantities

that have been accumulated at buffer 𝐵𝑣 , for any vertex 𝑣 . Hence,
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the problem is to divide the buffer 𝐵𝑣 into a set of (𝜏 .𝑜, 𝜏 .𝑞) (origin-
quantity) pairs, such that each quantity 𝜏 .𝑞 is generated by the

corresponding vertex 𝜏 .𝑜 . A data analyst can then know how the

total quantity buffered at 𝑣 has been composed.

4 SELECTION POLICIES AND PROVENANCE
For each interaction 𝑟 ∈ 𝑅, the selection policy in the case where

|𝐵𝑟 .𝑠 | > 𝑟 .𝑞 determines the provenance of the quantities that are

accumulated at any vertex 𝑣 (and transferred from 𝑣) throughout the

timeline. Selection does make a difference because the quantities

in a buffer 𝐵𝑟 .𝑠 may originate from different vertices. We present

possible selection policies that (i) are based on the time quantities

are generated, (ii) are based on the order they are received by the

vertex 𝑟 .𝑠 or (iii) choose quantities proportionally based on their

origins. For each policy, we present annotation mechanisms that

can be used to trace the provenance of the quantities accumulated

at the vertices of the TIN. We also discuss applications where these

selection policies may apply.

4.1 Selection based on generation time
The first selection policy is based on the time when the candidate

quantities to be transferred are generated. Priority in the selection

can be given to the oldest quantities or the most recently generated

ones depending on the application. We will first discuss the least
recently born selection policy. To implement this approach, any gen-

erated quantity should be marked with the vertex 𝑣 that generates it

and the timestamp 𝑡 when it is generated. Hence, during the course

of the algorithm, each buffer 𝐵𝑣 is modeled and managed as a set of

(𝑜, 𝑡, 𝑞) triples, where 𝑜 is the origin of (i.e., the vertex which bore)

quantity 𝑞 and 𝑡 is the time of birth of 𝑞. The total quantity |𝐵𝑣 |
accumulated at buffer 𝐵𝑣 is the sum of all 𝑞 values in the triples

that constitute 𝐵𝑣 . As a result of an interaction 𝑟 , if |𝐵𝑟 .𝑠 | > 𝑟 .𝑞,

the triples in 𝐵𝑟 .𝑠 with the smallest timestamps whose quantities

sum up to 𝑟 .𝑞 are selected and transferred to 𝐵𝑟 .𝑑 . The last triple

may be partially transferred in order for the transferred quantity

to be exactly 𝑟 .𝑞. The triples in each buffer 𝐵𝑣 are organized in a

min-heap in order to facilitate the selection.

Algorithm 2 describes the whole process. For the current interac-

tion 𝑟 ∈ 𝑅 in order of time, we maintain in variable 𝑟𝑒𝑠𝑞 the residue
quantity, which has yet to be transferred from 𝑟 .𝑠 to 𝑟 .𝑑 . Initially,

𝑟𝑒𝑠𝑞 = 𝑟 .𝑞. While 𝑞 > 0 and 𝐵𝑟 .𝑠 is not empty, we locate the least

recently born triple 𝜏 in 𝐵𝑟 .𝑠 (with the help of the min-heap). If

𝜏 .𝑞 > 𝑞, this means that we should transfer part of the quantity

in the triple to 𝐵𝑟 .𝑑 , hence, we split 𝜏 , by keeping it in 𝐵𝑟 .𝑠 and

reducing 𝜏 .𝑞 by 𝑞 and initializing a new triple 𝜏 ′ with the same

origin and birthtime as 𝜏 and quantity 𝑞. The new triple is added

to 𝐵𝑟 .𝑑 . If 𝜏 .𝑞 ≤ 𝑞, we transfer the entire triple 𝜏 from 𝐵𝑟 .𝑎 to 𝐵𝑟 .𝑑 .

If 𝐵𝑟 .𝑠 becomes empty and 𝑟𝑒𝑠𝑞 > 0, then this means that it was

|𝐵𝑟 .𝑠 | < 𝑟 .𝑞 in the beginning, so we should generate a newborn

triple 𝜏 ′ with the residue quantity 𝑟𝑒𝑠𝑞, having as origin vertex 𝑟 .𝑠

and marked to be generated at time 𝑟 .𝑡 .

Table 3 shows the changes in the buffers of the vertices (shown

as sets here, but organized as min-heaps with their middle element

𝑡 as key) after each interaction of our running example. Note that

the quantities in the buffers are broken based on their origins and

times of birth.

Algorithm 2 Least-recently born selection model

Require: TIN𝐺 (𝑉 , 𝐸, 𝑅)
1: for each 𝑣 ∈ 𝑉 do
2: 𝐵𝑣 = ∅; |𝐵𝑣 | = 0 ⊲ Initialize buffers

3: end for
4: for each interaction 𝑟 ∈ 𝑅 in order of time do
5: 𝑟𝑒𝑠𝑞 = 𝑟 .𝑞 ⊲ residue quantity to be transferred

6: while 𝑟𝑒𝑠𝑞 > 0 and |𝐵𝑟 .𝑠 | > 0 do
7: 𝜏 = least recent triple in 𝐵𝑟 .𝑠 ⊲ top element in heap 𝐵𝑟 .𝑠

8: if 𝜏 .𝑞 > 𝑟𝑒𝑠𝑞 then ⊲ split 𝜏

9: 𝜏′.𝑜 = 𝜏 .𝑜 ; 𝜏′.𝑡 = 𝜏 .𝑡 ; 𝜏′.𝑞 = 𝑟𝑒𝑠𝑞; ⊲ new triple

10: add 𝜏′ to 𝐵𝑟 .𝑑 ;
11: 𝜏 .𝑞 = 𝜏 .𝑞 − 𝑟 .𝑞; ⊲ update 𝜏

12: 𝑟𝑒𝑠𝑞 = 0; ⊲ transfers completed

13: else
14: remove 𝜏 from 𝐵𝑟 .𝑠 and add it to 𝐵𝑟 .𝑑 ;

15: 𝑟𝑒𝑠𝑞 = 𝑟𝑒𝑠𝑞 − 𝜏 .𝑞 ⊲ update residue quantity

16: end if
17: end while
18: if 𝑟𝑒𝑠𝑞 > 0 then ⊲ newborn quantity and triple

19: 𝜏′.𝑜 = 𝑟 .𝑠 ; 𝜏′.𝑡 = 𝑟 .𝑡 ; 𝜏′.𝑞 = 𝑟𝑒𝑠𝑞;

20: add 𝜏′ to 𝐵𝑟 .𝑑 ;
21: end if
22: end for

Table 3: Changes at buffers (oldest-first policy)

𝑟 .𝑠 𝑟 .𝑑 𝑟 .𝑡 𝑟 .𝑞 𝐵𝑣
0

𝐵𝑣
1

𝐵𝑣
2

𝑣1 𝑣2 1 3 ∅ ∅ {(1,1,3)}

𝑣2 𝑣0 3 5 {(1,1,3),(2,3,2)} ∅ ∅
𝑣0 𝑣1 4 3 {(2,3,2)} {(1,1,3)} ∅
𝑣1 𝑣2 5 7 {(2,3,2)} ∅ {(1,1,3),(1,5,4)}

𝑣2 𝑣1 7 2 {(2,3,2)} {(1,1,2)} {(1,1,1),(1,5,4)}

𝑣2 𝑣0 8 1 {(1,1,1),(2,3,2)} {(1,1,2)} {(1,5,4)}

By running Algorithm 2, we can have at any time 𝑡 the set of

vertices that contribute to a vertex 𝑣 by time 𝑡 and the corresponding

quantities (i.e., the solution to Problem 2). In other words, the heap

contents for each vertex 𝑣 at time 𝑡 corresponds to𝑂 (𝑡, 𝐵𝑣). Finally,
to implement the most recently born selection policy, we should

change Line 7 of Algorithm 2 to “𝜏 =most recent triple in 𝐵𝑟 .𝑠 ” and

organize each buffer as a max-heap (instead of a min-heap).

Application The least recently born policy is applicable when the

generated quantities lose their value over time (or even expire),

which means that the vertices prefer to keep the most recently

generated data. On the other hand, the most recently born policy

is relevant to applications, where quantities have antiquity value,
i.e., they become more valuable as time passes by.

Complexity Analysis In the worst case, each interaction 𝑟 in-

creases the total number of triples by one (i.e., by splitting the last

transferred triple or by generating a new triple), hence, the space

complexity of the entire process is 𝑂 ( |𝑅 |). In terms of time, each

interaction accesses in the worst case the entire set of triples at

vertex 𝑟 .𝑠 . This set is 𝑂 ( |𝑅 |) in the worst case, but we expect it to

be 𝑂 ( |𝑅 |/|𝑉 |); for each triple in the set, we update two priority

queues in the worst case (i.e, by triple transfers) at an expected

cost of 𝑂 (log |𝑅 |/|𝑉 |). Hence, the overall expected cost (assuming

an even distribution of triples) is 𝑂 ( |𝑅 | · |𝑅 |/|𝑉 | · log |𝑅 |/|𝑉 |) =

𝑂 ( |𝑅 |2/|𝑉 | log |𝑅 |/|𝑉 |).
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4.2 Selection based on order of receipt
Another policy would be to select the transferred quantities in

order of their receipt. Specifically, the quantities at each buffer 𝐵𝑣
are modeled and managed as a set of (𝑜, 𝑞) pairs, where 𝑜 is the

vertex which generated 𝑞. These pairs are organized based on the

order by which they have been inserted to 𝐵𝑣 . If, for the current

transaction 𝑟 , |𝐵𝑟 .𝑠 | > 𝑟 .𝑞, the last (or the first) quantities in 𝐵𝑟 .𝑠
which sum up to 𝑟 .𝑞 are selected and added to 𝐵𝑟 .𝑑 in their selection

order. To implement this policy, each buffer is implemented as a

FIFO (or LIFO) queue, hence, it is not necessary to keep track of the

transfer-time timestamps. The algorithm is identical to Algorithm

2, except that Line 7 becomes “least recently added triple in 𝐵𝑟 .𝑠”

in the FIFO policy and “most recently added triple in 𝐵𝑟 .𝑠” in the

LIFO policy. Table 4 shows the changes in the buffers after each

interaction when the LIFO policy is applied.

Table 4: Changes at buffers (LIFO policy)

𝑟 .𝑠 𝑟 .𝑑 𝑟 .𝑡 𝑟 .𝑞 𝐵𝑣
0

𝐵𝑣
1

𝐵𝑣
2

𝑣1 𝑣2 1 3 ∅ ∅ {(1,3)}

𝑣2 𝑣0 3 5 {(1,3),(2,2)} ∅ ∅
𝑣0 𝑣1 4 3 {(1,2)} {(1,1),(2,2)} ∅
𝑣1 𝑣2 5 7 {(1,2)} ∅ {(1,1),(2,2),(1,4)}

𝑣2 𝑣1 7 2 {(1,2)} {(1,2)} {(1,1),(2,2),(1,2)}

𝑣2 𝑣0 8 1 {(1,2),(1,1)} {(1,2)} {(1,1),(2,2),(1,1)}

Application The FIFO policy is used in applications where the

buffers are naturally implemented as FIFO queues (pipelines, traffic

networks). The LIFO policy applies when the accumulated quan-

tities are organized in a stack (e.g., cash registers, wallets) before

being transferred.

Complexity Analysis The space complexity is 𝑂 ( |𝑅 |), same as

that of generation time selection policies (Sec. 4.1), because the

only change is that we replace the heap by a FIFO queue (or a

stack). This replacement changes the access and update costs from

𝑂 (log |𝑅 |/|𝑉 |) to 𝑂 (1). Hence, the overall expected cost is reduced

from

𝑂 ( |𝑅 |2/|𝑉 | log |𝑅 |/|𝑉 |) to 𝑂 ( |𝑅 |2/|𝑉 |).

4.3 Proportional selection
The proportional selection policy, for the case where |𝐵𝑟 .𝑠 | > 𝑟 .𝑞,

chooses the relayed quantity from 𝑟 .𝑠 to 𝑟 .𝑑 proportionally from the

vertices that have contributed to 𝐵𝑟 .𝑠 , based on their contribution.

Formally, for each vertex 𝑣 ∈ 𝑉 , we define a |𝑉 |-length vector

p𝑣 , which captures the provenance of the quantity currently in its

buffer 𝐵𝑣 . The 𝑖-th value of p𝑣 is the quantity fragment in 𝐵𝑣 which

originates from the 𝑖-th vertex of the TIN 𝐺 . Hence, the sum of

quantities in p𝑣 equals the total quantity |𝐵𝑣 | in 𝐵𝑣 . Initially, all

values of p𝑣 are 0.
Algorithm 3 shows how the provenance vectors are updated

after each interaction 𝑟 . We distinguish between two cases. The

first one is when 𝑟 .𝑞 ≥ |𝐵𝑟 .𝑠 |, i.e., the quantity 𝑟 .𝑞 to be transferred

by the current interaction is greater than or equal to the buffered

quantity |𝐵𝑟 .𝑠 | at the source buffer. In this case, the entire buffered

quantity in 𝐵𝑟 .𝑠 is relayed to 𝐵𝑟 .𝑑 . Hence, vector p𝑟 .𝑠 is added to p𝑟 .𝑑
(symbol ⊕ denotes vector-wise addition). If 𝑟 .𝑞 is strictly greater

than |𝐵𝑟 .𝑠 |, a newborn quantity 𝑟 .𝑞 − |𝐵𝑟 .𝑠 | at 𝑟 .𝑠 is added to 𝐵𝑟 .𝑑 ,

hence, we should add the corresponding provenance information to

the 𝑟 .𝑠-th element of p𝑟 .𝑑 (Line 6). This is denoted by the addition of

vector e𝑟 .𝑠,(𝑟 .𝑞−𝐵𝑟 .𝑠 ) , where e𝑣,𝑥 denotes a vector with all 0’s except

having value 𝑥 at position 𝑣 . The second case is when 𝑟 .𝑞 < |𝐵𝑟 .𝑠 |.
In this case, the quantity 𝑟 .𝑞 which is transferred from 𝑟 .𝑠 to 𝑟 .𝑑

is chosen proportionally. Specifically, if vertex 𝑟 .𝑠 has in its buffer

𝐵𝑟 .𝑠 a quantity 𝑞 which was born by the 𝑖-th vertex, then a quantity

𝑞 · 𝑟 .𝑞

|𝐵𝑟 .𝑠 | should be transferred from the 𝑖-th position of p𝑟 .𝑠 to the

𝑖-th position of p𝑟 .𝑑 . This translates into the vector-wise operations
at Lines 9 and 10 of Algorithm 3. Table 5 shows the changes in the

buffer vectors after each interaction when proportional selection is

applied.

Algorithm 3 Proportional selection model

Require: TIN𝐺 (𝑉 , 𝐸, 𝑅)
1: for each 𝑣 ∈ 𝑉 do
2: |𝐵𝑣 | = 0; p𝑣 = 0; ⊲ Initialize buffers and vectors

3: end for
4: for each interaction 𝑟 ∈ 𝑅 in order of time do
5: if 𝑟 .𝑞 ≥ |𝐵𝑟 .𝑠 | then
6: p𝑟 .𝑑 = p𝑟 .𝑑 ⊕ p𝑟 .𝑠 ⊕ e𝑟 .𝑠,(𝑟 .𝑞−𝐵𝑟 .𝑠 ) ; p𝑟 .𝑠 = 0;
7: |𝐵𝑟 .𝑑 | = |𝐵𝑟 .𝑑 | + 𝑟 .𝑞; |𝐵𝑟 .𝑠 | = 0;

8: else ⊲ 𝑟 .𝑞 < |𝐵𝑟 .𝑠 |
9: p𝑟 .𝑑 = p𝑟 .𝑑 ⊕ (𝑟 .𝑞/ |𝐵𝑟 .𝑠 |)p𝑟 .𝑠 ; 𝐵𝑟 .𝑑 = 𝐵𝑟 .𝑑 + 𝑟 .𝑞;
10: p𝑟 .𝑠 = p𝑟 .𝑠 ⊖ (𝑟 .𝑞/ |𝐵𝑟 .𝑠 |)p𝑟 .𝑠 ; 𝐵𝑟 .𝑠 = 𝐵𝑟 .𝑠 − 𝑟 .𝑞;

11: end if
12: end for

Table 5: Changes at buffers (proportional selection)

𝑟 .𝑠 𝑟 .𝑑 𝑟 .𝑡 𝑟 .𝑞 p𝑣
0

p𝑣
1

p𝑣
2

𝑣1 𝑣2 1 3 [0, 0, 0] [0, 0, 0] [0, 3, 0]
𝑣2 𝑣0 3 5 [0, 3, 2] [0, 0, 0] [0, 0, 0]
𝑣0 𝑣1 4 3 [0, 1.2, 0.8] [0, 1.8, 1.2] [0, 0, 0]
𝑣1 𝑣2 5 7 [0, 1.2, 0.8] [0, 0, 0] [0, 5.8, 1.2]
𝑣2 𝑣1 7 2 [0, 1.2, 0.8] [0, 1.66, 0.34] [0, 4.14, 0.86]
𝑣2 𝑣0 8 1 [0, 2.03, 0.97] [0, 1.66, 0.34] [0, 3.31, 0.69]

Application Proportional selection makes sense in applications

where the quantities are naturally mixed in the buffers. This in-

cludes cases when the transferred data are liquids (e.g., buffers are

oil tanks) or indistinguishable financial units in accounts (i.e., bal-

ances in bank accounts, capital stocks in digital portfolios). In such

cases, it is reasonable to consider that the origins of the buffered

quantities contribute proportionally to a transfer.

Complexity Analysis The provenance vectors p𝑣 raise the space
requirements of this model to 𝑂 ( |𝑉 |2), i.e., we need a |𝑉 |-length
vector for each vertex. In the next section, we will explore a number

of directions in order to reduce the space requirements and make

proportional provenance tracking feasible for large graphs with

millions of vertices. The time complexity is also high, because

we need one or two vector-wise operations per interaction, which

accumulates to a𝑂 ( |𝑅 | · |𝑉 |) cost. In our implementation, we exploit

SIMD instructions [38] to reduce the cost of vector-wise operations.

Sparse vector representations In sparse graphs, each vertex 𝑣

may receive quantities originating from a small subset of vertices

in practice. To save space, instead of storing each space-demanding

vector p𝑣 explicitly, we can represent it by an ordered list of (𝑢, 𝑞)
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pairs, for each vertex 𝑢 contributing a quantity 𝑞 > 0 in the buffer

𝐵𝑣 . For example, after the temporally first interaction in our running

example, instead of storing p𝑣2 as [0, 3, 0], we store it as [(𝑣1, 3)],
implying that 𝑣2 received its 3 units from 𝑣1. The vector update

operations of Algorithm 3 can be replaced by merging the ordered

lists of the corresponding sparse vector representations. This way,

the space requirements are reduced from 𝑂 ( |𝑉 |2 |) to 𝑂 ( |𝑉 | · ℓ),
where ℓ is the average length of the list representations of the

vectors. The time complexity is reduced to 𝑂 ( |𝑅 | · ℓ), accordingly.
Still, as we show experimentally, in Section 7, ℓ can grow too large

and we may not be able to accommodate the lists in memory, after

a long sequence of interactions.

5 SCALABLE PROPORTIONAL PROVENANCE
Proportional provenance tracking (Section 4.3) has high space and

time complexity compared to the models based on generation time

(Section 4.1) or receipt order (Section 4.2). We investigate a number

of techniques that reduce the space requirements and constitute

proportional provenance feasible even on very large graphs.

5.1 Selective provenance tracking
In many applications, we may not have to track provenance from

all vertices in the graph, but from a selected subset thereof. For

example, in a financial network, we could limit our focus to a

specific set of entities, suspected to be involved in illegal activities.

Or, we may select the 𝑘 vertices that generate the largest total

quantities. Hence, we can limit the size of the provenance tracking

vectors p𝑣 to include only a given subset of vertices having limited

size 𝑘 .

Specifically, for each vertex 𝑣 ∈ 𝑉 , we maintain a vector p𝑣 of
size 𝑘 + 1, where the first 𝑘 positions correspond to the vertices

of interest and the last position represents the rest of the vertices.

Algorithm 3 can now directly be applied, after the following change:

if any of the source vertex 𝑟 .𝑠 or the destination 𝑟 .𝑑 is not in the

set of the 𝑘 vertices of interest, we update the (𝑘 + 1)-th position,

which accumulates the sum of quantities from all vertices except

the selected ones. This version of proportional selection algorithm

has reduced space and time complexity compared to Algorithm

3. Specifically, its space requirements are 𝑂 (𝑘 · |𝑉 |) and its time

complexity is 𝑂 (𝑘 · |𝑅 |).

5.2 Grouped provenance tracking
In practice, tracking provenance from individual vertices could

provide too many details which might be hard to interpret. It might

be more practical, to track provenance from groups of vertices.

Hence, assuming that the vertices of the TIN have been divided into

groups, we can replace the long p𝑣 vectors by shorter vectors of

length𝑚, where𝑚 is the number of groups. This means that, in the

end, for each vertex 𝑣 we will have in p𝑣 the total quantity in the

buffer 𝐵𝑣 of 𝑣 which originates from each group. The grouping of

vertices can be done in different ways depending on the application.

For example, the values of one or more attributes that characterize

the vertices in the application (e.g., gender, country) can be used

for grouping. Network clustering algorithms (e.g., METIS [24]) or

geographical clustering can be used to divide the vertices to groups.

Algorithm 3 can easily be adapted to operate on groups. The

vertices involved at each interaction (i.e., 𝑟 .𝑠 and 𝑟 .𝑑) are mapped to

group-ids and the corresponding positions are updated in the vector-

wise operations. As in the case of selective provenance tracking

(Section 5.1), the space and time complexity is reduced to𝑂 (𝑚 · |𝑉 |)
and 𝑂 (𝑚 · |𝑅 |), respectively.

5.3 Limiting the scope of provenance
If selective and grouped provenance is not an option, tracking

proportional provenance in large graphs with millions of vertices

could be infeasible. We investigate two techniques that limit the

scope of provenance by either avoiding the tracking of quantities

generated far in the past or setting a budget for provenance at each

vertex. Our techniques are especially suitable for streaming data,

where speed and feasibility are preferred over preciseness.

5.3.1 Windowing approach. Our first approach takes as input a

parameter𝑊 , representing a window, which determines how far in

the past we are interested in tracking provenance. Specifically, for

each vertex 𝑣 we can guarantee finding the provenance of quantities

that reach 𝑣 , which where born up to𝑊 interactions before. To

achieve this, for each 𝑣 , we initialize two sparse (i.e., list) provenance
vector representations p𝑜𝑑𝑑𝑣 and p𝑒𝑣𝑒𝑛𝑣 . At each interaction, both

lists are updated. However, whenever we reach an interaction 𝑟

whose order is a multiple of𝑊 , we reset either p𝑜𝑑𝑑𝑣 or p𝑒𝑣𝑒𝑛𝑣 as

follows. If the order of 𝑟 in the sequence 𝑅 of interactions is an

odd multiple of𝑊 , for each vertex 𝑣 ∈ 𝑉 , we reset its provenance

list p𝑜𝑑𝑑𝑣 by setting p𝑜𝑑𝑑𝑣 = [(𝛼, |𝐵𝑣 |)], where 𝛼 is an artificial
vertex, representing the entire set𝑉 of vertices. This means that we

assume that the entire quantity in 𝐵𝑣 has unknown provenance. If

the order of 𝑟 is an even multiple of𝑊 , for all vertices 𝑣 , we reset

p𝑒𝑣𝑒𝑛𝑣 by setting p𝑒𝑣𝑒𝑛𝑣 = [(𝛼, |𝐵𝑣 |)]. After any interaction 𝑟 , we

can track provenance for any vertex 𝑣 using whichever of p𝑒𝑣𝑒𝑛𝑣 or

p𝑜𝑑𝑑𝑣 was least recently reset. This guarantees that we can track

the provenance of quantities born at least𝑊 (and at most 2 ·𝑊 )

interactions before. The space requirements (i.e., the total space

required to store the provenance lists) are now controlled due to

the provenance list resets.

Figure 4 illustrates how, for each vertex 𝑣 , p𝑜𝑑𝑑𝑣 and p𝑒𝑣𝑒𝑛𝑣 are

updated and used. Assuming that𝑊 = 100, until the 100-th inter-

action, p𝑜𝑑𝑑𝑣 and p𝑒𝑣𝑒𝑛𝑣 are identical and either of them can be used.

Since p𝑜𝑑𝑑𝑣 is reset at the 100-th interaction, between the 100-th

and the 200-th interaction p𝑒𝑣𝑒𝑛𝑣 is used to track the provenance of

quantities which were generated since the first interaction. Simi-

larly, between the 200-th and the 300-th interaction p𝑜𝑑𝑑𝑣 is used to

track provenance up to the 100-th interaction.Streaming Data (revised)
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Figure 4: Windowing approach in provenance tracking
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5.3.2 Budget-based provenance. Another approach which we can

apply to control the memory requirements and make proportional

provenance tracking feasible on large graphs is to allocate a max-

imum capacity 𝐶 (budget) to each vertex 𝑣 for its provenance list

p𝑣 . Whenever we have to add new entries to p𝑣 , if the required
capacity after the addition exceeds 𝐶 , we select a certain fraction

𝑓 of entries to keep in p𝑣 . We remove the remaining entries and

assume that the total quantity 𝑄 which originates from them was

born at an artificial vertex 𝛼 , modeling all vertices (i.e., unknown

source). Hence, if p𝑣 includes an (𝛼, 𝑞) entry, the entry is updated

to (𝛼, 𝑞 +𝑄); if not, a new entry (𝛼,𝑄) is added to p𝑣 .
With this approach, the space requirements of proportional

provenance tracking become 𝑂 ( |𝑉 | · 𝐶). The larger the value of
𝐶 the more accurate provenance tracking becomes. Parameter 𝑓

should be chosen such that the memory allocated at each vertex is

not underutilized and, at the same time, shrinking does not happen

very often. We suggest a value between 0.6 and 0.8. Finally, the se-

lection of entries to keep when the budget𝐶 is reached in p𝑣 can be

done using different criteria. For example, we can keep the entries

with the largest quantities, or set a priority/importance order to

vertices and keep provenance data for the most important ones.

As an example, assume that p𝑣 = {(𝑣, 1), (𝑢, 3), (𝑤, 2), (𝑧, 1)} and
let 𝐶 = 5. Let {(𝑥, 2), (𝑤, 1), (𝑦, 4)} be the new entries that have to

be added/merged into p𝑣 . After the change, p𝑣 should become p𝑣 =
{(𝑣, 1), (𝑢, 3), (𝑤, 3), (𝑥, 2), (𝑦, 4), (𝑧, 1)}, i.e., the capacity constraint
𝐶 = 5 is violated. If 𝑓 = 0.6, we should keep 0.6 ·𝐶 = 3 entries; let

us assume that we keep the ones with the largest quantities, i.e.,

{(𝑢, 3), (𝑤, 3), (𝑦, 4)}. The remaining three entries are replaced in

p𝑣 by an entry (𝛼, 4), since the sum of their quantities is 4. Hence,

after the update, p𝑣 becomes {(𝑢, 3), (𝑤, 3), (𝑦, 4), (𝛼, 4)}. Note that
selecting the entries with the largest quantities may cause a bias in

favor of origins that generate quantities early over origins whose

generation is spread more evenly in the timeline.

6 TRACKING THE PATHS
So far, we have studied the problem of identifying the origins of the

quantities accumulated at the vertices. An additional question is

which path did each of the quantities, accumulated at a vertex 𝑣 , fol-

low from its origin to 𝑣 . This information can provide more detailed

explanation for the reasons behind data transfers and corresponds

to how-provenance in query evaluation [9].

To implement how-provenance for the selection models of Sec-

tions 4.1 and 4.2, for each quantity element in the buffer 𝐵𝑣 of every

node 𝑣 , we maintain a transfer path, which captures the route that

the element has followed so far from its origin to 𝑣 . When a new

quantity element is generated, either as a result of a split (i.e., Line
10 of Algorithm 2), or anew (i.e., Line 20 of Algorithm 2), its path is

initialized to include just the origin vertex 𝑟 .𝑠 . Every time a quantity

element is transferred from one vertex to another as a result of an

interaction 𝑟 ′ (i.e., Line 14 of Algorithm 2), its path is extended

to include the transmitter vertex 𝑟 ′.𝑠 . This way, for each quantity

element, we keep track of not just its origin but also the path which

the quantity has followed.

Note that path tracking in the case of proportional selection is

not meaningful, because, if 𝑟 .𝑞 < |𝐵𝑟 .𝑠 |, all quantities in 𝐵𝑟 .𝑠 are

split to a fraction that remains at 𝐵𝑟 .𝑠 and a fraction that moves to

𝐵𝑟 .𝑠 , wherein they are combined with the corresponding quantities

from the same origins. This means that quantities in a buffer from

the same origin (but potentially from multiple different paths) are

mixed and indistinguishable.

Complexity Analysis Path tracking does not change the time

complexity, as the number of path changes is 𝑂 ( |𝑅 |) and each path

initialization or extension costs 𝑂 (1). On the other hand, the space

complexity increases by a factor of 𝑂 ( |𝑅 |/|𝑉 |), i.e., the expected
number of quantity element transfers (executions of Line 14 of

Algorithm 2). Hence, the time complexity increases to𝑂 ( |𝑅 |2/|𝑉 |).

7 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the performance and

scalability of our proposed provenance tracking techniques, which

apply to the different selection models presented in Section 4. For

this, we used five real TINs, described in Section 7.1. We compare

the different selection policies for information propagation in terms

of runtime cost and memory requirements in Section 7.2. In Section

7.3, we evaluate the performance of selective and grouped prove-

nance tracking using the proportional selection policy. Section 7.4

tests the windowing and budget-based approaches for limiting the

scope of provenance tracking. Section 7.5 evaluates the memory

and computational overheads of tracking the paths of quantities

accumulated at each vertex. Finally, Section 7.6 presents a use case

that demonstrates the practicality of provenance in TINs . All prove-

nance tracking methods were implemented in C and compiled using

gcc with -O3 flag. The experiments were run on a machine with a

3.6GHz Intel i9-10850k processor and 32GB RAM.

7.1 Description of datasets
Table 6 summarizes the statistics for each of the datasets that we

use in the experiments. Below, we provide a detailed description

for each of them.

Bitcoin Network: This dataset includes all transactions in the

bitcoin network up to 2013.12.28; we considered these transactions

as interactions. The data were preprocessed and made available by

the authors of [26]. We merged bitcoin addresses which belong to

the same user. For each interaction, as quantity, we consider the

corresponding amount of BTCs exchanged between the addresses.

We converted all amounts to BTC (originally Satoshi) and we did

not take into consideration transactions with insignificant flow (i.e.,

less than 0.0001 BTC). Data provenance in this network can unveil

the funding sources of addresses and explain the reasons behind

bitcoin exchanges.

CTU Network: A Botnet traffic network was extracted and cre-

ated by CTU University [14]. We used the data and we designed

a TIN. The vertices are the IP addresses and the interactions are

the transactions among the nodes at different time periods. The

quantity of each interaction is the total amount of bytes which

are transferred between the corresponding vertices. Tracing the

provenance of quantities that reach vertices in such a network may

help toward analysis of potential network attacks.

Prosper Loans:We downloaded this dataset from http://konect.cc

and created the corresponding interaction network. The vertices

of the network correspond to users and the interactions represent
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loans between them. The lended amounts are the quantities that are

exchanged at the interactions. Tracking the provenance of amounts

that reach certain nodes may help in the identification of the direct

or indirect relationships between lenders and borrowers.

Flights Network:We extracted flights data from Kaggle
3
. We con-

verted the original file into an interaction network, where vertices

are the origin and destination airports and the time of departure

was used to model the time of the corresponding interaction. We

used the number of passengers in each flight as the quantity in the

corresponding interaction. Since this number was not given in the

original data, we have put a random number between 50 and 200.

Provenance information can help us understand the reasons behind

potential traffic, bottlenecks, or other issues at airports.

Taxis Network:We considered NYC yellow taxi trips
4
on January

1st 2019 as interactions in a TIN, where vertices are taxi zones (pick-

up and drop-off districts), the drop-off time represents the time of

interactions and the number of passengers are the corresponding

quantities. Similar to the flights network, we can apply provenance

tracking to investigate the reasons behind the accumulation of

passengers at different zones.

Table 6: Characteristics of Datasets

Dataset #nodes #interactions average 𝑟 .𝑞

Bitcoin 12M 45.5M 34.4B
CTU 608K 2.8M 19.2KB

Prosper Loans 100K 3.08M $76

Flights 629 5.7M 125

Taxis 255 231K 1.53

7.2 Provenance tracking performance
In our first set of experiments, we investigate the runtime cost and

the memory requirements of provenance tracking based on the

different selection policies for information propagation, presented

in Section 4. We executed each method by processing the entire

sequence of interactions and updating the necessary information

for each of them, according to the algorithms described in Section

4. Tables 7 and 8 show the runtime cost and the peak memory

use by the different selection policies. As a point of reference we

also included the basic propagation algorithm that does not track

provenance (Algorithm 1), denoted by NoProv.

From the two tables, we observe that the methods based on

generation time (Section 4.1) are scaleable, since they terminate

even at very large graphs with millions of interactions (i.e., Bitcoin

network). Naturally, they are one to two orders of magnitude slower

than NoProv, as NoProv has 𝑂 (1) cost per interaction. Their space
overhead compared to NoProv is not high for big and sparse graphs,

like Bitcoin and CTU. On the other hand, for smaller graphs with

heavy traffic between vertices, the space requirements become high.

The methods that select the information to propagate based

on order of receipt (Section 4.2) are also slower than NoProv, but

faster than the ones that use generation time, because they do not

have to maintain a heap and select the propagated quantities from

3
https://www.kaggle.com/yuanyuwendymu/airline-delay-and-cancellation-data-

2009-2018

4
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

it. Instead, the simpler data structures that they use (stack, FIFO

queue) are more efficient. In terms of space, their requirements are

lower compared to the order-of-receipt policies mainly because

they do not need to store and propagate the time of birth together

with the origin vertices (i.e., each provenance tuple has two values

instead of three). Their behavior in big/sparse graphs compared to

small/dense ones is similar to the one of order-of-receipt policies

discussed above.

As opposed to the selection policies of Sections 4.1 and 4.2, the

proportional selection policy, presented in Section 4.3, performs

best when the number of vertices in the graph is small (i.e., at the

Flights and Taxis networks). This is expected because their storage

overhead in this case is manageable (at most 𝑂 ( |𝑉 |2)). Specifically,
the proportional policy using dense vector representations can

be used only for the Flights and Taxis networks, with very good

performance. Even when the sparse vector representations are

used, the required memory exceeds the capacity of our machine

in the Bitcoin and CTU networks. This approach can be used on

the Prosper Loans network, however, it requires a lot of space

(2.4GB) and it is significantly slower than the policies of Sections

4.1 and 4.2, because it needs to manage and maintain long lists. This

necessitates the use of the scope limiting techniques described in

Section 5.3, as tracking provenance from all vertices in the entire

history of interactions becomes infeasible.

7.3 Selective and grouped provenance
In the next set of experiments, we evaluate the performance of

proportional provenance only for a subset of vertices or for groups

of vertices as described in Sections 5.1 and 5.2. We conduct the

experiments on the three largest networks (in terms of number

of vertices), i.e., Bitcoin, CTU, and Prosper Loans. Recall that on

these networks tracking proportional provenance from all vertices

is infeasible or very expensive. Let 𝑘 denote the number of selected

vertices (for selective provenance) or the number of groups (for

grouped provenance). We measure the runtime cost and memory

requirements of proportional provenance for different values of 𝑘 .

In the case of selective provenance, we select the top-𝑘 contributing

vertices as the set of vertices for which we will measure provenance.

That is, we first run NoProv (Algorithm 1) and measure the total

quantity generated by each vertex and then choose the ones that

generate the largest quantity. In case of grouped provenance, we

randomly allocate vertices to groups in a round-robin fashion; since

the runtime performance andmemory requirements are not affected

by the group sizes or the way the vertices are allocated to groups,

this allocation does not affect the experimental results.

Figure 5 shows the runtime performance (in sec.) and memory

requirements (in MB) for the different values of 𝑘 on the different

datasets. As expected the runtime and the memory requirements

are roughly proportional to 𝑘 . For small values of 𝑘 (less than 20)

the runtime is roughly constant with respect to 𝑘 (see Figure 5(a)).

This is because of the effect of SIMD instructions, which make

vector operations (lines 9 and 10 of Algorithm 3) unaffected by the

vector size. SIMD data parallelism is already in full action for values

of 𝑘 greater than 20, so we observe linear scalability from thereon.
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Table 7: Runtime (sec) for each selection policy

Dataset No Provenance Least Recently Born Most Recently Born LIFO FIFO Proportional (dense) Proportional (sparse)

Bitcoin 0.19 31.77 9.17 3.10 3.90 – –

CTU 0.010 0.16 0.19 0.08 0.11 – –

Prosper Loans 0.006 0.089 0.082 0.055 0.08 – 15.7

Flights 0.009 0.75 0.77 0.077 0.15 1.58 2.91

Taxis 0.0005 0.014 0.015 0.002 0.004 0.032 0.05

Table 8: Peak memory used by each selection policy

Dataset No Provenance Least Recently Born Most Recently Born LIFO FIFO Proportional (dense) Proportional (sparse)

Bitcoin 96MB 891MB 892MB 536MB 535MB – –

CTU 4.85MB 56.4MB 56.4MB 33.8MB 33.8MB – –

Prosper Loans 800KB 61.4MB 61.4MB 36.8MB 36.8MB – 2.4GB

Flights 5KB 0.90MB 1.05MB 1.05MB 1.05MB 3.16MB 2.32MB

Taxis 2KB 0.93MB 1.02MB 0.59MB 0.6MB 0.52MB 0.44MB
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Figure 5: Selective and grouped proportional provenance

7.4 Limiting the scope of provenance tracking
As shown in Section 7.2, proportional provenance tracking through-

out the entire history of interactions is infeasible, due to its high

memory requirements. In addition, keeping and updating sparse

representations of provenance vectors becomes expensive over

time as the lists grow larger because of the higher cost of merging

operations.

Figure 6 verifies this assertion, by showing the cumulative time

and memory requirements while tracking proportional selection

after each interaction for the first 500K interactions in Bitcoin and

CTU (after this point, the memory requirements become too high),

and for all interactions in Prosper Loans. Observe that the cumula-

tive runtime increases superlinearlywith the number of interactions

and so do the memory requirements (these two are correlated). The

average cost for handling each interaction grows as the number of

processed interactions increases, which is attributed to the popu-

lation of the sparse lists that keep the provenance information for

each vertex; merging operations on these lists become expensive

as they grow.

We now evaluate the solutions proposed in Section 5.3 for limit-

ing the scope of provenance tracking in order to make the mainte-

nance of proportional provenance vectors feasible for large graphs.

Once again, we experimented with the three largest networks and

applied the two approaches proposed in Section 5.3 on them. Figure

7 shows the runtime cost and the memory requirements of the

windowing approach for different values of the window parame-

ter𝑊 . As the figure shows, by increasing the size of the window,

we improve the runtime performance as the buffers have to be

reset less frequently. On the other hand, increasing the window

size naturally increases the memory requirements. For Bitcoin and

Prosper Loans, larger window sizes are affordable, as the memory

requirements do not increase a lot. On the other hand, for CTU the

memory requirements almost double when𝑊 doubles. In summary,

the windowing technique is very useful, especially when we want

to have guaranteed accurate provenance information for all vertices

up to a time window in the past.

Figure 8 shows the runtime cost and the memory requirements

of the budget-based approach for different values of the maximum

budget 𝐶 given as capacity for provenance entries to each vertex.

As the figure shows, by increasing the budget 𝐶 per vertex, the

runtime cost to maintain provenance increases, as the provenance

information at buffers becomes larger and merging lists becomes

more expensive. The increase in the runtime cost is not very high

though, because many lists remain relatively short and the number

of list shrinks are less frequent. At the same time, the space require-

ments grow linearly with 𝐶 , which means that very large values of

𝐶 are not affordable for large graphs like Bitcoin.
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Figure 6: Cumulative time vs. number of processed interactions
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Figure 7: Windowing approach
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Figure 8: Budget-based provenance

In order to assess the value of this approach, in Table 9, we mea-

sured for each of the three large datasets and for different values
5
of

𝐶 , (i) the number of times each non-empty buffer has been shrunk

and (ii) the percentage of vertices (with non-empty buffer) whose

buffer was shrunk at least once. Especially for the larger networks

with highmemory requirements (Bitcoin and CTU), we observe that

5
We could not use values of𝐶 larger than 100 on Bitcoin due to memory constraints.

the number of shrinks and the percentage of vertices where they

take place converge to low values and, after some point, increasing

𝐶 does not offer much benefit. Overall, the budget-based approach

is attractive since each buffer is shrunk only a few times on average,

meaning that the provenance information loss is limited even in

large graphs. For example, at the Bitcoin network, for a value of
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𝐶 = 50, each buffer is shrunk 1.5 times on average after 45M inter-

actions, meaning that each buffer tracks provenance information

that traces back to tens of millions of transactions before.

Table 9: Shrinking statistics in budget-based provenance

𝐶 Bitcoin Network CTU Network Prosper Loans Network

avg. shrinks % vertices avg. shrinks % vertices avg. shrinks % vertices

10 1.94 18.38 7.27 31.07 20.67 94.7

50 1.51 14.79 5.1 28.68 4.77 79.29

100 1.43 14.21 4.77 27.94 2.97 69.09

200 – – 4.53 26.6 2.1 59.16

500 – – 4.34 25.24 1.5 47.64

1000 – – 4.3 25.02 1.23 41.39

7.5 Path tracking
As discussed in Section 6, in might be desirable, for each quantity

that has reached the buffer of a vertex to know not just the vertex

that generated the quantity, but also the path that the quantity

followed in the graph until it reached its destination. In the next

experiment, we evaluate the overhead of tracking the paths (i.e.,

how-provenance) compared to just tracking the origins of the quan-

tities. We implemented path tracking as part of the LIFO selection

policy for provenance (Section 4.2) and used it to track the paths for

all (origin, quantity) pairs accumulated at vertices after processing

all interactions in all datasets. Table 10 shows the runtime perfor-

mance, the memory requirements, and the average path length for

each quantity element. The memory requirements are split into the

memory required to store the provenance entries in the lists (as in

LIFO) and the memory required to store the paths. Observe that

for most datasets the memory overhead for keeping the paths is

not extremely high. This overhead is determined by the average

path length (last column of the table), which is relatively low in

four out of the five datasets. Only in Flights the storage overhead

for the paths is very high because quantities travel a long way. In

this dataset, the number of vertices is very small compared to the

number of interactions, so we can expect very long paths. Still, on

all datasets, the runtime is only up to a few times higher compared

to tracking just the origins and not the paths (see Table 7, column

LIFO), meaning that path tracking is feasible even for very long

sequences of interactions on large graphs, like Bitcoin.

Table 10: Tracking provenance paths in LIFO

Dataset time (sec.) mem entries (MB) mem paths (MB) total mem (MB) avg. path length

Bitcoin 13.35 534.62 847.50 1382.13 4.75

CTU 0.36 33.87 7.16 41.03 0.63

Prosper 0.4 36.85 0.74 37.59 0.06

Flights 0.17 0.627 57.09 57.72 273.17

Taxis 0.008 0.58 1.09 1.68 5.55

7.6 Use case
Figure 9 demonstrates a practical example of provenance tracing

in TINs. The plot shows the total accumulated quantities at the

vertices of Bitcoin after each interaction (first 100K interactions,

proportional selection policy). Consider a data analyst who wants

to be alerted whenever a vertex 𝑣 accumulates a significant amount

of money, which does not originate from 𝑣 ’s direct neighbors (i.e.,

𝑣 ’s neighbors just relay amounts to 𝑣). Hence, after each interaction,

we issue an alert when the receiving vertex does not have any

quantity that originates from its neighbors and the total quantity

in its buffer exceeds 10K BTC. The colored dots in the figure show

these alerts (89 in total) and provenance information for some of

them. Red dots are alerts where the number of contributing vertices

is less than five (the rest of them are blue). We observe that in

most cases the amount was received from numerous vertices (an

indication of possible “smurfing”). This alerting mechanism is very

efficient and easy to implement, as we only have to maintain at

each vertex 𝑣 the total quantity that originates from vertices that

transfer quantities to 𝑣 (i.e., direct neighbors of 𝑣).

#204 obtained 4.35BTC from #183 and 15950BTC from #185

#7120 obtained 14995.98BTC from 2731 vertices

Figure 9: Provenance alerts in Bitcoin

8 CONCLUSIONS
In this paper, we introduced and studied provenance in temporal

interaction networks (TINs). To the best of our knowledge, we are

the first to define and study this problem, considering the data trans-

fers among the vertices, as interactions take place over time. We

investigate different selection policies for data propagation in TINs

that correspond to different application scenaria. For each policy,

we propose propagation mechanisms for provenance (annotation)

data and analyze their space and time complexities. For the hardest

policy (proportional selection), we propose to track provenance

from a limited set of vertices or from groups thereof. We also pro-

pose to limit provenance tracking up to a sliding window of past

interactions or to set a space budget at each vertex for provenance

tracking. We evaluated our methods using five real datasets and

demonstrated their scalability. In the future, we plan to investigate

lazy approaches for data provenance in TINs (e.g., apply the replay

lazy [16] approach, or investigate backtracing methods). In addition,

we plan to study whether our approaches for TINs can be adapted

to be applied on social networks, where data are diffused, instead

on being relayed from vertex to vertex. Finally, we plan to analyze

in depth the computed provenance data in TINs, with the help of

data mining approaches, in order find interesting insights in them.
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