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Abstract—E-commerce has gone a long way in empowering
merchants through the internet. In order to store the goods
efficiently and arrange the marketing resource properly, it is
important for them to make the accurate gross merchandise value
(GMV) prediction. However, it’s nontrivial to make accurate
prediction with the deficiency of digitized data. In this article,
we present a solution to better forecast GMV inside Alipay app.
Thanks to graph neural networks (GNN) which has great ability
to correlate different entities to enrich information, we propose
Gaia, a graph neural network (GNN) model with temporal
shift aware attention. Gaia leverages the relevant e-seller’ sales
information and learn neighbor correlation based on temporal
dependencies. By testing on Alipay’s real dataset and comparing
with other baselines, Gaia has shown the best performance. And
Gaia is deployed in the simulated online environment, which also
achieves great improvement compared with baselines.

Index Terms—time series, GMV forecasting, graph neural
network, neighborhood attention

I. INTRODUCTION

With the ever increasing use of the internet, a wide range
of small and large companies have leveraged e-commerce to
bolster sales. Aiming at the sale estimation for each merchant,
the forecasting of gross merchandise value (GMV), which
estimates the total sales volume over a period of time, has
been playing an increasingly important role in e-commerce
scenarios [1], [2]. In addition, a precise prediction has the
potential of refraining from unexpected issues for profit loss,
e.g., stockout, staff inefficiency and customer loss.

Intuitively, the GMV forecasting task could be formulated
as a regression problem with time series analysis, which have
been widely explored in numerous studies, including classical
statistical method (e.g., AR [3] and ARIMA [3]) and recently
emerging deep learning based methods (e.g., LSTM [4] and
LSTNet [5]). Unfortunately, the capability of these approaches
in time series forecasting may be distant from optimal or
even satisfactory, due to the inevitable temporal deficiency
issue in practical e-commerce scenarios. Empirically, the skew
distribution shown in Fig 1(a) gives the strong evidence
that only limited temporal information of e-sellers could be
obtained for GMV forecasting, which severely hinders the
performance of conventional time series forecasting method.

Besides, the GMV of e-sellers relies heavily on their
supply chain enterprises [6]. This makes graph neural net-
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works (GNNs) suitable for GMV forcasting for its ability of
both utilizing neighbor information and time series dependen-
cies. In addition, we observe another characteristic of GMV
series in the e-commerce scenario, which we call temporal
shift. We find two kinds of time shifts in GMV series. One
is the self-shift, meaning that the GMV series may show
similar patterns after an interval. For example, the GMV
of a seller who sells seasonal goods may be similar as its
historical GMV in the same season [1]. Another is inter-
seller shift, e.g. for supply-chain relationships, the GMV of
a seller will emerge a rising or decreasing pattern earlier than
its downstream retailers, as retailers will firstly buy goods
from its suppliers then retail to the customers. Though some
GNN-based methods [7]–[9] have been proposed for GMV
forcasting, they fail to make full use of time shift information
in the e-commerce scenario.
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Fig. 1: (a) illustrates the temporal deficiency problem, (b)
shows a toy example of e-seller graph, only the blue nodes
and the solid line edges exist in the final graph.

We hereby propose Gaia, a Graph Neural Network with
Tempoal Shift aware Attention. To solve the temporal defi-
ciency problem, we mine different relationships among shops
and establish a shop network, making up for the information
loss. Our model contains three basic components: Feature
Fusion Layer (FFL), Temporal Embedding Layer (TEL) and
an Inter and intra Temporal shift Aware Attention mechanism
for classical Graph Convolutional Network (short as ITA-
GCN). The FFL is in charge of combining basic features
and GMV series of a shop, TEL aims at extracting temporal
patterns, and the ITA-GCN is well-designed to caputure the
Temporal Shift patterns not only from the time series of an
individual shop, but also from its neighbors.
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Our main contribution is listed as follows:
• In the e-commerce scenario, we propose Gaia, a GMV

forecasting framework, which aims at solving the tempo-
ral deficiency problem and the temporal shift problem
of e-sellers.

• Our proposal not only fuses auxiliary features with time
series features of a e-seller via a FFL and a TEL, but
also learns temporal shift patterns from its own and its
neighbors’ GMV sequence, via a ITA-GCN.

• We conduct extensive experiments on real-world data set
and also deploy Gaia in online environment, both the
offline and online results show that Gaia outperforms all
state of the art methods.

II. RELATED WORK

In past decades, time series analysis based methods have
been well studied [10]. Due to the simplicity and interpretabil-
ity, early works mainly focus on statistical modelling based
on a assumption of stationary process [3]. Particularly, the
ARIMA approach and its variants (e.g., AR, MA, and ARMA)
have shown powerful capability in various applications [3],
which make prediction only by the linear combination of
historical values, i.e., so-called univariate time series analysis.
On the comparison, attention is natually shifting towards mul-
tivariate time series analysis and a series of approaches [11] are
proposed to inherently characterize interdependencies among
variables. However, the prefabricated assumption and model
complexity are bottlenecks. Due to the powerful ability of
feature interaction, deep neural networks are introduced to
capture non-linear patterns in time series. Following this line,
DeepAR [12] and LogTrans [13] are respectively developed
for univariate time series prediction based on deep probabilis-
tic models and the recently emerging Transformer architecture.
Meanwhile, to marry the strength of convolutional neural
networks (CNNs) and recurrent neural networks (RNNs),
numerous methods [5], [14], [15] are proposed to capture local
and global dependencies among variables for multivariate time
series prediction. Unfortunately, the inevitable temporal defi-
ciency issue in practical e-commerce scenarios still threatens
the capbility of current methods.

As a prevailing paradigm, graph neural networks (GNNs)
has shown the remarkable strength for ingesting valuable
information encoded in graph-structured data [16]–[20]. In
line with the main focus in our paper, we center on the
well studied spatial-temporal GNNs (STGNNs) which initially
designed to the traffic prediction task [7], [9], [21]. In general,
a STGNN is comprised of two main components: a graph
convolution capturing spatial structure and a deep architecture
dealing with time series on nodes through CNNs [7], [22] and
RNNs [23]–[25]. Distinct from above paradigm based on pre-
defined graph structure, a few efforts [8], [26] have been made
for simultaneously learning a graph structure and a powerful
GNN for time series prediction in an unified framework. Nev-
ertheless, these methods still neglect the temporal shift issues.
In contrast, our proposed Gaia hinges on a well-designed
graph convolutional component, which carefully considers the

temporal shift in both inter and intra level. In addition, node-
level feature learning is also achieved in a more fine-grained
manner through feature fusion and temporal embedding.

III. PRELIMINARIES

A. Problem Definition

This paper addresses the problem of forecasting GMV of
e-sellers. Suppose there exists an e-seller graph G = (V, E)
consisting of N e-sellers as node set V = {v1, . . . , vN}, and
M links between these e-sellers as edge set E = {e1, . . . , eM}.
For each e-seller v, let zv ∈ RT

+ denote its monthly GMV,
where T is the number of time steps. We assume that each
e-seller have both temporal and static auxiliary features (detail
description in Section IV-A), which can be denoted as FTv =

{fTv,t}Tt=1 ∈ RT×DT
and fSv ∈ RDS

, respectively. Given the
above information, the problem is to predict the future GMV
of T ′ months for each e-seller v, which can be denoted as
yv ∈ RT ′

+ .

B. E-Seller Graph Construction

In the scenario of e-commerce, there exists two kinds of
relationships between e-sellers that can improve the effective-
ness of GMV forecasting. Fig 1(b) shows a demonstration of
these two relationships. The first relationship is supply chain
relationship, in which one associated e-seller sells its goods to
another e-seller, and the upstream e-seller’s GMV is affected
by the downstream e-seller. The GMV traded by adjacent e-
sellers in a supply chain is usually correlated. For example, a
downstream e-seller with an increased GMV may need more
raw materials to produce more goods. This may lead to an
increase in orders from its upstream suppliers, thus increase
the GMV of upstream e-sellers to a certain extent. The second
one is same owner/shareholder relationship. Since two e-
sellers that share the same owners or shareholders usually
have similar operation strategies, such as similar willingness
to participate in shopping festivals, their GMVs may share a
common trend.

These two kinds of relationships make up the edge set of
e-seller graph. Note that, the e-seller consists of only shops as
nodes, and the edges type is made as one of the edge features,
so the graph here is considered a homogenous graph.

IV. METHODOLOGY

The overview of Gaia is depicted in Fig. 2.

A. Feature Fusion Layer

In the industrial scenario of e-commerce, an e-seller is
usually characterized via various features. Here, for each e-
seller node v, we summarize following features:
• {zv,t}Tt=1: historical monthly GMV series.
• fTv,t ∈ RDT

: auxiliary temporal features at each time
t ∈ [1, 2, · · · , T ], e.g., the month, the monthly amount of
customers and orders.

• fSv ∈ RDS
: auxiliary static features, e.g., the industry,

the registration location.
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Fig. 2: Overview of Gaia, which consists of three main components: Feature Fusion Layer (FFL), Temporal Embedding Layer
(TEL) and Inter and intra Temporal shift aware Attention based Graph Convolutional Network (ITA-GCN). FFL first fuses
auxiliary features with the GMV series at a single timestamp. Then TEL models the temporal patterns along the timeline.
Finally, with an well-designed convolutional attention unit, ITA-GCN learns the temporal shift on the structured e-seller graph.

Intuitively, both the individual time series and auxiliary tem-
poral/static features could help Gaia better understand the
intrinsic change trend of GMV for each e-seller. For better
representation, we equip Gaia with a Feature Fusion Layer
to fuse available features in a more fine-grained manner.
Formally, given an e-seller v at time t, the FFL firstly projects
aforementioned features (i.e., zv,t,fTv,t and fSv ) to the C-
dimensional embedding space, followed by a concatenation
and a fully-connected layer for feature fusion.

z̃v,t = zv,t ·wI + bI , (1)

f̃Tv,t = WT fTv,t + b
T
t , (2)

f̃Sv = WSfSv + bS , (3)

sv,t = WF [z̃v,t || f̃Tv,t || f̃Sv ] + bFt , (4)

where wI ∈ RC , bI ∈ RC , WT ∈ RC×DT
, {bTt ∈ RC}Tt=1,

WS ∈ RC×DS
, bS ∈ RC , WF ∈ RC×3C and {bFt ∈ RC}Tt=1

are learnable parameters, “||” is the concatenation operator.

B. Temporal Embedding Layer

As mentioned above, the FFL endows Gaia with powerful
capability for subtle feature fusion at each single timestamp,
whereas the feature interaction along the timeline is not
carefully considered, which potentially implies the various
temporal patterns (e.g., annual and seasonal patterns) derived
from GMV series. Therefore, inspired by the idea of [26],
we develop the Temporal Embedding Layer (TEL) based
on coupled temporal convolution layers, where a temporal
convolution layer is in charge of temporal patterns extraction,
paired with another temporal convolution layer for information
denoising. Specifically, given an input GMV series for e-
seller v (i.e., {zv,t}Tt=1), we could obtain the fused features
at each time step through the FFL, denoted as temporal
feature matrix Sv = {sv,t}Tt=1 ∈ RT×C . Following common
strategies in [27], [28], we define a group of kernels with

size {(2k × C;C/K)}Kk=1, which aim at capturing temporal
patterns in multiple levels. Here, {a× b; c} means a subgroup
of c kernels with size {a × b}. Then, the coupled temporal
convolution layers work as follows:

SCv = [LC,1{2×C;C/K} ? Sv || · · · || LC,K{2K×C;C/K} ? Sv], (5)

SDv = [LD,1
{2×C;C/K} ? Sv || · · · || LD,K

{2K×C;C/K} ? Sv], (6)

where LC,k{a×b;c} and LD,k
{a×b;c} means the kth temporal convo-

lution consisting of c kernels with size {a × b} for temporal
pattern capturing and information denoising, respectively, and
? is the 1D convolution operator with zeros padding.

Clearly, above temporal convolution layers provide coupled
valuable matrices, where the former (i.e., SCv ∈ RT×C )
preserves multi-level temporal patterns derived from GMV
series while the latter (i.e., SDv ∈ RT×C ) emphasizes
important/relevant patterns. Subsequently, the TEL gives the
final temporal representation for e-seller v as follows:

Ev = ReLU(SCv )� Sigmoid(SDv ), (7)

where � denotes the Hadamard product.

C. Inter and Intra Temporal shift Aware Attention based
Graph Neural Network

In this section, we are devoted to learning structural in-
formation from the well-established e-seller graph to benefit
GMV forecasting. As mentioned above, we should pay careful
attention to following two temporal shift issues in e-commerce
scenarios, which could be hardly captured by current graph
neural networks:
• Inter temporal shift among two connected e-sellers. Gen-

erally, different types of e-seller (i.e., suppliers and retailers)
have different response times to market trends, e.g., the
GMV of suppliers usually increase/decrease several months
before retailers. Moreover, a center e-seller in the graph



may place different importances to its neighbors, where
neighbors with rich series are expected to be emphasized.

• Intra temporal shift existed in individual e-seller. Intu-
itively, the GMV of a certain e-seller is directed related
to time and varies with seasons, i.e., the GMV of a e-
seller selling air conditioners always a sharp rise in summer.
Such a periodic shift is essential to accurately summarize
historical GMV series for each individual shop.

In light of these findings, we prepare a well-designed Inter and
intra Temporal shift aware Attention mechanism for classical
Graph Convolutional Network (short as ITA-GCN) to tackle
the above issues.

1) Convolutional Attention Unit: As the heart of ITA mech-
anism, Convolutional Attention Unit (short as CAU), based
on recently emerging self-attention architecture [29], aims at
capturing temporal shift for arbitrary edge v → u (u and v
could be the same). In other words, the CAU learns temporal
attention weights over timestamps conditioned on paired GMV
series. Given an edge v → u, the CAU produce the final
representation that summarize the influence of temporal shift
from v to u as follows:

Qu = LQ
{3×C;C} ?Hu,

Kv = LK
{3×C;C} ?Hv,

Vv = LV
{1×C;C} ?Hv,

CAU(Hu,Hv) = softmax(
QuK

>
v√

C
+M) Vv

where Hu,Hv ∈ RT×C is temporal representation for node
u and v, respectively. It is worthwhile that convolutional
kernels (i.e., LQ,LK ,LV ) are incorporated to help CAU
be aware of locality [13] of GMV series so that relevant
features based on the shape of several adjacent points could
be correctly matched. Moreover, we employ a mask matrix
M ∈ {−∞, 0}T×T for filtering out rightward attention in
order to avoid future information leakage.

2) ITA-GCN layer: Next, we build upon the architecture
of graph attention network [18] to recursively obtain cen-
ter node’s representation by aggregating its neighbors on e-
seller graphs. Moreover, attentive weights of aggregation are
generated to distinguish influence of temporal shift passed
by connectivity. Here, we begin with a single layer, which
produces representation for center node H

(l+1)
u by capturing

i) inter temporal shift from influences of its neighbors and ii)
intra temporal shift from its historical GMV series through our
CAU component.

H(l+1)
u =

∑
v∈N(u)

α(l)
u,vCAU(H(l)

u ,H(l)
v )

︸ ︷︷ ︸
Inter Neighbor Attention

+CAU(H(l)
u ,H(l)

u )︸ ︷︷ ︸
Intra Self Attention

, (8)

where N(u) is the neighbor set of node u, H(l)
u and H

(l)
v is

the representation of l-th ITA-GCN layer for node u and v
respectively, which is initialized with the output of TEL, i.e.,
H

(0)
u = Eu and H

(0)
v = Ev . Moreover, α(l)

u,v controls how

much information being aggregated on edge “u← v”, which
is implemented as follows:

α(l)
u,v =

exp g(u, v)∑
v′∈N(u) exp g(u, v′)

g(u, v) = µ> tanh(Ls
{1×C;1} ?H

(l)
u + Ld

{1×C;1} ?H
(l)
v )

Where µ ∈ RT is model parameter, Ls
{1×C;1} and Ld

{1×C;1}
are convolution kernels.

D. Model Learning

Generally, we stack L ITA-GCN layers to fully capture
complicated structure implicated in e-seller graph, and denote
the final representation for target node u as H

(L)
u . Then, the

GMV of node u in future T ′ months could be predicted as
follows:

ỹu = ReLU([LP{1×C;1} ? (H
(L)
u +Eu)]W

P + bP). (9)

Here, our prediction function is parameterized by weight
matrix WP ∈ RT×T ′

, bias vector bP ∈ RT ′
as well as

convolutional kernel LP{1×C;1}, and we incorporate the residual
connection mechanism to emphasize the original representa-
tions derived from TEL model.

Since GMV forecasting could be naturally formulated as a
regression task, Mean Square Error (MSE) is adopted to guide
the optimization of Gaia.

L =
1

|V| × T ′
∑
u∈V

T ′∑
t=1

(ỹu,t − yu,t)
2, (10)

where ỹu,t and yu,t ∈ RT ′

+ is the prediction of Gaia and
ground truth in t-th month.

V. EXPERIMENT

A. Experimental Setup

1) Evaluation Dataset and Metrics: We conduct experi-
ments on real-world datasets from Alipay, which contain 3
million of shops over the time period from Jun. 2019 to Dec.
2020. To evaluate the performance of each method, we utilize
the data from Jun. 2019 to Sep. 2020 and perform GMV
forecasting for shops in the remaining three months (i.e., Oct.,
Nov. and Dec.). The dataset follows this data statement:

1) It does not contain any Personal Identifiable Information.
2) It’s desensitized and encrypted.
3) Adequate data protection was carried out during the

experiment to prevent the risk of data copy leakage, and
the dataset was destroyed after the experiment.

4) It’s only used for academic research, it does not represent
any real business situation.

To guarantee the stability of prediction, we define the label
of each shop as its total GMV in the future 3 months. For
each shop, we collect its historical monthly GMV in the
last 24 months from online order logs to construct GMV
series. Moreover, we carefully construct an e-seller graph to
help GMV forecasting, which consists of around 3 million
of nodes (i.e., shops) and 10 million of edges (i.e., same



TABLE I: Performance comparison with baselines on three datasets

Oct. Nov. Dec.
Method MAE ↓ RMSE ↓ MAPE ↓ MAE ↓ RMSE ↓ MAPE ↓ MAE ↓ RMSE ↓ MAPE ↓

ARIMA 39,493 139,405 0.2145 40,329 142,378 0.2427 38,148 104,654 0.2010
LogTrans 43,337 550,485 0.1293 42,895 532,192 0.1165 41,884 550,884 0.1041

GAT 42,119 472,615 0.1557 39,961 441,983 0.1462 37,952 452,788 0.1258
GraphSage 40,195 503,052 0.1386 38,417 472,788 0.1314 37,278 482,840 0.1168
Geniepath 40,472 480,509 0.1475 38,543 457,190 0.1380 36,753 466,391 0.1189

STGCN 42,413 544,015 0.1389 39,099 514,525 0.1261 36,368 522,495 0.1042
GMAN 39,889 412,678 0.1391 37,467 400,293 0.1298 34,240 402,699 0.1101

MTGNN 28,721 158,596 0.1089 26,346 141,067 0.0992 24,357 167,072 0.0871

Gaia 24,064 112,516 0.0909 22,467 95,518 0.0860 20,473 95,051 0.0771

owner/shareholder relationship and supply chain relationship).
And the supply chain relationship is mined as introduced
in [6], [30].

Following [31], we adopt widely-used MAPE, RMSE,
MAE to evaluate performance on the GMV forecasting task.

2) Compared Methods: We mainly consider 9 represen-
tative methods for the GMV forecasting task, which falls
into three groups: i) Time series analysis based methods (i.e.,
ARIMA [3] and LogTrans [13]) only utilizing the individual
sequential data, ii) GNN based methods (i.e., GAT [32],
GraphSAGE [19] and GeniePath [33]) only considering
the graph structure, and iii) STGNN based methods (i.e.,
STGCN [7], GMAN [9] and MTGNN [26]) jointly modelling
sequential and structural information through so-called spatial
and temporal attention mechanism.

3) Implementation Details: With AGL [34] framework, we
use Keras, and adopt Adam [35] optimizer with learning
rate 0.00001 and 32 batch size. For fair comparison, we
set embedding sizes to 32. To obtain optimal performance
of each methods, we apply the grid search strategy on the
validation set, and optimal hyper-parameters used in Gaia and
baselines are listed as follows: For time series analysis based
methods, we set the key parameters (i.e., max(p) and max(q))
in ARIMA to 2; for LogTrans we use 3 attention blocks
with 3 heads. For GNN based methods, we follow the same
architectures in their original paper, and stack 2 layers for
information aggregation. For STGNN based methods, we set
the channel size to 32. Specifically, MTGNN’s layer size is
set to 3.

B. Experimental Results and Analysis

1) Overall Comparison: We present the comparison results
of Gaia and compared methods in Table I. We can observe
that our model consistently and significantly outperforms all
baselines on three datasets across all metrics, demonstrating
the effectiveness of Gaia on the task of GMV forecasting.
Moreover, the overall performance order among baselines are
follows: STGNN based methods > GNN based methods and
> time series analysis based methods. It is not surprising that
GMV forecasting could easily benefit from fusion of auxiliary
information (e.g., graph structure). Nevertheless, our model
still yields the best performance by jointly characterizing

TABLE II: Ablation Study of Gaia

Method MAE ↓ RMSE ↓ MAPE ↓

Gaia 24,064 112,516 0.0909
Oct. w/o ITA 26,387 131,523 0.0955

w/o FFL 26,217 131,689 0.1002
w/o TEL 27,021 103,771 0.1017

Gaia 22,467 95,518 0.0860
Nov. w/o ITA 24,115 131,470 0.0876

w/o FFL 23,915 141,535 0.0910
w/o TEL 24,816 127,711 0.0929

Gaia 20,473 95,051 0.0771
Dec. w/o ITA 21,551 153,490 0.0767

w/o FFL 21,305 134,152 0.0791
w/o TEL 22,458 117,293 0.0817

individual feature interaction and graph based incorporation
in a more fine-grained manner.

2) Ablation Study: We conducted a comprehensive ablation
study to analyze the impacts of each well-designed component
in our architecture. Table II shows the performance of Gaia ans
its variants on three datasets. The variants and corresponding
analysis are listed as follows:

• Inter and intra Temporal shift aware Attention (Gaia w/o
ITA): We replace the newly proposed ITA with traditional
self-attention. The significant performance drop further
supports the conclusion that inter and intra temporal shift
should be carefully handled in structural learning with our
e-seller graph.

• Feature Fusion Layer (Gaia w/o FFL): Not surprisingly,
we observe poor performance without our FFL, implying
that feature fusion in a more fine-grained mode plays a
fundamental role in following graph learning and final
GMV forcasting.

• Temporal Embedding Layer (Gaia w/o TEL): We utilize
one certain convolutional kernel (i.e., {4×C;C}) rather
that kernel group in our TEL. Clearly, the experimental
results shows that a single kernel is not enough for various
temporal patterns in GMV series.

3) Effectiveness Analysis of Graph: Next, we take a closer
look at the effective of our e-seller Graph towards Gaia, which
devoted to the inevitable temporal deficiency issue in practical
e-commerce scenarios. According to the length of the GMV



series, we categorize all shops in our datasets into two groups,
i.e., “New Shop Group” with T < 10 and “Old Shop Group”
with T >= 10. And we select the strongest baseline without
graph for comparison and report the performance w.r.t. MAPE
and MAE in Fig 3.

From the figures, we could observe that Gaia significantly
outperforms LogTrans with the help of graph learning. More
importantly, we find the larger performance margin between
Gaia and LogTrans on the “New Shop Group”, i.e., 215.8%
w.r.t. MAE and 58.8% w.r.t. MAPE improvements on “New
Shop Group” v.s. 88.5% w.r.t. MAE and 41.0% w.r.t. MAPE
improvements on “Old Shop Group”. Both findings further
demonstrate the superior capacity of Gaia for addressing the
temporal deficiency issue with e-seller graph.

(a) MAPE (b) MAE

Fig. 3: Effectiveness Analysis of e-seller Graph. Larger per-
formance margin between Gaia and LogTrans on the “New
Shop Group” could be observed.

(a)
(b)

Fig. 4: Case study of the ITA module. (a) Relationship between
learned attention weights and cross correlation values for
arbitrary GMV pairs in each individual GMV series, (b)
Attention heatmap between a center node and one of its
neighbors.

4) Case Study towards the ITA module: To better under-
stand the merits of Gaia, we conduct a comprehensive case
study for the ITA module, which intuitively provides convinc-
ing evidences for GMV forecasting with attentive weights. For
intra temporal shift aware attention, we plot the relationship
between the learned attention weights and correlation values
for arbitrary GMV pairs in each individual GMV series. The
negative correlation shown in Fig. 4 (a) concludes that similar
temporal patterns in single GMV series could be well captured
by Gaia. On the other hands, we present an attention heat
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Fig. 5: The deployment details of Gaia in simulated Alipay
App environment.

map between a center node and one of its neighbors in Fig. 4
(b) to study the inter temporal shift aware attention. It is not
surprising that similar patterns cross two nodes could be find
with large attention. It is also worthwhile to note that a pair of
unmatched temporal patterns also attains large attention due
to the impact of auxiliary features.

VI. SYSTEM DEPLOYMENT

To future demonstrate the effectiveness of the proposed
Gaia, we deploy it in the Alipay’s simulated online envi-
ronment for GMV forecasting. As shown in Fig. 5, our
deployment follows a hybrid online-offline architecture: offline
periodical training → online real-time prediction.

As mentioned above, a well-established e-seller graph is
of crucial importance to support offline training. Assisted by
the Node Feature Extractor and Relation Extractor, abun-
dant features (i.e., temporal/static features and GMV series)
and relations (i.e., same owner/shareholder and supply chain
relationship) are fully explored in an automatic way. It is
worthwhile to note that such a simulated pipeline is scheduled
monthly to adapt our system to the ever-changing graph
structure. In the online part, with regard to a newcoming
e-seller, the well-trained Gaia stored in the Model Server
will make prediction in real time based on its ego-subgraph
extracted from the aforementioned e-seller graph.

Compared to the existed deployed baseline LogTrans, we
observe that Gaia achieves 29.1% improvement on the main
metric MAPE (0.117 → 0.083). Our deployed model takes
about 10 minutes to predict 2 million e-sellers, the inference
time scales linearly with the number of clients.

VII. CONCLUSION

In this paper, we propose Gaia, a novel GMV forecasting
framework for e-sellers, to address the temporal deficiency
and temporal shift issue. Following the common hierarchical
architecture, Gaia jointly models GMV series and auxiliary
features in a fine-grained manner with Feature Fusion Layer
(FFL), and then learns feature interaction along the timeline
through Temporal Embedding Layer (TEL), followed by the
well-designed Inter and intra Temporal shift aware Attention
based Graph Neural Network (ITA-GCN). Extensive offline
and online experiments show the effectiveness of Gaia.
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Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[33] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, and Y. Qi, “Geniepath:
Graph neural networks with adaptive receptive paths,” in AAAI, vol. 33,
2019, pp. 4424–4431.

[34] D. Zhang, X. Huang, Z. Liu, J. Zhou, Z. Hu, X. Song, Z. Ge, L. Wang,
Z. Zhang, and Y. Qi, “Agl: a scalable system for industrial-purpose
graph machine learning,” Proceedings of the VLDB Endowment, vol. 13,
no. 12, pp. 3125–3137, 2020.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.


	I Introduction
	II Related Work
	III Preliminaries
	III-A Problem Definition
	III-B E-Seller Graph Construction

	IV Methodology
	IV-A Feature Fusion Layer
	IV-B Temporal Embedding Layer
	IV-C Inter and Intra Temporal shift Aware Attention based Graph Neural Network
	IV-C1 Convolutional Attention Unit
	IV-C2 ITA-GCN layer

	IV-D Model Learning

	V Experiment
	V-A Experimental Setup
	V-A1 Evaluation Dataset and Metrics
	V-A2 Compared Methods
	V-A3 Implementation Details

	V-B Experimental Results and Analysis
	V-B1 Overall Comparison
	V-B2 Ablation Study
	V-B3 Effectiveness Analysis of Graph
	V-B4 Case Study towards the ITA module


	VI System Deployment
	VII Conclusion
	References

