
Factor Windows: Cost-based Query Rewriting for
Optimizing Correlated Window Aggregates

†Wentao Wu, †Philip A. Bernstein, †Alex Raizman, ‡Christina Pavlopoulou∗
†Microsoft Corporation, ‡University of California, Riverside
†{wentwu, philbe, alexr}@microsoft.com, ‡cpavl001@ucr.edu

Abstract—Window aggregates are ubiquitous in stream pro-
cessing. In Azure Stream Analytics (ASA), a stream processing
service hosted by Microsoft’s Azure cloud, we see many customer
queries that contain aggregate functions (such as MIN and MAX)
over multiple correlated windows (e.g., tumbling windows of
length five minutes and ten minutes) defined on the same event
stream. In this paper, we present a cost-based optimization
framework for optimizing such queries by sharing computation
among multiple windows. In particular, we introduce the notion
of factor windows, which are auxiliary windows that are not in
the input query but may nevertheless help reduce the overall
computation cost, and our cost-based optimizer can produce
rewritten query plans that have lower costs than the original
query plan by utilizing factor windows. Since our optimization
techniques are at the level of query (plan) rewriting, they can
be implemented on any stream processing system that supports
a declarative, SQL-like query language without changing the
underlying query execution engine. We formalize the shared
computation problem, present the optimization techniques in
detail, and report evaluation results over both synthetic and real
datasets. Our results show that, compared to the original query
plans, the rewritten plans output by our cost-based optimizer
can yield significantly higher (up to 16.8×) throughput.

I. INTRODUCTION

Near-real-time querying of data streams is required by
many applications, such as algorithmic stock trading, fraud
detection, process monitoring, and RFID event processing.
The importance of this technology has been growing due to
the surge of demand for Internet of Things (IoT) and edge
computing applications, leading to a variety of systems from
both the open-source community (e.g., Apache Storm [47],
Apache Spark Streaming [10], [54], Apache Flink [18]) and
the commercial world (e.g., Amazon Kinesis [1], Microsoft
Azure Stream Analytics [4], Google Cloud Dataflow [6]).
Although imperative programming/query interfaces, such as
the functional expressions used in Trill [23] (see Figure 1(b)
for an example), remain available in these stream processing
systems, declarative SQL-like query interfaces are becoming
increasingly popular. For example, Apache Spark recently
introduced structured streaming, a declarative streaming query
API based on Spark SQL [10]. Azure Stream Analysics
(ASA), Microsoft’s cloud-based stream processing service,
also differentiates itself with a SQL interface.

Declarative query interfaces allow users of stream process-
ing systems to focus on what task is to be completed, rather
than the details of how to execute it. When it comes to the

∗This work was done when Christina Pavlopoulou was at Microsoft.

question of efficient query execution, they rely on powerful
query optimizers. In the traditional world of database man-
agement systems, the success of declarative query languages
heavily depends on cost-based query optimization, which has
been an active area for research since 1970’s [44]. Unfortu-
nately, in spite of the increasing popularity of declarative query
interfaces in stream processing systems, cost-based query
optimization of such systems remains underdeveloped — most
systems, if not all, rely on rule-based query optimizers.

In this paper, we focus on cost-based optimization tech-
niques for window aggregates, a ubiquitous category of
streaming queries, in declarative stream processing systems.
In our experience with ASA, users often want to perform
the same aggregate function over the same data stream but
with windows of different sizes. They do this for a variety
of reasons, such as learning about or debugging a stream by
exploring its behavior over different time periods, reporting
near real-time behavior of a stream over small windows as
well as much longer windows (e.g., an hour vs. a week), and
simultaneously supporting different users whose dashboards
display stream behavior over different window sizes. For
example, Microsoft’s Azure IoT Central service [3] hosts
thousands of concurrently running dashboard queries that are
window aggregates over event streams generated by various
IoT devices from multiple users. It is very common in this
scenario to see multiple (e.g., 5 to 10) queries over the
same event stream but with varying window sizes, issued by
downstream user applications that collect various telemetries
from the same device reading.

A straightforward implementation would evaluate the ag-
gregate function over each window separately. Although this
implementation is relatively simple, it potentially wastes CPU
cycles. We start with an example to illustrate this inefficiency.

Example 1 (Multi-window Aggregate Query). Figure 1(a)
presents a query with a single aggregate function, MIN,
over multiple windows. It returns the minimum temperature
reported by each device every 20, 30, and 40 minutes.
Figure 1(b) presents its execution plan in ASA, which is a
Trill [23] expression that runs the aggregate over each window
separately and then takes a union of the results. The plan is
shown graphically on the left side of Figure 2(a).

This execution plan is clearly inefficient. For example, the
MIN function over the 40-minute tumbling window can be
computed from two consecutive tuples output by the 20-

1

ar
X

iv
:2

00
8.

12
37

9v
4

 [
cs

.D
B

]
 8

 M
ar

 2
02

2

SELECT DeviceID, System.Window().Id, Min(T) AS MinTemp,
FROM Input TIMESTAMP BY EntryTime
GROUP BY DeviceID, Windows(

Window(‘20 min’, TumblingWindow(minute, 20),
Window(‘30 min’, TumblingWindow(minute, 30),
Window(‘40 min’, TumblingWindow(minute, 40))

(a) ASA query

Input.Multicast(s => s
.Tumbling(minute, 20).GroupAggregate(‘20 min’, w => w.Min(e => e.T))

.Union(s
.Tumbling(minute, 30).GroupAggregate(‘30 min’, w => w.Min(e => e.T)))

.Union(s
.Tumbling(minute, 40).GroupAggregate(‘40 min’, w => w.Min(e => e.T))))

(b) Translated Trill [23] expression

Fig. 1. An ASA aggregation query over multiple windows.

minute tumbling window, instead of computing it directly
from the input stream. Such overlapping windows present an
opportunity for optimization.

Our cost-based optimization technique exploits this oppor-
tunity by finding the cheapest way of computing the window
aggregates in terms of the overall CPU overhead. It produces
the revised query plan shown graphically in the middle of
Figure 2(a). Instead of computing the aggregate function over
the three windows separately, the revised plan organizes the
windows into a hierarchical structure. As a result, downstream
windows use sub-aggregates from their upstream windows as
inputs. For instance, aggregates of the 40-minute window are
computed from sub-aggregates that are outputs of the 20-
minute window. This revised plan’s graph is translated into
a Trill [23] expression shown in Figure 2(b).

In addition to exploiting shared computation among the
existing windows in the input query, we can further explore
other auxiliary windows that are not in the input query but
may nevertheless help reduce the overall computation cost. For
this purpose, we introduce the notion of factor window. As an
example, for the ASA query in Figure 1(a), we can insert a
10-minute tumbling window as a factor window, which leads
to the revised query plan on the right side of Figure 2(a). The
corresponding Trill expression is given in Figure 2(c). Based
on our experimental evaluation, query plans with factor win-
dows can yield significantly higher throughput [34] than both
the original plans and plans without using factor windows, on
both synthetic and real datasets.

Comparison to Window Slicing: One prominent line of
work on optimizing window aggregates is window slicing
(e.g. [30], [31], [36], [37], [48], [49]), which chops the entire
window into smaller chunks and then computes the aggregate
over the whole window by aggregating sub-aggregates over the
small chunks. Unlike window slicing, we do not proactively
chop a window. Instead, we exploit the internal overlapping
relationships between correlated windows, which are ignored
by window slicing techniques. Recently, Traub et al. proposed
Scotty, a “general stream slicing” framework that extends the
scope of window types and aggregate functions where window
slicing can be applied [48], [49]. Scotty offers a non-intrusive
implementation approach by writing “connectors” to existing

Input Stream

MultiCast

Agg20 Agg30 Agg40

Union

 Original Plan

Input Stream

MultiCast

Agg10

Agg20Agg30

Agg40

Union

MultiCast

 Rewritten Plan w/ Factor Windows

Input Stream

MultiCast

Agg20Agg30

Agg40

Union

MultiCast

 Rewritten Plan

(a) Query plan rewriting

Input.Multicast(s1 => s1
.Tumbling(minute, 20).GroupAggregate(‘20 min’, w => w.Min(e => e.T))

.Multicast(s2 => s2

.Union(s2.Tumbling(minute, 40).GroupAggregate(‘40 min’, w => w.Min(e => e.T))))
.Union(s1.Tumbling(minute, 30).GroupAggregate(‘30 min’, w => w.Min(e => e.T))))

(b) Translated Trill expression of the rewritten plan

Input.Tumbling(minute, 10).GroupAggregate(‘10 min’, w => w.Min(e => e.T))
.Multicast(s1 =>

s1.Tumbling(minute, 20).GroupAggregate(‘20 min’, w => w.Min(e => e.T))
.Multicast(s2 => s2

.Union(s2.Tumbling(minute, 40).GroupAggregate(‘40 min’, w => w.Min(e => e.T))))
.Union(s1.Tumbling(minute, 30).GroupAggregate(‘30 min’, w => w.Min(e => e.T))))

(c) Translated Trill expression of the rewritten plan with factor windows

Fig. 2. Rewritten query plans by cost-based optimization.

stream processing engines such as Apache Flink. Our approach
shares the same non-intrusive aspiration, though it operates
by query rewriting. One advantage of our approach is that
it does not assume any extra support from the underlying
stream processing engine, such as the “user-defined operator”
feature required by Scotty. For example, Scotty currently
does not support Trill, and it is unclear how to write a
Scotty “connector” for Trill. Moreover, our approach does
not require engine-specific implementation beyond the support
of a SQL-like query interface. For example, Scotty needs to
handle checkpoints and state backends for Apache Flink [5].
In our experimental evaluation, we compared our cost-based
optimization approach with Scotty (Section V-F). For the types
of windows and aggregate functions that are supported by
both our approach and Scotty, we observe that our approach
achieved similar and often much better throughput. On the
other hand, Scotty supports more types of windows and
aggregate functions. We leave the problem of extending our
approach to these cases as future work.

Summary of contributions and Paper Organization: To
summarize, this paper makes the following contributions:
• We introduce the window coverage graph (WCG), a

formal model and data structure that captures the over-
lapping relationships between windows (Section II).

• We propose a cost-based optimization framework using
the WCG model, to minimize the computation cost of
multi-window aggregate queries, as well as related query
rewritings on the optimal, min-cost WCG (Section III).

• We extend the cost-based optimization framework by
considering factor windows, which are auxiliary windows

2

that are not present in the query but can further reduce
the overall computation cost (Section IV).

• We evaluate our proposed optimizations using both syn-
thetic and real streaming datasets, with a focus on com-
paring the throughput of the original query plans and the
optimized plans, without and with factor windows. Our
results demonstrate that the optimized plans, especially
the ones with factor windows, can outperform the original
plans by having up to 16.8× throughput (Section V).

II. OVERLAPS BETWEEN WINDOWS

We start with a formal study of the overlapping relationships
between windows. We then propose window coverage graph,
a formal model and data structure that captures overlapping
relationships for a given set of windows.

A. Preliminaries

We follow the convention in the literature to represent a
window W using two parameters [34]:
• r – the range of W that represents its duration;
• s – the slide of W that represents the gap between its

two consecutive firings.
Throughout this paper, we assume that s and r are integers
and use the same time unit (e.g., second, minute, hour). We
assume 0 < s ≤ r and write W 〈r, s〉. We call W a hopping
window if s < r, or a tumbling window if s = r.

A window set W = {W1, ...,Wn} represents a set of
windows with no duplicates. An aggregate function f defined
over a window set W computes a result for each W ∈ W and
takes a union of the results, i.e., f(W) = ∪W∈Wf(W).

1) The Interval Representation of a Window: As an alterna-
tive to the “range-slide” based representation, we can use a se-
quence of intervals to represent the lifetime of a window [13].
Without loss of generality, we assume the intervals are left-
closed and right-open and define the interval representation
of a window W 〈r, s〉 as W = {[m · s,m · s + r)}, where
m ≥ 0 is an integer. For example, the interval representation
of window W (10, 2) is {[0, 10), [2, 12), ... }.

B. Window Coverage and Partitioning

Now consider two windows W1〈r1, s1〉 and W2〈r2, s2〉.
Using their interval representations, we also have W1 =
{[m1 · s1,m1 · s1 + r1)} and W2 = {[m2 · s2,m2 · s2 + r2)},
where m1 ≥ 0 and m2 ≥ 0 are integers.

Definition 1 (Window Coverage). We say that W1 is covered
by W2, denoted W1 ≤ W2, if r1 > r2 and for any interval
I = [a, b) in W1 there exist intervals Ia = [a, x) and Ib =
[y, b) in W2 such that a < y and x < b. (Note that, if W1

is covered by W2, then these two intervals are unique.) As a
special case, a window is covered by itself.

Example 2 (Window Coverage). Consider W1〈s1 = 2, r1 =
10〉 and W2〈s2 = 2, r2 = 8〉. Figure 3 plots the first two
intervals of W1 ({[0, 10), [2, 12)}) and the first three intervals
of W2 ({[0, 8), [2, 10), [4, 12)}). The first interval of W1 is

W1

W2

time
0 2 8 104 12

a = 0 b = 10

a = 0 x = 8

y = 2 b = 10

Fig. 3. An example of window coverage.

covered by the 1st and 2nd intervals of W2, and the second
interval of W1 is covered by the 2nd and 3nd intervals of W2.

The following theorem provides sufficient and necessary
conditions for the window coverage relation (proofs are avail-
able in the appendix of this paper):

Theorem 1. W1 is covered by W2 if and only if (1) s1 is a
multiple of s2 and (2) δr = r1 − r2 is a multiple of s2.

Example 3 (Window Coverage Theorem). Consider again the
windows of Example 2: W1〈s1 = 2, r1 = 10〉 and W2〈s2 =
2, r2 = 8〉. We have s1/s2 = 1, so s1 is a multiple of s2, and
(r1−r2)/s2 = 1, so r1−r2 is a multiple of s2. By Theorem 1,
W1 is covered by W2.

1) A Partial Order: The window coverage relation defines
a partial order over windows, as characterized by:

Theorem 2. The window coverage relation is reflexive, anti-
symmetric, and transitive.

2) Interval Coverage: Suppose that W1 ≤ W2. For any
interval I = [a, b) in W1, let Ia = [a, x) and Ib = [y, b) be
the two intervals in W2 specified by Definition 1.

Definition 2 (Covering Interval Set). Let the set of intervals
“between” Ia and Ib in W2 be Ia,b = {[u, v) : a ≤ u and v ≤
b}. We call Ia,b the covering (interval) set of I .

Clearly, Ia, Ib ∈ Ia,b. The cardinality |Ia,b| is independent
of the choice of a and b. We call it the covering multiplier
of W2 with respect to W1, denoted M(W1,W2). An analytic
form for the covering multiplier is given by:

Theorem 3. If the window W1〈r1, s1〉 is covered by the
window W2〈r2, s2〉, then M(W1,W2) = 1 + (r1 − r2)/s2.

We now introduce the more general notion of “interval
coverage” based on the above discussion.

Definition 3 (Interval Coverage). We say that an interval I is
covered by a set of intervals I if I = ∪J∈IJ .

Example 4 (Interval Coverage). In Figure 3, for the first
interval in W1 the covering set consists of the first and second
intervals in W2, and for the second interval in W1 consists of
the second and third intervals in W2.

3) Interval/Window Partitioning: A special case of interval
coverage is when the intervals in the covering set are disjoint.

Definition 4 (Interval Partitioning). If an interval I is covered
by a set of intervals I such that the intervals in I are mutually
exclusive, then I is partitioned by I.

3

I

J’

J’’

W1

W2

(a) Window partitioning

I

J’

J’’

W1

W2

(b) Window coverage

Fig. 4. A comparison of window partitioning with general window coverage.

We can further define “window partitioning” accordingly,
which is a special case of window coverage:

Definition 5 (Window Partitioning). We say that W1 is parti-
tioned by W2, if W1 is covered by W2 and each interval in
W1 is partitioned by its covering set in W2.

Figure 4 illustrates the difference between window parti-
tioning and general window coverage. Here each interval of
W1 is covered by two intervals of W2, i.e., M(W1,W2) = 2.
We now provide rigorous conditions for window partitioning:

Theorem 4. W1 is partitioned by W2 if and only if (1) s1 is
a multiple of s2, (2) r1 is a multiple of s2, and (3) r2 = s2
(i.e., W2 is a tumbling window).

Example 5 (Window Partitioning). In Example 2 s1/s2 = 1
and r1/s2 = 5. So conditions (1) and (2) in Theorem 4 hold.
However, condition (3) is violated since r2 6= s2 (i.e., W2 is
not tumbling). As a result, W1 cannot be partitioned by W2.

C. Window Coverage Graph (WCG)

We define the window coverage graph G = (W, E) for a
given window set W based on the partial order introduced by
the window coverage relation. For every W1,W2 ∈ W such
that W1 ≤W2, we add an edge e = (W2,W1) to the edge set
E . The time complexity of constructing the WCG is O(|W|2),
given that checking the window coverage relationship takes
only constant time (Theorems 1 and 4).

III. AGGREGATES OVER WCG
We now study the problem of evaluating aggregate functions

over a window set that is modeled by its WCG. We first
revisit a classic taxonomy of aggregate functions in the new
context of window set and WCG. We then present a cost-based
framework for the WCG, with the goal of minimizing the
overall computation cost. We further present query rewriting
techniques with respect to an optimal WCG.

A. A Taxonomy of Aggregate Functions

Let f be a given aggregate function, e.g., MIN, MAX, AVG,
and so on. Gray et al. classified f into three categories [27]:
• Distributive – f is distributive if there is some function g

s.t., for a table T , f(T) = g({f(T1), ..., f(Tn)}), where
T = {T1, ..., Tn} is a disjoint partition of T . Typical
examples include MIN, MAX, COUNT, and SUM. In fact, f =
g for MIN, MAX, and SUM but for COUNT g should be SUM.

• Algebraic – f is algebraic if there are functions g and h
s.t. f(T) = h({g(T1), g(T2), ..., g(Tn)}). Typical exam-
ples are AVG and STDEV. For AVG, g records the sum and
count for each subset Ti (1 ≤ i ≤ n) and h computes the
average for Ti by dividing the sum by the count.

• Holistic – f is holistic if there is no constant bound on
the size of storage needed to describe a sub-aggregate.
Typical examples include MEDIAN and RANK.

Only distributive or algebraic aggregate functions can be
computed by aggregating sub-aggregates [14], [48]. Although
recent work [14], [48] on window slicing “supports” holistic
aggregate functions, the corresponding window slices con-
tain all input events rather than sub-aggregates. Therefore,
for holistic aggregate functions, we currently fall back to
the default execution plan where each window is processed
independently. We leave the exploration of better support for
holistic aggregate functions as interesting future work.

One important prerequisite in this taxonomy is that T =
{T1, ..., Tn} is a partition of T . In our scenario, it means that
if we want to evaluate f over a window W1 by aggregating
sub-aggregates that have been computed over another window
W2, then W1 has to be partitioned by W2.

Theorem 5. Given that window W1 is partitioned by window
W2, if the aggregate function f is either distributive or
algebraic, then f over W1 can be computed by aggregating
sub-aggregates over W2.

If W1 is only covered (but not partitioned) by W2, then
the type of aggregate function f that can be computed using
Theorem 5 must be further restricted, such that f remains
distributive or algebraic even if the Ti’s in T can overlap.
The aggregate functions MIN and MAX retain such properties,
as stated by the following theorem:

Theorem 6. The aggregate functions MIN and MAX are dis-
tributive even if T is not disjoint.

B. A Cost-based Optimization Framework

Given a streaming query Q that contains an aggregate
function f over a window set W , our goal is to minimize the
total computation overhead of evaluating Q. A naive approach
to evaluate Q is to compute f over each window of W one
by one. Clearly, this will do redundant computation if the
windows inW “overlap.” To minimize computation one needs
to maximize the amount of computation that is shared among
overlapping windows. We present a cost-based optimization
framework that does this by exploiting the window coverage
relationships captured by the WCG of W .

1) Cost Modeling: Let W = {W1, ...,Wn} be a window
set. Given the WCG G = (W, E), we assign a weight ci to each
vertex (i.e., window) Wi in W that represents its computation
cost with respect to the (given) aggregate function f . The total
computation cost is simply the sum of these weights, i.e., C =∑n
i=1 ci. Our goal is to minimize C.
We assume that the cost of computing f is proportional to

the number of events processed. We further assume a steady
input event rate η ≥ 1. Let R = lcm(r1, ..., rn) be the least
common multiple of the ranges of the windows W1〈r1, s1〉,
..., Wn〈rn, sn〉 in W . For each window Wi, the cost ci of
computing f over Wi for events in a period of length R
depends on two quantities:

4

R

s
s

…...

r(n - 1)s
Fig. 5. Illustration of the recurrence count.

• Recurrence count ni – the number of intervals (i.e., in-
stances) of Wi occurring during the period of R;

• Instance cost µi – the cost of evaluating an instance of Wi.
Clearly, ci = ni · µi. We next analyze the two quantities.

Recurrence count: For each window Wi, let mi = R/ri
be its multiplicity. The recurrence count ni can be written as

ni = 1 + (mi − 1)
ri
si
. (1)

Figure 5 illustrates how we obtained the above formula for ni.
Essentially, we have R = (ni − 1) · si + ri, which yields

ni = 1 +
R− ri
si

= 1 +
(R
ri
− 1
)ri
si

= 1 + (mi − 1)
ri
si
.

If Wi is a tumbling window, then ni = mi. In this paper we
assume that ri is a multiple of si so that ni is an integer. 1

Instance cost: Clearly, without any computation sharing,
the instance cost of Wi is µi = η · ri. Sharing computation,
however can reduce the computation cost. Consider W1〈r1, s1〉
and W2〈r2, s2〉. We have the following observation:

Observation 1. If W1 is covered by (perhaps multiple) W2’s,
then the instance cost of W1 can be reduced to

µ1 = min
W2 s.t. W1≤W2

{M(W1,W2)}.

2) Cost Minimization: Algorithm 1 presents our procedure
for finding the minimum overall cost based on the WCG, cost
model, and Observation 1. It starts by constructing the WCG G
with respect to the given window setW and aggregate function
f (line 1) – we need f to know whether to use “covered by” or
“partitioned by” when constructing WCG.2 We then process
the windows one by one (lines 2 to 5).

For each window Wi, at line 3 we initialize its cost with
ci = ni·(η·ri). (The initial cost is ci = mi·(η·ri) = η·R if Wi

is a tumbling window.) We then iterate over incoming edges
(W ′,Wi), revising the cost ci w.r.t. Observation 1 (lines 4
to 5). Finally, we remove all edges that do not correspond
to the one that led to the minimum cost (lines 6 to 7). The

1If we want ni to be an integer when ri is not a multiple of si, mi−1 must
be a multiple of si. Thus, mi−1 = li ·si where li is an integer, which yields
R = ri(1+ li ·si), for all 1 ≤ i ≤ n. Therefore, all ni’s are integers only if
there exist integers l1, ..., ln such that r1(1+l1 ·s1) = · · · = rn(1+ln ·sn).
We leave the case when ni’s may not be integers for future work.

2In our current implementation, we use “covered by” semantics when f
is MIN or MAX, and “partitioned by” when f is COUNT, SUM, and AVG, which
are part of the SQL standard. Future work could expand these two lists with
other aggregate functions.

W1(10, 10)

W2(20, 20) W3(30, 30)

W4(40, 40)

(a) Initial WCG

c1 = R = 120

c3 = n3*M(W3, W1) = 12

c4 = n4*M(W4, W2) = 6

c2 = n2*M(W2,

W1) = 12
W1(10, 10)

W2(20, 20) W3(30, 30)

W4(40, 40)

(b) Min-cost WCG

Fig. 6. WCG and min-cost WCG for Example 6.

result is graph Gmin, called the min-cost WCG hereafter, which
captures all minimum cost information. It is the input to the
query rewriting algorithm we will discuss in Section III-C.

Algorithm 1: Find the min-cost WCG.
Input: W = {Wi}ni=1, a window set; f , aggregate function.
Output: Gmin, the min-cost WCG w.r.t. W and f .

1 Construct the WCG G = (W, E) w.r.t. “covered by” or
“partitioned by” as determined by f ;

2 foreach Wi ∈ W do
3 Initialize its cost ci ← ni · (η · ri);
4 foreach W ′ ∈ W s.t. (W ′,Wi) ∈ E do
5 Revise cost ci ← min{ci, ni ·M(Wi,W

′)};
6 foreach Wi ∈ W do
7 Remove all incoming edges that do not correspond to

(the final value of) ci;
8 return the result graph Gmin;

Example 6. Consider a query that contains four tumbling win-
dows: W1〈10, 10〉, W2〈20, 20〉, W3〈30, 30〉, and W4〈40, 40〉.
It does not matter which aggregate function f we choose here,
since “covered by” and “partitioned by” semantics coincide
when all windows in a window set are tumbling windows.

Assuming an incoming event ingestion rate η = 1, the total
cost of computing the four windows is C = 4ηR = 4R = 480,
where R = lcm{10, 20, 30, 40} = 120.

Figure 6 shows the initial WCG (Figure 6(a)) and the final
min-cost WCG (Figure 6(b)) by running Algorithm 1, when
exploiting the overlaps between the windows. The total cost is
therefore reduced to C ′ = c′1 +c′2 +c′3 +c′4 = 120+12+12+
6 = 150, a 62.5% reduction from the initial cost C = 480.

Limitations: Since our cost-based optimization frame-
work exploits the coverage relationships between windows,
it cannot improve the execution plan if such opportunities are
not present. For example, consider a set of tumbling windows
where all ranges are “mutually prime,” e.g., W1(15, 15),
W2(17, 17), and W3(19, 19). In such cases, our cost model
cannot lead to plans that improve over the default plan where
each window is evaluated independently.

C. Query Rewriting

To leverage the benefits of shared window computation, we
rewrite the original ASA query plan with respect to the min-
cost WCG Gmin based on the following observation:

Theorem 7. Gmin is a forest, i.e., a collection of trees.

The proof follows directly from noticing that each window
in Gmin has at most one incoming edge (due to lines 6 to 7).

Figure 2 shows how we revise the query execution plan
in Example 1. Figure 2(a) presents the original plan and

5

S(1, 1)

W2(20, 20) W3(30, 30)

W4(40, 40)

c3 = R =120

c2 = R = 120

c4 = n4*M(W4, W2) = 6

(a) Initial WCG

S(1, 1)

W2(20, 20) W3(30, 30)

W4(40, 40)

W1(10, 10) c1 = 120

c2 = 12 c3 = 12

c4 = 6

(b) Min-cost WCG

Fig. 7. Min-cost WCGs for Example 1 with and without using factor windows.

the revised plan based on the min-cost WCG. Figure 2(b)
presents the translated Trill expression [23]. The appendix
includes a formal description of this query rewriting procedure.
Translation to query plans expressed by other streaming API’s,
such as the Apache Flink DataStream API [2], is similar.

IV. FACTOR WINDOWS

We have been confining our discussion to sharing compu-
tation over windows in the given window set. One can add
auxiliary windows that are not in the window set but may
nevertheless help reduce the overall computation cost. We call
them factor windows.

Definition 6. Given a window set W , a window W is called
a factor window with respect toW if W 6∈ W and there exists
some window W ′ ∈ W such that W ′ ≤W .

Note that we do not expose the results of factor windows
to users, as they are not part of the user query.

Example 7. Suppose we modify the query in Example 6
by removing the tumbling window W1(10, 10). The result-
ing query Q contains three tumbling windows W2(20, 20),
W3(30, 30), and W4(40, 40). The cost of directly computing
them is C = 3R = 360, as here R = lcm{20, 30, 40} = 120
remains the same.

If we apply Algorithm 1 over Q, we get the min-cost WCG
presented in Figure 7(a). As a result, the overall cost is C ′ =
c′2 + c′3 + c′4 = 120 + 120 + 6 = 246, a reduction of 31.7%
from the baseline cost C = 360.

If we allow factor windows and apply Algorithm 3 over
Q, then we get the min-cost WCG in Figure 7(b). Window
W1(10, 10) is “added back” as a factor window, which
participates in evaluating Q but does not expose its result
to users. As in Example 6, the overall cost now is C ′′ = 150,
which is 58.3% less than the baseline cost C = 360 and 39%
less than the cost C ′ = 246 without using factor windows.

A. Impact of Factor Window

One natural question to ask is: When does a factor window
help? In the following, we provide a formal analysis.

Augmented WCG: For the WCG G = (W, E) induced by
the given window set W and aggregate function f , we add a
virtual tumbling window S〈r = 1, s = 1〉 into W , and add an
edge (S,W) into E for each W ∈ W that has no incoming
edges (i.e., W is not covered by any other window). However,
if such an S already exists in W , we do not add another

W1 W2
…... WK

W

(a) Interesting

W1 W2
…... WK

W

(b) Uninteresting

Fig. 8. Two basic patterns in WCG (K ≥ 1).

one. Intuitively, S represents a window consisting of atomic
intervals that emit an aggregate for each time unit; therefore
S covers all windows in W . The computation cost of S is
always η · R, as it cannot be covered by any other window.
This augmented graph is a directed acyclic graph (DAG) with
a single “root” S. From now on, when we refer to the WCG
we mean its augmented version.

Two Basic Patterns: Figure 8 presents two basic patterns
in (the augmented) WCG, for an arbitrary window W ∈ W .
We are interested in the pattern in Figure 8(a) but not the one in
Figure 8(b), as W can only affect the costs of its downstream
windows. This eliminates windows in WCG without outgoing
edges from consideration.

Analysis of Impact: As shown in Figure 9, let Wf be
a factor window inserted “between” W and its downstream
windows W1, ..., WK . We can do this for all “intermediate”
vertices, i.e., windows with both incoming and outgoing edges,
in (the augmented) WCG, thanks to the virtual “root” S.
Clearly, Wf ≤ W , and Wj ≤ Wf for 1 ≤ j ≤ K.
We now compare the overall computation costs with and
without inserting Wf . The cost with the factor window Wf

is c =
∑K
j=1 cost(Wj) + cost(Wf) + cost(W). On the other

hand, the cost without Wf is c′ =
∑K
j=1 cost′(Wj)+cost(W).

We define the benefit of Wf as δf = c′ − c.
Since cost(Wj) = nj · M(Wj ,Wf), cost(Wf) = nf ·

M(Wf ,W), and cost′(Wj) = nj ·M(Wj ,W), it follows that

δf =
∑K
j=1 nj

(
M(Wj ,W)−M(Wj ,Wf)

)
− nfM(Wf ,W).

By Theorem 3, M(Wj ,Wf) = 1+(rj−rf)/sf , M(Wj ,W) =
1 + (rj − rW)/sW , and M(Wf ,W) = 1 + (rf − rW)/sW .
Substituting into the above equation, we obtain

δf =
∑K

j=1
nj

(rj − rW
sW

− rj − rf
sf

)
− nf

(
1 +

rf − rW
sW

)
.

We now define the following quantities to simplify notation:
(1) ρj = rj/rf and kj = rj/sj , for 1 ≤ j ≤ K; (2) kf =
rf/sf ; and (3) kW = rW /sW . With this notation, we have

δf = nf

(∑K
j=1

nj

nf

(
kf − rj

sf
+

rj
sW
− kW

)
− (1 +

rf
sW
− kW)

)
.

(2)
Inserting Wf improves if and only if δf ≥ 0, i.e.,∑K

j=1

nj
nf

(
kf −

rj
sf

+
rj
sW
− kW

)
≥ 1 +

rf
sW
− kW . (3)

B. Candidate Generation and Selection
We can use Equation 3 to determine whether a factor

window is beneficial. The next problem is to find candidate
factor windows that are beneficial, from which we can select
the best one. Algorithm 2 illustrates this candidate generation
and selection procedure in detail.

6

W1 W2
…... WK

W

W1 W2
…... WK

W

Wf

Fig. 9. Impact of factor window Wf .

Algorithm 2: Find the best factor window under
“covered by” semantics.

Input: W , a window; {W1, ...,WK}, W ’s downstream
windows (ref. Figure 9).

Output: The best factor window Wf w.r.t. W and
{W1, ...,WK}.

1 // Construct the set Wf of candidate factor windows.
2 Wf ← ∅;
3 sd ← gcd{s1, ..., sK};
4 Sf ← {sf : sd mod sf = 0 and sf mod sW = 0};
5 rmin ← min{r1, ..., rK};
6 foreach sf ∈ Sf do
7 Rf ← {rf : rf mod sf = 0 and rf ≤ rmin};
8 foreach rf ∈ Rf do
9 Construct a candidate factor window Wf 〈rf , sf 〉;

10 if Wf ≤W and Wj ≤Wf for 1 ≤ j ≤ K then
11 Wf ←Wf ∪ {Wf};
12 // Find the best factor window from Wf .
13 δmax

f ← 0, Wmax
f ← null;

14 foreach Wf ∈ Wf do
15 Compute the benefit δf of Wf using Equation 2;
16 if δf ≥ 0 and δf > δmax

f then
17 δmax

f ← δf , Wmax
f ←Wf ;

18 return Wmax
f ;

1) Candidate Generation: It looks for eligible slides sf and
eligible ranges rf as follows (lines 1 to 11 of Algorithm 2):
• Eligible slides: Let sd = gcd{s1, ..., sK}. The set of eligible

slides is Sf = {sf : sd mod sf = 0 and sf mod sW = 0}.
That is, sf must be a factor of sd and a multiple of sW .

• Eligible ranges: Let rmin = min{r1, ..., rK}. For each sf ∈
Sf , the set of eligible ranges is Rf = {rf : rf mod sf =
0 and rf ≤ rmin}, i.e., rf ≤ rmin must be a multiple of sf .

For each eligible pair (sf , rf), we construct a candidate factor
window Wf 〈rf , sf 〉 and further check the window coverage
constraints in Figure 9, i.e., Wf ≤ W and Wj ≤ Wf for
1 ≤ j ≤ K (line 10), to only keep valid candidates.

2) Candidate Selection: Many candidate factor windows in
Wf may be beneficial (i.e., Equation 3 holds). Only the one
that leads to the maximum cost reduction (i.e., benefit) should
be added. We thus compute the benefits of the candidates
(by Equation 2) and select the one with the maximum benefit
(lines 12 to 17 of Algorithm 2).

3) Time Complexity Analysis of Algorithm 2: Computing
sd at line 3 takes O(smax log smax) time using Euclid’s
algorithm [24], where smax = max{s1, ..., sK}. Finding all el-
igible slides at line 4 takes O(d sdsW e) time. Computing rmin at
line 5 takes O(K) time. For each sf ∈ Sf , finding its eligible
ranges at line 7 takes O(d rmin

sf
e) time. For each Wf 〈rf , sf 〉,

it takes O(K) time to check all related window coverage
relationships at line 10. Hence, the candidate generation stage
(lines 1 to 11) takes O(smax log smax + d sdsW e + K + |Sf | ·

Algorithm 3: Find the min-cost WCG when factor
windows are allowed.

Input: W = {Wi}ni=1, a window set; f , aggregate function.
Output: Gmin, the min-cost WCG w.r.t. W and f , where

factor windows are allowed.
1 Construct the WCG G = (W, E) w.r.t. “covered by” or

“partitioned by” determined by f ;
2 foreach W ∈ W do
3 Wf ← FindBestFactorWindow(W , W ’s downstream

windows {W1, ...,WK}) using Algorithm 2;
4 Expand G by adding Wf and the corresponding edges

(as shown in Figure 9);
5 Gmin ← Run lines 2-7 of Algorithm 1 over the expanded G;
6 return the result graph Gmin;

|Rf | · K) time. To simplify our analysis, we assume it is
dominated by O(|Sf | · |Rf | ·K). Now consider the candidate
selection stage (lines 12 to 17). Since we check Equation 2
once for each Wf , it takes O(|Sf | · |Rf | · K) time in total.
Since |Sf | = O(d sdsW e) and |Rf | = O(d rmin

sW
e), it follows that

the time complexity of Algorithm 2 is O(d sdsW e · d
rmin

sW
e ·K).

C. Putting Things Together

Algorithm 3 is the revised version of Algorithm 1 that
returns the min-cost WCG when factor windows are allowed.
It first extends the original WCG by adding the best factor
windows, found by Algorithm 2, for existing windows (lines 2
to 4). It then simply invokes Algorithm 1 on the extended
WCG (rather than the original one) to find the new min-cost
WCG that contains factor windows (line 5).

Unlike Algorithm 1, Algorithm 3 is no longer optimal.
In fact, the cost minimization problem when factor windows
are allowed is an instance of the Steiner tree problem [35],
which is NP-hard. Various approximate algorithms have been
proposed for Steiner trees (e.g., [16], [43]), but we choose
to stay with Algorithm 3 because it is simple and easy to
implement. It would be interesting future work to characterize
the gap between the factor windows found by Algorithm 3 and
the ones that could be found by an optimal solution.3 However,
even though the factor windows found by Algorithm 3 may not
be the optimal ones, the min-cost WCG with factor windows
improves over the min-cost WCG without factor windows
(returned by Algorithm 1), since Algorithm 3 only inserts a
factor window if it is beneficial (lines 2 to 4).

Time Complexity Analysis of Algorithm 3: Construction
of the WCG requires O(|W|2) time as it needs to check
each pair of windows to test their coverage relationship.
For a given window W ∈ W and its downstream windows
W1, ..., WK , it takes O(d sdsW e · d

rmin

sW
e · K) time to find

its best factor window Wf using Algorithm 2. Meanwhile,

3Note that we restricted ourselves to consider only a subset of all possible
factor windows. For example, for the WCG in Figure 7(a), our approach
would not consider the factor window W (15, 15), as gcd{20, 30, 40} =
10 < 15 (ref. line 3 of Algorithm 5). An ideal, optimal solution would have
also considered such candidates. In fact, it needs to generate all valid candidate
factor windows, instead of finding a “locally optimal” factor window for each
input window (as Algorithm 3 does), insert them into the WCG, and then solve
the Steiner tree problem. Since the problem is NP-hard, the time complexity
in the worst case would be exponential w.r.t. the size of the WCG.

7

adding Wf and the corresponding edges requires O(K) time.
Furthermore, running lines 2 to 7 of Algorithm 1 over the
expanded graph takes O((2 · |W|)2) time. Thus, the time
complexity of Algorithm 3 is O(5|W|2 + |W| ·MW), where
MW = maxW∈W{d sdsW e · d

rmin

sW
e ·K}.

D. The Case of “Partitioned By”

We can improve the procedure FindBestFactorWindow in
Algorithm 2 if we restrict the window coverage relationships
to “partitioned by” semantics, which works for more types of
aggregate functions. In this special case, the candidate factor
windows are restricted to tumbling windows (by Theorem 4).

Algorithm 4: Determine whether a factor window
would be beneficial under “partitioned by” semantics.

Input: Wf , a factor window; W , a target window with
downstream windows W1, ..., WK ; λ, by Equation 4.

Output: Return true if adding Wf improves the overall
cost, false otherwise.

1 if K ≥ 2 then
2 return true ;
3 // We have K = 1 hereafter.
4 if k1 = 1 then
5 return false ;
6 else
7 // We have k1 > 1 hereafter.
8 if k1 ≥ 3 and m1 ≥ 3 then
9 return true ;

10 else
11 Compute rf

rW
and λ

λ−1
= 1 + m1

(m1−1)(k1−1)
;

12 return true if rf
rW
≥ λ

λ−1
, false otherwise;

1) Revisit of Impact of Factor Windows: We first revisit the
problem of determining whether a factor window is beneficial,
under “partitioned by” semantics. Algorithm 4 summarizes the
procedure that determines whether a factor window Wf would
help in the case of “partitioned by.” Here, λ is defined as

λ =
∑K

j=1

nj
mj

. (4)

The procedure in Algorithm 4 looks complicated. We offer
some intuition below to help understand it:

(Case 1) If Wf has two or more downstream windows (i.e.,
when K ≥ 2), then it improves the overall cost (lines 1 to 2),
since now at least one downstream window would benefit from
reading sub-aggregates from Wf (rather than from W). We
provide more explanation using a special case (referring to
Figure 9) when K = 2 and all windows are tumbling. We
can simplify Equation 2 by noticing kf = kW = 1, rf = sf ,
and rW = sW , since both Wf and W are tumbling windows:
δf =

∑2
j=1 nj ·

(
rj
rW
− rj

rf

)
− nf · rfrW . Moreover, since all

windows are tumbling, nj = mj = R/rj for j ∈ {1, 2}, and
nf = mf = R/rf . As a result, δf = R ·

(
1
rW
− 2

rf

)
≥ 0,

since rf ≥ 2rW by Theorem 4.

(Case 2) If Wf only has one downstream window W1 that
is tumbling (i.e., the case when K = 1 and k1 = 1), then it
cannot reduce the overall cost (lines 4 to 5) because one now

W1 W2
…... WK

W

W’f

Wf

(a) Dependent

W1 W2
…... WK

W

W’fWf

(b) Independent

Fig. 10. Dependent and independent factor windows with multiple candidates.

needs to use all sub-aggregates from W to compute Wf itself.
Without Wf one can use the same sub-aggregates to compute
W1 directly. The case when Wf has one unique downstream
window W1 that is not tumbling (i.e., when K = 1 and k1 >
1) can be understood in a similar way as “Case 1” above,
since sub-aggregates from Wf can reduce cost for intervals in
W1 that overlap (lines 6 to 12).

We formally prove the correctness of Algorithm 4 in the
appendix, using Equations 2 and 4:

Theorem 8. Algorithm 4 correctly determines whether Wf

would help when both Wf and W are tumbling windows.

2) Revisit of Candidate Generation and Selection: We now
revisit the problems of candidate generation and selection
under “partitioned by” semantics.

(Candidate Generation) By restricting to tumbling windows
under “partitioned by” semantics, we can significantly reduce
the search space for potential candidates. By Theorem 4, the
range rf of a factor window Wf must be a common factor of
the ranges r1, ..., rK of all downstream windows W1, ..., WK

for a given target window W (ref. Figure 9). Moreover, rf
must also be a multiple of the range rW of the target window
W . As a result, one can enumerate all candidates by starting
from the greatest common divisor r of r1, ..., rK and look for
all factors rf of r that are also multiples of rW .

(Candidate Selection) To find the best factor window, we
compare the benefits of two candidates Wf and W ′f . There
are two cases as shown in Figure 10:

• Wf and W ′f are dependent, meaning either Wf ≤W ′f or
W ′f ≤Wf – see Figure 10(a);

• Wf and W ′f are independent – see Figure 10(b).

Dependent Candidates: Let Wf and W ′f be two eligible
factor windows such that W ′f ≤ Wf . Then Wf can be
omitted as adding it cannot reduce the overall cost. This
can be understood by running Algorithm 4 against Wf , by
viewing W ′f as Wf ’s only (tumbling) downstream window.
Algorithm 4 would return false as this is the case when
K = 1 and k1 = 1 (line 5).

Independent Candidates: For the independent case,
we have to compare the costs in more detail. Specifi-
cally, let cf =

∑K
j=1 cost(Wj) + cost(Wf) + cost(W) =∑K

j=1 nj · M(Wj ,Wf) + nf · M(Wf ,W) + cost(W), and

8

Algorithm 5: Find the best factor window under
“partitioned by” semantics.

Input: W , a window; {W1, ...,WK}, W ’s downstream
windows (ref. Figure 9).

Output: The best tumbling factor window Wf that led to
the minimum overall cost.

1 Compute λ using Equation 4;
2 // Generate candidate tumbling factor windows.
3 rd ← gcd({r1, ..., rK});
4 if rd = rW then
5 return W ;
6 F ← {rf : rd mod rf = 0 and rf mod rW = 0};
7 Wf ← ∅;
8 foreach rf ∈ F do
9 Create a tumbling window Wf 〈rf , rf 〉;

10 b←Check(Wf , W , {W1, ...,WK}, λ) by Algorithm 4;
11 if b =true then
12 Wf ←Wf ∪ {Wf};
13 // Remove candidates that are not independent.
14 foreach Wf ∈ Wf do
15 if there exists W ′f s.t. W ′f ≤Wf then
16 Wf ←Wf − {Wf};
17 return the best Wf ∈ Wf by applying Theorem 9;

c′f =
∑K
j=1 cost(Wj) + cost(W ′f) + cost(W) =

∑K
j=1 nj ·

M(Wj ,W
′
f) + n′f ·M(W ′f ,W) + cost(W).

Theorem 9. Let Wf and W ′f be two independent eligible
factor windows under “partitioned by” semantics. cf ≤ c′f iff

rf
r′f
≥
λ− rf

rW

λ− r′f
rW

. (5)

Here λ has been defined in Equation 4.

Algorithm 5 presents the details of picking the best factor
window for a target window W and its downstream windows
W1, ..., WK , under “partitioned by” semantics. It starts by
enumerating all candidates for Wf based on the constraint that
rf must be a common factor of {r1, ..., rK} and a multiple
of rW (lines 3 to 6). It simply returns W if no candidate can
be found (line 5). It then looks for candidates of Wf that are
beneficial, using Algorithm 4 (lines 7 to 12). It further prunes
dependent candidates that are dominated by others (lines 14
to 16). Finally, it finds the best Wf by applying Theorem 9
to compare the remaining candidates.

Example 8. Continuing with Example 7, Algorithm 5 would
generate three candidate factor windows W (10, 10), W (5, 5),
and W (2, 2), since all of them are beneficial according to
Algorithm 4 (K = 2 indeed). However, since both W (5, 5) and
W (2, 2) cover W (10, 10), these two candidates are removed
and W (10, 10) is the remaining, best candidate.

Time Complexity Analysis of Algorithm 5: Computing
λ at line 1 takes O(K) time. Computing rd at line 3
takes O(rmax log rmax) time using Euclid’s algorithm [24],
where rmax = max{r1, ..., rK}. Computing F at line 6
takes O(d rdrW e) time. Generating candidate tumbling factor
windows (lines 7 to 12) takes O(|F|) time, as each run of
Algorithm 4 takes constant time. Pruning dependent candi-
dates (lines 14 to 16) takes O(|F|2) time due to pairwise

comparison. Finally, finding the best candidate by applying
Theorem 9 takes O(|F|) time. Therefore, the time complexity
of Algorithm 5 is O(K+rmax log rmax+d rdrW e+|F|

2+2·|F|).
To simplify our analysis, we assume it is dominated by
O(|F|2). Since O(|F|) = O(d rdrW e), it follows that the
time complexity of Algorithm 5 is O(d rdrW e

2). This is in
contrast to the O(d sdsW e · d

rmin

sW
e · K) time complexity of

Algorithm 2, which finds the best factor window following
“covered by” semantics. In a real-world setting, we would
expect d rmin

sW
e > d rdrW e ≈ d

sd
sW
e, in which case Algorithm 5

improves over Algorithm 2 significantly. On the other hand,
Algorithm 5 may lose some optimization opportunities due
to its reduced search space for candidate factor windows. We
only use Algorithm 5 when “covered by” semantics cannot be
used to optimize the input aggregate function.

V. EVALUATION

We report experimental evaluation results in this section. We
observe that (1) the optimized query plan, even without factor
windows, can significantly outperform the original query plan
in terms of throughput [34] (up to 2.5×); (2) with factor
windows, the throughput of the optimized query plan can be
much higher (up to 16.8×). Moreover, our optimized plans
can yield similar, and sometimes much higher, throughput
compared to Scotty [49], one state-of-the-art window slicing
technique. Meanwhile, our approach has negligible overhead
and can scale up smoothly when increasing window-set size.

A. Experiment Settings

1) Setup: We implemented our cost-based query optimizer
in C#. Given an input window-set aggregate query with its
original query plan, it can produce the best query plans, with
and without factor windows. All query plans are represented as
Trill expressions. For each query plan, we measure its through-
put, which is defined as the number of events processed per
unit time [34]. We perform all experiments on a workstation
equipped with 2.2 GHz Intel CPUs and 128 GB main memory.
All results are based on single-core executions.

2) Data Sets: We used both synthetic and real data. For
synthetic data, we generated data streams with 1 million and
10 million events, denoted as Synthetic-1M and Synthetic-
10M respectively, where the events arrive at a constant pace.
For real data, we used the same dataset as used in [17],
which was derived from the DEBS 2012 Grand Challenge [33]
dataset that consists of monitoring data from manufacturing
equipment. Specifically, we pair the given timestamps with the
values of the column mf01, i.e., the “electrical power main-
phase 1” sensor reading. This dataset contains roughly 32
million events and is denoted as Real-32M. We used “MIN”
as the aggregate function, which can be supported by both
“covered by” and “partitioned by” semantics.

3) Generation of Window Sets: We generated window sets
using the following approaches.
• (RandomGen) We generate each window W 〈r, s〉 ran-

domly. Specifically, to generate a tumbling window where
s = r, we first pick a “seed” range r0 uniformly randomly

9

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(a) RandomGen, “partitioned by”

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(b) RandomGen, “covered by”

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(c) SequentialGen, “partitioned by”

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(d) SequentialGen, “covered by”

Fig. 11. Throughput on window sets when processing 10 million input events from Synthetic-10M with |W| = 5.

Algorithm 6: The RandomGen window-set generator.
Input: S, the “seed” slides; R, the “seed” ranges; ks, kr:

the multipliers; N , the size of the window set;
tumbling: whether each window is tumbling or not.

Output: W , the window set generated.
1 W ← ∅;
2 for 1 ≤ i ≤ N do
3 if tumbling then
4 r0 ←Random(R);
5 r ←Random({2r0, ..., kr · r0});
6 W ←W ∪ {W 〈r, r〉};
7 else
8 s0 ←Random(S);
9 s←Random({2s0, ..., ks · s0});

10 W ←W ∪ {W 〈2s, s〉};
11 return the window set W;

from a given list and then choose r uniformly randomly
from {2r0, ..., kr ·r0}. We purposely avoid choosing r = r0
to test the effectiveness of our cost-based optimizer when
exploring factor windows, as W 〈r0, r0〉 is a valid factor
window in this case that should be considered by the
optimizer. To generate a hopping window, we operate in a
similar manner by first picking a “seed” slide s0 uniformly
randomly from a given list and then choosing s uniformly
randomly among {2s0, ..., ks ·s0}; we finally set r = 2s and
return W 〈r, s〉. Algorithm 6 summarizes this procedure.

• (SequentialGen) In practice, the windows contained by a
window set may be more correlated than those generated
by RandomGen. Here, we focus on a common case that
we observed in the real world, where the windows follow
a “sequential” pattern in terms of either the range or the
slide size. We presented such an example in Figure 1. This
motivates us to implement the SequentialGen window-set
generator that aims for capturing this sequential pattern.

Specifically, unlike in RandomGen where r is randomly
selected from {2r0, ..., kr · r0} when generating tumbling
windows , we simply pick r sequentially following the order
2r0, ..., kr · r0. Similarly, we pick s sequentially following
the order 2s0, ..., ks ·s0 when generating hopping windows.

B. Results on Synthetic Data

For the parameters in RandomGen and SequentialGen,
we set the window-set size N ∈ {5, 10}, the “seed” slides
S = {5, 10, 20} (only for generating hopping windows,
where ranges are fixed as twice the slides), the “seed” ranges
R = {2, 5, 10} (only for generating tumbling windows), and
ks = kr = 50. For each window-set size N , we generated
10 window sets for both tumbling and hopping windows. We
also set η = 1 in our cost model.

1) Throughput: Figure 11 reports the throughput results
observed on Synthetic-10M for window sets of size 5 gen-
erated by both RandomGen and SequentialGen. The results
on Synthetic-10M with window sets of size 10, as well as the
results on Synthetic-1M are included in the appendix.

Observations on window sets by RandomGen: (1) For
the window sets containing tumbling windows, the “partitioned
by” semantics were leveraged when constructing the window
coverage graph (WCG) and exploring factor windows. As
illustrated in Figure 11(a), compared to the original plan, the
rewritten plan without factor windows can boost throughput
by up to 1.9×, whereas the plan with factor windows can
boost the throughput by up to 2.5×. (2) For the window
sets containing hopping windows, the general “covered by”
semantics were used to create WCG’s and factor windows.
Figure 11(b) presents the results. We observe similar patterns
as we observed on tumbling windows, where factor windows
yield significantly larger throughput (by up to 4.3×). (3) In a

10

Setup w/o FW
(Mean)

w/o FW
(Max)

w/ FW
(Mean)

w/ FW
(Max)

R-5-tumbling 1.21× 1.92× 1.85× 2.54×
R-10-tumbling 1.34× 1.77× 1.88× 3.38×
R-5-hopping 1.18× 1.82× 3.26× 4.29×
R-10-hopping 1.34× 1.71× 3.20× 6.15×
S-5-tumbling 1.63× 1.67× 4.28× 4.81×
S-10-tumbling 1.98× 2.05× 7.91× 9.38×
S-5-hopping 1.34× 1.48× 2.17× 2.81×
S-10-hopping 1.58× 1.73× 2.92× 3.79×

TABLE I
SUMMARY OF THROUGHPUT BOOSTS ON SYNTHETIC-10M, WHERE ‘R’
STANDS FOR WINDOW SETS GENERATED BY RANDOMGEN, ‘S’ STANDS

FOR WINDOW SETS GENERATED BY SEQUENTIALGEN, AND ‘5’ AND ‘10’
ARE THE SIZES OF THE WINDOW SETS GENERATED.

Setup w/o FW
(Mean)

w/o FW
(Max)

w/ FW
(Mean)

w/ FW
(Max)

R-5-tumbling 1.19× 1.78× 1.43× 1.91×
R-10-tumbling 1.30× 1.71× 1.53× 2.86×
R-5-hopping 1.09× 1.39× 1.54× 2.63×
R-10-hopping 1.18× 1.39× 1.46× 3.53×
S-5-tumbling 1.63× 1.67× 4.12× 4.85×
S-10-tumbling 1.90× 1.97× 7.53× 9.14×
S-5-hopping 1.12× 1.30× 1.22× 1.77×
S-10-hopping 1.22× 1.51× 1.45× 2.31×

TABLE II
SUMMARY OF THROUGHPUT BOOSTS ON REAL-32M, WITH THE SAME

NOTATION AS IN TABLE I.

couple of cases, the optimized plans are slightly worse than
the original plans. This is possible, since our cost model does
not use throughput as the cost metric. However, such cases are
rare based on our evaluation, and in the appendix we show that
our cost metric is highly correlated with throughput.

Observations on window sets by SequentialGen: The
observations are similar to those on window sets generated
by RandomGen. Again, using factor windows significantly
boosts the throughput (by up to 4.8× and 2.8× for “partitioned
by” and “covered by” semantics, respectively). We further
notice that the rewritten query plans without factor windows
are more effective than they were in the case of RandomGen.
This is not surprising, though, as the improved correlation
between windows generated by SequentialGen leads to more
overlaps and thus more sharing opportunities.

Summary: In Table I, we summarize the mean and max
throughput boosts of the rewritten query plans (without and
with factor windows) over the original query plans, observed
when processing Synthetic-10M under different experimental
setups for window-set generation. With factor windows, we
can achieve up to 9.4× throughput boost on Synthetic-10M.
C. Results on Real Data

We further tested the throughput of window sets over the
real dataset Real-32M. Table II summarizes the results on
throughput boosts of the rewritten query plans, without and
with factor windows, over the original plans, and the details
are included in the appendix. Overall, using factor windows
can achieve throughput boost up to 9.1× over Real-32M.
D. Scalability Tests

To understand the scalability of our cost-based optimization
approach, we increased the window-set size |W| to 15 and

Setup w/o FW
(Mean)

w/o FW
(Max)

w/ FW
(Mean)

w/ FW
(Max)

R-15-tumbling 1.55× 1.96× 2.97× 4.34×
R-20-tumbling 1.49× 2.29× 2.10× 4.83×
R-15-hopping 1.55× 1.95× 4.67× 6.59×
R-20-hopping 1.68× 2.20× 4.23× 7.65×
S-15-tumbling 2.43× 2.49× 11.29× 13.83×
S-20-tumbling 2.42× 2.53× 14.28× 16.82×
S-15-hopping 1.85× 2.09× 3.51× 4.68×
S-20-hopping 1.91× 2.15× 4.02× 5.32×

TABLE III
SUMMARY OF RESULTS ON SCALABILITY TEST WITHW ∈ {15, 20}, IN
TERMS OF THROUGHPUT BOOSTS ON SYNTHETIC-10M. THE NOTATION

HERE IS THE SAME AS IN TABLES I AND II.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

R−5
S−5

R−10
S−10

R−15
S−15

R−20
S−20

O
pt

im
iz

at
io

n
T

im
e

(m
s)

Window−Set Settings

’Partitioned−by’ Semantics
’Covered−by’ Semantics

Fig. 12. Factor-window based optimization overhead (average time and
standard deviation) with increasing window-set size from 5 to 20. ‘R’ and
‘S’ are shorthands for “RandomGen” and “SequentialGen”.

20. Table III summarizes the throughput results on Synthetic-
10M; the details are in the appendix. Overall, the query plans
generated by our approach scale up smoothly when increasing
the window-set size, with throughput boost up to 16.8×.

E. Query Optimization Overhead

Figure 12 presents the average time spent on query opti-
mization and its standard deviation (shown with error bars),
when enabling factor windows and varying window-set size
from 5 to 20. For each setting, the average and standard
deviation were measured based on the 10 window sets gen-
erated by either RandomGen or SequentialGen. We observe
that the optimization overhead is very small overall (<100
milliseconds for the settings that we tested). Moreover, the
optimization overhead of “covered by” semantics is higher
than that of “partitioned by” semantics. This makes sense con-
sidering the larger search space with “covered by” semantics.

F. Comparison with Window Slicing

We compare our cost-based optimization approach with
Scotty [49], one state-of-the-art window slicing technology.
Since Scotty does not support Trill, we translate our optimized
query plans into Apache Flink queries expressed by its DataS-
tream API [2], following a similar query rewriting procedure
described in Section III-C. We compare the throughput of
Flink, Scotty, and our optimized plans with factor windows,
using the same data generator developed by Scotty for bench-
marking its own performance [5], [49]. In our experiments we
set the window-set size |W| ∈ {5, 10}. We did not further
increase |W| since Scotty cannot process some window sets
with |W| = 10 (see Figure 13(a)). Figure 13 shows the results
with |W| = 10. The results with |W| = 5 are in the appendix.

11

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Flink
Scotty

Factor Windows

(a) RandomGen, “partitioned by”

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Flink
Scotty

Factor Windows

(b) RandomGen, “covered by”

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Flink
Scotty

Factor Windows

(c) SequentialGen, “partitioned by”

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Flink
Scotty

Factor Windows

(d) SequentialGen, “covered by”

Fig. 13. Comparison with Scotty [49] in terms of throughput on window sets with |W| = 10.

We have two observations. First, both Scotty and our
factor-window based optimization significantly outperform
the default Flink query execution plan, where each window
aggregate is evaluated independently. Second, our approach
can yield similar, and sometimes much higher, throughput
compared to Scotty. This holds for both window sets generated
by RandomGen (Figures 13(a) and 13(b)) and SequentialGen
(Figures 13(c) and 13(d)), where we observe up to 5.7×
throughput boost (excluding cases where the throughput of
Scotty is unavailable).

VI. RELATED WORK

The related work on stream query processing and optimiza-
tion is overwhelming (see [32] for a survey). We focus our
discussion on optimization techniques dedicated to window
aggregates [19], [38]. In addition to the window slicing tech-
niques discussed in the introduction (e.g. [20], [30], [31], [36],
[37], [45], [48], [49]), there has been a flurry of recent work
that accelerates window aggregation via better utilization of
modern hardware, such as Grizzly [28] and LightSaber [46].
This line of work is orthogonal to ours. However, it may
be worthwhile to consider combining it with our cost-based
optimization framework, which we leave for future work.

Cost-based query optimization is the standard practice in
batch processing systems [44], but is not popular in stream
processing systems. There is little work on cost modeling in
the streaming world [51]. One reason might be the difficulty
of defining a single cost criterion, as streaming systems may
need to honor various performance metrics simultaneously,
such as latency, throughput, and resource utilization [22]. Al-
though the application of static cost-based query optimization
is limited [12], dynamic query optimization (a.k.a., adaptive
query processing) at runtime has been extensively studied in

the context of streaming (e.g., [11], [15], [25], [26], [39]–[42],
[50]). Our current cost model is static and it is interesting
future work to investigate how to dynamically adjust cost
estimates at runtime by keeping track of the input event rates.

In recent years, a number of distributed streaming systems
have been built as open-source or proprietary software (e.g.,
Storm [47], Spark Streaming [10], Flink [18], MillWheel [7],
Dataflow [8], Quill [21], etc.). While most of these systems
provide users with imperative programming interfaces, the
adoption of declarative, SQL-like query interfaces [9], similar
to the one that ASA exposes, has been increasingly popular.
For example, both Spark Streaming and Flink now support
SQL queries on top of data streams. Moving to the declarative
interface raises the level of abstraction and enables compile-
time query optimization. The optimization techniques pro-
posed in this paper can be implemented in either imperative or
declarative systems. We demonstrated the latter for the ASA
SQL query compiler (Section III-C), but our algorithms are not
tied to the ASA SQL language and can be applied in other
streaming systems that support declarative query languages.

VII. CONCLUSION

We proposed a cost-based optimization framework to op-
timize the evaluation of aggregate functions over multiple
correlated windows. It leverages the window coverage graph
(WCG) that we introduced to capture the inherent overlapping
relationships between windows. We introduced factor windows
into the WCG to help reduce the overall computation overhead.
Evaluation results show that the optimized query plans can sig-
nificantly outperform the original plans in terms of throughput,
especially when factor windows are enabled, without the need
for runtime support from stream processing engines.

12

REFERENCES

[1] Amazon kinesis. https://aws.amazon.com/kinesis/.
[2] Apache flink datastream api. https://nightlies.apache.org/flink/

flink-docs-release-1.14/docs/dev/datastream/overview/.
[3] Azure iot central. https://azure.microsoft.com/en-us/services/iot-central/.
[4] Azure stream analytics. https://azure.microsoft.com/en-us/services/

stream-analytics/.
[5] Github repository of scotty. https://github.com/TU-Berlin-DIMA/

scotty-window-processor.
[6] Google cloud dataflow. https://cloud.google.com/dataflow/.
[7] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,

S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Millwheel: Fault-
tolerant stream processing at internet scale. PVLDB, 6(11), 2013.

[8] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle. The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing. PVLDB, 8(12):1792–1803, 2015.

[9] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
semantic foundations and query execution. VLDB J., 15(2), 2006.

[10] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia. Structured streaming: A declarative API for
real-time applications in apache spark. In SIGMOD, 2018.

[11] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. In SIGMOD, pages 261–272, 2000.

[12] A. Ayad and J. F. Naughton. Static optimization of conjunctive queries
with sliding windows over infinite streams. In SIGMOD, 2004.

[13] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent streaming
through time: A vision for event stream processing. In CIDR, pages
363–374, 2007.

[14] L. Benson, P. M. Grulich, S. Zeuch, V. Markl, and T. Rabl. Disco:
Efficient distributed window aggregation. In EDBT, 2020.

[15] P. A. Bernstein, T. Porter, R. Potharaju, A. Z. Tomsic, S. Venkataraman,
and W. Wu. Serverless event-stream processing over virtual actors. In
CIDR, 2019.

[16] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An improved lp-based
approximation for steiner tree. In STOC, pages 583–592, 2010.

[17] W. Cai, P. A. Bernstein, W. Wu, and B. Chandramouli. Optimization of
threshold functions over streams. Proc. VLDB Endow., 14(6), 2021.

[18] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink™: Stream and batch processing in a single
engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[19] P. Carbone, A. Katsifodimos, and S. Haridi. Stream window aggregation
semantics and optimization. In S. Sakr and A. Y. Zomaya, editors,
Encyclopedia of Big Data Technologies. Springer, 2019.

[20] P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl. Cutty:
Aggregate sharing for user-defined windows. In CIKM, pages 1201–
1210, 2016.

[21] B. Chandramouli, R. C. Fernandez, J. Goldstein, A. Eldawy, and
A. Quamar. Quill: Efficient, transferable, and rich analytics at scale.
PVLDB, 9(14):1623–1634, 2016.

[22] B. Chandramouli, J. Goldstein, R. S. Barga, M. Riedewald, and I. Santos.
Accurate latency estimation in a distributed event processing system. In
ICDE, pages 255–266, 2011.

[23] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, J. C. Platt, J. F.
Terwilliger, and J. Wernsing. Trill: A high-performance incremental
query processor for diverse analytics. PVLDB, 8(4):401–412, 2014.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT press, 2009.

[25] A. Deshpande and J. M. Hellerstein. Lifting the burden of history from
adaptive query processing. In VLDB, pages 948–959, 2004.

[26] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy.
Dhalion: Self-regulating stream processing in heron. PVLDB,
10(12):1825–1836, 2017.

[27] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub totals. Data Min.
Knowl. Discov., 1(1):29–53, 1997.

[28] P. M. Grulich, S. Breß, S. Zeuch, J. Traub, J. von Bleichert, Z. Chen,
T. Rabl, and V. Markl. Grizzly: Efficient stream processing through
adaptive query compilation. In SIGMOD, pages 2487–2503.

[29] Z. Gu, M. A. Soliman, and F. M. Waas. Testing the accuracy of query
optimizers. In E. Lo and F. Waas, editors, DBTest, page 11, 2012.

[30] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis.
Optimized processing of multiple aggregate continuous queries. In
CIKM, pages 1515–1524, 2011.

[31] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Three-
level processing of multiple aggregate continuous queries. In ICDE,
pages 929–940, 2012.

[32] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog
of stream processing optimizations. ACM Comput. Surv., 46(4):46:1–
46:34, 2013.

[33] Z. Jerzak, T. Heinze, M. Fehr, D. Gröber, R. Hartung, and N. Stojanovic.
The DEBS 2012 grand challenge. In DEBS, pages 393–398, 2012.

[34] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl. Benchmarking distributed stream data processing systems. In
ICDE, pages 1507–1518, 2018.

[35] R. M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations, pages 85–103, 1972.

[36] S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly sharing for
streamed aggregation. In SIGMOD, pages 623–634, 2006.

[37] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane,
no gain: efficient evaluation of sliding-window aggregates over data
streams. SIGMOD Record, 34(1):39–44, 2005.

[38] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics
and evaluation techniques for window aggregates in data streams. In
SIGMOD, pages 311–322, 2005.

[39] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Suh, S. Venkataraman,
P. Costa, T. Kim, S. Muthukrishnan, V. Kuppa, S. Dhulipalla, and S. Rao.
Chi: A scalable and programmable control plane for distributed stream
processing systems. PVLDB, 11(10):1303–1316, 2018.

[40] R. V. Nehme, E. A. Rundensteiner, and E. Bertino. Self-tuning query
mesh for adaptive multi-route query processing. In EDBT, pages 803–
814, 2009.

[41] R. V. Nehme, K. Works, C. Lei, E. A. Rundensteiner, and E. Bertino.
Multi-route query processing and optimization. J. Comput. Syst. Sci.,
79(3):312–329, 2013.

[42] V. Raman, A. Deshpande, and J. M. Hellerstein. Using state modules
for adaptive query processing. In ICDE, pages 353–364, 2003.

[43] G. Robins and A. Zelikovsky. Improved steiner tree approximation in
graphs. In SODA, pages 770–779, 2000.

[44] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In SIGMOD, pages 23–34, 1979.

[45] K. Tangwongsan, M. Hirzel, S. Schneider, and K. Wu. General
incremental sliding-window aggregation. PVLDB, 8(7):702–713, 2015.

[46] G. Theodorakis, A. Koliousis, P. R. Pietzuch, and H. Pirk. Lightsaber:
Efficient window aggregation on multi-core processors. In SIGMOD,
pages 2505–2521.

[47] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. V. Ryaboy. Storm@twitter. In SIGMOD, pages 147–156, 2014.

[48] J. Traub, P. M. Grulich, A. R. Cuellar, S. Breß, A. Katsifodimos, T. Rabl,
and V. Markl. Efficient window aggregation with general stream slicing.
In EDBT, pages 97–108, 2019.

[49] J. Traub, P. M. Grulich, A. R. Cuellar, S. Breß, A. Katsifodimos,
T. Rabl, and V. Markl. Scotty: General and efficient open-source window
aggregation for stream processing systems. ACM Trans. Database Syst.,
46(1):1:1–1:46, 2021.

[50] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica. Drizzle: Fast and adaptable
stream processing at scale. In SOSP, pages 374–389, 2017.

[51] S. Viglas and J. F. Naughton. Rate-based query optimization for
streaming information sources. In SIGMOD, pages 37–48, 2002.

[52] W. Wu. A note on operator-level query execution cost modeling. CoRR,
abs/2003.04410, 2020.

[53] W. Wu, X. Wu, H. Hacigümüs, and J. F. Naughton. Uncertainty aware
query execution time prediction. Proc. VLDB Endow., 7(14), 2014.

[54] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: fault-tolerant streaming computation at scale. In
SOSP, pages 423–438, 2013.

13

https://aws.amazon.com/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/overview/
https://azure.microsoft.com/en-us/services/iot-central/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://github.com/TU-Berlin-DIMA/scotty-window-processor
https://github.com/TU-Berlin-DIMA/scotty-window-processor
https://cloud.google.com/dataflow/

APPENDIX A
PROOFS

A. Proof of Theorem 1

Proof. Consider an arbitrary interval I = [a, b) ∈ W1. By
the interval representation of W1, we have a = m1 · s1 and
b = m1 · s1 + r1 for some integer m1 ≥ 0.

1) The “if” part ⇒: Since s1 is a multiple of s2, we have
s1 = k · s2 for some integer k ≥ 1. As a result,

m1 · s1 = m1 · k · s2 = (m1 · k) · s2.

Similarly, since δr = r1−r2 is a multiple of s2, r1−r2 =
k′ · s2 for some integer k′ ≥ 1. As a result,

m1 · s1 + r1 = (m1 · k) · s2 + k′ · s2 + r2

= (m1 · k + k′) · s2 + r2.

Set m2 = m1 · k and m′2 = m1 · k + k′. Now consider
two intervals Ia = [a, x) = [m2 · s2,m2 · s2 + r2) and
Ib = [y, b) = [m′2 · s2,m′2 · s2 + r2) that belong to W2.
Clearly, we have

m2 · s2 = m1 · s1 = a

and

m′2 · s2 + r2 = m1 · s1 + r1 = b.

Moreover, since m′2 > m2, we have x = m2 ·s2 +r2 < b
and y = m′2 · s2 > a. Therefore, W1 is covered by W2,
by Definition 1.

2) The “only if” part ⇐: Since W1 is covered by W2,
by Definition 1 there exist two intervals Ia = [a, x) and
Ib = [y, b) in W2 such that x < b and y > a. As a result,
there is some m2 ≥ 0 such that m2 · s2 = a = m1 · s1.
That is,

m2 = m1 · (s1/s2).

Since both m1 and m2 are integers, s1/s2 is also an
integer. As a result, s1 must be a multiple of s2.
On the other hand, similarly there is some m′2 > m2 such
that

m′2 · s2 + r2 = b = m1 · s1 + r1.

We then have

m′2 · s2 + r2 = m2 · s2 + r1,

which yields

m′2 = m2 + (r1 − r2)/s2.

Since both m′2 and m2 are integers, (r1 − r2)/s2 must
be an integer. Hence, δr = r1 − r2 is a multiple of s2.

This completes the proof of the theorem.

B. Proof of Theorem 2

Proof. We prove the three properties one by one.
1) Reflexivity: Clearly, by Definition 1 a window W is

covered by itself.
2) Antisymmetry: Suppose that W1 ≤ W2 and W2 ≤ W1.

Consider an arbitrary interval [a, b) contained by W1.
Since W1 ≤W2, there exist two intervals Ix = [a, x) and
Iy = [y, b) in W2. On the other hand, since W2 ≤W1, for
Ix there exist intervals Ix′ = [a, x′) and Ix′′ = [x′′, x)
in W1. Since no two intervals in a window start from
the same time point but end at different time points, we
conclude that

x′ = b.

Since x′ ≤ x ≤ b by Definition 1, we have

x = x′ = x′′ = b.

Using similar arguments we can show that y = y′ =
y′′ = a. As a result, we have proved that W1 = W2.

3) Transitivity: Suppose that W1 ≤ W2 and W2 ≤ W3.
Again, consider an arbitrary interval [a, b) in W1. Since
W1 ≤W2, there exist two intervals Ix = [a, x) and Iy =
[y, b) in W2. Moreover, since W2 ≤W3, there exist two
intervals Ix′ = [a, x′) and Ix′′ = [x′′, x) in W3, and there
also exist two intervals Iy′ = [y, y′) and Iy′′ = [y′′, b) in
W3. Now consider Ix′ and Iy′′ . By Definition 1, we have
x′ ≤ x ≤ b and y′′ ≥ y ≥ a. Since [a, b) is an arbitrary
interval in W1, it follows that W1 ≤W3.

This completes the proof of the theorem.

C. Proof of Theorem 3

Proof. If we take a union of the intervals in Ia,b, it is easy to
see I = ∪J∈Ia,b

J . By Definition 1, we can further enumerate
the intervals in Ia,b as J1 = [x1, y1), ..., Jn = [xn, yn) such
that x1 = a, yn = b, and x1 < · · · < xn, where n = |Ia,b|.
Therefore,

I = J1 ∪ (J2 − J1) ∪ · · · ∪ (Jn − Jn−1).

Since the intervals J1, J2 − J1, ..., Jn − Jn−1 are mutually
exclusive, it follows that

|I| = |J1|+ |J2 − J1|+ · · ·+ |Jn − Jn−1|.

We have |I| = r1, |J1| = r2, and |Jk − Jk−1| = s2 for
2 ≤ k ≤ n. As a result, r1 = r2 + (n− 1) · s2, which yields

M(W1,W2) = n = 1 + (r1 − r2)/s2.

This completes the proof of the theorem.

D. Proof of Theorem 4

Proof. We prove each direction separately.
(a) The “if” part⇒: Suppose that conditions (1) to (3) hold.

By (2) and (3), we know that r1− r2 must be a multiple
of s2 either. Combining with (1), W1 is covered by
W2 according to Theorem 1. Now consider an arbitrary
interval I in W1. Let the covering set of I in W2 be I.

14

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(a) RandomGen, “partitioned by”

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(b) RandomGen, “covered by”

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(c) SequentialGen, “partitioned by”

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(d) SequentialGen, “covered by”

Fig. 14. Throughput on window sets when processing 10 million input events from Synthetic-10M with |W| = 10.

We next show that I is disjoint. By (2) and (3) we know
that r1 is a multiple of r2. As a result, r1 = k · r2 where
k is an integer. To show that I is disjoint we only need
to show that |I| = k (recall Figure 4(a)). We have

|I| = 1 + (r1 − r2)/s2, [by Theorem 3]
= 1 + (k · r2 − r2)/s2, [by Condition (2)]
= 1 + (k − 1), [by Condition (3)]
= k.

(b) The “only if” part⇐: Suppose that W1 is partitioned by
W2. By Theorem 1, condition (1) holds. Again, consider
an arbitrary interval I in W1 and let its covering set in W2

be I. We know that I is disjoint, which implies condition
(3), i.e., r2 = s2, as well as that r1 must be a multiple
of r2. Therefore, r1 must also be a multiple of s2 and
condition (2) holds.

This completes the proof of the theorem.

E. Proof of Theorem 6

Proof. We only prove MIN is distributive over overlapping
partitions, as the proof for MAX is very similar. We set both
f and g in the definition of distributive aggregate function as
MIN. It is easy to see that, if two sets S1 and S2 satisfying
S1 ⊆ S2, then MIN(S2) ≤ MIN(S1).4 Moreover, for any set S,
MIN(S) ∈ S and thus {MIN(S)} ⊆ S. Therefore,

S = {MIN(T1), ..., MIN(Tn)} ⊆ T1 ∪ · · · ∪ Tn,

since MIN(T1) ⊆ T1, ..., MIN(Tn) ⊆ Tn. As a result,

MIN(T) ≤ MIN(S) = MIN({MIN(T1), ..., MIN(Tn)}).
4We treat each element in T differently, even if some of them may have

the same data value.

We now prove that MIN(S) ≤ MIN(T). To see this, let

S1 = T1,

S2 = T2 − T1,
S3 = T3 − (S1 ∪ S2),

...

Sn = Tn − (S1 ∪ · · · ∪ Sn−1).

We have T = S1∪· · ·∪Sn, and Si∩Sj = ∅ for all 1 ≤ i, j ≤ n.
Therefore, MIN(T) = MIN(S1 ∪ · · · ∪ Sn). Moreover, there
exists some j such that MIN(Sj) = MIN(T). Since Sj ⊆ Tj ,
MIN(Sj) ≥ MIN(Tj). As a result,

MIN(T) = MIN({MIN(S1), ..., MIN(Sn)})
≥ MIN({MIN(T1), ..., MIN(Tn)})
= MIN(S).

Since we have proved both MIN(S) ≤ MIN(T) and
MIN(T) ≤ MIN(S), it must hold that MIN(S) = MIN(T).

F. Proof of Theorem 8

Since both Wf and W in Figure 9 are now tumbling
windows, kf = kW = 1. Equation 3 then yields∑K

j=1

nj
nf

(rj
sf
− rj
sW

)
+

rf
sW
≤ 0.

Since rf = sf and rW = sW , it follows that∑K

j=1

nj
nf

(
ρj −

rj
rW

)
+

rf
rW
≤ 0.

Since rf =
rj
ρj

by definition, we have rj = ρjrf and thus∑K

j=1

njρj
nf

(
1− rf

rW

)
+

rf
rW
≤ 0. (6)

15

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(a) RandomGen, “partitioned by”

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(b) RandomGen, “covered by”

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(c) SequentialGen, “partitioned by”

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(d) SequentialGen, “covered by”

Fig. 15. Throughput on window sets when processing 1 million input events from Synthetic-1M with |W| = 5.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(a) RandomGen, “partitioned by”

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(b) RandomGen, “covered by”

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(c) SequentialGen, “partitioned by”

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(d) SequentialGen, “covered by”

Fig. 16. Throughput on window sets when processing 1 million input events from Synthetic-1M with |W| = 10.

Moreover, by definition of nf (Equation 1) we have

nf = (mf − 1)kf + 1 = mf =
R

rf
=
Rρj
rj

= mjρj .

Substituting into Equation 6, it follows that

(
1− rf

rW

)
· λ+

rf
rW
≤ 0, (7)

where λ has been defined in Equation 4. As a result, we have

rf
rW
≥ λ

λ− 1
. (8)

Since nj = (mj − 1)kj + 1 ≥ mj , by Equation 4 we have
λ ≥ K. We distinguish two cases: K ≥ 2 and K = 1.

The Case of K ≥ 2: When K ≥ 2 we have

λ

λ− 1
≤ K

K − 1
≤ 2.

16

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(a) RandomGen, “partitioned by”

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(b) RandomGen, “covered by”

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(c) SequentialGen, “partitioned by”

 0
 200
 400
 600
 800

 1000
 1200
 1400

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(d) SequentialGen, “covered by”

Fig. 17. Throughput when processing 32 million input events from Real-32M with |W| = 5.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(a) RandomGen, “partitioned by”

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(b) RandomGen, “covered by”

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(c) SequentialGen, “partitioned by”

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(d) SequentialGen, “covered by”

Fig. 18. Throughput when processing 32 million input events from Real-32M with |W| = 10.

Since rf
rW
≥ 2, Equation 8 holds, which implies c ≤ c′. Note

that the equality c = c′ only holds when rf = 2rW and
λ = K = 2, which implies nj = mj for j = 1, 2. In this case,
both downstream windows of W (and thus Wf) are tumbling,
and Wf exactly doubles the range of W , which is a very
special case.

The Case of K = 1: When K = 1, λ = n1

m1
. We

distinguish two situations:

• If k1 = 1, which means that the (unique) downstream
window is tumbling, then n1 = m1 and thus λ = 1.
Equation 7 then implies that 1 ≤ 0, which is impossible.
As a result, c ≤ c′ does not hold.

• If k1 > 1, then λ > 1 and thus the RHS of Equation 8
is well-defined. Note that we must have m1 > 1, since if
m1 = 1 then n1 = (m1 − 1)k1 + 1 = 1 and thus λ = 1,

17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ct

ua
l S

pe
ed

up
 o

n
T

hr
ou

gh
pu

t

Predicted Speedup By Cost Model

Data
Best−Fit

(a) RandomGen, “partitioned by” (r = 0.98)

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10

A
ct

ua
l S

pe
ed

up
 o

n
T

hr
ou

gh
pu

t

Predicted Speedup By Cost Model

Data
Best−Fit

(b) RandomGen, “covered by” (r = 0.95)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ct

ua
l S

pe
ed

up
 o

n
T

hr
ou

gh
pu

t

Predicted Speedup By Cost Model

Data
Best−Fit

(c) SequentialGen, “partitioned by” (r = 0.94)

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6 7

A
ct

ua
l S

pe
ed

up
 o

n
T

hr
ou

gh
pu

t

Predicted Speedup By Cost Model

Data
Best−Fit

(d) SequentialGen, “covered by” (r = 0.94)

Fig. 19. Correlation between predicted ‘speedup’ by the cost model and observed ‘speedup’ on throughput over Synthetic-10M.

a contradiction. Substituting λ = n1

m1
, we obtain

λ

λ− 1
= 1 +

m1

n1 −m1

= 1 +
m1

(m1 − 1)(k1 − 1)

= 1 +
1

k1 − 1
+

1

(m1 − 1)(k1 − 1)
.

As a result, when k1 ≥ 3 and m1 ≥ 3,

λ

λ− 1
≤ 1 +

1

2
+

1

4
< 2,

and thus Equation 8 holds without equality as rf ≥ 2rW ,
which implies c < c′. For the other two special cases
where one of k1 and m1 is 2 and the other is 3, we
have to compare the LHS and RHS to determine whether
Equation 8 holds.

G. Proof of Theorem 9

Let d = cf − c′f . It then follows that

d =
∑K

j=1
nj

(
M(Wj ,Wf)−M(Wj ,W

′
f)
)

+ ∆ (9)

=
∑K

j=1
nj

(rj − rf
sf

−
rj − r′f
s′f

)
+ ∆

=
∑K

j=1
nj

(rj
sf
− kf −

rj
s′f

+ k′f

)
+ ∆,

where

∆ = nf ·M(Wf ,W)− n′f ·M(W ′f ,W)

= nf

(
1 +

rf − rW
sW

)
− n′f

(
1 +

r′f − rW
sW

)
= nf

(
1 +

rf
sW
− kW

)
− n′f

(
1 +

r′f
sW
− kW

)
.

Clearly, Wf is more beneficial if d < 0.

Proof. Since Wf , W ′f , and W are all tumbling windows, kf =
k′f = kW = 1. Substituting into Equation 9 and using the facts
rf = sf , r′f = s′f , and rW = sW yields

cf − c′f =
∑K

j=1
nj

(rj
rf
− rj
r′f

)
+ nf ·

rf
rW
− n′f ·

r′f
rW

= nf

(∑K

j=1

nj
nf

(rj
rf
− rj
r′f

)
+

rf
rW
−
n′f
nf
·
r′f
rW

)
.

Again we consider when cf ≤ c′f holds. Or equivalently,

∑K

j=1

nj
nf

(rj
rf
− rj
r′f

)
+

rf
rW
−
n′f
nf
·
r′f
rW
≤ 0.

Similarly, define

ρj =
rj
rf
, ρ′j =

rj
r′f
, ∀1 ≤ j ≤ K.

Since Wf is tumbling,

nf = mf =
R

rf
=
mjrj
rf

= mjρj .

18

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(a) RandomGen, “partitioned by”

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(b) RandomGen, “covered by”

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(c) SequentialGen, “partitioned by”

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(d) SequentialGen, “covered by”

Fig. 20. Throughput on window sets when processing 10 million input events from Synthetic-10M with |W| = 15.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(a) RandomGen, “partitioned by”

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(b) RandomGen, “covered by”

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(c) SequentialGen, “partitioned by”

 0
 200
 400
 600
 800

 1000
 1200
 1400

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Original Plan
Plan w/o Factor Windows
Plan w/ Factor Windows

(d) SequentialGen, “covered by”

Fig. 21. Throughput on window sets when processing 10 million input events from Synthetic-10M with |W| = 20.

It therefore follows that

∑K

j=1

nj
mjρj

(ρj − ρ′j) +
rf
rW
−
n′f
nf
·
r′f
rW
≤ 0.

Noting that

ρ′j
ρj

=
rj/r

′
f

rj/rf
=
rf
r′f

and making some rearrangement of the terms yields(
1− rf

r′f

)∑K

j=1

nj
mj

+
r′f
rW

(rf
r′f
−
n′f
nf

)
≤ 0.

As before, define λ =
∑K
j=1

nj

mj
. It then follows that

rf
r′f
≥
λ− r′f

rW
· n

′
f

nf

λ− r′f
rW

.

19

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Flink
Scotty

Factor Windows

(a) RandomGen, “partitioned by”

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Flink
Scotty

Factor Windows

(b) RandomGen, “covered by”

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Flink
Scotty

Factor Windows

(c) SequentialGen, “partitioned by”

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 2 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t (

K
 e

ve
nt

s/
se

co
nd

)

Run (randomly generated window sets)

Flink
Scotty

Factor Windows

(d) SequentialGen, “covered by”

Fig. 22. Comparison with Scotty [49] in terms of throughput on window sets with |W| = 5.

Moreover, since both Wf and W ′f are tumbling windows, we
have nf = mf and n′f = m′f . Therefore,

r′f
rW
·
n′f
nf

=
r′f
rW
·
m′f
mf

=
R

rWmf
=

rf
rW

,

which yields
rf
r′f
≥
λ− rf

rW

λ− r′f
rW

.

This completes the proof of the theorem.

APPENDIX B
QUERY REWRITING FOR TRILL

Formally, given Gmin that captures the optimal window
coverage relationships, the query rewriting algorithm works
as follows. Suppose that the original plan is

Input Stream⇒ MultiCast⇒W = {W1, ...,Wn} ⇒ Union.

We first replace W by the min-cost WCG Gmin:

Input Stream⇒ MultiCast⇒ Gmin ⇒ Union.

We then perform the following steps:
• For each window w (in Gmin) without an incoming

edge, create a link from MultiCast to w. Remove the
MultiCast operator if there is only one such w.

• For each (intermediate) window v with outgoing edges,
insert a MultiCast operator Mv . Create a link from v
to Mv and a link from Mv to Union. For each (v, u) of
v’s outgoing edges, create a link from Mv to u.

• For each window w without outgoing edges, create a link
from w to Union.

Setup w/o FW
(Mean)

w/o FW
(Max)

w/ FW
(Mean)

w/ FW
(Max)

R-5-tumbling 1.21× 2.01× 1.85× 2.41×
R-10-tumbling 1.36× 1.72× 1.94× 3.13×
R-5-hopping 1.19× 1.76× 2.90× 3.78×
R-10-hopping 1.31× 1.54× 2.94× 5.14×
S-5-tumbling 1.63× 1.79× 3.82× 4.43×
S-10-tumbling 1.91× 2.07× 6.27× 7.27×
S-5-hopping 1.33× 1.51× 2.10× 2.73×
S-10-hopping 1.54× 1.69× 2.75× 3.65×

TABLE IV
SUMMARY OF THROUGHPUT BOOSTS ON SYNTHETIC-1M, WHERE ‘R’

STANDS FOR WINDOW SETS GENERATED BY RANDOMGEN, ‘S’ STANDS
FOR WINDOW SETS GENERATED BY SEQUENTIALGEN, AND ‘5’ AND ‘10’

ARE THE SIZES OF THE WINDOW SETS GENERATED.

APPENDIX C
MORE EVALUATION RESULTS

A. Results on Synthetic Data

Figure 14 presents the details of the throughput results on
window sets over the Synthetic-10M dataset when setting
the window-set size |W| = 10. Figures 15 and 16 further
present the details of the throughput results on window sets
over the Synthetic-1M dataset, and we summarize the results
in Table IV. Overall, we observe similar patterns on Synthetic-
10M and Synthetic-1M.

B. Results on Real Data

Figures 17 and 18 present the details of the throughput
results on the real dataset Real-32M when setting the window-
set size |W| to |W| = 5 and |W| = 10, respectively. Again,
we observe that the throughput when using factor windows
is often significantly higher than that when factor windows
were not considered. We also observe that, even just using the

20

rewritten plans without including factor windows can often
significantly outperform the original plans.

C. Effectiveness of Cost Model
To test the effectiveness of our cost model developed

in Section III, we measure the correlation [29], [52], [53]
between the observed throughput boost and the estimated
cost reduction using the cost model on Synthetic-10M, given
that the constant input event rate of Synthetic-10M matches
the underlying assumption of our cost model. Specifically,
let the throughput of the rewritten query plans, without and
with factor windows, be Tw/o and Tw/, respectively, and we
define the throughput speedup as γT = Tw/

Tw/o
. Moreover, let the

estimated costs of the rewritten query plans, without and with
factor windows, be Cw/o and Cw/, respectively, and we define
the estimated speedup as γC = Cw/o

Cw/
. We are interested in the

correlation between γT and γC . Figure 19 presents the results
of this correlation test. In each chart, the x-axis represents γC
whereas the y-axis represents γT , and we have merged data
points from both |W| = 5 and |W| = 10. Overall, we observe
very strong correlation between γT and γC , regardless of

the experiment setup (e.g., RandomGen vs. SequentialGen,
“partitioned by” vs. “covered by”). We further calculated the
Pearson correlation coefficient r for each chart, and we observe
that r ≥ 0.94 in all cases that we tested.

D. Scalability Tests

Figures 20 and 21 present the details of our scalability
test on Synthetic-10M when setting the window-set size
|W| ∈ {15, 20}. We observe similar patterns to that when
setting |W| ∈ {5, 10}, which suggests that the optimized
query plans produced by our cost-based approach can scale
up smoothly with increasing window-set size.

E. Comparison with Window Slicing

Figure 22 presents the results that compare the through-
put of Apache Flink, Scotty, and our factor-window based
optimization when setting the window-set size |W| = 5.
We observe that our approach and Scotty result in similar
throughput, and both approaches significantly outperform the
default query plan used by Apach Flink that evaluates each
window aggregate independently.

21

	I Introduction
	II Overlaps Between Windows
	II-A Preliminaries
	II-A1 The Interval Representation of a Window

	II-B Window Coverage and Partitioning
	II-B1 A Partial Order
	II-B2 Interval Coverage
	II-B3 Interval/Window Partitioning

	II-C Window Coverage Graph (WCG)

	III Aggregates over WCG
	III-A A Taxonomy of Aggregate Functions
	III-B A Cost-based Optimization Framework
	III-B1 Cost Modeling
	III-B2 Cost Minimization

	III-C Query Rewriting

	IV Factor Windows
	IV-A Impact of Factor Window
	IV-B Candidate Generation and Selection
	IV-B1 Candidate Generation
	IV-B2 Candidate Selection
	IV-B3 Time Complexity Analysis of Algorithm 2

	IV-C Putting Things Together
	IV-D The Case of ``Partitioned By''
	IV-D1 Revisit of Impact of Factor Windows
	IV-D2 Revisit of Candidate Generation and Selection

	V Evaluation
	V-A Experiment Settings
	V-A1 Setup
	V-A2 Data Sets
	V-A3 Generation of Window Sets

	V-B Results on Synthetic Data
	V-B1 Throughput

	V-C Results on Real Data
	V-D Scalability Tests
	V-E Query Optimization Overhead
	V-F Comparison with Window Slicing

	VI Related Work
	VII Conclusion
	References
	Appendix A: Proofs
	A-A Proof of Theorem 1
	A-B Proof of Theorem 2
	A-C Proof of Theorem 3
	A-D Proof of Theorem 4
	A-E Proof of Theorem 6
	A-F Proof of Theorem 8
	A-G Proof of Theorem 9

	Appendix B: Query Rewriting for Trill
	Appendix C: More Evaluation Results
	C-A Results on Synthetic Data
	C-B Results on Real Data
	C-C Effectiveness of Cost Model
	C-D Scalability Tests
	C-E Comparison with Window Slicing

