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Abstract—Reachability queries checking the existence of a
path from a source node to a target node are fundamental
operators for querying and processing graph data. Current
approaches for index-based evaluation of reachability queries
either focus on plain reachability or constraint-based reachability
with only alternation of labels. In this paper, for the first time we
study the problem of index-based processing for recursive label-
concatenated reachability queries, referred to as RLC queries.
These queries check the existence of a path that can satisfy
the constraint defined by a concatenation of at most k edge
labels under the Kleene plus. Many practical graph database
and network analysis applications exhibit RLC queries. However,
their evaluation remains prohibitive in current graph database
engines.

We introduce the RLC index, the first reachability index to
efficiently process RLC queries. The RLC index checks whether
the source vertex can reach an intermediate vertex that can
also reach the target vertex under a recursive label-concatenated
constraint. We propose an indexing algorithm to build the RLC
index, which guarantees the soundness and the completeness of
query execution and avoids recording redundant index entries.
Comprehensive experiments on real-world graphs show that the
RLC index can significantly reduce both the offline processing
cost and the memory overhead of transitive closure, while
improving query processing up to six orders of magnitude over
online traversals. Finally, our open-source implementation of the
RLC index significantly outperforms current mainstream graph
engines for evaluating RLC queries.

Index Terms—reachability index, graph query, graph
databases, RLC queries

I. INTRODUCTION
Graphs have been the natural choice of data representation

in various domains [1], e.g., social, biochemical, fraud de-
tection and transportation networks, and reachability queries
are fundamental graph operators [2]. Plain reachability queries
check whether there exists a path from a source vertex to
a target vertex, for which various indexing techniques have
been proposed [3]–[21]. To facilitate the representation of
different types of relationships in real-world applications,
edge-labeled graphs and property graphs, where labels can
be assigned to edges, are more widely adopted nowadays than
unlabeled graphs. Such advanced graph models allow users
to add path constraints when defining reachability queries,
which play a key role in graph analytics. However, current
index-based approaches focus on constraint-based reachability
with only alternation [22]–[26]. In this paper, we consider for
the first time reachability queries with a complex path con-
straint corresponding to a concatenation of edge labels under

the Kleene plus, referred to as recursive label-concatenated
queries (RLC queries). RLC queries are a prominent subset of
regular path queries, for which indexing techniques have not
been understood yet. As such, they are significant counterparts
of queries with alternation of labels as path constraints [24]
and queries without path constraints, i.e., plain reachability
queries [3]. We further motivate RLC queries by means of a
running example.

Example 1: Figure 1 shows a property graph inspired
by a real-world use case encoding an interleaved social
and professional network along with information of bank
accounts of persons. RLC queries can be used to detect
fraud and money laundering patterns among financial trans-
actions. For instance, the query Q1(A14, A19, (debits,
credits)+) checks whether there is a path from account
A14 to A19 such that the label sequence of the path is
a concatenation of an arbitrary number of occurrences of
(debits, credits), which can lead to detect suspicious
patterns of money transfers between these accounts. The RLC
query Q1((A14, A19, (debits, credits)+) evaluates to
true because of the existence of the path (A14, debits, E15,
credits, A17, debits, E18, credits, A19). Another ex-
ample is Q2(P10, P13, (knows,knows,worksFor)+) that
evaluates to false because there is no path from P10 to P13

satisfying the constraint.
RLC queries are also frequently occurring in real-world

query logs, e.g., Wikidata Query Logs [27], which is the
largest repository of open-source graph queries (of the order
of 500M queries). In particular, RLC queries often timed out
in these logs [27] thus showing the limitations of graph query
engines to efficiently evaluate them. Moreover, Neo4j (v4.3)
[28] and TigerGraph (v3.3) [29], two of the mainstream graph
data processing engines, do not yet support RLC queries in
their current version. On the other hand, these systems have
already identified the need to support these queries in the near
future by following the developments of the Standard Graph
Query Language (GQL) [30]. RLC queries can be expressed in
Gremlin supported by TinkerPop-Enabled Graph Systems [31],
e.g., Amazon Neptune [32], in PGQL [33] supported by Oracle
PGX [34], [35], and in SPARQL 1.1 (ASK query) supported
by Virtuoso [36] and Apache Jena [37], among the others.
However, many of these systems cannot efficiently evaluate
RLC queries yet as shown in our experimental study.

To the best of our knowledge, little research has been
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Fig. 1. A social and professional network for illustrating RLC queries.

carried out on an index-based solution to evaluate RLC queries,
whereas indexing is a desirable asset of future graph process-
ing systems allowing to improve and predict the performances
of graph queries [38]. Previous plain reachability indexes have
been well studied [3]–[18], but are not usable to evaluate RLC
queries because of the lack of edge label information. More
recent indexing methods have been focused on alternation of
edge labels [22]–[26], instead of concatenation in RLC queries.

In this work, we propose the RLC index, the first reachability
index tailored for RLC queries. In the RLC index, we assign
pairs of vertices and succinct label sequences to each vertex.
Then, the RLC index processes an RLC query by checking
whether the source vertex can reach an intermediate vertex
that can also reach the target vertex under the path constraint.

Challenge C1. One of the challenges for building an index
to process RLC queries is that there can be infinite sequences
of edge labels from vertex s to vertex t due to the presence
of cycles on paths from s to t. Thus, building an index
for arbitrary RLC queries can be hard since the number of
label sequences for cyclic graphs is exponentially growing
and potentially infinite, which leads to unrealistic indexing
time and index size. We overcame this issue by leveraging a
practical observation: the number of edge labels concatenated
under the Kleene plus (or star) is typically bounded in real-
world query logs, e.g., [27]. We refer to the maximum number
of concatenated labels in a workload of RLC queries as
recursive k. Given an arbitrary recursive k, we show that the
RLC index can be correctly built to evaluate any RLC query
with a recursive concatenation of at most k arbitrary edge
labels. Note that recursive k only depends on the number of
concatenated labels and not on the actual length of any path
selected by RLC queries.

Challenge C2. Although abundant indexing algorithms [3]–
[21] have been proposed for plain reachability, which are
then extended to alternation-based reachability queries [22]–
[26], none of them is able to build an index for RLC queries
because of the completely different path constraints. More
precisely, indexing reachability with recursive concatenation-
based path-constraints requires recording sequences of edge
labels. However, indexing reachability with alternation-based
path-constraints requires sets of edge labels, or plain reacha-
bility without edge labels. Such a fundamental difference illus-
trates the hardness of the problem and shows the inadequacy
of existing indexing algorithms to build the RLC index. We
design a novel indexing algorithm that builds the RLC index
efficiently over large and highly cyclic graphs with millions

of vertices and edges as shown in our experiments. The
indexing algorithm searches and records paths with recursive
concatenation-based constraints, and during each searching
step, identifies the condition that allows to prune search space
as well as avoid recording redundant index entries.

Contribution. Our contributions are summarized as follows:
• We study the problem of indexing for RLC queries,

i.e., reachability queries with a complex path constraint
consisting of the Kleene plus over a concatenation of edge
labels. We propose a novel instantiation of the problem
to address challenge C1.

• We propose the RLC index, the first reachability index
for processing RLC queries, along with its indexing
algorithm to address challenge C2. We prove that the
latter builds a sound and complete RLC index for an
arbitrary recursive k, where redundant index entries can
be greedily removed.

• Our comprehensive experiments using highly cyclic real-
world graphs show that the RLC index can be efficiently
built and can significantly reduce the memory overhead
of the (extended) transitive closure. Moreover, the RLC
index is capable of answering RLC queries efficiently, up
to six orders of magnitude over online traversals. We also
demonstrate the speed-up and the generality of using the
RLC index to accelerate query processing on mainstream
graph engines. Our code is available as open source1.

The rest of the paper is organized as follows. Section II
presents the related work while Section III introduces the
RLC queries. Section IV presents the theoretical foundation
and Section V describes the RLC index and its indexing
algorithm. Section VI presents the experimental assessment of
RLC queries using the RLC index. Section VII concludes our
work. All related proofs are included in our online technical
report [39] due to the space constraint.

II. RELATED WORK

The two most fundamental graph queries [40] are graph
pattern matching queries and regular path queries (aka navi-
gational queries). The former matches a query graph against
a graph database while the latter recursively navigates a
graph according to a regular expression. The two fundamental
queries are completely orthogonal, and RLC queries belong to
the class of the latter. Thus, we discuss regular path queries
and related indexes in this section. We note approaches [41]–
[57] for efficient evaluating graph pattern matching queries.
We refer readers to surveys [58], [59]. We do not elaborate
on them further and do not consider them in our experimental
evaluation due to the completely different query types.
Plain Reachability Index. Given an unlabeled graph G =
(V,E) and a pair of vertices (s, t), a plain reachability query
asks whether there exists a path from s to t. The existing
approaches lie between two extremes, i.e., online traversals
and the transitive closure. Various indexes have been proposed.
Comprehensive surveys can be found in [18], [60], [61] Plain

1Open Source Link: https://github.com/g-rpqs/rlc-index
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reachability indexes mainly fall into two categories [17], [18]:
(1) index-only approaches, e.g., Chain Cover [4], [7], Tree
Cover [3], Dual Labeling [6], Path-Tree Cover [8], 2-Hop
labeling [5], TFL [10], TOL [19], PLL [21], 3-Hop labeling
[9], among others; (2) index-with-graph-traversal approaches,
such as Tree+SSPI [12], GRIPP [13], GRAIL [14], Ferrari
[15], IP [17], and BFL [18].
RLC queries are different from plain reachability queries

because they are evaluated on labeled graphs to find the
existence of a path satisfying additional recursive label-
concatenated constraints. Thus, the indexes used to evaluate
plain reachability queries, e.g., 2-hop labeling [5], are not
suitable for RLC queries. More precisely, indexing techniques
for plain reachability queries only record information about
graph structure but ignore information of edge labels.
Alternation-Based Reachability Index. Reachability queries
with a path constraint that is based on alternation of edge
labels (instead of concatenation as in our work), are known as
LCR queries in the literature. Index-based solutions for LCR
queries have been extensively studied in the last decade.

Jin et. al [22] presented the first result on LCR queries.
To compress the generalized transitive closure that records
reachable pairs and sets of path-labels, the authors proposed
sufficient label sets and a spanning tree with partial transitive
closure. The Zou et. al [23] method finds all strongly con-
nected components (SCCs) in an input graph and replaces each
SCC with a bipartite graph to obtain an edge labeled DAG.
Valstar et. al [24] proposed a landmark-based index, where
the generalized transitive closure for a set of high-degree
vertices called landmarks are built and an online traversal
is applied to answer LCR queries, which is accelerated by
hitting landmarks. The state-of-the-art indexing techniques for
LCR queries are the Peng et. al [25] method and the Chen
et. al [26] method. Peng et. al [25] proposed the LC 2-hop
labeling, which extends the 2-hop labeling framework through
adding minimal sets of path-labels for each entry in the 2-
hop labeling. Chen et. al [26] proposed a recursive method
to handle LCR queries, where an input graph is recursively
decomposed into spanning trees and graph summaries.

LCR queries and RLC queries have completely different
regular expressions as path constraints, which makes the
corresponding indexing problem inherently different. The ex-
pression in LCR queries is an alternation of edge labels, while
the one in RLC queries is a concatenation of edge labels.
The completely different path constraint makes LCR indexes
inapplicable for processing RLC queries. The difference on
path constraints also makes the indexing algorithms for LCR
queries and RLC queries fundamentally different. Specifically,
for an LCR indexing algorithm, it is sufficient to traverse
any cycle in a graph only once. Conversely, in the case of
RLC queries, a cycle, especially a self loop, might need to be
traversed multiple times depending on label sequences along
paths. Therefore, indexing approaches for LCR queries are not
applicable to indexing RLC queries.
Regular Path Queries. Regular path queries correspond to
queries generating node pairs according to path constraints

specified using regular expressions. Under the simple path
semantics (non-repeated vertices or edges in a path), it is
NP-complete to check the existence of a path satisfying a
regular expression [62]. Thus, a recent work [63] focused
on an approximate solution for evaluating regular simple path
queries. By restricting regular expressions or graph instances,
there exist tractable cases [62], [64], including LCR queries
but not RLC queries. When it comes to the arbitrary path
semantics (allowing repeated vertices or edges in a path),
regular path queries for generating node pairs can be processed
by using automata-based techniques [65], [66] or bi-directional
BFSs from rare labels [67]. Optimal solutions can be used for
sub-classes of regular expressions, e.g., a matrix-based method
[68] for the case without recursive concatenation, and a B+tree
index for the case with a bounded path length (non-recursive
path constraints) [69] and a fixed path pattern [70]. There also
exist in the literature partial evaluation for distributed graphs
[71], and incremental approaches for streaming graphs [72],
[73]. Compared to all these works, we focus on designing
an index-based solution to handle reachability queries with
path constraints of recursive concatenation over a static and
centralized graph under the arbitrary path semantics, which is
an open challenge in the design of reachability indexes. To the
best of our knowledge, our work is the first of its kind focusing
on the design of a reachability index for such queries.

III. PROBLEM STATEMENT

An edge-labeled graph is G = (V,E,L), where L is a finite
set of labels, V a finite set of vertices, and E ⊆ V × L ×
V a finite set of labeled edges. For the graph in Fig. 1, we
have L = {knows, worksFor, debits, credits,
holds}, and that e1=(P10, knows, P11) is a labeled edge.
We use λ : E → L to denote the mapping from an edge to its
label, e.g., λ(e1) = knows. The frequently used symbols are
summarized in Table I.

In this paper, we consider the arbitrary path semantics [40]
for evaluating RLC queries, i.e., vertices or edges can appear
more than once along the path. The arbitrary path semantics
is widely adopted in practical graph query languages, e.g.,
SPARQL 1.1 and PGQL, because evaluating a reachability
query with an arbitrary regular expression as the path con-
straint is tractable under the arbitrary path semantics but is NP-
complete under the simple path semantics, e.g., RLC queries.
It should be noteworthy that LCR queries with alternation-
based path constraints belong to a special class (trC class [64]),
which remain tractable under the simple path semantics.

An arbitrary path p in G is a vertex-edge alternating
sequence p(v0, vn) = (v0, e1, ..., en, vn), where n ≥ 1, and
v0, ..., vn ∈ V , e1, ..., en ∈ E, and |p(v0, vn)| = n that is the
length of the path. For p(v0, vn), v0 is the source vertex and
vn is the target vertex. If there exists a path from v0 to vn, then
v0 reaches vn, denoted as v0  vn. The label sequence of the
path p(v0, vn) is Λ(p(v0, vn)) = (λ(e1), ..., λ(en)). When the
context is clear, we also use Λ(u, v) to denote the sequence
of edge labels of a path from u to v.
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A. Minimum Repeats

We use li to denote an edge label, L = (l1, ..., ln) a label
sequence, |L| = n the length of L, and ε the empty label
sequence, i.e., |ε| = 0. We use ◦ to denote the concatenation
of label sequences (or labels), i.e., (l1, ..., li) ◦ (li+1, ..., ln) =
(l1, ..., ln), or L◦L = L2. For the empty label sequence ε, we
define L ◦ ε = ε ◦ L = L.

The sequence L′ = (l′1, ..., l
′
n′), |L′| = n′ is a repeat

of L = (l1, ..., ln), if there exists an integer z, such that
n
n′ = z ≥ 1, and l′j = lj+i×n′ for every j ∈ (1, ..., n′) and
i ∈ (0, ..., z − 1). A repeat L′ of L is minimum if L′ has the
shortest length of all the repeats of L. The minimum repeat
(MR) of L is denoted as MR(L) that is also a sequence of
edge labels. For example, given the path p = (P10, knows,
P11, worksFor, P12, knows, P13, worksFor, P16) in Fig.
1, we have MR(p(P10, P16)) = (knows,worksFor). If
L = MR(L), we also say L itself is a minimum repeat. Given
a positive integer k and a label sequence L, if |MR(L)| ≤ k,
then we say L has a non-empty k-MR that is MR(L).

Lemma 1: For a label sequence L, MR(L) is unique.
Suppose L has two minimum repeats, then only the shorter is
MR(L). Therefore, we have Lemma 1.

B. RLC Query

We consider the path constraint L+ = (l1, ..., lk)+, where
‘+’ is the Kleene plus, i.e., one-or-more concatenations of
the sequence L = (l1, ..., lk). A label sequence Λ(u, v) of
a path p(u, v) satisfies a label-constraint L+, if and only if
MR(Λ(u, v)) = L. If such a path p(u, v) exists, then u

can reach v with the constraint L+, denoted as u
L+

 v,

otherwise u
L+

6 v. Notice that reachability queries with path-
constraints based on recursive concatenation could ask for
additional constraints related to path length. For instance, if the
path constraint is L+ = (knows, knows)+, then the query
would need to additionally check whether the path length is
even. In general, such fragment of queries, i.e., queries with
L+ s.t. L 6= MR(L), impose an additional constraint on path
length leading to the complicated even-path problem (NP-
complete [62], [64], [74] for simple paths), which is beyond
the scope of our paper.

Definition 1 (RLC Query): Given an edge-labeled directed
graph G = (V,E,L) and a recursive k, an RLC query is a
triple (s, t, L+), L = (l1, ..., lj), where s, t ∈ V , L = MR(L),

j ≤ k, and li ∈ L for i ∈ (1, ..., j). If s L+

 t, then the answer
to the query is true. Otherwise, the answer is false.

For the sake of simplicity in this paper we focus on the
RLC queries with the Kleene plus. Queries (s, t, L∗) with the
Kleene star can be trivially reduced to queries with the Kleene
plus (s, t, L+) through checking whether s is equal to t. Our
method is thus applicable to RLC queries with the Kleene star.

Given an RLC query Q(s, t, L+), under the arbitrary path
semantics, two naive approaches can be used to evaluate Q.
As RLC queries are path queries with regular expressions, in
the first approach RLC queries can be evaluated by online
graph traversals, e.g., BFS, guided by a minimized NFA

TABLE I
FREQUENTLY USED SYMBOLS.

Notation Description
p, or p(u, v) a path, or the path from u to v
◦ concatenation of labels or label sequences
Λ(u, v), or Λ(p(u, v)) the label sequence of a path from u to v
L a label sequence
L+ a label constraint
MR(L) the minimum repeat of a label sequence L
k the upper bound of the number of labels in L+

Sk(u, v) the concise set of minimum repeats from u to v

u
L+

 v, or u
L+

6 v u reaches v through an L+-path, or otherwise
u v, or u 6 v u reaches v, or otherwise
in(v), or out(v) the set of vertices that can reach v, or v can reach
aid(v) the access id of vertex v by the indexing algorithm
v
(j)
i a vertex with vertex id i and access id j

(nondeterministic finite automaton) [61] that is constructed
according to the regular expression in an RLC query. The
second approach leads to pre-computing the transitive closure,
that for each pair of vertices (s, t) records whether s  t
and all the label sequences from s to t. Notice that the naive
approach to build the transitive closure is not usable in our case
because cycles may exist on the path from s to t such that the
BFS from s can generate infinite label sequences for paths to t.
To address this issue, we adopt an extended transitive closure,
which is presented in Section VI. As demonstrated in our
experiments, these two solutions require either too much query
time or storage space and are impractical for large graphs.

C. Indexing Problem

Our goal is to build an index to efficiently process RLC
queries. The indexing problem is summarized as follows.

Problem 3.1: Given an edge-labeled graph G, the indexing
problem is to build a reachability index for processing RLC
queries on G, such that the size of the index is minimal and
the correctness of query processing is preserved.

We observe that recording MRs, instead of raw label se-
quences of paths in G, can reduce the storage space, and
such a strategy does not violate the correctness of query
processing. The main benefits are twofold: (1) MRs are
not longer than raw label sequences; (2) different raw label
sequences may have the same MR. For example, in Fig. 1,
there exist two paths from P10 to P16 having the label se-
quence (knows, knows, knows, knows) and (knows,
knows, knows), which have the same MR knows.

Definition 2 (Concise Label Sequences): Let P(s, t) be the
set of all paths from s to t. The concise set of label sequences
from vertex s to t, denoted as Sk(s, t), is the set of k-MRs
of all label sequences from s to t, i.e., Sk(s, t) = {L|p ∈
P(s, t), L = MR(Λ(p)), |L| ≤ k}.

To process RLC queries, we need to compute and record the
concise label sequences. We have Proposition 1 by definition.

Proposition 1: s L+

 t, |L| ≤ k in G iff L ∈ Sk(s, t).
For example, in Fig. 1, we have S2(P12, P16) = {(knows),
(knows, worksFor)}. With S2(P12, P16), RLC queries
from P12 to P16 can be processed correctly.
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IV. KERNEL-BASED SEARCH

In this section, we deal with the following question: how to
compute concise label sequences? The problem for computing
a concise label sequence is that if a cycle exists on a path
from s to t, there exist infinite paths from s to t, which makes
the computation of Sk(s, t) infeasible, e.g., |P(P11, P13)| in
Fig. 1 is infinite. We overcome this issue by leveraging the
upper bound of recursively concatenated labels in a constraint,
i.e., recursive k. We observed that we don’t have to compute
all possible label sequences for paths going from P11 to P13

as the set of label sequences L such that |MR(L)| ≤ k is
actually finite. In general, let v be an intermediate vertex that
a forward breadth-first search from s is visiting. The main idea
is that when the path from s to v reaches a specific length, we
can decide whether we need to further explore the outgoing
neighbours of v. Moreover, if the outgoing neighbours of v
are worth exploring, the following search can be guided by
a specific label constraint. In the following, we first provide
an illustrating example, and then formally define the specific
constraint that is used to guide the subsequent search.

Example 2 (Illustrating Example): Consider the graph in
Fig. 1. Assume we need to compute S2(P11, P13), i.e.,
k = 2, and we perform a breadth-first search from P11.
When P13 is visited for the first time, we add (knows)
and (worksFor, knows) into S2(P11, P13). After that,
when the search depth reaches 2k = 4, i.e., P12 is vis-
ited for the second time, we can have 4 different label
sequences, which are L1 = (knows, knows, knows,
knows), L2 = (knows, knows, knows, worksFor),
L3 = (worksFor, knows, knows, knows), and L4 =
(worksFor, knows, knows, worksFor). Given this,
all the 4 label sequences except L1 do not need to be expanded
anymore, because their expansions cannot produce a minimum
repeat whose length is not larger than 2. After this, the
following search continued with L1 is guided by (knows)+

that is computed from L1. However, because there already
exists (knows) in S2(P11, P13), the search terminates.

Definition 3: If a label sequence L can be represented as
L = (L′)h ◦L′′, where h ≥ 2, L′ 6= ε and MR(L′) = L′, and
L′′ is ε or a proper prefix of L′, then L has the kernel L′ and
the tail L′′.

For example, the label sequence (knows, knows,
knows, knows) from P11 has a kernel knows and a tail ε.

Kernel-based search. When a kernel has been determined at
a vertex that is being visited, the subsequent search to compute
Sk(s, t) can be guided by the Kleene plus of the kernel, e.g.,
(knows)+ is used to guide the search in Example 2. We call
this approach KBS (kernel-based search) in the remainder of
this paper. In a nutshell, KBS consists of two phases: (1)
kernel-search and (2) kernel-BFS, where the first phase is
to compute kernels, and the second to perform kernel-guided
BFS. We show in Theorem 1 that KBS can compute a sound
and complete Sk(s, t). The proof of Theorem 1 is included in
our technical report [39] due to the space limit.

Theorem 1: Given a path p from u to v and a positive integer

k, p has a non-empty k-MR if and only if one of the following
conditions is satisfied,
- Case 1: |p| ≤ k. MR(Λ(p)) is the k-MR of p;
- Case 2: k < |p| ≤ 2k. If |MR(Λ(p))| ≤ k, MR(Λ(p)) is

the k-MR of p;
- Case 3: |p| > 2k. Let x be the intermediate vertex on p, s.t.
|p(u, x)| = 2k. If Λ(p(u, x)) has a kernel L′ and a tail L′′,
and MR(L′′ ◦Λ(p(x, v))) = L′, then L′ is the k-MR of p.
We discuss below two strategies to compute kernels based

on Theorem 1, namely lazy KBS and eager KBS, and explain
why eager KBS is better than lazy KBS, which is used in our
indexing algorithm presented in Section V-B.

Lazy KBS. Theorem 1 can be transformed into an algorithm
to find kernels, i.e., for a source vertex we generate all paths
of length 2k, and then compute all the kernels of these paths.
This strategy is referred to as lazy KBS, which means kernels
are correctly determined when the length of paths reaches 2k,
e.g., lazy KBS is used in Example 2.

Eager KBS. In contrast to the lazy strategy, we can deter-
mine kernel candidates earlier, instead of valid kernels that
require the length of paths to be 2k. The main idea is to treat
any k-MR that is computed using any path p, |p| ≤ k as a
kernel candidate which is then used to guide KBS. Although
an invalid kernel may be included, the search guided by the
invalid kernel will not reach a target vertex through a path
of which the k-MR is the invalid kernel. Thus, the result
computed by the eager strategy is still sound and complete.

Example 3: Consider the example of computing
S2(P10, P13) in Fig. 1. Using the eager strategy, when
P12 is visited for the first time, two kernel candidates can
be determined, i.e., (knows) and (knows, worksFor).
Although (knows, worksFor)+ is an invalid kernel, the
search guided by it cannot reach P13.

The key advantage of the eager strategy over the lazy
strategy is that it allows us to advance KBS from the kernel-
search phase to the kernel-BFS phase. This can make KBS
more efficient because generating all label sequences of length
2k from a source vertex is more expensive than the case of
paths of length k, especially on a dense graph.

V. RLC INDEX

In this section, we present the RLC index, and the corre-
sponding query and indexing algorithm.

A. Overarching Idea

Given an RLC query (s, t, L+), |L| ≤ k, the idea is
to check whether there exists a path (s, ..., u, ..., t) whose
label sequence satisfies the label constraint L+, where u is
an intermediate vertex in p. In other words, the query is
answered by concatenating two MRs of the sub-paths of p,
i.e., MR(Λ(s, u)) and MR(Λ(u, t)).

Definition 4 (RLC Index): Let G = (V,E,L) be an edge-
labeled graph and recursive k be a positive integer. The
RLC index of G assigns to each vertex v ∈ V two sets:
Lin(v) = {(u, L′)|u  v, L′ ∈ Sk(u, v))}, and Lout(v) =
{(w,L′′)|v  w,L′′ ∈ Sk(v, w)}. Therefore, there is a path
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Fig. 2. A graph instance G for illustrating the RLC index.

p(s, t) satisfying an arbitrary constraint L+, |L| ≤ k, if and
only if one of the following cases is satisfied,

• Case 1: ∃(x, L′) ∈ Lout(s) and ∃(x, L′′) ∈ Lin(t), such
that L′ = L′′ = L;

• Case 2: ∃(t, L′′′) ∈ Lout(s) or ∃(s, L′′′) ∈ Lin(t), such that
L′′′ = L.
Example 4 (Running Example of the RLC Index): Con-

sider the graph G shown in Fig. 2. The RLC index with
recursive k = 2 for G is presented in Table II. We
have Q1(v3, v6, (l2, l1)+) = true because ∃(v1, (l2, l1)) ∈
Lout(v3) and ∃(v1, (l2, l1)) ∈ Lin(v6). Indeed, there exists the
path (v3, l2, v4, l1, v1, l2, v3, l1, v6) from v3 to v6 in the graph
in Fig. 2. For Q2(v1, v2, (l2, l1)+), the answer is true because
∃(v1, (l2, l1)) ∈ Lin(v2). Given Q3(v1, v3, (l1)+), the answer
is false. Although v1 can reach v3, e.g., ∃(v1, l2) ∈ Lin(v3),
the constraint (l1)+ of Q3 cannot be satisfied.

Whereas our indexing framework leverages the canonical
2-hop labeling framework for plain reachability queries [5],
indexing RLC queries is inherently more challenging due to
the presence of complex recursive label concatenations, which
calls for the design of a novel indexing algorithm.

In order to save storage space, when building an RLC
index, redundant index entries have to be removed as many as
possible, i.e., building a minimal (or condensed) RLC index.
The underlying idea is that if there exists a path p such that

u
L+

 v, then the RLC index only records the reachability
information of the path p once, i.e., either through Case 1 or
Case 2 in Definition 4. This leads to the following definition.

Definition 5 (Condensed RLC Index): The RLC index is
condensed, if for every index entry (s, L) ∈ Lin(t) (or (t, L) ∈
Lout(s)), there do not exist index entries (u, L′) ∈ Lout(s) and
(u, L′′) ∈ Lin(t) such that L = L′ = L′′.

We focus on designing an indexing algorithm that can build
a correct (sound and complete) and condensed RLC index.

B. Query and Indexing Algorithm

The query algorithm is presented in Algorithm 1, where
we use I to denote an index entry. Each index entry I has
the schema (vid,mr), where vid represents vertex id and mr
recorded minimal repeat. Given an RLC query (s, t, L+), to
efficiently find (u, L′) ∈ Lout(s) and (u, L′′) ∈ Lin(t), we
execute a merge join over Lout(s) and Lin(t), shown at line
4 in Algorithm 1. The output of the merge join is a set of
index entry pairs (I ′, I ′′), s.t. I ′.vid = I ′′.vid. Case 1 of the
RLC index (see Definition 4) is checked at line 5. Case 2 is
checked at line 3. If one of these cases can be satisfied, the
answer true will be returned immediately. Otherwise, index

TABLE II
THE RLC INDEX FOR THE GRAPH IN FIG. 2.

V Lin(v) Lout(v)

v1 - (v1, l2), (v1, l1), (v1, (l2, l1))
v2 (v1, l1), (v1, (l2, l1)) (v1, (l2, l1)), (v1, l1)

v3 (v1, l2), (v1, (l1, l2))
(v1, l2), (v1, (l2, l1)), (v1, l1),
(v3, (l1, l2))

v4 (v1, l2) (v1, l1), (v3, (l1, l2))

v5
(v1, (l1, l2)), (v1, l1),(v3, (l1, l2)),
(v2, l2)

(v1, l1), (v3, (l1, l2))

v6
(v1, (l2, l1)), (v3, l1), (v3, (l2, l3)),
(v4, l3)

-

Algorithm 1: Query Algorithm.
1 procedure Query(s, t, L+)
2 if ∃(t, L) ∈ Lout(s) or ∃(s, L) ∈ Lin(t) then
3 return true;

4 for (I′, I′′) ∈ mergeJoin(Lout(s),Lin(t)) do
5 if I′.mr = L and I′′.mr = L then
6 return true;

7 return false;

entries in Lout(s) and Lin(t) are exhaustively merged, and
the answer false will be returned at last.

In the remainder of this subsection, we present an indexing
algorithm (Algorithm 2) to build the RLC index that is sound,
complete and condensed. We use vi to denote a vertex with id
i. Given a graph G(V,E,L), the indexing algorithm mainly
performs backward and forward KBS from each vertex in V to
create index entries, and pruning rules are applied to accelerate
index building as well as remove redundant index entries.

Indexing using KBS. We explain below how the backward
KBS creates Lout-entries. The forward KBS follows the same
procedure, except that Lin-entries will be created. Suppose
that the backward KBS from vertex vi is visiting v. If
|MR(Λ(v, vi))| ≤ k, then we add (vi,MR(Λ(v, vi))) into
Lout(v). Although there may be cycles in a graph, the KBS
will not go on forever, because when the depth of the search
reaches k, the KBS will be transformed from its kernel-search
phase into its kernel-BFS phase that is then guided by the
Kleene plus of a kernel candidate, such that the KBS can
terminate if any invalid label (or state) transition is met, or
a vertex being visited with a label li of the kernel has been
already visited with a label lj of the kernel, s.t. i = j.

KBSs are executed from each vertex in V and the execution
follows a specific order. The idea is to start with vertices that
have more connections to others, allowing such vertices to be
intermediate hops to remove redundancy. In the RLC index, we
leverage the IN-OUT strategy, i.e., sorting vertices according
to (|out(v)| + 1) × (|in(v)| + 1) in descending order, which
is known as an efficient and effective strategy for various
reachability indexes based on the 2-hop labeling framework.
The id of vertex v in the sorted list is referred to as the
access id of v, denoted as aid(v) starting from 1, e.g., for
the graph in Fig. 2, the sorted list is (v1, v3, v2, v4, v5, v6),
where aid(v3) = 2, or simply v(2)3 in Fig. 2.

Example 5 (Running Example of Indexing): Consider the

6



Algorithm 2: Indexing Algorithm.
1 procedure kernelBasedSearch(v, k)
2 for (L, vSet) ∈ backwardKernelSearch(v, k) do
3 backwardKernelBFS(v, vSet, L);

4 for (L, vSet) ∈ forwardKernelSearch(v, k) do
5 forwardKernelBFS(v, vSet, L);

6 procedure backwardKernelSearch(v, k)
7 q ← an empty queue of (vertex, label sequence);
8 q.enqueue(v, ε);
9 map← a map of (kernel candidates, vertex set);

10 while q is not empty do
11 (x, seq)← q.dequeue();
12 for in-coming edge e(y, x) to x do
13 seq′ ← λ(e(y, x)) ◦ seq; L← MR(seq′);
14 insert (y, v, L);
15 map.get(L).add(x);
16 if |seq′| < k then
17 q.enqueue(y, seq′);

18 return map;

19 procedure insert(s, t, L)
20 if aid(t) > aid(s) or Query(s, t, L+) then
21 return false;

22 else
23 add (t, L) into Lout(s);
24 return true;

25 procedure backwardKernelBFS(v, vSet, L)
26 q ← an empty queue of (vertex, integer);
27 for x ∈ vSet do
28 mark x as visited by state 1, q.enqueue(x, |L|);
29 while q is not empty do
30 (x, i)← q.dequeue(), i← i− 1;
31 if i = 0 then i = |L| ;
32 label l← L.get(i);
33 for in-coming edge e(y, x) to x do
34 if l 6= λ(e(y, x)) or y was visited by state i then
35 continue;
36 if i = 1 and insert(y, v, L) then
37 continue;
38 q.enqueue(y, i); mark y visited by state i;

graph in Fig. 2 and the RLC index in Table II with recursive
k = 2. The KBSs are executed from each vertex in the order
of (v1, v3, v2, v4, v5, v6). We explain below the backward KBS
from v1, which is the first search of the indexing algorithm.
The traversal of depth 1 of this backward KBS visits v4 and
creates (v1, l1) in Lout(v4), visits v3 and creates (v1, l2) in
Lout(v3), and visits v5 and creates (v1, l1) ∈ Lout(v5). The
traversal of depth 2 creates (v1, (l2, l1)) in Lout(v3), (v1, l2)
in Lout(v1), (v1, l1) ∈ Lout(v2), and (v1, (l2, l1)) ∈ Lout(v2).
Then, the kernel-search phase of this KBS terminates as the
depth of the search reaches 2, which generates kernel candidate
l1 with a set of frontier vertices {v4, v5, v2}, kernel candidate
l2 with a set of frontier vertices {v3, v1}, and kernel candidate
(l2, l1) with a set of frontier vertices (v3, v2). After this,
this KBS is turned into three kernel-BFSs guided by (l1)+,
(l2)+, and (l2, l1)+ with the corresponding frontier vertices.
The kernel-BFS terminates under the case of an invalid label
transition or a repeated visiting. For example, the label of the

incoming edge of v3 is l2, which is an invalid state transition
of (l2, l1)+ in the backward kernel-BFS from v1, such that the
kernel-BFS guided by (l2, l1)+ terminates at v3. For another
example, index entry (v1, l1) ∈ Lout(v1) is created when v1
is visited for the first time by the kernel-BFS from v1 guided
by (l1)+, but this kernel-BFS will not continue when it visits
v5 that has already been visited with the label l1.

Pruning Rules. To speed up index construction and remove
redundant index entries, we apply pruning rules during KBSs.
For ease of presentation, we present the rules for backward
KBSs, and the same rules apply for forward ones.
- PR1: If the k-MR of an index entry that needs to be recorded

can be acquired from the current snapshot of the RLC index,
then the index entry can be skipped.

- PR2: If vertex vi is visited by the backward KBS performed
from vertex vi′ s.t. aid(vi′) > aid(vi), then the correspond-
ing index entry can be skipped.

- PR3: If vertex vi is visited by the kernel-BFS phase of a
backward KBS performed from vertex vi′ , and PR1 (or PR2)
is triggered, then vertex vi and all the vertices in in(vi) are
skipped.

The correctness of Algorithm 2 with pruning rules is guaran-
teed by Theorem 3 presented in Section V-C.

Example 6 (Running Example of Pruning Rules): Consider
the forward KBS from v3 for the graph in Fig. 2. It can
visit v2 through label sequence (l2, l1), such that it tries to
create (v3, (l2, l1)) in Lin(v2). However, there already exist
(v1, (l2, l1)) ∈ Lout(v3) and (v1, (l2, l1)) ∈ Lin(v2), such
that Q(v3, v2, (l2, l1)+) = true with the current snapshot of
the RLC index, i.e., the reachability information has already
been recorded. Thus, the index entry (v3, (l2, l1)) in Lin(v2)
is pruned according to PR1. As an example of PR2, consider
the backward KBS from v2. It can visit v1 through path
(v1, l2, v3, l1, v2), such that it tries to create (v2, (l2, l1)) in
Lout(v1). Given aid(v2) > aid(v1), such that the index
entry can be pruned by PR2. Consider the forward KBS
from v2 for an example of PR3. It visits v2 through path
(v2, l2, v5, l1, v1, l2, v3, l1, v2), where at the edge (v5, l1, v1)
the KBS is transformed from the kernel-search phase to the
kernel-BFS phase that is then guided by (l2, l1)+. When v2
visits itself for the first time, the KBS tries to create index
entry (v2, (l2, l1)) ∈ Lin(v2). However, this index entry can
be pruned by PR1 because of (v1, (l2, l1)) ∈ Lout(v2) and
(v1, (l2, l1)) ∈ (v2). Then, PR3 is triggered, which means the
kernel-BFS from v2 with the kernel (l2, l1)+ can terminate.

The indexing algorithm is presented in Algorithm 2. For
ease of presentation, each procedure focuses on the backward
case, and the forward case can be obtained by trivial modifi-
cations, e.g., replacing in-coming edges with out-going edges.
We use the KMP algorithm [75] to compute the minimum
repeat of a label sequence, i.e., MR() at line 13 in Algorithm
2. The indexing algorithm performs backward and forward
KBS from each vertex. The KBS from a vertex v consists
of two phases: kernel-search (line 6 to line 18) and kernel-
BFS (line 25 to line 38). The kernel-search returns for each
vertex v all kernel candidates and a set of frontier vertices

7



vSet. The kernel-BFS is performed for each kernel candidate,
i.e., a BFS with vertices in vSet as frontier vertices guided
by a kernel candidate. PR1 and PR2 are included at line 20,
which can be triggered by both kernel-search and kernel-BFS.
However, RP3 can only be triggered by kernel-BFS, which is
implemented at line 36, i.e., if the insert function returns
true, then vertices can be pruned during the search. However,
PR3 is not related to kernel-search that focuses on generating
kernels, such that the result returned by the insert function
at line 14 is not taken into account.

C. Analysis of RLC Index

We present in Theorem 2 that pruning rules can guarantee
the condensed property of the RLC index, and in Theorem
3 that the RLC index constructed by Algorithm 2 is correct,
i.e., sound and complete. The proofs of Theorem 2 and 3 are
included in our technical report [39] due to the space limit.

Theorem 2: With pruning rules, the RLC index is condensed.
Theorem 3: Given an edge-labeled graph G and the RLC

index of G with a positive integer k built by Algorithm 2, there
exists a path from vertex s to vertex t in G which satisfies a
label constraint L+, |L| ≤ k, if and only if one of the following
condition is satisfied
(1) ∃(x, L) ∈ Lout(s) and ∃(x, L) ∈ Lin(t);
(2) ∃(t, L) ∈ Lout(s), or ∃(s, L) ∈ Lin(t).

We analyze the complexity of the RLC index below.
Query time. Given a query Q(s, t, L+), the time complexity

of Algorithm 1 is O(|Lout(s)| + |Lin(t)|), because we only
need to take O(|Lout(s)|+ |Lin(t)|) time to apply the merge
join to find (x, L) ∈ Lout(s) and (x, L) ∈ Lin(t). Note that
index entries in Lout(s) and Lin(t) have already been sorted
according to the access id of vertices, such that we do not
need to sort index entries when applying the merge join.

Index size. The index size can be O(|V |2|L|k) in the worst
case, since each Lin(v) or Lout(v) can contain O(|V |C) index
entries, where C = O(|L|k) is the number of distinct mini-
mum repeats for all label sequences derived from |L| of length
up to k. C can be computed as follows, C =

∑k
i=1 F (i),

where F (i) = |L|i− (
∑

j∈f(i),j 6=i F (j)) with F (1) = |L| and
f(i) the set of factors of integer i.

Indexing time. In Algorithm 2, we perform a KBS from
each vertex, and each KBS consists of two phases: the kernel-
search phase and the kernel-BFS phase. Performing a kernel-
search of depth k from a vertex requires O(|L|k|V |k) time,
and generates O(|L|k) kernel candidates as discussed in the
index size analysis. Each kernel candidate requires a kernel-
BFS taking O(|E|k) time. Hence the time complexity for
performing a KBS is O(|L|k|V |k + |L|k|E|k). The total index
time is O(|V |k+1|L|k + |L|k|V ||E|k) in the worst case.

Notice that these complexities resemble the complexity
classes of previous label-constraint reachability indexes [24],
[25] for LCR queries.

VI. EXPERIMENTAL EVALUATION

In this section, we study the performance of the RLC
index. We first used real-world graphs to evaluate the indexing

TABLE III
OVERVIEW OF REAL-WORLD GRAPHS.

Dataset |V | |E| |L| Synthetic
Labels

Loop
Count

Triangle
Count

Advogato (AD) 6K 51K 3 4K 98K
Soc-Epinions (EP) 75K 508K 8

√
0 1.6M

Twitter-ICWSM (TW) 465K 834K 8
√

0 38K
Web-NotreDame (WN) 325K 1.4M 8

√
27K 8.9M

Web-Stanford (WS) 281K 2M 8
√

0 11M
Web-Google (WG) 875K 5M 8

√
0 13M

Wiki-Talk (WT) 2.3M 5M 8
√

0 9M
Web-BerkStan (WB) 685K 7M 8

√
0 64M

Wiki-hyperlink (WH) 1.7M 28.5M 8
√

4K 52M
Pokec (PR) 1.6M 30.6M 8

√
0 32M

StackOverflow (SO) 2.6M 63.4M 3 15M 114M
LiveJournal (LJ) 4.8M 68.9M 50

√
0 285M

Wiki-link-fr (WF) 3.3M 123.7M 25
√

19K 30B

time, index size, and query time of the RLC index, where
we focus on practical graphs and workloads. Then, we used
synthetic graphs to conduct a comprehensive study of the
impact of different characteristics on the RLC index, including
label set size, average degree, and the number of vertices.
Finally, we compared the query time of the RLC index with
existing systems, where we additionally consider more types
of reachability queries from real-world query logs in order to
demonstrate the generality of our approach.

a) Baselines: To the best of our knowledge, the RLC
index is the first indexing technique designed for processing
recursive label-concatenated reachability queries, and indices
for other types of reachability queries are not usable in our
context because of specific path constraints defined in the
RLC queries. Thus, the chosen baselines for the RLC index
are online graph traversals guided by NFAs (see Section
III-B). We consider both BFS (breadth-first search) and BiBFS
(bidirectional BFS) as the underlying online traversal methods,
and simply refer to the baselines as BFS and BiBFS in this
section. We note that DFS (depth-first search) is an alternative
to BFS with the same time complexity but is not as efficient
as BiBFS. In addition, we also include an extended transitive
closure as a baseline, referred to as ETC. The indexing
algorithm of ETC performs a forward KBS from each vertex
without pruning rules, and records for every reachable pair
of vertices (u, v) any k-MR of any path p(u, v). In ETC,
we use a hashmap to store reachable pairs of vertices and
the corresponding set of k-MRs. There are two differences
between the indexing algorithm of ETC and the one of the
RLC index: (1) only forward KBS is used for building ETC,
instead of forward and backward KBS for the RLC index, and
(2) none of the pruning rules is applied for building ETC.

b) Datasets: We use real-world datasets and synthetic
graphs in our experiments. We present the statistics of real-
world datasets in Table III (sorted according to |E|), which are
from either the SNAP [76] or the KONECT [77] project. We
also include for each graph the loop count (cycles of length
1) and the triangle count (cycles of length 3) shown in the
last two columns in Table III. We generate synthetic labels
for graphs that do not have labels on their edges, indicated by
the column of synthetic labels in Table III. The edge labels
have been generated according to the Zipfian distribution [78]
with exponent 2. The synthetic graphs used in our experiments
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Fig. 3. Execution time of 1000 true-queries or 1000 false-queries on real-world graphs.

follows two different modes, namely the Erdős–Rényi (ER)
model and the Barabási-Albert (BA) model. We use JGraphT
[79] to generate the ER- and BA-graphs. The main difference
between ER-graphs and BA-graphs is that ER-graphs have an
almost uniform degree-distribution while BA-graphs have a
skew in it because BA-graphs contain a complete sub-graphs.
The method to assign labels to edges in synthetic graphs is
the same as the one used for real-world graphs.

c) Query generation: As a common practice to evaluate a
reachability index in the literature, e.g., [24]–[26], we generate
for each real-word graph comprehensive query sets, each
of which contains 1000 true-queries and 1000 false-queries,
respectively. We explain the method for query generation as
follows. We uniformly select a source vertex s and a target
vertex t, and also uniformly choose a label constraint L+.
Then, a bidirectional breadth-first search is conducted to test
whether s reaches t under the constraint of L+. If the test
returns true, we add (s, t, L+, true) to the true-query set,
otherwise we add it into the false-query set. After that, we
generate another (s, t, L+), and repeat the above procedure
until the completion of the two query sets.

d) Implementation and Setting: Our open-source im-
plementation has been done in Java 11, spanning baseline
solutions and the RLC index. We run experiments on a machine
with 8 virtual CPUs of 2.40GHz, and 128GB main memory,
where the heap size of JVM is configured to be 120GB.

A. Performance on Real-World Graphs

In this section, we analyze the performance of the RLC
index on real-world graphs. We first compare the RLC index
with ETC in terms of indexing time and index size, and with
BFS and BiBFS in terms of query time. The recursive k value
is set to 2, and each query in the respective workload has
a recursive concatenation of 2 labels. The goal of the first
experiment is to understand the performance of the RLC index
for practical RLC query workloads whose length of recursive
concatenation is at most 2, as in practical property paths
[27]. After that, we conduct experiments on real-world graphs
with different recursive k values to understand the impact for
general queries.

Indexing time. Table IV shows the indexing time of the RLC
index and ETC on real-world graphs, where “-” indicates that
the method timed out on the graph. Building ETC cannot be
completed in 24 hours for real-world graphs (or it runs out of
memory) except for the AD graph with the least number of
edges. The RLC index for the AD graph can be built in 0.7s,

TABLE IV
INDEXING TIME (IT) AND INDEX SIZE (IS).

Dataset RLC Index ETC
IT (s) IS (MB) IT (s) IS (MB)

AD 0.7 1.9 2216.1 2798.7
EP 22.6 29.3 - -
TW 8.1 93.5 - -
WN 33.1 122.6 - -
WS 53.5 173.9 - -
WG 101.3 403.6 - -
WT 812.9 607.1 - -
WB 167.1 474.2 - -
WH 3707.2 1319.1 - -
PR 3104.1 1212.6 - -
SO 57072.5 844.2 - -
LJ 18240.9 6248.1 - -

WF 51338.7 6467.9 - -

leading to a four-orders-of-magnitude improvement over ETC.
The indexing time improvement of the RLC index over ETC
is mainly due to the pruning rules that skip vertices in graph
traversals when building the RLC index. Thus, this experiment
also shows the significant impact of pruning rules in terms of
indexing time. The indexing time of the RLC index for the first
10 graphs is at most 1 hour. The last three graphs, i.e., the SO
graph, the LJ graph, and the WF graph are more challenging
than the others, not only because they have more vertices and
edges, but also because they have a larger number of loops and
triangles, as shown in Table III. The SO graph has the longest
indexing time due to its highly dense and cyclic character, i.e.,
it has 15M loops and 114M triangles. Although the WF graph
has much fewer loops than the SO graph, it contains 30B
triangles. Consequently, the indexing time of the WF graph is
at the same order of magnitude as the one of the SO graph.
While it has more vertices, triangles, and edge labels than the
SO graph, the LJ graph requires a lower indexing time.

Index size. Table IV shows the size of the RLC index for
real-world graphs. The size of the RLC index is much smaller
than the size of ETC for the AD graph (that is the only
graph ETC can be built within 24 hours). The index size
improvement is because of not only the indexing schema of
the RLC index but also the application of pruning rules that
can avoid recording redundant index entries. The effectiveness
of pruning rules can also be observed between the PR graph
and the SO graph. Although the SO graph is larger than the
PR graph in terms of the number of vertices and the number of
edges, the index size of the SO graph is smaller than the index
size of the PR graph. Thus, this experiment also demonstrates
the significant impact of pruning rules in terms of index size.

Query time. Fig. 3 shows the execution time of the true-
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Fig. 4. RLC index performance with different recursive k values.

query set and the false-query set. In general, the execution
time of a query set of 1000 queries using the RLC index is
around 1 millisecond for all the graphs in Table III, except
for the WF graph (that has the largest number of edges) for
which around 2 milliseconds. Query execution using BFS
times out for the true-queries on both the SO graph and
the WF graph, and for the false queries on the WF graph.
In addition, we only report the query time of ETC for the
AD graph as ETC cannot be built for all the other graphs.
As shown in Fig. 3, the RLC index shows an up to six-
orders-of-magnitude improvement over BFS and four-orders-
of-magnitude improvement over BiBFS. The query time using
the RLC index is slightly faster than ETC, because the larger
number of reachable pairs of vertices recorded in ETC leads
to a slight overhead of checking for the reachability between
a source s and a target t and also the existence of a minimum
repeat of a path from s to t.

Different recursive k values. We analyze the impact of the
recursive k values on real-world graphs. For space reasons, we
have focused on the TW and WG datasets, i.e., graphs from
Twitter and Google. The indexing results are shown in Figure
4, where we also report the query time of 1000 true-queries
and 1000 false-queries with a recursive concatenation of 2,
3, and 4 labels. As expected, the indexing time and index
size of the RLC index increase when the recursive k value
increases, and the larger index size with more path constraints
can also lead to the increase of query time. The main reason
is due to the fact that the number of path-constraints (kernels)
will exponentially grow as the increasing of k, and the kernel-
search phase of the indexing algorithm needs to take into
consideration the potential path-constraints that exist in the
graph. Notice that the increasing rate of index size is much
slower than the increasing rate of indexing time, which means
that the number of paths that can satisfy path constraints of
recursive concatenation is not increasing as the increase of
the length of the constraints, i.e., the recursive k value. The
main reason is that in real-world graphs only only a few labels
have a large number of occurrence (the Zipfian distribution) as
shown in existing benchmarks e.g., gMark [78]. Consequently,
a long concatenation of edge labels cannot repeat frequently
due to the lack of desired labels. Thus, RLC queries with a
large recursive k value may not need indexing.

Summary and outlook. Our indexing algorithm designed for
an arbitrary recursive k value can efficiently build the RLC
index for processing practical RLC queries that are difficult
to evaluate in modern graph query engines. Specifically, the

recursive concatenation length of RLC queries in recent open-
source query logs [27] is not larger than 2 and such practical
RLC queries appear quite often in time-out logs. As shown in
Table IV and Fig. 3, the RLC index with a recursive k of 2 can
be efficiently built even for large and highly dense real-world
graphs, and can significantly improve the processing time of
such timed out queries in practice.

B. Impact of Graph Characteristics

In this section, we focus on analyzing the performance of
the RLC index on synthetic graphs (ER-graphs and BA-graphs)
with different characteristics, namely average degree, label set
size, and the number of vertices. The recursive k value is
set to 2 in this section, and more experiments about different
k values on synthetic graphs are presented in our technical
report [39]. We generate for each graph a query set of 1000
true-queries and a query set of 1000 false-queries, which are
referred to as ER.T and ER.F for an ER-graph, and BA.T
and BA.F for a BA-graph.

1) Impact of label set size and average degree: In this ex-
periment, we use BA-graphs and ER-graphs with 1M vertices,
and we vary the average degree d in (2, 3, 4, 5), and label
set size |L| in (8, 12, 16, 20, 24, 28, 32, 36), e.g., a graph with
d = 5 and |L| = 16 has 1M vertices, 5M edges, and 16 distinct
edge labels. We aim at analyzing indexing time, index size,
and query time of the RLC index as the increase of d and
|L|. The experimental results for ER-graphs and BA-graphs
are reported in Fig. 5. We discuss the results below.

Indexing time. We observe in Fig. 5 that the indexing time
for the used ER-graphs and BA-graphs with a fixed d shows
a linear increase (for most cases) as |L| increases. This can
be understood as follows. When |L| increases, the number of
possible minimum repeats increases, requiring more time for
the kernel-search phase of a KBS in the indexing algorithm
to traverse the graph and generate potential kernel candidates,
resulting in more kernel-BFS executions. The total number
of possible minimum repeats can be quadratic in |L| in the
worst case when the input parameter k of the RLC index is
two. Furthermore, because there are more edges to traverse,
the indexing time for both ER-graphs and BA-graphs with a
fixed |L| increases linearly as d increases.

Index size. As illustrated in Fig. 5, an increase in average
degree d can result in a larger index size for both ER-graphs
and BA-graphs. The reason is that a vertex s can reach a vertex
t through more paths, leading to a higher number of minimum
repeats being recorded. As the size of the label set grows, the
corresponding impact on ER-graphs is different from the one
on BA-graphs. Specifically, the increase is negligible for ER-
graphs with a small d, e.g., 2, and becomes more noticeable
for ER-graphs with a large d, e.g., 5. For any d, however,
we see a clear linear increase in index size with the growth
in |L| for BA-graphs. This is because a BA-graph comprises
a complete sub-graph, and vertices inside the complete sub-
graph have higher degrees. Therefore, the KBSs executed from
such vertices can create more index entries as |L| grows, as
it can reach other vertices through paths with more distinct
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Fig. 5. Indexing time, index size, and execution time for graphs with |V | = 1M, varying d, and varying |L|.
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Fig. 6. Indexing time, index size, and query execution time for graphs with d = 5, |L| = 16, and varying |V |.

minimum repeats. However, because of the uniform degree
distribution, the increase in the number of minimum repeats
of paths from a vertex s to a vertex t due to an increase in
|L| is not significant for ER-graphs when d is small, but the
corresponding impact becomes stronger when d is larger.

Query time. As shown in Fig. 5 the growth of |L| has a
different impact on query time. More precisely, when |L| rises,
the execution time of both true- and false-queries for ER-
graphs remains steady. When it comes to BA-graphs, increas-
ing |L| can lead to a minor boost in true-query execution time
but has almost no impact on false query execution time. This
is due to the fact that the vertices in the complete sub-graph
of a BA-graph can reach much more vertices than the vertices
outside the complete sub-graph in the BA-graph, leading to a
skew in the distribution of vertices in index entries, i.e., many
index entries have the same vertex. Furthermore, when |L|
grows, the number of minimum repeats also increases, which
makes the skew higher. As a result, processing true-queries
will encounter situations where the query algorithm searches
for a particular minimum repeat in a significant number of
index entries with the same vertex. However, for false-queries,
the query result can be returned instantly if there are no index
entries with the same vertex. Fig. 5 also shows that d has a
negligible impact on the execution time of the true-queries on
the BA graph. The main reason is that the number of index
entries for some vertices in the BA graph does not increase
significantly w.r.t the increase of d because of the skew in the
degree distribution and a fixed |L|.

2) Scalability: In this experiment, we use BA-graphs and
ER-graphs with average degree 5, 16 edge labels, and vary
the number of vertices in (125K, 250K, 500K, 1M, 2M). The
goal is to analyze the scalability of the RLC index in terms of

|V |. The results of indexing time, index size, and query time
for both ER-graphs and BA-graphs are reported in Fig. 6.

Indexing time and index size. Fig. 6 shows that indexing
time and index size grows with the increase of the number
of vertices. The main reason is that graphs with more ver-
tices require more KBS iterations, which increases indexing
time and also the number of index entries. We observe that
indexing BA-graphs is more expensive than indexing ER-
graphs because of the presence of a complete sub-graph in
the former. We also observe that the different topological
structures between BA-graphs and ER-graphs have different
impacts on the increasing rate of index size w.r.t |V |. The
uniform degree distribution in ER-graphs makes the index
size increase with a sharper rate than the one of BA-graphs,
because BA-graphs contain a significant number of vertices
of high degree, which is also growing as |V | increases, and
the indexing algorithm starts building the index from these
vertices such that index entries containing these vertices can
be leveraged to prune redundant index entries that need to be
inserted later on.

Query time. Fig. 6 shows that query time on the ER-graphs
and true-query time on the BA-graphs slightly increase as the
number of vertices grows, as expected on larger graphs. In
addition, the false-query time is higher than the true-query
time on ER-graphs, and the true-query time is higher than
the false-query time on BA-graphs. We interpret the results
as follows. Given a query (s, t, L+) on a graph which has a
uniform distribution in vertex degree, the index entries (v,mr)
in both Lout(s) and Lin(t) also have a uniform distribution
in terms of v. Thus, the query algorithm (based on merge
join) need to perform an exhaustive search in Lout(s) and
Lin(t) to find index entries with the same vertex v, which
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results in false-queries taking longer time to execute than
true-queries. However, when the distribution of vertex degree
is skewed in BA-graphs, the index entries in Lout(s) and
Lin(t) are dominated by vertices of high degree. In addition,
as there are many paths passing through high-degree vertices
with distinct minimum repeats, the number of index entries
with such vertices is also large. Thus, the query algorithm
can perform a faster search for false-queries than true-queries,
because the number of distinct vertices in both Lout(s) and
Lin(t) is not large. Notice that the number of vertices of high
degree also increases as |V | increases. For false-queries in
BA-graphs, the dominance of index entries with high-degree
vertices becomes stronger as |V | increases. Consequently, the
number of index entries in Lout(s) and Lin(t) with distinct
vertex id can decrease, which makes the merge-join algorithm
execute faster. The query algorithm, on the other hand, needs
to select a specific mr among index entries with vertex u of
a high degree to process true-queries, which takes more time.

C. Comparison with Existing Systems

In this section, we focus on evaluating how much im-
provement the RLC index can provide over mainstream graph
processing systems. We recall that many current graph query
engines fail to evaluate RLC queries, thus we focused on
three systems that are able to evaluate these queries on
property graphs and RDF graphs. In order to show how the
index performs with varying types of queries, such as longer
concatenations or path queries frequently occurring in real-
world query logs, we consider the following queries: Q1 being
a single label under the Kleene plus a+; Q2 consisting of a
concatenation of length 2 (a ◦ b)+; Q3 having the expression
(a ◦ b ◦ c)+ thus a concatenation of length 3. In this case, we
build the index with k = 3 to support all the three RLC queries,
especially Q3 having the longest concatenation. For the sake
of completeness, an extended reachability query with the
constraint a+ ◦b+ is also included in this experiment, referred
to as Q4. We have employed Q4 to study the generality and
applicability of the RLC index to a wide range of regular path
queries in real-world graph query logs [27]. To deal with this
query, we use the RLC index in combination with an online
traversal to continuously check whether intermediately visited
vertices can satisfy the path constraint.

Three graph engines, including commercial and open-
sourced ones, used in the experiments have been selected as
representatives of the few available graph engines capable of
evaluating RLC queries. We do not reveal the identity of all
the systems as some are proprietary and we cannot release
performance data. Anonymized engines are referred to as Sys1
and Sys2 in the results, and the third one is Virtuoso Open-
Source Edition (v7.2.6.3233). For the systems that support
multi-threaded query evaluation, we set the system to single-
threaded to ensure a fair comparison with our approach, which
is single-threaded only. For Virtuoso, we disabled the transac-
tion logging to avoid additional overheads, and configured it
to work entirely in memory by setting the maximum amount
of memory for transitive queries to the available memory of

TABLE V
SPEED-UPS (SU) AND WORKLOAD SIZE BREAK-EVEN POINTS (BEP) OF

THE RLC INDEX OVER GRAPH ENGINES.

Sys.

RLC Query Extended
Query

Q1 Q2 Q3 Q4
SU BEP SU BEP SU BEP SU BEP

Sys1 1200x 84100 10400x 34000 18400x 9400 34000x 300
Sys2 3000x 34900 202000x 1700 1300000x 130 104000x 98

Virtuoso 597x 180000 4900x 71700 38100000x 5 - -

the server. Note that these systems have their own indexes
by default, which we leave the configuration unchanged,
e.g., Virtuoso 7 has column-wise indexes by default. These
indexes are not suitable for RLC queries, as confirmed by our
comparative analysis.

We use the WN graph as a representative of real-world
graphs, which has a moderate number of vertices and edges,
along with a sufficient number of cycles to evaluate. We build
one RLC index with the parameter k = 3 for the WN graph
and use it to process all four queries. In this case, the RLC
index of the WN graph can be built in 5.9 minutes and takes
up 821 megabytes. We run each query using each system
within the 10-minutes time limit, and we repeat the execution
20 times and report the median of the query execution time.
We use two metrics to evaluate the improvement of the RLC
index, namely speed-ups (SU) and the workload size break-
even points (BEP). SU shows the query time improvement of
the RLC index over an included graph system. BEP indicates
the number of queries that make the indexing time of the
RLC index pay off. Table V shows the results, where ”-”
indicates that the query execution of this system timed out. The
RLC index shows that using a single index lookup can gain
significant speed-ups over included systems for processing Q3,
which has the longest concatenation under the Kleene plus.
We use the BEP value to understand the amortized cost of
using the RLC index to accelerate Q3 processing. In particular,
executing Q3 130 times on Sys2 is equivalent to the time
it takes to build and query the RLC index the same number
of times. The RLC index can also significantly improve the
execution time for Q1, Q2, and Q4.

VII. CONCLUSION

In this paper, we introduced RLC queries, reachability
queries with a path constraint based on the Kleene plus over
a concatenation of edge labels. RLC queries are becoming
relevant in real-world applications, such as social networks,
financial transactions and SPARQL endpoints. In order to
efficiently process RLC queries online, we propose the RLC
index, the first reachability index suitable for these queries.
We design an indexing algorithm with pruning rules to not
only accelerate the index construction but also remove re-
dundant index entries. Our comprehensive experimental study
demonstrates that the RLC index allows to strike a balance
between online processing (full online traversals) and offline
computation (a materialized transitive closure). Last but not
least, our open-source implementation of the RLC index can
significantly speed up the processing of RLC queries in current
mainstream graph engines.
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[43] A. Jüttner and P. Madarasi, “Vf2++—an improved subgraph
isomorphism algorithm,” Discrete Applied Mathematics, vol. 242, pp.
69–81, 2018, computational Advances in Combinatorial Optimization.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0166218X18300829

[44] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Challenging the
time complexity of exact subgraph isomorphism for huge and dense
graphs with vf3,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 804–818, 2018.

[45] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification
hardness: An efficient algorithm for testing subgraph isomorphism,”
Proc. VLDB Endow., vol. 1, no. 1, p. 364–375, aug 2008. [Online].
Available: https://doi.org/10.14778/1453856.1453899

[46] S. Zhang, S. Li, and J. Yang, “Gaddi: Distance index based
subgraph matching in biological networks,” in Proceedings of the 12th
International Conference on Extending Database Technology: Advances
in Database Technology, ser. EDBT ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 192–203. [Online].
Available: https://doi.org/10.1145/1516360.1516384

[47] P. Zhao and J. Han, “On graph query optimization in large networks,”
Proc. VLDB Endow., vol. 3, no. 1–2, p. 340–351, sep 2010. [Online].
Available: https://doi.org/10.14778/1920841.1920887

[48] H. He and A. K. Singh, “Graphs-at-a-time: Query language
and access methods for graph databases,” in Proceedings of the
2008 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 405–418. [Online]. Available:
https://doi.org/10.1145/1376616.1376660

[49] W.-S. Han, J. Lee, and J.-H. Lee, “Turbo¡sub¿iso¡/sub¿: Towards
ultrafast and robust subgraph isomorphism search in large graph
databases,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 337–348.
[Online]. Available: https://doi.org/10.1145/2463676.2465300

[50] X. Ren and J. Wang, “Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs,” Proc. VLDB Endow.,
vol. 8, no. 5, p. 617–628, jan 2015. [Online]. Available: https:
//doi.org/10.14778/2735479.2735493

[51] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proceedings of the 2016
International Conference on Management of Data, ser. SIGMOD ’16.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 1199–1214. [Online]. Available: https://doi.org/10.1145/2882903.
2915236

[52] C. R. Rivero and H. M. Jamil, “Efficient and scalable labeled subgraph
matching using sgmatch,” Knowl. Inf. Syst., vol. 51, no. 1, p. 61–87, apr
2017. [Online]. Available: https://doi.org/10.1007/s10115-016-0968-2

[53] B. Bhattarai, H. Liu, and H. H. Huang, “Ceci: Compact embedding
cluster index for scalable subgraph matching,” in Proceedings of
the 2019 International Conference on Management of Data, ser.
SIGMOD ’19. New York, NY, USA: Association for Computing

Machinery, 2019, p. 1447–1462. [Online]. Available: https://doi.org/10.
1145/3299869.3300086

[54] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han, “Efficient subgraph
matching: Harmonizing dynamic programming, adaptive matching order,
and failing set together,” in Proceedings of the 2019 International
Conference on Management of Data, ser. SIGMOD ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1429–1446.
[Online]. Available: https://doi.org/10.1145/3299869.3319880

[55] S. Sun and Q. Luo, “Subgraph matching with effective matching order
and indexing,” IEEE Transactions on Knowledge and Data Engineering,
vol. 34, no. 1, pp. 491–505, 2022.

[56] S. Sun, X. Sun, Y. Che, Q. Luo, and B. He, “Rapidmatch:
A holistic approach to subgraph query processing,” Proc. VLDB
Endow., vol. 14, no. 2, p. 176–188, oct 2020. [Online]. Available:
https://doi.org/10.14778/3425879.3425888

[57] H. Kim, S. Min, K. Park, X. Lin, S.-H. Hong, and W.-S. Han,
“Idar: Fast supergraph search using dag integration,” Proc. VLDB
Endow., vol. 13, no. 9, p. 1456–1468, may 2020. [Online]. Available:
https://doi.org/10.14778/3397230.3397241

[58] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth
comparison of subgraph isomorphism algorithms in graph databases,”
Proc. VLDB Endow., vol. 6, no. 2, p. 133–144, dec 2012. [Online].
Available: https://doi.org/10.14778/2535568.2448946

[59] S. Sun and Q. Luo, “In-memory subgraph matching: An in-depth
study,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1083–1098.
[Online]. Available: https://doi.org/10.1145/3318464.3380581

[60] J. X. Yu and J. Cheng, “Graph reachability queries: A survey,” in
Managing and Mining Graph Data. Springer, 2010, pp. 181–215.

[61] A. Bonifati, G. Fletcher, H. Voigt, N. Yakovets, and H. V. Jagadish,
Querying Graphs. Morgan & Claypool Publishers, 2018.

[62] A. O. Mendelzon and P. T. Wood, “Finding regular simple paths in graph
databases,” in Proceedings of the 15th International Conference on Very
Large Data Bases, ser. VLDB ’89. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1989, p. 185–193.

[63] S. Wadhwa, A. Prasad, S. Ranu, A. Bagchi, and S. Bedathur,
“Efficiently answering regular simple path queries on large labeled
networks,” in Proceedings of the 2019 International Conference on
Management of Data, ser. SIGMOD ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1463–1480. [Online].
Available: https://doi.org/10.1145/3299869.3319882

[64] G. Bagan, A. Bonifati, and B. Groz, “A trichotomy for regular
simple path queries on graphs,” in Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, ser. PODS ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 261–272. [Online]. Available:
https://doi.org/10.1145/2463664.2467795

[65] P. T. Wood, “Query languages for graph databases,” SIGMOD
Rec., vol. 41, no. 1, p. 50–60, Apr. 2012. [Online]. Available:
https://doi.org/10.1145/2206869.2206879
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APPENDIX A
PROOF OF THEOREM 1

A proof of Theorem 1 is provided in this section. Before
that, we first show the kernel of a label sequence is unique in
Lemma 2 that will be used in the proof of Theorem 1.

Lemma 2: If L has a kernel, then the kernel is unique.
Proof: The proof is based on induction. The statement is

if a label sequence L of length n has a kernel, then the kernel is
unique. It is trivial to prove the initial case |L| = 2. Assuming
the case n is true, then we show the case n+1 is also true. Let
|L| = n+ 1. We use L̄ to denote the label sequence obtained
by removing the last label of L, i.e., |L̄| = n. We prove the
case n+ 1 below.

Assuming L can have two different kernels L1 and L2, and
L1 6= L2, then L = (L1)h1 ◦ L′1, h1 ≥ 2 and L = (L2)h2 ◦
L′2, h2 ≥ 2. If |L′1| = 0 and |L′2| = 0, then L has two MRs,
which is contradictory (Lemma 1). If |L′1| 6= 0 and |L′2| 6= 0,
then L̄ has kernels L1 and L2, which contradicts to the case
n. The remaining cases are that only one of L′1 and L′2 has a
length of 0. W.l.o.g. consider |L′1| = 0 and |L′2| 6= 0. Given
this, if h1 > 2, then L̄ also has kernels L1 and L2, which is
contradictory. Then we have h1 = 2 and |L′1| = 0, i.e.,

L = L1 ◦ L1. (1)

In addition, we have

L = (L2)h2 ◦ L′2, h2 ≥ 2, |L′2| 6= 0. (2)

Let L = (l1, ..., l2|L1|) and |L1| = a|L2|+ b, 1 ≤ a, b < |L2|.
According to Equ. (1), we have li = li+|L1|, 1 ≤ i ≤ |L1| and
li′ = li′−|L1|, |L1| < i′ ≤ 2|L1|, which means li = li+a|L2|+b

and li′ = li′−a|L2|−b. Based on Equ. (2), we have li = li+b

and li′ = li′ − b. Given this, consider the following two cases:
case (i) if 2|L1| mod b = 0, then |MR(L1 ◦ L1)| = b 6= |L1|
that contradicts to the fact that L1 is the unique MR of L;
case (ii) if 2|L1| mod b 6= 0, then L = (L3)h3 ◦ L′3, where
either |L3| = b, h3 ≥ 2, and |L′3| 6= 0, or |L3| < b and h3 > 2.

Note that, in the two sub-cases of case (ii), L′3 is ε, or a proper
prefix of L3. Therefore, L̄ has a kernel L3, |L3| ≤ b. However,
L̄ also has a kernel L2 and |L2| > b ≥ |L3|, which is also a
contradiction.

Based on Lemma 2, we prove Theorem 1 below.
Proof of Theorem 1: It is not difficult to prove Case 1

and Case 2. We focus on Case 3 below. For ease of presenta-
tion, let Λ(u, x) = Λ(p(u, x)) and Λ(x, v) = Λ(p(x, v)).

(Sufficiency) Because Λ(u, x) has the kernel L′ and the tail
L′′, such that Λ(u, x) = (L′)h ◦ L′′, h ≥ 2. Thus, we have
MR(Λ(u, x) ◦ Λ(x, v)) = MR((L′)h ◦ L′′ ◦ Λ(x, v)) = L′,
otherwise MR(L′′◦Λ(x, v)) 6= L′. In addition, we have |L′| ≤
k because |Λ(u, x)| = 2k. Thus, L′ is the k-MR of p.

(Necessity) We show that p does not have a non-empty k-
MR in the following two cases.
- Case (i): Λ(u, x) does not have a kernel and a tail. Assume

that p can have a non-empty k-MR L′′′ in this case. Because
|L′′′| ≤ k and |Λ(u, x)| = 2k, then Λ(u, x) has a kernel and
a tail, which is contradiction to the case definition.

- Case (ii): Λ(u, x) has a kernel L′ and a tail L′′, but MR(L′′◦
Λ(x, v)) 6= L′. Assume that p has a non-empty k-MR L′′′

in this case. Knowing that |L′′′| ≤ k and |Λ(u, x)| = 2k,
we have L′′′ = L′ because the kernel of Λ(u, x) is unique
(Lemma 2). Therefore, MR((L′)h◦L′′◦Λ(x, v)) = L′, h ≥
2, which means MR(L′′ ◦ Λ(x, v)) = L′, that is also a
contradiction.

APPENDIX B
PROOF OF THEOREM 2 AND 3

We prove Theorem 2 and Theorem 3 in this section. Before
proceeding further, we first present the following lemmas that
will be used to prove the two theorems.

Lemma 3: Given a path p(s, t) having a k-MR L. If the
KBS from s can visit t (or the KBS from t can visit s), then
the k-MR L of p(s, t) must be recorded in the index.

Proof: If the KBS from s can visit t, then regardless of
whether PR1 or PR2 is applied, the k-MR L of p(s, t) must
be recorded.

Lemma 4: Given two paths p(s, u) and p(u, t) with k-MR
L in a graph, where aid(u) < aid(s) and aid(u) < aid(t).
We have: if aid(u) ≤ i, then the k-MR of the path from s
to t through vertex u is recorded by Algorithm 2 in the i-th
snapshot of the RLC index that is computed after performing
KBS from a vertex with access id i.

Proof: The proof is based on induction. It is trivial to
prove the initial case i = 1. We assume the case i = n is true
and prove the case i = n + 1 below. We only need to show
the case aid(u) = n+ 1. Let p(s, t) = (s, ..., u, ..., t).

Assuming the backward KBS from u does not visit s. Then
PR3 is triggered, such that there exists vertex w, aid(w) <
aid(u), and p(s, w) and p(w, u) have the k-MR L. This case
can be reduced to the case i = n, because the k-MR of path
(w, ..., u, ..., t) is L and aid(w) < aid(u) < n+1. In the same
way, we can also prove the case if the forward KBS from u
does not visit t.
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Fig. 7. Evaluation of the RLC index with varying k.

We consider the case that both the backward KBS and the
forward KBS from u can visit s and t. For p(s, u), we have
the following two cases: Case (1) ∃(u, L) ∈ Lout(s); Case (2)
∃(v, L) ∈ Lout(s) and ∃(v, L) ∈ Lin(u), aid(v) < aid(u).
For Case (2), both p(s, v) and p(v, t) have the k-MR L, such
that this case can be reduced to the case i = n as aid(v) <
aid(u) = n+ 1. Then we only need to consider Case (1), i.e.,
∃(u, L) ∈ Lout(s). In the same way, for p(u, t), we only need
to consider the case ∃(u, L) ∈ Lin(s). Given this, the k-MR
of the path from s to t is recorded by having (u, L) ∈ Lout(s)
and (u, L) ∈ Lin(t).

Lemma 5: Given a path p from s to t with a k-MR L. If the
index entry (t, L) ∈ Lout(s) (or (s, L) ∈ Lin(t)) is pruned
because of PR3, then we have one of the following two cases:
- ∃(s, L) ∈ Lin(t) (or ∃(t, L) ∈ Lout(s));
- ∃(v, L) ∈ Lout(s) and ∃(v, L) ∈ Lin(t), such that aid(v) <
aid(t) (or aid(v) < aid(s)).

Proof: There exists two cases: aid(t) ≤ aid(s) or
aid(t) > aid(s). We prove the case of aid(t) ≤ aid(s).
The proof for the other case follows the same sketch. Let
p(s, t) = (s, ..., u, ..., t), such that PR3 can be triggered.
W.l.o.g. let aid(u) < aid(t) (if aid(u) ≥ aid(t) and PR3
is triggered, then there exists vertex w, aid(w) < aid(u),
which can be reduced to the case of aid(u) < aid(t)). Given
this, we have path p(s, u) and p(u, t) have the same k-MR
L according to the definition of PR3. Then we have three
cases: Case (1) aid(s) > aid(u); Case (2) aid(s) = aid(u);
Case (3) aid(s) < aid(u). Case (1) can be proved by Lemma
4, because aid(s) > aid(u), aid(t) > aid(u), and both
p(s, u) and p(u, t) have k-MR L. Case (2) can be proved
by Lemma 3 because the backward KBS from t can visit u,
i.e., aid(s) = aid(u). Case (3) can also by proved by 3 if
the forward KBS from s can visit t. The only case left is
that aid(s) < aid(u) and the forward KBS from s cannot
visit t because of PR3. In this case, there must exist vertex
v, aid(v) < aid(s) < aid(u) = n + 1, and the k-MR of
p(s, v) and p(v, u) is L. Then we have aid(v) < aid(s) and
aid(v) < aid(t), and both path p(s, v) and (v, ..., u, ..., t) have
the k-MR L, which can be proved by Lemma 4.

Proof of Theorem 2: Assuming there exists index entry
(t, L) ∈ Lout(s) in the RLC index , and there also exist
(u, L) ∈ Lout(s) and (u, L) ∈ Lin(t). Then we have aid(u) ≥
aid(t), otherwise (t, L) ∈ Lout(s) can be pruned. Given this,
(u, L) ∈ Lin(t) cannot exist because the backward KBS from
t is performed earlier than the forward KBS from u, which

means we have either (t, L) ∈ Lout(u), or (v, L) ∈ Lout(u)
and (v, L) ∈ Lin(t), such that (u, L) ∈ Lin(t) is pruned. The
proof follows the same sketch if (s, L) ∈ Lin(t) is considered.

Proof of Theorem 3: (Sufficiency) It is straightforward.
(Necessity) Let p be the path from s to t with the k-MR

L. W.l.o.g. let the backward KBS from t be performed first.
Then we have two cases: the backward KBS from t can visit
or cannot visit s. In the first case, the k-MR L of path p must
be recorded according to Lemma 3. In the second case, PR3
must be triggered. According to Lemma 5, we have the k-MR
of p is also recorded.

APPENDIX C
IMPACT OF K

In this experiment, we aim at analyzing the impact of k on
the index. We use a BA-graph and an ER-graph with 125K
vertices, average degree 5, 16 edge labels. We build RLC
indexes for the BA-graph and the ER-graph with k in (2, 3, 4).
For each graph, we evaluate a true-query set of 1000 queries
and a false-query set of 1000 queries using the three different
indexes built with the three different k values. The results of
indexing time, index size, and query time are reported in Fig.
7.

Overall results. Fig. 7 shows that the indexing time and
index size of both types of synthetic graphs rise exponentially
as k grows. The fundamental reason is that as k increases,
the number of possible minimum repeats that have to be
considered in graph traversals during indexing increases ex-
ponentially, which is an inherent step in building a complete
reachability index for RLC queries. The exponential increase
of minimum repeats w.r.t k also has an impact on query time,
particularly on the true-queries of BA-graphs and the false-
queries on ER-graphs. This is mainly due to larger index size,
and the true-queries on BA-graphs and the false-queries on
ER-graphs are more expensive to process than their opposites,
respectively.

APPENDIX D
REMARKS

An alternative version of the RLC index allowed to concate-
nate different minimum repeats to answer an RLC query, i.e.,
in Case 1 of Definition 4, L′ can be different from L′′ in the
alternative version. However, such a design will prevent the use
of PR3 that can prune vertices and avoid redundant traversals.
The reason is related to the technical proof of Theorem 3.
In a nutshell, if concatenating different minimum repeats is
allowed and PR3 is also allowed to apply, then the index might
not be complete, i.e., missing some index entries. Therefore,
we can only allow one of the two designs, i.e., either allowing
concatenating different minimum repeats or allowing applying
PR3. In the previous version, we allowed the former one.
Consequently, the indexing time of the alternative version is
much longer than the version introduced in this paper. For
instance, for the smallest graph used in our experiments (the
AD graph presented in Section VI), the indexing time of the
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alternative version is 32x slower than the current one. Thus, we focus on concatenating the same minimum repeats.
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